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EHDC: An Energy Harvesting Modeling and
Profiling Platform for Body Sensor Networks

Dawei Fan, Luis Lopez Ruiz, Jiagi Gong

Abstract—Energy harvesting is a promising solution
to the limited battery lifetimes of body sensor nodes.
Self-powered sensor systems capable of quasi-perpetual
operation enable the possibility of truly continuous monitor-
ing of patients beyond the clinic. However, the discontinu-
ous and dynamic characteristics of harvesting in real-world
scenarios—and their implications for the design and opera-
tion of self-powered systems—are not yet well understood.
This paper presents a mobile energy harvesting and data
collection (EHDC) platform designed to provide a deeper
understanding of energy harvesting dynamics. The EHDC
platform monitors and records the instantaneous usable
power generated by body-worn harvesters, while also col-
lecting human activity and environmental data to provide
a comprehensive real-world evaluation of two energy har-
vesting modalities common to body sensor networks: solar
and thermoelectric. The platform was initially validated with
benchtop tests and later with real-world deployments on two
subjects. 7-h-long multimodal energy harvesting profiles
were generated, and the environmental and behavioral data
were used to expand upon previously developed Kalman fil-
ter based mathematical models for energy harvesting pre-
diction. Results confirm the validity of the EHDC platform
and harvesting models, establishing the potential for longer
term monitoring of energy harvesting characteristics; thus,
informing the design and operation of self-powered body
sensor networks.

Index Terms—Body sensor networks, data modeling, en-
ergy harvesting, solar energy, thermoelectricity.

|. INTRODUCTION

ODY sensor networks (BSNs) have shown significant
promise in the healthcare domain by allowing physicians,
scientists, caregivers, and patients themselves to draw spe-
cific correlations between data collected with mobile sensor
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nodes and human health. These established associations have
been demonstrated to be useful for the diagnosis, tracking, and
treatment of chronic diseases and other health conditions [1].
Thus the advance of BSNs enabling continuous, long-term mon-
itoring and logging of patient data is of great significance for
improving healthcare and quality of life while reducing medical
costs.

Even though this potential has been identified, many chal-
lenges in BSN design and operation have impeded their
widespread adoption, including node lifetime, small wearable
form factor, and affordable cost. For many applications such
as long-term monitoring of chronic diseases [2]-[6], the re-
quired node lifetime is effectively indefinite to provide con-
tinuous monitoring and ideally infinite to minimize user bur-
den and maximize compliance. BSN researchers and designers
have begun to address this challenge by leveraging advances in
energy harvesting technology to develop self-powered sensor
systems [4].

Being able to utilize internal and ambient energy sources such
as thermal gradients, motion or light to power body-worn sen-
sor nodes creates new challenges to their design and operation.
Given the nature of the power source, a node must not only
consume less energy on average than the amount being har-
vested but also manage the time-varying profiles characteristic
of these energy sources. In the case of the former challenge,
extensive research has been done with the primary focus of re-
designing the individual components of BSN nodes along with
the optimization of algorithms for computation and communica-
tion [7]. Even though the latter challenge has attracted positive
attention, the work done to address it has been limited and not
extended to real-world scenarios.

When designing self-powered sensor systems, sources such as
solar (indoor/outdoor), thermoelectric, piezoelectric, RF, wind,
etc. have been explored. Regarding self-powered BSNs, avail-
ability is a major factor, but also wearability has a high impact
when defining the source to be used. Based on these consider-
ations for self-powered BSNs, solar, thermoelectric and piezo-
electric energy harvesting are commonly chosen as the power
source options [8]. In this paper, we examine the first two types
of power source under indoor and outdoor conditions.

Considering the principles of operation of solar and thermo-
electric harvesters and the nature of their corresponding energy
sources, the amount of energy that can be harvested must have
a particular correlation with human activity and ambient condi-
tions [8]. For instance, in the case of solar cells, it is clear that
the ambient illumination level defines the maximum amount
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Fig. 1. Profiling and correlating environmental and behavioral parame-

ters with usable harvested energy to model and predict available energy
for self-powered body sensor nodes.

of harvested energy, but it also has been studied how the an-
gle of incidence of light impacts the efficiency [9]. In a BSN
application where the cell is attached to the body in some man-
ner, both the illumination and the angle of incidence changes
as the person moves around during a typical day. Similarly, for
a thermoelectric generator (TEG), the temperature difference
across the device determines the available power. For a BSN
system powered by TEGs, this delta in temperature relates to
the difference between the skin temperature and the ambient
temperature, most specifically the microclimate surrounding
the device. Air flow is a factor that influences this microcli-
mate, and that is also highly dependent on human activity. If
the wearer is relatively static, the airflow is practically zero,
but while the person is active, the airflow can be high enough
to increase the amount of harvested energy considerably. Even
though certain information can be retrieved from the datasheets
of these devices, the data presented corresponds to static, con-
trolled conditions in a laboratory setting. Accordingly, having a
mechanism to understand the relation of human behavior, envi-
ronmental parameters and energy harvesting can bring valuable
insights to help researchers and designers solve key issues for
the development of self-powered sensor systems.

Motivated by the challenges above, this research explores the
feasibility and dynamics of energy harvesting for self-powered
sensors and its correlation with context information in real-
world scenarios. Fig. | illustrates this concept. The ultimate
goal of this work is to provide a framework that gives BSN
researchers and designers insights into the design of energy
harvesters, low-power electronics, and dynamic power manage-
ment strategies so that self-powered BSNs can be realized in
real-world scenarios.

As part of this exploration, preliminary work was presented
in [10] and is expanded here with the following contributions:

1) An energy harvesting and data collection (EHDC) plat-
form — with advances in system integration, flexibility,
and wearability — capable of gathering information about
human behavioral and environmental parameters along
with usable energy harvesting levels from solar and ther-
moelectric harvesters.

2) Long-term and more naturalistic energy profiles enabled
by platform advances that show the interaction among
the parameters of interest.

3) Development and validation of a mathematical model that
accurately estimates — and makes short-term predictions

of — the amount of usable harvested energy based on
environmental conditions and activity level.

Il. RELATED WORK

This paper focuses on two types of energy harvesting tech-
niques: solar and thermoelectric. Data collections are done in
both indoor and outdoor conditions. The EHDC platform is de-
signed to characterize the relationship between environmental
and human behavioral conditions and real-world energy harvest-
ing dynamics. Therefore, we review related work in profiling,
modeling and predicting energy harvesting instead of a gen-
eral review on body-worn energy harvesting, which is detailed
in [11].

A. Profiling Energy Harvesting

Human behavior profoundly impacts energy harvesting per-
formance in body sensor networks. Therefore, having a bet-
ter understanding of how such behavior correlates with energy
harvesting is fundamental to achieve self-powered sensor plat-
forms. One way to develop this understanding is by defining
energy profiles for various energy sources available in the envi-
ronments where self-powered sensors are deployed.

In [12], power profiles for indoor solar energy harvesting are
presented. The profiles were elaborated with data collected over
one year, and a simulation for a particular load is designed to
show the application of these profiles. The limitation of this
work relies on the fact that the energy transducer was fixed next
to a window, and as mentioned before, the interest for BSNs is
to have profiles that consider human activity. There is even less
work on on-body thermoelectric energy harvesting profiling,
with one of the few studies presented in [13]. This work shows
the correlation of the power generated for one activity (cycling)
over one hour and mentions the average amount of energy har-
vested while working in the office, but it does not present a full
profile for different activities over long periods of time. One of
the aims of this paper is to present an energy profile over several
hours for various typical daily activities, both at work and at
home.

B. Solar Energy Harvesting and Modeling

BSN applications must consider both indoor and outdoor
use. Most previous research in solar energy harvesting tech-
niques is focused on outdoor applications [14]-[16]. Exponen-
tial Weighted Moving Average (EWMA) is a theoretical model
issued by Kansal ef al. [14] to predict harvested solar energy
by applying an exponentially weighted moving-average filter
on historical data to adapt both diurnal and seasonal variations.
Weather-conditioned Moving Average (WCMA) is a model is-
sued in [15] based on EWMA that considers weather changes.
It performs better when sudden weather changes occur. Some
other works are based on EWMA or WCMA models adding
more parameters reflecting environmental variations [16].

BSNs are dominated by indoor use most days for most users,
and indoor solar energy harvesting conditions are quite different
from the outdoor environment. First, indoor light is usually in-
candescent light, fluorescent light, LED, etc., rather than the sun.
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Fig. 2.

The radiant spectra of these light sources differ and therefore
affect the efficiency of solar cells. Second, the indoor light has
lower illumination level, usually less than 1000 lux, compared
to outdoor sunlight, which is 10000—-200000 lux. The power
density of indoor solar is around 1 W /mm? [17]. Third, the in-
door light is more controlled by people and has less dependence
on weather or seasonal changes.

C. Thermoelectric Energy Harvesting and Modeling

Since human beings are warm-blooded, they can be used as a
heat source for TEGs attached to the skin. With consideration of
the comfort level for people to wear these devices, it is common
to attach TEGs on the wrist or arm. A prototype is proposed and
implemented in [18] to demonstrate that TEGs are comparable
and even better than solar energy harvesting. They can harvest
250 uW in daytime corresponding to 20 W /cm?. The TEG
harvested energy could be used to extend sensor node lifetime
in medical systems, as shown in [19] which presented a fall
detection system powered by thermal energy harvested from
human warmth with the highest power of 520 pW. A hybrid of
indoor ambient light and thermal energy scheme is presented
in [8], and the result shows that they can harvest an average
of 621 pW with an average indoor irradiance of 1010lux and
thermal gradient of 10 K. However, there is still little research
on modeling TEG harvesting performance in a variety of real-
world environments and human behaviors.

D. Hybrid Modeling

Most previous modeling techniques have limitations on time
resolution and robustness to dramatic dynamics of energy har-
vesting, which is not suitable for self-powered sensors. In
real-time embedded systems, an accurate short-term prediction
model is required to achieve higher energy efficiency with op-
timization techniques like dynamic voltage and frequency scal-
ing (DVFS) [13]. In [17], three different prediction methods are
tested, and it is concluded that regression analysis works bet-
ter for a short-time prediction on simulation data. In [18], six
empirical statistical models including uniform distribution, geo-
metric distribution, transformed geometric distribution, Poisson

Block diagram of the EHDC platform and the interface with the Raspberry Pi computer.

distribution, transformed Poisson distribution and a Markovian
model are tested for both outdoor and indoor environments, and
results show that no single model fits all the data sets. In [20],
a hybrid profile energy model (Pro-Energy) of solar and wind
was proposed to predict the harvested energy. The model can
provide accurate predictions for short and medium term fore-
casting horizons, but it is not designed for BSN applications and
the associated behavior and environmental dynamics.

lll. PLATFORM

The EHDC platform incorporates thermoelectric and solar en-
ergy harvesting capabilities. It is entirely based on commercial-
off-the-shelf (COTS) components, and it interfaces with a Rasp-
berry Pi computer, which serves as a data logger and as a mean
to validate the developed models. The architecture of the system
is comprised of three main blocks: energy harvesting and power
management, sensing and monitoring, and data logging. A block
diagram of the full EHDC platform is presented in Fig. 2.

A. Energy Harvesting and Power Management

The main component of the energy harvesting and power
management block is the harvester since it transforms a form of
harvestable energy into electrical energy. However the output
voltage level of the harvester — commonly in the order of mV
for BSN applications — often is not adequate to power electron-
ics. Also, if the irregularity of energy available is accounted
for, the need for other elements arises. To address the former,
a boost converter is a good solution since it not only increases
the voltage that is received at the input but it also has the ca-
pability of extracting the maximum power from the harvester
through an additional circuit that has been designed for this
task. In the case of the latter challenge, once the voltage is
at the right level, the harvested energy is stored in a superca-
pacitor that feeds a voltage regulator to provide the load with a
constant voltage as it is usually required. As more components
are added to the system, it starts to become apparent that certain
power is lost during the conversion on each stage. This topology
is common to energy harvesting systems, and the relationship
between each component can be modeled as depicted in Fig. 3.



36 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 22, NO. 1, JANUARY 2018

‘{'.‘.:_ Va".u ,?;,‘ r,}j "l."-’ L’:r.,
Solar
——=
TEG @ E o . @ ;
= gz Y%—0 3 :
pomn o [
Load,
Others
Energy Energy Energy Energy
harvesting  conversion  storage consumption

Fig. 3. Diagram of a typical energy harvesting system which consists
of four modules: energy harvesting, energy conversion, energy storage,
and energy consumption.

The input electrical power from the harvester (I;;, Vj;) is re-
duced by a factor 7, intrinsic to the boost converter, then the
resultant power is delivered to the supercapacitor and the regula-
tor. If we consider the supercapacitor as our source at this point,
we can assume that the input power to the regulator (I, V;) will
be reduced again by a factor 7, defined by the regulator. Finally,
the power delivered to the load will be defined by I; and V;.

Following the described topology, for the particular case of
solar energy harvesting in our platform, we selected an amor-
phous solar cell from Sanyo. The AM-1417CA cell responds
to light sources whose wavelengths are within the 400 nm to
700 nm spectrum range, which makes it ideal for indoor con-
ditions. As a boost converter, the BQ25504 chip from Texas
Instruments was considered. The converter incorporates a con-
figurable circuit for maximum power point tracking (MPPT) that
senses the input voltage and adjusts the operating frequency of
the device to extract the maximum power available. To store
the harvested energy, the supercapacitor AVX BZ155B823ZNB
was added. It has a capacitance of 82 mF and an equivalent
series resistance (ESR) of 125 m{2. A low-power, low-dropout
regulator (LDO) from Linear Technologies was incorporated to
implement this block of the system. Most of the current low-
voltage devices operate at voltages around 1.8 V, and therefore
the output of the LDO was set at that value.

Regarding thermoelectric energy, the SP5424-04AC thermo-
electric generators (TEGs) from Marlow were selected. These
TEGs have a minimal form factor, which made them ideal for
creating an armband for our application. A heatsink was attached
to the cold side of each TEG using small carbon conductive tabs
to maximize the temperature difference across the TEGs,. Com-
monly TEGs have lower voltage outputs than solar cells and
attending to this need; a different boost converter was dedicated
for this case. The LTC3108 from Linear Technologies is a boost
converter that can operate from inputs as low as 20 mV by using
a small step-up transformer at the input to achieve this func-
tionality. For energy storage and voltage regulation, the same
supercapacitor and regulator were used as in the solar case.

B. Sensing and Monitoring

Several sensors were incorporated to monitor the variables
relevant to the selected energy sources with the goal of cor-
relating environmental and human behavioral parameters with
energy harvesting.

Fig. 4. From left to right, the full EHDC platform for multi-source energy
harvesting and the platform deployed for data collection.

To determine the illumination levels at which the solar cells
were exposed, the NOA1212 light sensor from On Semicon-
ductor was attached very close to the cells. Its spectral response
is very close to the human eye and within the range of the so-
lar cells of our platform. For temperature measurements, two
MAX6605 sensors from Maxim Integrated were used. This de-
vice has an accuracy of 0.75 °C at 25 °C and a linear output
voltage. One of the MAX6605 was attached to the inner side
of the TEG armband for skin temperature measurements while
the other one was left exposed close to the heatsinks to moni-
tor the ambient temperature. As a tracker of the activity level,
we included the ADXL.326 accelerometer from Analog Devices
to the platform. This sensor has a minimal form factor, and
the external components required for its operation are mini-
mal. To determine the instantaneous usable power, we moni-
tored the current delivered by the boost converter and its output
voltage. In the first case, we used the current shunt monitor
INA285 from Texas Instruments with a shunt resistor of 20 (2.
This setup allows us to monitor current in high-resolution while
also minimizing losses. For the latter, we used a 16-channel
analog to digital converter (ADC) from Analog Devices. By
having the AD7490 in our platform, we were not only able to
monitor the voltage at the output of the boost converter but also
digitize the readings from the other analog sensors used for later
processing and logging. It is worth to remind the reader that one
of the goals of this work is to determine the usable power and
not to characterize the harvesters. Thus our setup just described.
Fig. 4 presents the full EHDC platform and a subject wearing it
during one of the data collection sessions.

C. Data Logging

To log the sensor data that was being collected for later anal-
ysis, the Raspberry Pi microcomputer was designated for this
task given its flexibility and easiness of use. Linux was used
as the operating system (OS) for the Raspberry Pi, and the
software for logging the data from the EHDC platform was
programmed in Java. The collected sensor data was stored in
a micro SD card and to reduce the power expended with each
logging; the data was compressed into binary files. Additional
software was developed to enable uploading the sensor data to
a custom cloud server for data visualization and storage in real
time.
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IV. ENERGY PREDICTION MODEL

In this section, we propose a Kalman Filter (KF) based model
to predict the harvested energy based on environmental and
human behavioral parameters. KF is an estimation model that
combines several previous observations to produce an estimate
for the desired unknown as it is presented in [21]. The proposed
model was adapted from this work and consists of state process
and measurements by sensors; the state process is defined by
the environmental and human behavioral parameters since they
represent the physical principle of self-powered energy harvest-
ing while the measurement values are acquired from sensors.
Fig. 5 demonstrates the prediction model.

A discrete time-slotted system is assumed to facilitate the pro-
cessing. The time slot is selected considering sensor sensitivity,
human motion features, and the desired time scale to predict.
Here the time slot is selected as 10 seconds. Then the model
could be defined as:

z(n) = Az(n — 1) + u(n)

y(n) = Hz(n) + v(n) M

in which x(n) is the state vector, y(n) is the measurement vector,
u(n) is the process noise, and v(n) is the measurement noise. For
simplicity, it is assumed that u(n) and v(n) are independent and
both Gaussian distributed with zero mean and variance of o2
and o2, respectively.

A. Adaptation of Kalman Filtering for
Harvesting Prediction

Kalman Filtering is used to estimate the observation and to
predict the harvested energy in the near future. The observa-
tion measurement y(n) includes harvested energy from solar,
thermoelectric source, and also the parameters of light inten-
sity, temperature difference, and human motion. The latter is
assumed to be related to the change of harvested energy since
it directly affects the energy received by the transducer. For in-
stance, the amount of incident light to the indoor solar cell will
vary if the person moves closer or further from the light sources
while walking to another room. Similarly, thermoelectric en-
ergy will fluctuate according to the airflow across the heat sink
due to slow or fast movements. Therefore, the state vector is

chosen as:
z(n) = [es(n), er(n), U(n), ta(n), m(n)] 2

where e.(n) and e;(n) are harvested solar and thermoelectric
energy in the time-slot, /(n) is light intensity sampled by the
light sensor and £, is the temperature difference. m(n) is a func-
tion of human motion; in this paper, we use the Teager energy
calculator.

The measurement vector is the same as the state vector. Note
that the harvested energy is calculated using measured voltage
and current.

y(n) = [es(n), ex(n), U(n), ta(n), m(n)] 3)

The transition matrix can be modeled as

0 0 a 0 b
g a0 & d
A=(0 0 1 0 e @)
T |
|0 0 00 1]

Since the measurement data is simply from sensors (or with
simple calculation), the measurement matrix is an identity
matrix.

B. State Prediction Using Kalman Filtering

There are two steps in Kalman Filtering: a prediction step and
an update step. In prediction step, the current state is estimated
using previous data, and this is also called a priori estimate.

Z(nn—1)=Az(n—1n—1) (5)
P(njn —1) = AP(n|n — 1)A’ + o,” (6)

where #(n|n — 1) is the predicted current state according to
previous results and P(n|n — 1) is the covariance matrix. With
the current measurement, the residual, variance, and the optimal
KF gain is

y(n) =y(n) — Hz(n|n - 1) (7
S(n) = HP(n|n—1)H' 4 0,° (8)
K(n) = P(n|n — 1)H'S(n)" )

In the update step, the updated estimation is

Z(nln) =z(n—1ln— 1)+ K(n)(y(n) — Hz(n|jn — 1))
(10)

(11)

This is also called the a posteriori estimate. To predict future
state, (5) could be used one or more times.

P(nln) = (I — K(n)H)P(n|n— 1)

V. EXPERIMENTAL RESULTS

This section presents the profile of energy harvesting in the
real world and the performance of the proposed prediction
model.
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Fig. 6. Energy harvesting profile at home (top) and office (bottom). The

profile includes motion (scaled Teager energy), light intensity (100 lux),
averaged solar power (uW), the temperature difference between skin
and ambient air (°C), averaged thermoelectric power (W), and total
power (uW). Activities are marked in the figures.

A. Energy Harvesting Profile

We created four profiles from two male subjects who worn the
platform across multiple days to collect data in mainly indoor
environments (e.g., office and at home). More than 80% of the
activities occurred indoor, but some outdoor activities are also
included. The energy profile display motion (scaled Teager en-
ergy), light intensity (unit: 100 lux), averaged solar power (W),
the temperature difference between skin and ambient air (°C),
averaged thermoelectric power (W), total power (uW). Due to
the limited space, only two of the profiles are shown in Fig. 6.

The energy harvesting profile data displayed in Fig. 6 (top) is
collected mainly at home. The activities include indoor activities
like cooking, working at a desk, and walking around, and a short
period of outdoor activities, such as walking outside and driving.
The average indoor light intensity is 209 lux, and around O lux
outdoor since it is at night. The average temperature difference
indooris 1.1 °C, and 6.1 °C when walking outdoor. The average
indoor power is 3.6 uW, and average outdoor power is 41.7 u W
which is almost all thermal energy.

Fig. 6 (bottom) displays a profile created in and around the
office. The activities include indoor walking, working at a desk,
and outdoor walking. The average light intensity in the office
room is 537.1 lux and more than 10000 lux outdoor. The average
temperature difference is 5.0 °C when the subject is walking
indoor, and only 0.9 °C when sitting at desk. When walking
outdoor, the average temperature difference is 9.7 °C. The av-
erage indoor power is 7.1 pW, and average outdoor power is
171.4 pW.

0 100 200 300 400 500 600

time (s)
Fig. 7. Comparison results (a duration of 10 min) of the energy pre-

diction using proposed KF model and model of regression (n = 4), ex-
ponential smoothing (a=0.3), moving average (n=4). MAPE values
are 19.8% from the proposed model, and 26.2%, 22.0%, 20.6% from
the regression, moving average, and exponential smoothing model,
respectively.

In the indoor environment, most of the time solar power
dominates the total power profile. In certain situations, such
as walking, the thermoelectric power dominates due to the arm
movement. In the outdoor environment, since the ambient air
temperature is low, there is much more thermal energy harvested
than indoor.

From the figures, it is possible to see that the light intensity
and harvesting power have a good linear relationship. On the
other hand, the temperature difference and harvested thermo-
electric power are not linearly related. Instead, thermoelectric
power is related with motion for some time. This indicates that
human activity level — which relates to airflow — has a signif-
icant influence on thermoelectric energy harvesting. Also, it is
noteworthy that solar cells are more efficient than TEGs by pro-
viding approximately 27.4 uW /cm? compared to 4.45 uW /cm?
of the latter, both under good harvesting conditions.

Even though the usable power coming from energy harvest-
ing is very limited here, it is important to note that this work
focuses on the feasibility and dynamics of energy harvesting
for self-powered BSNs in the real world and is not intended
to characterize or optimize the harvesters themselves. If higher
power is needed for a particular application, the area of the
harvester(s) could be increased. However, the state-of-the-art of
ultra-low power electronics has presented solutions for self-
powered BSNs at even these low harvesting levels. For in-
stance, in [22] a 6.45 uW system-on-chip (SoC) for biomedical
applications was presented and a 23 nW temperature sensor
was introduced in [23]. Similarly, leading edge COTS technol-
ogy has available devices for self-powered BSNs such as the
ADXIL.362 accelerometer from Analog Devices that consumes
3.6 uW or the Bluetooth SoC DA 14580 from dialog semicon-
ductor, which can operate with 1.2 uW when setting into the
deep-sleep mode.

B. Performance of the Prediction Model

The performance of the proposed short time energy prediction
model is shown in Fig. 7, which compares predictions using the
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proposed KF model with environmental and behavioral parame-
ters and other models including regression, moving average, and
exponential smoothing, which is compared in [17]. It is shown
in the figure that the prediction from proposed model accords
better with the measured values than the other models.

The mean absolute percentage error (MAPE), which is
the computed average of percentage errors between predicted
values and measured values, is used to compare the predic-
tion performance. MAPE values are 19.8% from the proposed
model, and 26.2%, 22.0%, 20.6% from the regression, moving
average, and exponential smoothing model, respectively.

According to the performance comparison, the proposed
model with environmental and human behavioral parameters
performed better than the others. The improvement in per-
formance comes from the information integration of dynamic
environmental and human behavioral parameters. Besides, the
results reveal the relationship between environmental and hu-
man behavioral parameters and energy harvesting.

VI]. CONCLUSION

This paper was motivated by the demands of balancing energy
harvesting and energy consumption in BSNs and inspired by the
relationship between environmental and human behavioral pa-
rameters and energy harvesting. We designed, implemented, and
validated a wearable platform — EHDC — for collecting simulta-
neous data on environmental and human behavioral parameters
and on solar and TEG harvested energy to generate time-domain
profiles of energy harvesting under real-world BSN scenarios.
Also, this paper proposed a KF based model to predict the har-
vested energy, which can then be used to manage both harvesters
and energy consuming electronics dynamically. The main con-
tributions come from the hardware platform, time-domain pro-
filing of energy harvesting and the prediction model, which
together provide a new view into self-powered wearable sensor
design. Experimental results demonstrate that human behaviors
profoundly impact energy harvesting and that the prediction
model is efficient to calculate and predict harvested energy in
real time.

Future work focuses on more experiments for collection and
analysis of new data to extend and develop more complex, non-
linear models that lead to improvements on accuracy for short
and long term harvesting prediction.
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