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Abstract Oceancolor measurements fromsatellites havebeenused to estimateglobaloceanic productivity 
for about 30years, but the approachstill has many problems. A combination of more sophisticated satellite 
productswithimprovedmodelshasthe potentialof higheraccuracy, but in reality the improvementin accuracy 
during the lasttwodecades has beenminimal. Persistent cloud cover overtheoceans and low Sunelevation 
over polar areas severely Iimit the potential of operational satelliteocean color measurements. A combination 
of remote measurements frombothsatellites and suborbital platforms as well as froma large number of 
autonomous devicesin the ocean canovercome these limitations in the future. 

 
 

 
Oceanic primary productionis part of the "biological pump " thatremoves CO2 fromthe upper ocean. Getting 
reliable estimates of the magnitude of this process [e.g., Y. J. Leeet al., 2015] is therefore beyond pure aca- 
demic interest. It may seemthat using satellites to estimate primary production in the ocean is a novel devel- 
opment, but it is not.Intheearly 1980s, when investigators were able to seeimages of NASA's first oceancolor 
sensor, the Coastal Zone Color Scanner, they realized the immense spatial variability or "patchiness" of phyto- 
plankton distributions in the ocean. It became clear that the practice of estimating integrated production in 
the world's oceans by extrapolating a few time-consumi ng and hard to makein situ measurements to tempo- 
rally and spatially variable oceans is doomed. Almost simultaneously, several researchers [Eppleyet al., 1985; 
Platt , 1986 ; Perry, 1986] proposed to use satellite images from space in conjunction with a model to estimate 
the  net primary production (NPP, mg Cm-   2)  in  the  oceans. Now, over 30 years later, these models are still 
being developed and a recent paper by Si/sbe et al. [2016] represents the state of the art of these efforts. 

While significant progress has been made in the last 30 years, the problem is far from being solved. By now 
the number of different models and their variants proposed by researchers probably exceeds a hundred , but 
their accuracy is still questionable. Only a few of the multitude of NPP models are widely used, and the 
reasons for  that are worth considering. In the  1990s the  Vertically Generalized Production Model (VGPM) 
by Behrenfeld and Falkowski [1997a, 1997b] gained dominance due to its simple structure, excellent presen- 
tation, and robust performance. It became clear that making the models too complex by cramming many 
detailed equations describing poorly known processes into themodels does not make the models perform 
better and can make their performance worse. Theoretically advanced and promising models often 
performed poorly when applied to real satellite data. For example, the Carbon based Productivity Model 
(CbPM) [Behrenfeld et al., 2005] that followed VGPM to become the most influential model in the 2000s, 
performed worse than other models because of the sensitivity to poorly known input variables. Eppley 
[Eppley et al., 1985] found that as a rule of thumb, the square root of the surface chlorophyll a concentration 
(mg m-   3) is approximately equal to  NPP per day per square meter. It appeared that quite often the rule of 
thumb NPP estimate was more accurate than CbPM [e.g., Kahru et al., 2009]. In a recent test of 32 different 
NPP models on Arctic data, none produced acceptable accuracy [Z Lee et al., 2015]. 

An impediment for progress in model improvement has been the fragmentation and poor accessibility  of 
data sets of in situ measurements. The approach of Saba et al. [2011] to provide a freely available, quality- 
controlled data set is a great exception, and expanding and complementing this data set should be greatly 
encouraged. When applied to the Saba et al. [2011] data set, the recent CAFE model [Westberry and 
Behrenfeld, 2013; Si/sbe et al., 2016] performs reasonably well but does not provide a significant increase in 
accuracy compared to a model published 20 years earlier [Antoine and Morel, 1996]. In order for the CAFE 
or  any other  model to  become the current standard NPP model of the decade like VGPM has been  earlier, 
the model structure must be open and clearly documented. Most importantly, the model code should be 
available for implementation and modification by other researchers. Data  products from the model should  
be accessible in order to compare the outputs of different implementations when applied to different data 
sets. The Ocean Productivity website of Oregon State University (htt p:// www.science.oregonstate.edu/ 
ocean.productivity) has been a great resource in  providing access to global NPP data. 
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Figure 1. Average number of days with ocean color data per month off (a) northeast Vietnam and (b) northwest of the 
Philippines from a single satellite sensor (SeaWiFSo, pen circles) and  a combination  of two sensors (SeaWiFSand 
MODJS-Aqua, filled circles). 

 
 

While model improvement must continue, the practical application of these models faces major obstacles 
that are barely discussed and oftenjust ignored. It is typical to apply NPP models to satellite data composited 
over monthly time periods as dailyor higher-resolutionsatellite data are not available. However, photosynth- 
esis is a nonlinear process and results from applying a model to monthly mean data is not equal to the mean 
of the results from applying the same model to temporally frequent data sets. Days can be very different in 
terms of solar radiation and other variables. Some areas of the world ocean are cloudy most of the time and 
rarely haveany ocean color data;others haveextreme seasonal differences in the number of clear days when 
oceancolor data canbeobtained. Figure 1 shows two examples of the number of days per month of available 
oceancolor data from oneor two satellite sensors. In the first region(coastal Vietnam) intense cloudiness dur- 
ing the winter months (December to March) allows less than 2 days and sometimes less than1 day per month 
of ocean color retrievals. In the second region (NW off the Philippines) the period of January to Marchis very 
clear (up to 17 days of ocean color data per month), but only 2days of ocean color data per month can be 
obtained in August. It is obvious that monthly composites based on data from only a few days per month 
are unreliable and that composites over shorter time periods inevitably miss a lot of areas due to clouds. 
Additional restrictions are caused by the low  Sun elevation over high-latitude oceans. The total area of open 
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Figure 2. Total area of missing ocean color data (monthlycomposites merged from multiple satellite sensors) in open 
water areas in the (a) Northern and (b) Southern Hemispheres. 
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water (i.e., with no ice) with missing ocean color data in monthly composites reaches-11 million km2 in the 
Northern Hemisphere during boreal winter and -30 million km2 in the Southern Hemisphere during austral 
winter (Figure 2). While we can assume that NPP is low over the win t er season at high latitudes, not all of this 
areais under polar night conditions and even low NPP per area m ulti plied by the largeareais a big number. It 
is obvious that satellite ocean color has severe limitations not just by missing large areasof the ocean surface 
due to clouds and low Sun angle but also due to missing the vertical dimension of the ocean. The way to fill 
thesegaps is through a combination of data from satellites, suborbital drones,and a large number of auton- 
omous profiling devices with smart sensors. However, the high cost and problems with merging disparate 
data sets remain problematic. The Biochemica-l Argo program [Johnson and Claustre, 2016] is an ambitious 
program aiming to cover the world oceans with biological sensors, but obtaining reliable measurements 
from autonomous devices is not easy and their spatial coverage will not be comparable to that of remote 
sensing. In the near-term, models like CAFE app lied to i nterp ola ted and ext rapo lated satelli te data remain 
the best option to get global productivity estimates. 
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