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Abstract: In a general class of Bayesian nonparametric models, we prove that the posterior

distribution can be asymptotically approximated by a Gaussian process. Our results apply

to nonparametric exponential family that contains both Gaussian and non-Gaussian regres-

sion, and also hold for both efficient (root-n) and inefficient (non root-n) estimation. Our

general approximation theorem does not rely on posterior conjugacy, and can be verified

in a class of Gaussian process priors that has a smoothing spline interpretation [59, 44].

In particular, the limiting posterior measure becomes prior-free under a Bayesian version

of “under-smoothing” condition. Finally, we apply our approximation theorem to examine

the asymptotic frequentist properties of Bayesian procedures such as credible regions and

credible intervals.
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1. Introduction

A common practice in quantifying Bayesian uncertainty is to construct credible regions that cover

a large fraction of posterior mass. In some cases, it is of interest to investigate the probability that

the true parameter (that generates observations) is covered by the credible regions, the so-called

frequentist property. Such frequentist studies on Bayesian procedures often rely on the asymptotic

shapes of posterior distributions, which may be characterized by the Bernstein-von Mises (BvM)

theorem.

In nonparametric settings, Freedman [14, 15] found that “almost all” Bayesian prior distribu-

tions yield inconsistent posteriors. After three decades, Cox [4] and Freedman [16] found that

credible regions for nonparametric function cover the truth with probability approaching to zero.

In the decades since their seminal work, achievements were made mostly in Gaussian settings.

For instance, BvM theorem has been established for mean sequences (or signals) in Gaussian
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sequence models (equivalently, Gaussian white noise models); see [26, 22, 23, 50, 51, 7, 8, 31, 30].

In Gaussian regression with fixed design, [47, 48] proposed adaptive credible regions for regression

functions; with random design, [61] proposed credible sets under sieved priors. In models where

efficient estimation (at
√
n-rate) is possible, [41, 7, 8, 3] proposed credible intervals for functionals

of infinite-dimensional parameters. As far as we are aware, posterior approximation in a general

nonparametric context remains an open problem, despite the importance of non-Gaussian data.

The major goal of this paper is to prove a Gaussian approximation result in more general

Bayesian nonparametric settings without relying on posterior conjugacy. Specifically, we consider

a nonparametric exponential family that covers both Gaussian and non-Gaussian regression. As

far as we know, even for the special Gaussian setup, the random design case was not investigated in

the literature. Also, our framework is applicable even when the efficient estimation is unavailable.

As explained later, our result is established based on substantially different techniques from those

in the aforementioned literature.

Under total variation distance, we prove Gaussian process approximation of general posterior

distributions, which significantly generalizes the (total variation) BvM result obtained by Leahu

[26] in the special Gaussian white noise model. This posterior approximation result is useful

in studying the frequentist properties of finite sample (or asymptotic) valid credible regions for

regression functions. For instance, the frequentist coverage of the credible regions is proven to

approach one given any credibility level, and can be further corrected to the credibility level by

invoking a weaker topology (inspired by [7, 8]). We point out that, different from the bounded

Lipschitz metric [7, 8], our approximation results hold under (stronger) total variation metric that

also applies to L2 credible balls and point-wise credible intervals. Our result can be viewed as

complementary to [33, 36, 34, 35] who showed that although Bayesian methods are robust with

finite information, they could be brittle when handling continuous systems. Rather, our positive

results rely on the facts that the statistical models in consideration are correctly specified and the

assigned priors charge the function space (with proper topological and geometrical details) with

full mass.

Our general approximation theorem can be verified in a class of Gaussian process priors that

implicitly controls the magnitude of higher-order derivatives of regression functions through a

(non-random) hyper-parameter. Also, in the special Gaussian regression, these Gaussian pro-

cesses match with the sequence priors considered in [59]. This leads to an interesting smoothing

spline interpretation [59], which can be rigorously justified by an application of Hájek’s Lemma

([19]). More importantly, this allows us to develop new technical tools based on recent progress in

smoothing spline inferences (e.g.,[44]). For the above reasons, this class of Gaussian process priors

can be viewed as “tuning prior.” We will suggest a practical means for selecting priors via gener-

alized cross validation (GCV). Simulation results in Section 6 strongly support this proposal. As

mentioned by one referee, empirical Bayes approach for determining priors has been considered

by [42] which is different from our GCV approach.
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A somewhat surprising discovery in our paper is that the hyper-parameter affects the limiting

posterior measure in a very subtle manner. Explicitly, we find that prior information persists

in the Gaussian approximation measure under the (nearly) optimal choice of hyper-parameter.

By optimal choice of hyper-parameter, we mean the one that leads to optimal contraction rate.

Nevertheless, when the hyper-parameter is sub-optimal, the Gaussian approximation measure

becomes prior free. This is consistent with the folklore that “data wash out prior effect” in the

parametric models; see BvM theorem in [18]. The sub-optimal choice of hyper-parameter can be

viewed as a Bayesian analog of the “under-smoothing” condition in the nonparametric literature.

The rest of this article is organized as follows. In Section 2, we present a general nonparamet-

ric exponential framework covering Gaussian regression and non-Gaussian regression. Section 3

includes the main results of the article. Specifically, Section 3.1 presents a general formulation

of nonparametric posterior distribution. Under this formulation, Section 3.2 derives a Gaussian

approximation theorem, and Section 3.3 constructs a class of Gaussian process priors for this

theorem. Section 4 presents a series of applications of our main theorem that include credible

region of the regression function and credible interval of a general class of linear functionals. Fre-

quentist validity is also investigated in this section. Section 5 develops a prior-free approximation

theorem and relevant inferential methods. Section 6 includes a simulation study. All proof details

are postponed to a Supplementary Document [45]. A set of contraction rate results is included in

the latter, and may be of independent interest.

2. Nonparametric Exponential Family

In this section, we present a general class of nonparametric regression models beyond Gaussian

regression. Let Y ∈ Y ⊆ R be response variable and X ∈ I := [0, 1] be covariate variable. Our

model lies in an (natural) exponential family where given a functional parameter f , the random

pair (Y,X) follows:

pf (y, x) = pf (y|x)π(x)

= exp{yf(x)−A(f(x)) + c(y, x)}π(x), (2.1)

where A(·) is a known function defined upon R, c(y, x) is a quantity depending on y, x to make

(2.1) a valid density, and π(x) represents marginal density of X. For technical convenience, we

assume π ≤ infx∈I π(x) ≤ supx∈I π(x) ≤ π̄, for constants π, π̄ > 0. The above framework (2.1)

covers many non-Gaussian models; see Examples 2.1–2.4.

Assume that there exists a “true” parameter f0 under which the sample is drawn from (2.1),

and that f0 belongs to an m-th order Sobolev space:

Sm(I) = {f ∈ L2(I)|f (j)are abs. cont. for j = 0, 1, . . . ,m− 1, and f (m) ∈ L2(I)}.

Throughout the paper, we let m ≥ 1 such that Sm(I) is a RKHS; see [37].
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The primary model assumption is given below. Let Ȧ, Ä,
...
A be the first-, second- and third-order

derivatives of A. Denote ‖f‖∞ as the sup-norm of f . For any fixed C > 0, define F(C) = {f ∈
Sm(I) : ‖f‖∞ ≤ C}. Let Pnf denote the probability of the data under f , and Ef is the expectation

under f .

Assumption A1. A is three-times continuously differentiable on R. For any z ∈ R, Ä(z) >

0. Moreover, for any constant C > ‖f0‖∞, there exist positive constants C0, C1, C2 (possibly

depending on C) such that

sup
f∈F(C)

Ef

{
exp(|Y − Ȧ(f(X))|/C0)

∣∣∣∣X} ≤ C1, a.s., (2.2)

and for any z ∈ [−2C, 2C],

1/C2 ≤ Ä(z) ≤ C2, and |
...
A(z)| ≤ C2. (2.3)

Assumption A1 can be easily verified in various settings including the following examples.

Example 2.1 (Normal regression). Suppose that under f , (Y,X) follows normal regression:

Y = f(X) + ε,

where ε ∼ N(0, 1). Then A(z) = z2/2. For any f ∈ Sm(I),

Ef

{
exp(|Y − Ȧ(f(X))|)

∣∣∣∣X} = E{exp(|ε|)} =
2√
e

(1− Φ(1)),

where Φ(·) is the cumulative distribution function of ε. Therefore, (2.2) holds for C0 = 1 and

C1 = 2√
e
(1− Φ(1)). It is easy to see that (2.3) holds for C2 = 1.

Example 2.2 (Logistic regression). Suppose that under f , (Y,X) follows logistic regression:

pf (y|x) =
exp(yf(x))

1 + exp(f(x))
, for y = 0, 1.

Here, A(z) = log(1 + exp(z)). For any C > ‖f0‖∞ and f ∈ F(C), |Ȧ(f(X))| ≤ (1 + exp(−C))−1,

leading to that

sup
f∈F(C)

Ef

{
exp(|Y − Ȧ(f(X))|)

∣∣∣∣X} ≤ exp

(
2 + exp(−C)

1 + exp(−C)

)
,

and for any z ∈ [−2C, 2C],

exp(2C)

(1 + exp(2C))2
≤ Ä(z) ≤ 1

4
, and |

...
A(z)| ≤ 1

4
,

which means that (2.2) holds for C0 = 1 and C1 = exp
(
2+exp(−C)
1+exp(−C)

)
, (2.3) holds for C2 =

max{14 , (1 + exp(2C))2 exp(−2C)}.
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Example 2.3 (Binomial regression). Suppose that under f , (Y,X) follows binomial regression:

pf (y|x) =

(
a

y

)
exp(yf(x))

(1 + exp(f(x)))a
, for y = 0, 1, . . . , a,

where a is a known positive integer. In particular, a = 1 reduces to logistic regression in Example

2.2. It is easy to see that A(z) = a log (1 + exp(z)). Similar to Example 2.2, it can be shown

that (2.2) holds for C0 = 1 and C1 = exp
(
a+1+exp(−C)
1+exp(−C)

)
, (2.3) holds for C2 = max{ a4 , (1 +

exp(2C))2a−1 exp(−2C)}.

Example 2.4 (Poisson regression). Suppose that under f , (Y,X) follows Poisson regression:

pf (y|x) =
exp(yf(x))

y!
exp (− exp(f(x))) , for y = 0, 1, 2, . . .

Therefore, A(z) = exp(z). For any C > ‖f0‖∞ and f ∈ F(C),

Ef

{
exp(|Y − Ȧ(f(X))|)

∣∣∣∣X} ≤ exp(exp(C))Ef

{
exp(Y )

∣∣∣∣X}
= exp(exp(C))× exp(exp(C)(e− 1)) = exp(exp(C)e),

and for any z ∈ [−2C, 2C], exp(−2C) ≤ Ä(z) ≤ exp(2C) and |
...
A(z)| ≤ exp(2C), implying that

(2.2) holds for C0 = 1 and C1 = exp(exp(C)e), (2.3) holds for C2 = exp(2C).

Remark 2.1. With stronger assumptions (e.g., stronger smoothness condition on f) and more

tedious technical arguments, the results in this paper can be generalized to the following model:

pf (y|x) ∼ exp(yA1(f(x))−A2(f(x)) + c(y, x)),

where A1, A2 are known functions.

Under the model Assumption A1, there exists an underlying eigen-system (ϕν(·), ρν) that si-

multaneously diagonalizes two bilinear forms V and U , where

V (g, g̃) := E{Ä(f0(X))g(X)g̃(X)} and U(g, g̃) :=

∫ 1

0
g(m)(x)g̃(m)(x)dx (2.4)

for any g, g̃ ∈ Sm(I), where the expectation in the definition of V is taken with respect to π, the

design density. For simplicity, denote V (g) = V (g, g) and U(g) = U(g, g) from now on. It follows

by Proposition 2.2 of [44] that (ϕν , ρν) is a solution of the following ordinary differential system

(whose existence and uniequeness is guaranteed by [3]):

(−1)mϕ(2m)
ν (·) = ρνÄ(f0(·))π(·)ϕν(·),

ϕ(j)
ν (0) = ϕ(j)

ν (1) = 0, j = m,m+ 1, . . . , 2m− 1. (2.5)

This eigen-system is building blocks of Gaussian process priors considered in this paper.

The following proposition summarizes some useful properties of (ϕν(·), ρν). Its proof can be

found in [44, Proposition 2.2]. Two positive sequences aν , bν are asymptotically equivalent, denoted
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aν � bν , if aν/bν is bounded below from zero and above from infinity. Define an inner product

on Sm(I): 〈g, g̃〉U,V = U(g, g̃) + V (g, g̃). Let ‖ · ‖U,V be the corresponding norm, i.e., ‖g‖U,V =√
〈g, g〉U,V .

Proposition 2.1. Let Assumption A1 be satisfied. Then there exist a nondecreasing sequence ρν

and a sequence of functions ϕν ∈ Sm(I) such that ρ1 = · · · = ρm = 0, ρν > 0 for ν > m, ρν � ν2m

and

V (ϕµ, ϕν) = δµν , U(ϕµ, ϕν) = ρµδµν , µ, ν ∈ N, (2.6)

where δµν is the Kronecker’s delta. In particular, any f ∈ Sm(I) admits a Fourier expansion

f =
∑

ν V (f, ϕν)ϕν with convergence held in the ‖ · ‖U,V -norm.

For any f, g ∈ Sm(I), define J(f, g) =
∑

ν γνV (f, ϕν)V (g, ϕν), where

γν =

{
1, ν = 1, 2, . . . ,m,

ρν , ν > m.
(2.7)

Obviously, the null space of J is trivial in the sense that J(g) := J(g, g) = 0 if and only if g = 0.

Furthermore, J(g) =
∫ 1
0 g

(m)(x)2dx if V (g, ϕ1) = · · · = V (g, ϕm) = 0.

3. Main Results

3.1. Nonparametric Posterior Distribution

In this section, we introduce a general nonparametric Bayesian framework. Generically, f is as-

sumed to follow a probability measure Πλ (possibly involving a hyper-parameter λ). The spec-

ification of Πλ can be naturally carried out through its Radon-Nikodym (RN) derivative with

respect to a base measure Π. Here, we assume that Π is any (not necessarily Gaussian) proba-

bility measure on (Sm(I),B), where B is the smallest σ-algebra that contains all open subsets in

(Sm(I), ‖ · ‖U,V ).

The posterior distribution of f can be written as

P (B|Dn) =

∫
B exp(n`n(f))dΠλ(f)∫

Sm(I) exp(n`n(f))dΠλ(f)
, B ∈ B. (3.1)

for any Π-measurable subset B ⊆ Sm(I), where the log-likelihood `n(f) = 1
n

∑n
i=1[Yif(Xi) −

A(f(Xi))]. Here, Dn ≡ {Z1, . . . , Zn} and Zi = (Yi, Xi), i = 1, . . . , n are iid copies of Z = (Y,X).

As for nonparametric priors, we choose the RN derivative as a function of roughness penalty J(f):

dΠλ

dΠ
(f) ∝ exp

(
−nλ

2
J(f)

)
, (3.2)

where λ > 0 is a hyper-parameter. We remark that the nonparametric prior (3.2) implicitly

depends on U defined in (2.4), which controls the growth of f (m).
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We will discuss in Section 3.3 a class of Gaussian process priors satisfying (3.2); see Lemma

3.3. Under (3.2), we can re-write

P (B|Dn) =

∫
B exp(n`n,λ(f))dΠ(f)∫

Sm(I) exp(n`n,λ(f))dΠ(f)
, B ∈ B. (3.3)

Here, `n,λ(f) represents the penalized likelihood

`n(f)− λ

2
J(f, f),

which is often used in the smoothing spline literature [59]. We remark that (3.1) and (3.3) hold

universally irrespective of the model assumption A1.

The hyper-parameter λ induces a new inner product for Sm(I) defined by

〈f, g〉 = V (f, g) + λJ(f, g), f, g ∈ Sm(I). (3.4)

Let ‖f‖ =
√
〈f, f〉 denote the corresponding norm. Both 〈·, ·〉 and ‖ · ‖ will be very useful for

subsequent theoretical analysis. For any g =
∑∞

ν=1 gνϕν ∈ Sm(I), it can be seen that

‖g‖2U,V =
∞∑
ν=1

g2ν(1 + ρν), ‖g‖2 =
∞∑
ν=1

g2ν(1 + λγν).

Therefore,

min{1, λ}‖g‖2U,V ≤ ‖g‖2 ≤ (1 + λ)‖g‖2U,V , g ∈ Sm(I).

Thus, we have proved the following lemma.

Lemma 3.1. For any λ > 0, ‖ · ‖U,V and ‖ · ‖ are equivalent norms (in the sense of [15]) for

Sm(I).

By Lemma 3.1, Sm(I) has the same topology under ‖ · ‖U,V and ‖ · ‖. Therefore, B can also

be viewed as the Borel σ-algebra in (Sm(I), ‖ · ‖). Moreover, it follows by [44] that the space

(Sm(I), 〈·, ·〉) is a reproducing kernel Hilbert space (RKHS), with K(·, ·) being the reproducing

kernel function.

Proposition 1. Under Assumption A1, for any f ∈ Sm(I) and z ∈ I, we have ‖f‖2 =∑
ν |V (f, ϕν)|2(1 + λγν) and Kz(·) ≡ K(z, ·) =

∑
ν
ϕν(z)
1+λγν

ϕν(·).

3.2. A General Approximation Result

In this section, we show that P (·|Dn) expressed in (3.3) can be asymptotically approximated by

a posterior measure, denoted as P0. Furthermore, if the imposed prior Πλ is Gaussian, P0 is also

Gaussian as shown in Section 3.3.

We start from a prior concentration condition (Assumption A2) on Π, which will be verified

by Lemma 3.4 for a class of Gaussian process priors specified in Section 3.3. Assumption A2 is

typical in Bayesian nonparametric literature; see [7]. It requires suitably large prior mass on the

ε-ball centering at the true function.
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Assumption A2. There exist positive constants c0, c1, ψ such that, for any ε ≥ λ
2m+ψ
4m ,

Π(‖f − f0‖ ≤ ε) ≥ c1 exp(−c0ε−
2

2m+ψ ).

Our next assumption is on the smoothness of f0, expressed through its Fourier coefficients, i.e.,

f0(·) =
∑∞

ν=1 f
0
νϕν(·):

Condition (S):
∑∞

ν=1 |f0ν |2ρ
1+ ψ

2m
ν <∞.

Heuristically, Condition (S) means that f0 ∈ Sm+ψ
2 (I), which requires the regularity of f0 to be

higher than that of Sm(I). Such a requirement is usually needed for deriving the optimal rate of

contraction; see [56]. This condition is also used to quantify the remainder term of the quadratic

approximation to likelihood ratio.

The following theorem says that P (B|Dn) can be well approximated by

P0(B) =

∫
B exp(−n

2 ‖f − f̂n,λ‖
2)dΠ(f)∫

Sm(I) exp(−n
2 ‖f − f̂n,λ‖2)dΠ(f)

, for any B ∈ B, (3.5)

where f̂n,λ is a smoothing spline estimate defined as

f̂n,λ = arg max
f∈Sm(I)

`n,λ(f). (3.6)

We can view P0 as a posterior measure obtained by replacing the penalized likelihood `n,λ(f) in

(3.3) by its quadratic approximation −‖f− f̂n,λ‖2/2. The validity of this quadratic approximation

is guaranteed by Assumption A2.

Let h = λ1/(2m) and h∗ ≡ n−
1

2m+ψ+1 .

Theorem 3.2. (Nonparametric Posterior Approximation) Suppose prior (3.2) is imposed on f ,

Assumptions A1 and A2 hold, and f0 =
∑∞

ν=1 f
0
νϕν satisfies Condition (S). Furthermore, suppose

m > 1 +
√
3
2 ≈ 1.866, 0 < ψ < m− 1

2 , and h � n−a with a being a constant satisfying

max

{
2

6m+ 3ψ − 1
,

2m

2m(4m+ 2ψ − 3) + 1
,

1

4m

}
< a ≤ 1

2m+ 1
. (3.7)

Then we have, as n→∞,

sup
B∈B
|P (B|Dn)− P0(B)| = oPnf0

(1). (3.8)

We remark that the asymptotic posterior P0 implicitly depends on the prior Π and is not

necessarily a Gaussian measure. A prior-free Gaussian approximation can be obtained under

suitable choices of h; see Section 5.

We sketch the proof of Theorem 3.2. According to a contraction rate result (see Proposition

A.1), the posterior mass is mostly concentrated on an Mr̃n-ball of f0, denoted as BMr̃n(f0),

where r̃n = (nh)−1/2 + hm+ψ
2 and M > 0 is a suitably large constant. Hence, for any B ∈ B, we

decompose P (B|Dn) = P (B∩BMr̃n(f0)|Dn)+P (B∩BcMr̃n
(f0)|Dn). The second term is uniformly
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negligible for all B ∈ B. By applying Taylor expansion to the penalized likelihood `n,λ (in terms

of Fréchet derivatives) and empirical processes techniques, we can show that the first term is

asymptotically close to P0(B) uniformly for B ∈ B.

Remark 3.1. It holds trivially that h � h∗ := n−1/(2m+ψ+1), among others, satisfies Condition

(3.7). The choice h � h∗ can simultaneously yield the optimal contraction rate of the credible balls

as will be seen in Section 4. We also remark that Theorem 3.2 still holds by replacing Condition

(3.7) with the following more general Rate Condition (R):

rn = o(h3/2), h1/2 log n = o(1), nh2m+1 ≥ 1, Dn = O(r̃n),

r̃nbn1 ≤ 1, bn2 ≤ 1, r3nbn1 ≤ r̃2n, r2nbn2 ≤ r̃2n, nr̃2n(r̃nbn1 + bn2) = o(1),

where rn = (nh)−1/2 + hm, r̃n = (nh)−1/2 + hm+ψ
2 , Dn = n−1/2h−

6m−1
4m rn log n + h−1/2r2n log n,

bn1 = n−1/2h−
8m−1
4m (log n)2 + h−1/2(log n)3/2 and bn2 = n−1/2h−

6m−1
4m (log n)3/2.

Remark 3.2. The TV-distance used in Theorem 3.2 is stronger than the bounded Lipschitz metric

used by [7]. Hence, Theorem 3.2 can treat inferential problems with stronger topological structures,

typically leading to non-root-n rate, such as the construction of L2 credible region and pointwise

credible interval (see Sections 4.1 and 4.3). Of course, Theorem 3.2 can also treat problems with

weaker topological structures such as those in Section 4.2.

3.3. Gaussian Process Prior

In this section, we demonstrate that the general approximation Theorem 3.2 holds for the proba-

bility measures Π and Πλ induced by a class of Gaussian process (GP) priors. In other words, we

will show these Π and Πλ satisfy (3.2). Under this class of GP priors, the limiting posterior P0 is

shown to be Gaussian, whose explicit characterization is given.

Let Π be a probability measure induced by the following GP:

G(t) =

∞∑
ν=1

vνϕν(t), (3.9)

in the sense that Π(B) = P (G ∈ B) for any B ∈ B. Here, {vν}∞ν=1 is a sequence of independent

random variables (independent of Dn) satisfying

vν ∼ N(0, τ−2ν ), with τ2ν =

{
σ−2ν , ν = 1, 2, . . . ,m,

θν , ν > m,
(3.10)

σ21, . . . , σ
2
m are fixed constants and θν � ρ1+β/(2m)

ν for a constant β > 1.

We next define another GP inducing Πλ:

Gλ(t) =

∞∑
ν=1

wνϕν(t), (3.11)
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where wν ’s are independent of the observations with

wν ∼

{
N(0, σ2ν/(1 + nλσ2ν)), ν = 1, 2, . . . ,m,

N(0, 1/(θν + nλρν)), ν > m.

Note that G = Gλ when λ = 0. Hence, we form a prior family G ≡ {Gλ(·) : λ ≥ 0}. In fact, G(·)
can be viewed as an envelope of G since their prior variances are the largest. The requirement

β > 1 is necessary for Gλ being a valid prior on Sm(I). In fact, if β = 1, then the path of

Gλ does not belong to Sm(I) almost surely (see [62, pp. 541]). However, if β > 1, we have

E{U(Gλ)} =
∑

ν>m ρν/(θν + nλρν) <∞, indicating that the path of Gλ belongs to Sm(I).

Remark 3.3. Recall that the regularity of the parameter space Sm(I) is characterized through

ρν � ν2m, in comparison with θν � ν2m+β for that of the GP prior Gλ for any λ ≥ 0. Then,

it follows from [56] that the RKHS of Gλ is Sm+β
2 (I), while the parameter space Sm(I) can be

viewed as its completion in ‖ · ‖U,V -norm. Therefore, the parameter β represents the “relative

smoothness” of the prior to the parameter space. Similar correspondence between the parameter

space and prior can be found in [56, 57]. It will be seen in Section 4 that the optimal contraction

rate of the posterior distribution is determined by both smoothness, i.e., the values of m and β.

Remark 3.4. The GPs G and Gλ can also be written in terms of mean functions and covari-

ance kernels. Specifically, they both have zero mean functions with covariance kernels R(s, t) =

E{G(s)G(t)} =
∑

ν≥1 ϕν(s)ϕν(t)/τ2ν and Rλ(s, t) = E{Gλ(s)Gλ(t)} =
∑m

ν=1 ϕν(s)ϕν(t)/(σ−2ν +

nλ)+
∑

ν>m ϕν(s)ϕν(t)/(θν+nλρν). Similar to [2], our GP prior can be also viewed as a Gaussian

measure with covariance being a positive, self-adjoint and trace-class operator on the functional

space. Note that the covariance might not be a Matérn kernel.

In the following lemma, we show that (3.2) holds under the above class of GP priors.

Lemma 3.3. [19, Hájek’s Lemma] With f ∈ Sm(I), we have the following Radon-Nikodym deriva-

tive of Πλ with respect to Π:

dΠλ

dΠ
(f) =

m∏
ν=1

(1 + nλσ2ν)1/2
∞∏

ν=m+1

(1 + nλρν/θν)1/2 exp

(
−nλ

2
J(f)

)
∝ exp

(
−nλ

2
J(f)

)
.

It should be mentioned that Wahba [59] designed a set of Gaussian sequence priors to estimate

the smoothing parameter. Her prior yields a similar RN derivative as the one in Lemma 3.3.

Our next lemma shows that Assumption A2 holds under the above Π induced by (3.9).

Lemma 3.4. Assumption A2 holds for ψ = β − 1 for Π induced by (3.9).

Lemma 3.4 will be needed in constructing Bayesian inference procedures; see Section 4.

Given the above Π and Πλ, we next show that P0 is essentially a Gaussian measure ΠW , induced

by the following Gaussian process W , in the sense that P0(B) = P (W ∈ B|Dn) := ΠW (B). Given
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the Fourier expansion f̂n,λ(·) =
∑∞

ν=1 f̂νϕν(·), we define a GP

W (·) =
∞∑
ν=1

(an,ν f̂ν + bn,νξν)ϕν(·), (3.12)

where an,ν = n(1 + λγν){τ2ν + n(1 + λγν)}−1, bn,ν = {τ2ν + n(1 + λγν)}−1/2, ξν = τνvν are iid

standard normal variables with vν and τ2ν satisfying (3.10), and the sequence γν is defined in (2.7).

For better illustration, we decompose W as

W = f̃n,λ +Wn, (3.13)

where f̃n,λ(·) :=
∑∞

ν=1 n(1 + λγν){τ2ν + n(1 + λγν)}−1f̂νϕν(·) and Wn(·) :=
∑∞

ν=1{τ2ν + n(1 +

λγν)}−1/2ξνϕν(·) is a zero-mean GP. Note that the posterior mode f̃n,λ is asymptotically equiva-

lent to the efficient linear estimate f̂n,λ since ‖f̃n,λ − f̂n,λ‖ = oPnf0
(1). This is consistent with the

traditional BvM theorem in the parametric setup ([18]).

Theorem 3.5 presents the Gaussian characterization of P0.

Theorem 3.5. With f ∈ Sm(I), the Radon-Nikodym derivative of ΠW with respect to Π is

dΠW

dΠ
(f) =

exp(−n
2 ‖f − f̂n,λ‖

2)∫
Sm(I) exp(−n

2 ‖f − f̂n,λ‖2)dΠ(f)
.

Hence, we have
dP0

dΠ
(f) =

dΠW

dΠ
(f).

Together with Theorem 3.2, Theorem 3.5 implies that the posterior distribution P (·|Dn) and

ΠW (·) are asymptotically close under the total variation distance. This approximation result

greatly facilitates the construction and theoretical analysis of nonparametric Bayesian inference

procedures in Section 4. For example, from (3.13), we can tell that f̃n,λ is approximately the

posterior mode of P (·|Dn), and can be used as the center of credible region, e.g., (4.1).

4. Bayesian Inference Procedures

In this section, we consider Bayesian inference procedures such as credible balls and point-wise

credible intervals. These inference procedures are fully driven by posterior samples, so-called finite

sample construction. For example, the radius of the credible ball is directly drawn from MCMC

samples so that the posterior coverage is exact. We also comment on the asymptotic construction

where the radius is obtained by asymptotic theory in Remark 4.1. Under a proper choice of λ,

these Bayesian inference procedures are shown to possess frequentist validity.

Throughout this section, we choose Π,Πλ as GPs designed in Section 3.3 for technical conve-

nience. We also suppose that f0 satisfies Condition (S), and let h � h∗.
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4.1. Credible Region in Strong Topology

We consider the construction of credible region for f in terms of L2-norm, and also study its

frequentist property. The existing literature mostly focuses on Gaussian setup: [26, 22, 7, 23, 50,

8, 31, 51] for Gaussian white noise, [47, 48] for Gaussian regression with fixed design, and [61] for

Gaussian regression with sieved priors. In contrast, our results are established in the more general

nonparametric exponential family.

For any f, g ∈ Sm(I), define 〈f, g〉2 = V (f, g), an inner product on Sm(I), and ‖f‖2 = V (f)1/2

its corresponding norm, which is a type of L2-norm. For any α ∈ (0, 1), let rn(α) > 0 satisfy

P (f ∈ Sm(I) : ‖f− f̃n,λ‖2 ≤ rn(α)|Dn) = 1−α. In practice, rn(α) can be computed as the (1−α)

posterior quantile of ‖f − f̃n,λ‖2 through MCMC samples of f ; see [29] for more introduction. A

credible region with an exact credibility level (1 − α) is constructed as

Rn(α) =
{
f ∈ Sm(I) : ‖f − f̃n,λ‖2 ≤ rn(α)

}
. (4.1)

We next examine the frequentist property of Rn(α).

Theorem 4.1. Suppose that Assumption A1 holds, f0 satisfies Condition (S), m > 1 +
√
3
2 ,

1 < β < m+ 1/2, and h � h∗. Then for any α ∈ (0, 1), limn→∞ P
n
f0

(f0 ∈ Rn(α)) = 1.

It is easy to see that the L2-diameter of Rn(α) is 2rn(α). Remark 4.1 reveals that rn(α) achieves

the optimal rate n
− 2m+β−1

2(2m+β) when h � h∗, therefore, the L2-diameter of Rn(α) attains optimality.

A relevant result in [22] says that the credible region of the mean sequence in Gaussian sequence

models has coverage probability approaching one when the hyper-parameter is properly selected

as an order of n. Theorem 4.1 generalizes their result to nonparametric exponential family.

4.2. Credible Region in Weak Topology

The frequentist coverage of the credible region (4.1) asymptotically approaches one regardless of

the credibility level. This motivates us to construct a modified credible region using a weaker

topology such that the truth can be covered with probability approaching exactly the credibility

level. Besides Theorem 3.2, our proof also relies on a strong approximation result ([52]).

We first define a weaker metric by following [7, 8]. For any f ∈ Sm(I) with f(·) =
∑∞

ν=1 fνϕν(·),
define ‖f‖2ω =

∑∞
ν=1 ωνf

2
ν , where ων is a given positive sequence satisfying ων = ν−1(log 2ν)−τ

for a constant τ > 1. Since ων ≤ 1 for all ν ≥ 1, it is easy to see that ‖f‖ω ≤ ‖f‖2. Therefore,

‖ · ‖ω is weaker than ‖ · ‖2. We will show that under this weaker norm, any (1−α) credible region

can recover exactly (1− α) frequentist coverage.

For any α ∈ (0, 1), let rω,n(α) > 0 satisfy P (f ∈ Sm(I) : ‖f − f̃n,λ‖ω ≤ rω,n(α)|Dn) = 1 − α.

We construct a credible region with credibility level (1 − α):

Rωn(α) =
{
f ∈ Sm(I) : ‖f − f̃n,λ‖ω ≤ rω,n(α)

}
. (4.2)

Theorem 4.2 proves that Rωn(α) asymptotically possesses the frequentist coverage (1 − α).
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Theorem 4.2. Suppose that Assumption A1 holds, f0 satisfies Condition (S), m > 1 +
√
3
2 , 1 <

β < min{m+ 1
2 ,

(2m−1)2
2m }, and h � h∗. Then for any α ∈ (0, 1), limn→∞ P

n
f0

(f0 ∈ Rωn(α)) = 1−α.

[7, 8] consider credible regions with similar frequentist property in Gaussian sequence models

an density estimation. Theorem 4.2 generalize their results to nonparametric exponential family.

We note that the L2-diameter of Rωn(α) is infinity (see Section A.4 of appendix). But we can

impose a restriction to make its L2-diameter being finite, by using a strategy of [7]. Specifically,

define

R?ωn (α) = Rωn(α) ∩ {f ∈ Sm(I) : J(f) ≤M},

for a constant M > 0. It can be shown that the L2-diameter of R?ωn (α) is OPnf0
(n
− 2m+β−1

2(2m+β)
√

log n)

(see Section A.4 of appendix). The leading factor n
− 2m+β−1

2(2m+β) is the optimal contraction rate under

Sobolev norm (see Section A.6). So the L2-diameter is now rate optimal upto a logarithmic factor.

4.3. Linear Functionals on the Regression Function

We construct credible intervals for a general class of linear functionals in nonparametric exponen-

tial family. Frequentist coverage of the proposed credible interval is also investigated. In particular,

we consider two important special cases: (i) evaluation functional: Fz(f) = f(z), where z ∈ I is a

fixed number; (ii) integral functional: Fω(f) =
∫ 1
0 f(z)ω(z)dz, where ω(·) is a known deterministic

integrable function such as an indicator function. We find that the former leads to an interval

contracting at slower than root-n rate, while the latter leads to root-n rate.

The existing literature mostly focus on functionals where efficient estimation with
√
n-rate is

available ([41, 7, 8, 3]). The more general inefficient estimation with slower than root-n rate (e.g.,

evaluation functional) is only treated recently by [49] in Gaussian white noise model. As will be

seen, our theory treat efficient and inefficient estimation in a unified framework.

Let F : Sm(I) 7→ R be a linear Π-measurable functional, i.e., F (af + bg) = aF (f) + bF (g) for

any a, b ∈ R and f, g ∈ Sm(I). We say that F satisfies Condition (F) if there exist constants κ > 0

and r ∈ [0, 1] such that for any f ∈ Sm(I),

|F (f)| ≤ κh−r/2‖f‖. (4.3)

Lemma 4.3 below (given in [44]) implies that both Fz and Fω satisfy (4.3).

Lemma 4.3. There exists a universal constant c > 0 s.t. for any f ∈ Sm(I), ‖f‖∞ ≤ ch−1/2‖f‖.

Let rF,n(α) > 0 satisfy P (f ∈ Sm(I) : |F (f)− F (f̃n,λ)| ≤ rF,n(α)|Dn) = 1− α. Define (1 − α)

credible interval for F (f) as

CIFn (α) : F (f̃n,λ)± rF,n(α). (4.4)

Theorem 4.4 below shows that CIFn covers the true value F (f0) with probability asymptotically

at least (1− α) for any F satisfying Condition (F). Our result holds for both efficient estimation

such as F = Fω and inefficient case such as F = Fz in contrast with the existing literature.
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For k ≥ 1, define

θ2k,n =

∞∑
ν=1

F (ϕν)2

(τ2ν + n(1 + λγν))k
.

Theorem 4.4. Suppose that Assumption A1 holds, f0 =
∑∞

ν=1 f
0
νϕν satisfies Condition (S′):∑∞

ν=1 |f0ν |2ν2m+β <∞, m > 1 +
√
3
2 , 1 < β < min{m+ 1

2 ,
(2m−1)2

2m }, and h � h∗. Meanwhile,

nkθ2k,n � h−r for k = 1, 2. (4.5)

Then for any α ∈ (0, 1), we have

lim inf
n→∞

Pnf0(F (f0) ∈ CIFn (α)) ≥ 1− α, (4.6)

given that Condition (F) holds. Moreover, if 0 <
∑∞

ν=1 F (ϕν)2 < ∞, then limn→∞ P
n
f0

(F (f0) ∈
CIFn (α)) = 1− α.

By carefully examining the proof of Theorem 4.4, we find that when F = Fz, the inequality (4.6)

is actually strict, and the length of CIFn (α) satisfies rF,n(α) � n−
2m+β−1
2(2m+β) . When F = Fω, CIFn (α)

covers the truth with probability approaching 1−α, and its length satisfies rF,n(α) � n−1/2. Please

see Remark 4.1 for more details. Therefore, there exists a subtle difference between the two types

of functionals. Simulation results in Section 6 empirically confirm this subtle distinction.

Remark that Condition (S′) is slightly stronger than Condition (S), which is used to correct

certain bias arising from the prior. Such a condition can be understood as the “under-smoothing”

condition in smoothing spline; see [44]. Condition (4.5) is not restrictive and can be verified in

concrete settings; see Proposition 4.5 below. The proof of Proposition 4.5 relies on a nice closed

form of ϕν and a careful analysis of the trigonometric functions.

Proposition 4.5. Suppose m = 2, X ∼ Unif [0, 1], and Y |f,X ∼ N(f(X), 1).

(i) If F = Fz for any z ∈ (0, 1), then (4.5) holds for r = 1;

(ii) If F = Fω for any ω ∈ L2(I)\{0}, then 0 <
∑∞

ν=1 F (ϕν)2 <∞ and (4.5) holds for r = 0.

Remark 4.1. The radii rn(α), rω,n(α) and rF,n(α) are determined by posterior samples of f This

might be time-consuming in practice. In fact, the proofs of Theorems 4.1, 4.2 and 4.4 reveal that

the radii satisfy the following large-sample (data-free) limits:

rn(α) =

√ζ1,n +
√

2ζ2,nzα

n

(1 + oPnf0
(1)
)
, where ζk,n =

∞∑
ν=1

1

(1 + λγν + n−1τ2ν )k
,

rω,n(α) =

√
cα
n

(
1 + oPnf0

(1)
)
,

rF,n(α) = θ1,nzα/2

(
1 + oPnf0

(1)
)
,

(4.7)
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where cα > 0 satisfies P (
∑∞

ν=1 ωνη
2
ν ≤ cα) = 1−α with ην being independent standard Gaussian,

and zα = Φ−1(1 − α) with Φ being the standard Gaussian c.d.f. Replacing the radii by the above

limits (4.7), one can establish the asymptotic proxies of (4.1), (4.2) and (4.4), which can reduce

computational burden. The frequentist coverage of these asymptotic regions/intervals remains the

same as the original ones. Proof of Theorem 4.1 indicates that rn(α) attains the optimal rate of

contraction n
− 2m+β−1

2(2m+β) when h � h∗ and ζk,n � n1/(2m+β) for k = 1, 2. The optimal contraction

rate can be viewed as a Bayesian counterpart of the minimax estimation rate in classic frequentist

literature, e.g., [53].

5. Nonparametric BvM Theorem

The traditional BvM theorem ([18]) in parametric models requires the limit posterior measure

to be prior free. However, the posterior approximation in Section 3 still contains some prior

information, i.e., the sequences σ2ν and τ2ν in W . Similar phenomenon has also been observed in

Bayesian sparse linear models; see Theorem 6 in [2].

In this section, we derive a limit Gaussian posterior that is nonetheless prior free, and thus

establish nonparametric BvM theorem in the traditional sense. This can be achieved by simply

choosing a sub-optimal h, in contrast with the optimal choice of h in Section 3. This finding can

be viewed as a Bayesian analog of the well known “under-smoothing” idea in the nonparametric

literature. Additionally, we prove that some other choices of h lead to the failure of BvM. Con-

struction of posterior balls together with their asymptotic validity are also investigated based on

the new nonparametric BvM theorem.

The intuition behind our prior-free limit Gaussian measure is quite simple: we set the prior

information τν = 0 in the expression of W given in (3.13). The resulting GP becomes

W ? = f̂n,λ +W ?
n ,

where W ?
n(·) =

∑
ν>m{n(1+λγν)}−1/2ξνϕν(·) and ξν

iid∼ N(0, 1). Notably, W ? depends only on the

smoothing spline estimate f̂n,λ and the sequence γν . The latter depends on differential equations

(2.5) which involve only the function A(·) and true f0. Hence, W ? contains no prior information.

Define P? as the probability measure of W ? (conditional on Dn).

We next show that P? is indeed an asymptotic posterior measure. Based on Theorem 3.2, it

suffices to show that the deviation between P0 and P? is sufficiently small. Unfortunately, this

cannot be achieved if we choose h � h∗ or its small neighborhood, i.e., (5.3). In this case, the mean

of P0, i.e., f̃n,λ, and that of P?, i.e., f̂n,λ, are found not to converge to each other fast enough.

This leads to the failure of BvM theorem. However, if we choose h converging to zero significantly

slower than h∗ in the sense of (5.1), a prior-free nonparametric BvM theorem holds.

Theorem 5.1. Suppose Assumption A1 holds and f0 =
∑∞

ν=1 f
0
νϕν satisfies Condition (S) with
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ψ = β − 1. Let m > 1 +
√
3
2 ≈ 1.866, 1 < β < m− 1

2 and h � n−a with

max

{
2

6m+ 3β − 4
,

2m

2m(4m+ 2β − 5) + 1
,

1

4m

}
< a <

2

4m+ 2β + 1
. (5.1)

Then we have, as n→∞,

sup
t≥0
|P (‖f − f̂n,λ‖2 ≤ t|Dn)− P?(‖f − f̂n,λ‖2 ≤ t)| = oPnf0

(1). (5.2)

Moreover, there exists a f0 satisfying Condition (S) such that, for any h � n−a with a satisfying

2

4m+ 2β + 1
≤ a < 8m+ 4β + 2

(8m+ 4β + 1)(2m+ β)
, (5.3)

(5.2) does not hold.

Based on Theorem 5.1, we are ready to construct (prior-free) credible balls with the center f̂n,λ

that asymptotically attain desirable credibility levels. Unfortunately, the corresponding radii in

this case converge to zero even faster than the optimal rate of contraction such that the truth will

be excluded from the credible balls. A simple remedy is to “blow up” the radius (see the similar

idea of [51]). To be more specific, we construct a ball centering at f̂n,λ with radius (1 + ε)r?n:

R?n(ε) = {f ∈ Sm(I) : ‖f − f̂n,λ‖2 ≤ (1 + ε)r?n}, for any ε > 0, (5.4)

where

r?n =

√
1

nh

∫ ∞
0

1

(1 + x2m)2
dx+ h2m.

The above choice of r?n is of the order rn = (nh)−1/2 + hm which can achieve the rate n−m/(2m+1)

by using h = n−1/(2m+1); see Remark 3.1. Note that we may use generalized cross validation

to select such a h; see [58]. In practice, one may replace r?n by a finite-sample counterpart, e.g.,

rn(α)
2m(2m+β)

(2m+β−1)(2m+1) , which can be shown to also achieve the rate n−m/(2m+1) (recalling that rn(α)

is the radius of the ball Rn(α) determined in Section 4.1).

A direct consequence of Theorem 5.1 implies that R?n(ε) asymptotically possesses large credi-

bility level and frequentist coverage.

Corollary 5.2. Suppose Assumption A1 holds and f0 satisfies Condition (S) with ψ = β−1. Let

m > 1 +
√
3
2 ≈ 1.866, 1 < β < m − 1

2 and h � n−a with a satisfying (5.1). Then for any ε > 0,

as n → ∞, P (R?n(ε)|Dn) ≥ 1 − α with Pnf0-probability approaching one, and Pnf0 (f0 ∈ R?n(ε)) =

1 + o(1).

6. Simulations

In this section, we empirically investigate the frequentist coverage probabilities of the credible

region (4.1) and modified credible region (4.2), and credible intervals for evaluation functional and
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integral functional. As for the choice of λ (equivalently, h) in the GP prior, we suggest employing

the generalized cross validation (GCV) method. For example, let hGCV be the GCV-selection of

h, which is known to achieve an rate n−1/(2m+1); see [58]. Then, we can set h∗ = h
(2m+1)/(2m+β)
GCV .

This method works very well as demonstrated in the simulations.

We generated data from the following model

Yi = f0(Xi) + εi, i = 1, 2, . . . , n, (6.1)

where Xi are iid uniform over [0, 1], and εi are iid standard normal random variables independent

of Xi. The true regression function f0 was chosen as f0(x) = 3β30,17(x) + 2β3,11(x), where βa,b is

the probability density function for Beta(a, b). Figure 1 displays the true function f0, from which

it can be seen that f0 has both peaks and troughs. GP prior defined in Section 3.3 was used

with m = β = 2. The h was selected based on GCV proposed by [59]. MCMC algorithms were

employed to draw posterior samples of f .

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

x

f0

Fig 1. Plot of the true function f0 used in model (6.1).

To examine the coverage property of the credible regions, we chose n ranging from 20 to 2000.

For each n, 1,000 independent trials were conducted. From each trial, a credible region (CR) based

on (4.1) and a modified credible region (MCR) based on (4.2) were constructed. Proportions of the

CR and MCR covering f0 were calculated, and were displayed against the sample sizes. Results

are summarized in Figure 2. It can be seen that for different 1 − α, i.e., the credibility levels,

the coverage proportions (CP) of CR are greater than 1 − α when n is large enough. They even

tend to one for large sample sizes. However, the CP of the MCR tends to exactly 1 − α when n

increases. Thus, the numerical results confirm our theory developed in Sections 4.1 and 4.2.

To examine the coverage property of credible intervals, we chose n = 25, 27, 28, 29 to demonstrate

the trend of coverage along with increasing sample sizes. For evaluation functional, we considered
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s e e n t h at t h e c o v er a g e pr o b a bilit y of t h e p oi nt wi s e i nt er v al s i s a bit l ar g er t h a n 1 − α f or all α

a n d n b ei n g c o n si d er e d. T hi s i s c o n si st e nt wit h Pr o p o siti o n 4. 5 (i), e x c e pt f or t h e p oi nt s n e ar t h e

ri g ht p e a k of f 0 . I n d e e d, at t h o s e p oi nt s n e ar t h e ri g ht p e a k, u n d er- c o v er a g e h a s b e e n o b s er v e d.

T hi s i s a c o m m o n p h e n o m e n o n i n t h e fr e q u e nti st lit er at ur e: t h e p e a k a n d tr o ut s m a y a ff e ct t h e

c o v e r a g e pr o p ert y of t h e p oi nt wi s e i nt er v al; s e e [ 3 2 , 4 4 ]. T hi s i s al s o p o s si bl e d u e t o t h e mi s m at c h

of s m o ot h n e s s l e v el b et w e e n t h e pri or a n d tr u e p ar a m et er.

F or i nt e gr al f u n cti o n al, w e c o n si d er e d F = F ω z 0
f or ω z 0 (z ) = I ( 0 ≤ z ≤ z 0 ) wit h 1 5 e v e nl y-

s p a c e d z 0 p oi nt s i n [ 0 , 1]. We e v al u at e d t h e c o v er a g e pr o b a bilit y at e a c h z 0 b a s e d o n 1, 0 0 0 e x p er-
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Fi g 3 . C o v e r a g e p r o p o rti o n ( C P ) of t h e c r e di bl e i nt e r v al f o r F z ( f 0 ) v e r s u s z . T h e d ott e d r e d li n e i n di c at e s t h e
p o siti o n of t h e 1 − α c r e di bilit y l e v el.

i m e nt s. Fi g ur e 4 s u m m ari z e s t h e r e s ult s f or di ff er e nt cr e di bilit y l e v el s α , w h er e c o v er a g e pr o b a-

biliti e s ar e pl ott e d a g ai n st t h e c orr e s p o n di n g p oi nt s z 0 . It c a n b e s e e n t h at, a s n i n cr e a s e s, t h e

c o v er a g e pr o b a bilit y of t h e i nt e gr al i nt er v al s t e n d s t o 1 − α f or all α . T hi s p h e n o m e n o n i s c o n si st e nt

wit h o ur t h e or y, i. e., Pr o p o siti o n 4. 5 (ii).

F u n di n g

S h a n g’ s r e s e ar c h w a s s p o n s or e d b y N S F D M S- 1 7 6 4 2 8 0. C h e n g’ s r e s e ar c h w a s s p o n s or e d b y N S F

C A R E E R A w ar d D M S- 1 1 5 1 6 9 2, D M S- 1 4 1 8 0 4 2, D M S- 1 7 1 2 9 1 9, Si m o n s Fell o w s hi p i n M at h e m ati c s

a n d O ffi c e of N a v al R e s e ar c h ( O N R N 0 0 0 1 4- 1 5- 1- 2 3 3 1).

A c k n o wl e d g e m e n t s . We t h a n k Pr of. J a y a nt a G h o s h f or c ar ef ul r e a di n g a n d c o m m e nt s, a n d

al s o t h a n k P h D st u d e nt M ei m ei Li u at P ur d u e f or h el p wit h t h e si m ul ati o n st u d y.
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Fi g 4 . C o v e r a g e p r o p o rti o n ( C P ) of t h e c r e di bl e i nt e r v al f o r F ω z 0
( f 0 ) v e r s u s z 0 . T h e d ott e d r e d li n e i n di c at e s t h e

p o siti o n of t h e 1 − α c r e di bilit y l e v el.
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Supplementary document to

Gaussian Approximation of General Nonparametric

Posterior Distributions

This supplementary document consists of two parts. Part I contains the proofs of the main results

in this paper. Part II contains the proofs of auxiliary results.

Supplementary Document: Part I

This section contains proofs of main results in Sections 3, 4 and 5.

A.1. Proofs in Section 3

Before proving Theorem 3.2, let us state several preliminary results.

Lemma A.1. Under Condition (S), we have ‖f̂n,λ − f0‖ = OPf0 (r̃n).

Proposition A.1. (Contraction Rate) Suppose Assumption A1 holds, and f0 =
∑∞

ν=1 f
0
νϕν

satisfies Condition (S). Furthermore, the following Rate Condition holds:

rn = o(h3/2), h1/2 log n = o(1), nh2m+1 ≥ 1, Dn = O(r̃n),

r̃nbn1 ≤ 1, bn2 ≤ 1, r3nbn1 ≤ r̃2n, r2nbn2 ≤ r̃2n.

Then, for any ε1, ε2 ∈ (0, 1), there exist positive constants M ′, N ′ s.t. for any n ≥ N ′,

Pnf0
(
P (‖f − f0‖ ≥M ′r̃n|Dn) ≥ ε2

)
≤ ε1, (A.1)

where Pnf denotes the probability measure induced by Dn under f .

Lemmas A.1 is a direct consequence of Lemma A.12 in online supplementary and ‖Sn,λ(f0)‖ =

OPnf0
(hm+ψ/2), where Sn,λ(f0) is defined according to [16], i.e.,

Sn,λ(f0) =
1

n

n∑
i=1

(Yi − Ȧ(f0(Xi)))KXi − Pλf0.

Lemma A.2. It holds that

`n,λ(f)− `n,λ(f̂n,λ) +
1

2
‖f − f̂n,λ‖2 = T1(f) + T2(f), (A.2)

1
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where

T1(f) = − 1

n

∫ 1

0

∫ 1

0
s

n∑
i=1

[Ä(f̂n,λ(Xi) + ss′(f − f̂n,λ)(Xi))(f − f̂n,λ)(Xi)
2

−Ä(f0(Xi))(f − f̂n,λ)(Xi)
2]dsds′,

T2(f) = − 1

2n

n∑
i=1

[Ä(f0(Xi))(∆f)(Xi)
2 − EXf0{Ä(f0(X))(f − f̂n,λ)(X)2}]. (A.3)

Proof of Lemma A.2. By Taylor expansion in terms of Fréchet derivative, the result holds. See

Section A.6.

Proof of Theorem 3.2. It follows by Remark 3.1 that Rate Condition (R) holds. We will prove

the theorem under Rate Condition (R).

Let ε1, ε2 be arbitrarily small positive constants. Let ε3 be small fixed with 0 < ε3 < log 2 and

4ε3 exp(ε3) + 2ε3 ≤ ε2/3. Consider three events:

E ′n = {‖f̂n,λ − f0‖ ≤M1r̃n}

E ′′n = {P (‖f − f0‖ ≥M2r̃n|Dn) ≤ ε3}

E ′′′n = {P0(‖f − f0‖ ≥M2r̃n) ≤ ε3},

where M1,M2 are large enough constants. It follows from Lemma A.1 and Proposition A.1 that

we can choose M2 > M1 (both large enough) s.t. Pnf0(E ′n ∩ E ′′n) ≥ 1− ε1/2. On E ′n, we have

‖f − f0‖ −M1r̃n ≤ ‖f − f̂n,λ‖ ≤ ‖f − f0‖+M1r̃n.

Hence,

P0(‖f − f0‖ ≥M2r̃n) =

∫
‖f−f0‖≥M2r̃n

exp
(
−n

2 ‖f − f̂n,λ‖
2
)
dΠ(f)∫

Sm(I) exp
(
−n

2 ‖f − f̂n,λ‖2
)
dΠ(f)

≤

∫
‖f−f0‖≥M2r̃n

exp
(
−n

2 ‖f − f̂n,λ‖
2
)
dΠ(f)∫

‖f−f0‖≤r̃n exp
(
−n

2 ‖f − f̂n,λ‖2
)
dΠ(f)

≤ exp
(
−
(
(M2 −M1)

2/2− (M1 + 1)2/2
)
nr̃2n
)

Π(‖f − f0‖ ≤ r̃n)−1

≤ exp c−11

(
−
(
(M2 −M1)

2/2− (M1 + 1)2/2− c0/4
)
nr̃2n
)
, (A.4)

where the last inequality is due to Assumption A2 and the trivial fact r̃n > hm+ψ
2 and r̃

− 2
2m+ψ

n ≤
nr̃2n/4. The last inequality follows by

r̃n ≥ 2n
− 2m+ψ

2(2m+ψ+1) .

We can even manage M2 to be large so that the quantity (A.4) is less than ε3. Therefore, we get

that Pnf0(E ′′′n ) ≥ Pnf0(E ′n ∩ E ′′n) ≥ 1 − ε1/2. Define En = E ′n ∩ E ′′n ∩ E ′′′n , then it can be seen that

Pnf0(En) ≥ 1− ε1.
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Using an empirical process argument (see (A.73) and (A.74) of Section A.6), it can be shown

that on En, for any f ∈ Sm(I) satisfying ‖f − f0‖ ≤M2r̃n,

|T1(f)| ≤ D1 × r̃3nbn1, |T2(f)| ≤ D2 × r̃2nbn2, (A.5)

where D1, D2 are constants depending on M1,M2. Since nr̃2n(r̃nbn1 + bn2) = o(1), we choose n to

be large enouch so that D1 × nr̃3nbn1 +D2 × nr̃2nbn2 ≤ ε3.
Define

Jn1 =

∫
Sm(I)

exp
(
n(`n,λ(f)− `n,λ(f̂n,λ))

)
dΠ(f),

Jn2 =

∫
Sm(I)

exp
(
−n

2
‖f − f̂n,λ‖2

)
dΠ(f),

J̄n1 =

∫
‖f−f0‖≤M2r̃n

exp
(
n(`n,λ(f)− `n,λ(f̂n,λ))

)
dΠ(f),

J̄n2 =

∫
‖f−f0‖≤M2r̃n

exp
(
−n

2
‖f − f̂n,λ‖2

)
dΠ(f).

It is easy to see that on En,

0 ≤ Jn1 − J̄n1
Jn1

≤ ε3, 0 ≤ Jn2 − J̄n2
Jn2

≤ ε3.

By some algebra, it can be shown that the above inequalities lead to

(1− ε3) ·
J̄n2
J̄n1
≤ Jn2
Jn1
≤ 1

1− ε3
· J̄n2
J̄n1

. (A.6)

Meanwhile, on En, using (A.5), Lemma A.2 and the elementary inequality | exp(x)− 1| ≤ 2|x|
for |x| ≤ log 2, we get that

|J̄n2 − J̄n1|

≤
∫
‖f−f0‖≤M2r̃n

exp
(
−n

2
‖f − f̂n,λ‖2

)
× | exp(n(T1(f) + T2(f)))− 1|dΠ(f)

≤ 2ε3J̄n2,

leading to that
1

1 + 2ε3
≤ J̄n2
J̄n1
≤ 1

1− 2ε3
. (A.7)

Combining (A.6) and (A.7), on En,

1− ε3
1 + 2ε3

≤ Jn2
Jn1
≤ 1

(1− 2ε3)(1− ε3)
,

leading to

− 4ε3 ≤
1− ε3
1 + 2ε3

− 1 ≤ Jn2
Jn1
− 1 ≤ 1

(1− 2ε3)(1− ε3)
− 1 ≤ 4ε3 (A.8)
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For simplicity, denote Rn(f) = n(T1(f) + T2(f)). For any S ∈ S, let S′ = S ∩ {f ∈ Sm(I) :

‖f − f0‖ ≤M2r̃n}. Then on En, we get that

|P (S|Dn)− P0(S)| ≤ |P (S′|Dn)− P0(S
′)|+ 2ε3.

Moreover, it follows from Lemma A.2 and (A.8) that on En,

|P (S′|Dn)− P0(S
′)|

=

∣∣∣∣ ∫
S′

exp(n(`n,λ(f)− `n,λ(f̂n,λ)))

Jn1
−

exp
(
−n

2 ‖f − f̂n,λ‖
2
)

Jn2

 dΠ(f)

∣∣∣∣
≤

∫
S′

exp
(
−n

2
‖f − f̂n,λ‖2

)
×
∣∣∣∣exp(Rn(f))

Jn1
− 1

Jn2

∣∣∣∣dΠ(f)

≤
∫
S′

exp
(
−n

2
‖f − f̂n,λ‖2

)
× | exp(Rn(f))− 1|

Jn2
dΠ(f)

+

∫
S′

exp
(
−n

2
‖f − f̂n,λ‖2

)
× exp(Rn(f))×

∣∣∣∣ 1

Jn1
− 1

Jn2

∣∣∣∣dΠ(f)

≤ 2ε3

∫
S′ exp

(
−n

2 ‖f − f̂n,λ‖
2
)
dΠ(f)

Jn2

+ exp(ε3)×
∣∣∣∣ 1

Jn1
− 1

Jn2

∣∣∣∣× ∫
S′

exp
(
−n

2
‖f − f̂n,λ‖2

)
dΠ(f)

≤ 2ε3 + exp(ε3)×
∣∣∣∣Jn2Jn1

− 1

∣∣∣∣ ≤ 2ε3 + 4ε3 exp(ε3) ≤ ε2/3.

Note that the right hand side is free of S. Then we get that on En,

sup
S∈S
|P (S|Dn)− P0(S)| ≤ ε2/3 + 2ε3 ≤ ε2.

This implies that for sufficiently large n,

Pnf0

(
sup
S∈S
|P (S|Dn)− P0(S)| > ε2

)
≤ Pnf0(Ecn) + Pnf0

(
En, sup

S∈S
|P (S|Dn)− P0(S)| > ε2

)
= Pnf0(Ecn) ≤ ε1.

This completes the proof.

Proof of Lemma 3.3. For any f ∈ Sm(I), by Proposition 2.1, f admits a unique series representa-

tion f =
∑∞

ν=1 fνϕν , where fν = V (f, ϕν) satisfies
∑

ν f
2
ν ρν <∞. Therefore, T : f 7→ {fν : ν ≥ 1}

defines a one-to-one map from Sm(I) to Rm ≡ {{fν}∞ν=1 ∈ R∞ :
∑∞

ν=1 f
2
ν ρν <∞}.

Let Π̃λ and Π̃ be the probability measures induced by {wν : ν > m} and {vν : ν > m},
respectively, which are both defined on R∞. That is, for any subset S ∈ R∞, Π̃λ(S) = P ({wν :
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ν > m} ∈ S) and Π̃(S) = P ({vν : ν > m} ∈ S). Likewise, let Π′λ and Π′ be probability measures

induced by {wν : ν ≥ 1} and {vν : ν ≥ 1}. It is easy to see that, for any measurable B ⊆ Rm,

Πλ(T−1B) = P (Gλ ∈ T−1B) = P ({wν : ν ≥ 1} ∈ B) = Π′λ(B), and

Π(T−1B) = P (G ∈ T−1B) = P ({vν : ν ≥ 1} ∈ B) = Π′(B).

The following result can be found in Hájek [19].

Proposition A.2. The Radon-Nikodym derivative of Π̃λ w.r.t. Π̃ is

dΠ̃λ

dΠ̃
({fν : ν > m}) =

∞∏
ν>m

(1 + nλρν/θν)1/2 exp(−nλ
2
f2ν ρν)

=

∞∏
ν>m

(1 + nλρν/θν)1/2 · exp

(
−nλ

2

∞∑
ν>m

f2ν ρν

)
.

Note that in Proposition A.2,
∏∞
ν>m (1 + nλρν/θν)1/2 is convergent since

∑
ν>m ρν/θν < ∞.

Therefore, by Proposition A.2, we have

dΠ′λ
dΠ′

({fν : ν ≥ 1})

=

∏m
ν=1

(
2πσ2

ν
1+nλσ2

ν

)−1/2
exp

(
− (1+nλσ2

ν)f
2
ν )

2σ2
ν

)
∏m
ν=1(2πσ

2
ν)−1/2 exp

(
− f2ν

2σ2
ν

) × dΠ̃λ

dΠ̃
({fν : ν > m})

=

m∏
ν=1

(1 + nλσ2ν)1/2 exp

(
−nλ

2
f2ν

)
×
∞∏
ν>m

(1 + nλρν/θν)1/2

× exp

(
−nλ

2

∞∑
ν>m

f2ν ρν

)

=
m∏
ν=1

(1 + nλσ2ν)1/2
∞∏
ν>m

(1 + nλρν/θν)1/2 × exp

(
−nλ

2

∞∑
ν=1

f2ν γν

)
.
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Then for any measurable S ⊆ Sm(I), by change of variable, we have

Πλ(S) = Π′λ(TS)

=

∫
TS
dΠ′λ({fν : ν ≥ 1})

=

m∏
ν=1

(1 + nλσ2ν)1/2
∞∏
ν>m

(1 + nλρν/θν)1/2

·
∫
TS

exp

(
−nλ

2

∞∑
ν=1

f2ν γν

)
dΠ′({fν : ν ≥ 1})

=

m∏
ν=1

(1 + nλσ2ν)1/2
∞∏
ν>m

(1 + nλρν/θν)1/2

·
∫
TS

exp

(
−nλ

2
J(T−1({fν : ν ≥ 1}))

)
d(Π ◦ T−1)({fν : ν ≥ 1})

=

m∏
ν=1

(1 + nλσ2ν)1/2
∞∏
ν>m

(1 + nλρν/θν)1/2
∫
S

exp

(
−nλ

2
J(f)

)
dΠ(f).

This completes the proof of the lemma.

The proof of Lemma 3.4 requires a concentration result (Lemma A.3). Let {ϕ̃ν : ν ≥ 1} be a

bounded orthonormal basis of L2(I) under usual L2 inner product. For any b ∈ [0, β], define

H̃b = {
∞∑
ν=1

fνϕ̃ν :

∞∑
ν=1

f2ν ρν(θν/ρν)b/β <∞}.

Then H̃b can be viewed as a version of Sobolev space with regularity m + b/2. Define G̃ =∑∞
ν=1 vνϕ̃ν , a centered GP, and f̃0 =

∑∞
ν=1 f

0
ν ϕ̃ν . Define Ṽ (f, g) = 〈f, g〉L2 =

∫ 1
0 f(x)g(x)dx, the

usual L2 inner product, J̃(f) =
∑∞

ν=1 |Ṽ (f, ϕ̃ν)|2ρν , a functional on H̃0. For simplicity, denote

Ṽ (f) = Ṽ (f, f). Clearly, f̃0 ∈ H̃β . Since G̃ is a Gaussian process with covariance function

R̃(s, t) = E{G̃(s)G̃(t)} =

m∑
ν=1

σ2νϕ̃ν(s)ϕ̃ν(t) +
∑
ν>m

θ−1ν ϕ̃ν(s)ϕ̃ν(t),

it follows by [56] that H̃β is the RKHS of G̃. For any H̃b with 0 ≤ b ≤ β, define inner product

〈
∞∑
ν=1

fνϕ̃ν ,

∞∑
ν=1

gνϕ̃ν〉b =

m∑
ν=1

σ−2ν fνgν +
∑
ν>m

fνgνρν(θν/ρν)b/β .

Let ‖ · ‖b be the norm corresponding to the above inner product.

Lemma A.3. Let dn be any positive sequence. If Condition (S) holds, then there exists ω ∈ H̃β

such that

(i). Ṽ (ω − f̃0) ≤ 1
4d

2
n,

(ii). J̃(ω − f̃0) ≤ 1
4d

2(β−1)
2m+β−1
n ,
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(iii). ‖ω‖2β = O(d
− 2

2m+β−1
n ).

Proof of Lemma A.3. Let ω =
∑∞

ν=1 ωνϕ̃ν , where ων = df0ν
d+(σbν)α

, σ = d
2/(2m+β−1)
n , bν = ρ

1/(2m)
ν ,

α = m + (β − 1)/2, and d > 0 is a constant to be described. It is easy to see that for any ν,

f0ν − ων = (σbν)αf0ν
d+(σbν)α

. Then

Ṽ (ω − f̃0) =

∞∑
ν=1

(f0ν − ων)2 =

∞∑
ν=1

|f0ν |2(σbν)2α

(d+ (σbν)α)2
≤ σ2m+β−1d−2

∞∑
ν=1

|f0ν |2ρ
1+β−1

2m
ν ,

and

J̃(ω − f̃0) =

∞∑
ν=1

(f0ν − ων)2ρν

= σβ−1
∞∑
ν=1

|f0ν |2ρ
1+β−1

2m
ν (d(σbν)−m + (σbν)(β−1)/2)−2

≤ d−
β−1
α ((

2m

β − 1
)−

m
α + (

2m

β − 1
)
β−1
2α )−2σβ−1

∞∑
ν=1

|f0ν |2ρ
1+β−1

2m
ν .

Therefore, we choose d as a suitably large fixed constant such that (i) and (ii) hold.

To show (iii), observe that

‖ω‖2β =
m∑
ν=1

σ−2ν ω2
ν +

∑
ν>m

ω2
νθν �

m∑
ν=1

σ−2ν |f0ν |2 +
∑
ν>m

d2|f0ν |2ρ
1+β−1

2m
ν

(d+ (σbν)α)2
bν = O(σ−1).

The result follows by σ = d
2/(2m+β−1)
n .

Proof of Lemma 3.4. Let ε ≥ λ
2m+β−1

4m . Hence, λ = h2m ≤ ε
4m

2m+β−1 . It follows by Lemma A.3

by replacing dn therein by ε, by Gaussian correlation inequality (see Theorem 1.1 of [12]), by

Cameron-Martin theorem (see [6] or [11, eqn (4.18)]) and [8, Example 4.5] that

Π(‖f − f0‖ ≤ ε)

= P (‖G− f0‖ ≤ ε)

≥ P (V (G− f0) ≤ ε2/2, λJ(G− f0) ≤ ε2/2)

≥ P (V (G− f0) ≤ ε2/2, J(G− f0) ≤ ε
2(β−1)

2m+β−1 /2)

= P (Ṽ (G̃− f̃0) ≤ ε2/2, J̃(G̃− f̃0) ≤ ε
2(β−1)

2m+β−1 /2)

≥ P (Ṽ (G̃− ω) ≤ (1/
√

2− 1/2)2ε2, J̃(G̃− ω) ≤ (1/
√

2− 1/2)2ε
2(β−1)

2m+β−1 )

≥ exp(−‖ω‖2β/2)× P (Ṽ (G̃) ≤ (1/
√

2− 1/2)2ε2, J̃(G̃) ≤ (1/
√

2− 1/2)2ε
2(β−1)

2m+β−1 )

≥ exp(−‖ω‖2β/2)× P (Ṽ (G̃) ≤ (1/
√

2− 1/2)2ε2/2)× P (J̃(G̃) ≤ (1/
√

2− 1/2)2ε
2(β−1)

2m+β−1 /2)

≥ exp(−c0ε−
2

2m+β−1 ),

where c0 > 0 is a universal constant.
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Proof of Theorem 3.5. Let T : f 7→ {fν : ν ≥ 1} be the one-to-one map from Sm(I) to Rm, as

defined in the proof of Lemma 3.3.

Let Π′W and Π′ be the probability measures induced by {an,ν f̂ν + bn,ντνvν : ν ≥ 1} and

{vν : ν ≥ 1}. Then dΠ′W /dΠ′ equals limN→∞ p1,N (f1, . . . , fN )/p2,N (f1, . . . , fN ) (see [17, Section

III]), where p1,N and p2,N are the probability densities under fν ∼ an,ν f̂ν + bn,ντνvν and fν ∼ vν ,

ν = 1, . . . , N , respectively. A direct evaluation leads to that

dΠ′W
dΠ′

({fν : ν ≥ 1}) = Cn,λ exp(−n
2

∞∑
ν=1

(fν − f̂ν)2(1 + λγν)),

where

Cn,λ =
∞∏
ν=1

(bn,ντν)−1 exp

(
n

2

∞∑
ν=1

τ2ν (1 + λγν)

τ2ν + n(1 + λγν)
f̂2ν

)
.

Since
∑

ν f̂
2
ν γν <∞ and β > 1, it is not hard to see that Cn,λ is an almost surely finite constant.

For any B ⊆ Rm, ΠW (T−1B) = Π′W (B), and Π(T−1B) = Π′(B). To see this, note that

ΠW (T−1B) = P (W ∈ T−1B) = P ({an,ν f̂ν + bn,ντνvν : ν ≥ 1} ∈ B) = Π′W (B), and

Π(T−1B) = P (G ∈ T−1B) = P ({vν : ν ≥ 1} ∈ B) = Π′(B).

By change of variable, for any Π-measurable S ⊆ Sm(I),

ΠW (S) = Π′W (TS)

=

∫
TS
dΠ′W ({fν : ν ≥ 1})

= Cn,λ

∫
TS

exp(−n
2

n∑
ν=1

(fν − f̂ν)2(1 + λγν))dΠ′(fν : ν ≥ 1)

= Cn,λ

∫
S

exp(−n
2
‖f − f̂n,λ‖2)dΠ(f).

In particular, let S = Sm(I) in the above equations, we get that

Cn,λ =

(∫
Sm(I)

exp(−n
2
‖f − f̂n,λ‖2)dΠ(f)

)−1
.

This proves the desired result.

A.2. Proofs in Section 4

Before proving Theorem 4.1, we give some preliminary results.

Lemma A.4. As n→∞, we have

n‖Wn‖22 − ζ1,n√
2ζ2,n

d−→ N(0, 1),

where ζk,n =
∑∞

ν=1
1

(1+λγν+n−1τ2ν )
k .
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Proof of Lemma A.4. Let ην = τνvν . Then ην is a sequence of iid standard normals. Note that

‖Wn‖22 =

∞∑
ν=1

η2ν
τ2ν + n(1 + λγν)

.

Let Un = (n‖Wn‖22 − ζ1,n)/
√

2ζ2,n, then we have

Un =
1√

2ζ2,n

∞∑
ν=1

n(η2ν − 1)

τ2ν + n(1 + λγν)
.

By straightforward calculations and Taylor’s expansion of log(1 − x), it can be shown that the

logarithm of the moment generating function of Un equals

logE{exp(tUn)} = t2/2 +O
(
t3ζ
−3/2
2,n ζ3,n

)
. (A.9)

It can be examined that ζ2,n � n1/(2m+β) and ζ3,n � n1/(2m+β), so the remainder term in (A.9)

is O(n−1/(2(2m+β))) = o(1). So limn→∞E{exp(tUn)} = exp(t2/2). Proof is completed.

Define

R(x, y) =

∞∑
ν=1

ϕν(x)ϕν(y)

1 + λγν + n−1τ2ν
, x, y ∈ I. (A.10)

Lemma A.5. supx,y∈I
∣∣R(x, y)

∣∣ . h−1 and supx,y∈I
∣∣ ∂
∂xR(x, y)

∣∣ . h−2.

Proof of Lemma A.5. For any g ∈ Sm(I) and x ∈ I, it follows from [6, Lemmas (2.10) and (2.17)]

that there exist constants c′, c′′, c′′′ s.t.∣∣〈g, ∂
∂x
Kx〉

∣∣ =
∣∣ ∂
∂x
〈g,Kx〉

∣∣
= |g′(x)| ≤ c′h−1/2

√
‖g′‖2

L2 + h2‖g′′‖2
L2

= c′h−3/2
√
h2‖g′‖2

L2 + h4‖g′′‖2
L2

≤ c′h−3/2
√

(‖g‖2
L2 + h2‖g′‖2

L2) + (‖g‖2
L2 + h4‖g′′‖2

L2)

≤ c′c′′h−3/2
√
‖g‖2

L2 + h2m‖g(m)‖2
L2

≤ c′′′h−3/2‖g‖.

This implies that ‖ ∂∂xKx‖ ≤ c′′′h−3/2. For convenience, let Ry(·) = R(·, y). It is easy to see that

‖Ry‖2 =

∞∑
ν=1

ϕν(y)2

(1 + λγν + n−1τ2ν )2
(1 + λγν)

≤
∞∑
ν=1

ϕν(y)2

1 + λγν
= K(y, y) ≤ c2Kh−1.

This implies that |R(x, y)| = |〈Ry,Kx〉| ≤ ‖Ry‖ · ‖Kx‖ ≤ c2Kh
−1. This also leads to that, for any

x, y ∈ I, ∣∣ ∂
∂x
R(x, y)

∣∣ =
∣∣〈Ry, ∂

∂x
Kx〉

∣∣ ≤ ‖Ry‖ · ‖ ∂
∂x
Kx‖ ≤ c′′′cKh−2.

The desired result follows by the fact that both ck and c′′′ are universal constants free of x, y.
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Proof of Theorem 4.1. By direct examinations, we can show that the Rate Conditions (R), nr̃2n(r̃nbn1+

bn2) = o(1), nhD2
n = o(1) are all satisfied.

It is sufficient to investigate the Pnf0-probability of the event ‖f̃n,λ − f0‖2 ≤ rn(α). To achieve

this goal, we first prove the following fact:

|zn(α)− zα| = oPnf0
(1), (A.11)

where zα = Φ−1(1− α) and Φ is the c.d.f. of N(0, 1), and zn(α) = (nrn(α)2 − ζ1,n)/
√

2ζ2,n. The

proof of the theorem follows by (A.11) and a careful analysis of f0 − f̄N,λ.

We first show (A.11). It follows by Theorem 3.2 that,

|P (Rn(α)|Dn)− P0(Rn(α))| ≤ sup
B∈B
|P (B|Dn)− P0(B)| = oPnf0

(1).

Together with P (Rn(α)|Dn) = 1−α, we have |P0(Rn(α))−(1−α)| = oPnf0
(1). Since W = f̃n,λ+Wn,

P0(Rn(α)) = P (W ∈ Rn(α)|Dn)

= P (‖Wn‖2 ≤ rn(α)|Dn) = P (Un ≤ zn(α)|Dn),

and P (Un ≤ zα)→ 1− α, where Un is defined in the proof of Lemma A.4, we get that

|P (Un ≤ zn(α)|Dn)− P (Un ≤ zα)| = oPnf0
(1), (A.12)

where Un = (n‖Wn‖22 − ζ1,n)/
√

2ζ2,n. Let Φn be the c.d.f. of Un. Since Un is independent of the

data, we have from (A.12) that

|Φn(zn(α))− Φn(zα)| = oPnf0
(1). (A.13)

Now for any ε > 0, if |zn(α)− zα| ≥ ε, then either |Φn(zn(α))−Φn(zα)| ≥ Φn(zα + ε)−Φn(zα) or

|Φn(zn(α)) − Φn(zα)| ≥ Φn(zα) − Φn(zα − ε). Since Φn pointwise congerges to Φ, both Φn(zα +

ε)−Φn(zα) and Φn(zα)−Φn(zα− ε) are asymptotically lower bounded by some positive numbers

(possibly depending on ε). This implies by (A.13) that (A.11) holds.

Next we prove the theorem. Define Remn = f̂n,λ − f0 − Sn,λ(f0). It follows by Functional

Bahadur Representation ([16] or [44, Theorem 3.4]) that ‖Remn‖ = OPnf0
(Dn) with Dn = an+bn.

By direct examination, we have

f̃n,λ − f0 =

∞∑
ν=1

(
an,νV (f̂n,λ, ϕν)− f0ν

)
ϕν

=

∞∑
ν=1

(
an,νV (Remn + f0 + Sn,λ(f0), ϕν)− f0ν

)
ϕν

=
∞∑
ν=1

an,νV (Remn, ϕν)ϕν +
∞∑
ν=1

(an,ν − 1)f0νϕν

+

∞∑
ν=1

an,νV (
1

n

n∑
i=1

εiKXi , ϕν)ϕν −
∞∑
ν=1

an,νV (Pλf0, ϕν)ϕν , (A.14)
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where εi = Yi − Ȧ(f0(Xi)). Denote the four terms in the above equation by T1, T2, T3, T4.

Since an,ν ≤ 1, it is easy to see that

‖T1‖22 =
∞∑
ν=1

a2n,ν |V (Remn, ϕν)|2

≤
∞∑
ν=1

|V (Remn, ϕν)|2 = ‖Remn‖22 ≤ ‖Remn‖2 = OPnf0
(D2

n). (A.15)

Using h � n−1/(2m+β) and a direct algebra we get that

‖T2‖22 =

∞∑
ν=1

(an,ν − 1)2|f0ν |2

�
∞∑
ν=1

(
ν2m+β

ν2m+β + n(1 + λν2m)

)2

|f0ν |2

= o(n
− 2m+β−1

2m+β ) = o(n−1h−1).

Meanwhile, it follows by Proposition 1 that

‖T4‖22 =
∞∑
ν=1

a2n,ν |f0ν |2
(

λγν
1 + λγν

)2

≤
∞∑
ν=1

|f0ν |2
(

λγν
1 + λγν

)2

.
∞∑
ν=1

|f0ν |2(hν)2m+β−1 (hν)2m−β+1

(1 + (hν)2m)2

= o(n
− 2m+β−1

2m+β ) = o(n−1h−1).

It is easy to see that R(x, x′) =
∑∞

ν=1 an,ν
ϕν(x)ϕν(x′)

1+λγν
for any x, x′ ∈ I. Also define Rx(·) =

R(x, ·). It is easy to see that Rx ∈ Sm(I) for any x ∈ I. Then it can be shown that T3 =
1
n

∑n
i=1 εiRXi , leading to ‖T3‖22 = V (T3, T3) = 1

n2

∑n
i=1 ε

2
iV (RXi , RXi)+

2
n2

∑
1≤i<k≤n εiεkV (RXi , RXk).

Define W (n) = 2
∑

i<k εiεkV (RXi , RXk). Let Wik = 2εiεkV (RXi , RXk) for 1 ≤ i < k ≤ n, then

W (n) =
∑

1≤i<k≤nWik. Note that W (n) is clean in the sense of [5]. Let σ2(n) = Ef0{W (n)2} and

GI , GII , GIV be defined as

GI =
∑

1≤i<j≤n
Ef0{W 4

ij},

GII =
∑

1≤i<j<k≤n
(Ef0{W 2

ijW
2
ik}+ Ef0{W 2

jiW
2
jk}+ Ef0{W 2

kiW
2
kj})

GIV =
∑

1≤i<j<k<l≤n
(Ef0{WijWikWljWlk}+ Ef0{WijWilWkjWkl}+ Ef0{WikWilWjkWjl}).

Since ϕν are uniformly bounded, we get that

‖Rx‖22 =
∞∑
ν=1

|ϕν(x)|2

(1 + n−1τ2ν + λγν)2
. h−1,
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where “.” is free of x. This implies that GI = O(n2h−4) and GII = O(n3h−4). It can also be

shown that for pairwise distinct i, k, t, l,

Ef0{WikWilWtkWtl}

= 24Ef0{ε2i ε2kε2t ε2l V (RXi , RXk)V (RXi , RXl)V (RXt , RXk)V (RXt , RXl)}

= 24
∞∑
ν=1

a8n,ν
(1 + λγν)8

= O(h−1),

which implies that GIV = O(n4h−1). In the mean time, a straight algebra leads to that

σ2(n) = 4

(
n

2

) ∞∑
ν=1

a4n,ν
(1 + λγν)4

= 4

(
n

2

) ∞∑
ν=1

(
n

τ2ν + n(1 + λγν)

)4

= 2n(n− 1)ζ4,n � n2h−1.

Since nh2 � n1−2/(2m+β) → ∞, we get that GI , GII and GIV are all of order o(σ4(n)). Then it

follows by [5] that as n→∞,
W (n)

n
√

2ζ4,n

d−→ N(0, 1).

Since ζ4,n � h−1, the above equation leads to that W (n)/n = OPnf0
(h−1/2). It follows by direct

examination that V arf0{
∑n

i=1 ε
2
iV (RXi , RXi)} ≤ nEf0{ε4i ‖RXi‖42} = O(nh−2), leading to that

n∑
i=1

ε2iV (RXi , RXi) = Ef0{
n∑
i=1

ε2iV (RXi , RXi)}+OPnf0
(n1/2h−1)

= nζ2,n +OPnf0
(n1/2h−1).

Therefore, it follows by condition nhD2
n = o(1) and the above analysis on T1, T2, T3, T4 that

nh‖f̃n,λ − f0‖22 = nh‖T3‖22 +OPnf0
(nhD2

n) + oPnf0
(1)

= hζ2,n + oPnf0
(1). (A.16)

In the end, note from (A.11) and ζk,n � n1/(2m+β) (see the proof of Lemma A.4) that nrn(α)2 =

ζ1,n+
√

2ζ2,nzα+oPnf0
(
√
ζ2,n). Therefore, nhrn(α)2 = hζ1,n(1+oPnf0

(1)). Since lim infn→∞(hζ1,n−
hζ2,n) > 0, we get that, with Pnf0-probability approaching one, ‖f̃n,λ − f0‖2 ≤ rn(α), i.e., f0 ∈
Rn(α). Proof is completed.

Before proving Theorem 4.2, let us present two preliminary lemmas.

Lemma A.6. As n→∞,

n‖Wn‖2ω
d→
∞∑
ν=1

ωνη
2
ν ,

where ην are independent standard normal random variables.
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Proof of Lemma A.6. The proof follows by moment generating function approach and direct cal-

culations, as in the proof of Lemma A.4.

Proof of Theorem 4.2. By direct examinations, one can show that Rate Conditions (R), nr̃2n(r̃nbn1+

bn2) = o(1), and nD2
n = o(1) are all satisfied.

We first have the following fact:

|
√
nrω,n(α)−

√
cα| = oPnf0

(1), (A.17)

where cα > 0 satisfies P (
∑∞

ν=1 ωνη
2
ν ≤ cα) = 1 − α with ην being independent standard normal

random variables. It follows from (A.17) that nrω,n(α)2 = cα + oPnf0
(1). The proof of (A.17) is

similar to the proof of (A.11) and is omitted.

Let T1, T2, T3, T4 be items defined in (A.14). It follows from the proof of Theorem 4.1 that

‖T1‖2ω ≤ ‖T1‖22 = OPnf0
(D2

n). So, n‖T1‖2ω = OPnf0
(nD2

n) = oPnf0
(1) due to the condition nD2

n = o(1).

It follows by condition h � n−1/(2m+β), dominated convergence theorem and direct examina-

tions that

‖T2‖2ω =
∞∑
ν=1

ων(an,ν − 1)2|f0ν |2

� n−2
∞∑
ν=1

ων
ν2m+β+1

(1 + (hν)2m + (hν)2m+β)2
× ν2m+β−1|f0ν |2

. n−1
∞∑
ν=1

(hν)2m+β+1

(1 + (hν)2m + (hν)2m+β)2
× ν2m+β−1|f0ν |2 = o(n−1),

and

‖T4‖2ω =
∞∑
ν=1

ωνa
2
n,ν

(
λγν

1 + λγν

)2

|f0ν |2

.
∞∑
ν=1

ων
(hν)2m−β+1

(1 + (hν)2m + (hν)2m+β)2
× |f0ν |2(hν)2m+β−1

. h2m+β
∞∑
ν=1

(hν)2m−β

(1 + (hν)2m + (hν)2m+β)2
× |f0ν |2ν2m+β−1 = o(n−1).

Next we handle T3. By proof of Theorem 4.1, we have T3 = n−1
∑n

i=1 εiRXi , where εi =

Yi − Ȧ(f0(Xi)), which implies n‖T3‖2ω = n−1‖
∑n

i=1 εiRXi‖2ω.

Since Ef0{exp(|ε|/C0)} ≤ C1, we can choose a constant L > C0 such that Pnf0(En)→ 1, where

En = {max1≤i≤n |εi| ≤ bn ≡ L log n}. We can even choose the above L to be properly large so

that the following rate condition holds:

h−1n1/2 exp(−bn/(2C0)) = o(1), h−2 exp(−bn/(2C0)) = o(1). (A.18)



Z. Shang & G. Cheng/Supplement to Nonparametric Gaussian Approximation 14

Define Hn(·) = n−1/2
∑n

i=1 εiRXi(·) and Hb
n(·) = n−1/2

∑n
i=1 εiI(|εi| ≤ bn)RXi(·). Write Hn =

Hn −Hb
n − Ef0{Hn −Hb

n}+Hb
n − Ef0{Hb

n}. Clearly, on En, Hn = Hb
n, and hence,

|Hn(z)−Hb
n(z)− Ef0{Hn(z)−Hb

n(z)}| = |Ef0{Hn(z)−Hb
n(z)}|

= n1/2|Ef0{εI(|ε| > bn)RX(z)}|

. n1/2h−1Ef0{ε2}1/2Pnf0(|ε| > bn)1/2

. n1/2h−1 exp(−bn/(2C0)) = o(1),

where the last o(1)-term follows by (A.18) and is free of the argument z. Thus,

sup
z∈I
|Hn(z)−Hb

n(z)− Ef0{Hn(z)−Hb
n(z)}| = oPnf0

(1). (A.19)

Define Rn = Hb
n − Ef0{Hb

n} and Zn(e, x) = n1/2(Pn(e, x) − P (e, x)), where Pn(e, x) is the

empirical distribution of (ε,X) and P (e, x) is the population distribution of (ε,X) under Pnf0-

probability. It follows by Theorem 1 of [52] that

sup
e∈R,x∈I

|Zn(e, x)−W (t(e, x))| = OPnf0
(n−1/2(log n)2), (A.20)

where W (·, ·) is Brownian bridge indexed on I2, t(e, x) = (F1(x), F2(e|x)), F1 is the marginal

distribution of X and F2 is the conditional distribution of ε given X both under Pnf0-probability.

It can be seen that Rn(z) =
∫ 1
0

∫ bn
−bn eRx(z)dZn(e, x). Define R0

n(z) =
∫ 1
0

∫ bn
−bn eRx(z)dW (t(e, x)).

Write dUn(x) =
∫ bn
−bn edZn(e, x), dU0

n(x) =
∫ bn
−bn edW (t(e, x)). It follows from integration by parts

where all quadratic variation terms are zero that

Un(x) =

∫ bn

−bn
edeZn(e, x) = Zn(e, x)e|bne=−bn −

∫ bn

−bn
Zn(e, x)de,

U0
n(x) =

∫ bn

−bn
edeW (t(e, x)) = W (t(e, x))e|bne=−bn −

∫ bn

−bn
W (t(e, x))de,

and hence, it follows by (A.20) that supx∈I |Un(x) − U0
n(x)| = OPnf0

(bnn
−1/2(log n)2). It follows

from integration by parts again and supx,y∈I | ∂∂xR(x, y)| = O(h−2) (Lemma A.5) that

Rn(z) =

∫ 1

0
Rx(z)dUn(x) = Un(x)R(x, z)|1x=0 −

∫ 1

0
Un(x)

∂

∂x
R(x, z)dx,

R0
n(z) =

∫ 1

0
Rx(z)dU0

n(x) = U0
n(x)R(x, z)|1x=0 −

∫ 1

0
U0
n(x)

∂

∂x
R(x, z)dx,

and hence,

sup
z∈I
|Rn(z)−R0

n(z)| = OPnf0
(h−2bnn

−1/2(log n)2) = oPnf0
(1), (A.21)

due to the fact 2m+ β > 4, hence h−2n−1/2bn(log n)2 = O(n−1/2+2/(2m+β)(log n)3) = o(1).
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Next we handle the term R0
n. Write W (s, t) = B(s, t) − stB(1, 1), where B(s, t) is stan-

dard Brownian motion indexed on I2. Define R̄0
n(z) =

∫ 1
0

∫ bn
−bn eRx(z)dB(t(e, x)). Let F (e, x) =

F1(x)F2(e, x) be the joint distribution of (ε,X). It is easy to see that

|R̄0
n(z)−R0

n(z)| = |B(1, 1)| · |
∫ 1

0

∫ bn

−bn
eRx(z)dF (e, x)|

= |B(1, 1)| · |Ef0{εI(|ε| ≤ bn)RX(z)}|

= |B(1, 1)| · |Ef0{εI(|ε| > bn)RX(z)}|

= OPnf0
(h−1 exp(−bn/(2C0))) = oPnf0

(1),

where the last equality follows by (A.18). Therefore, we have shown that

sup
z∈I
|R̄0

n(z)−R0
n(z)| = oPnf0

(1). (A.22)

By (A.19), (A.21) and (A.22) that

n‖T3‖2ω = ‖Hn‖2ω = ‖R̄0
n‖2ω + oPnf0

(1). (A.23)

Define R̃(z) =
∫ 1
0

∫∞
−∞ eRx(z)dB(t(e, x)). Let ∆(z) = R̃(z)− R̄0

n(z). Then

∆(z) =

∫ 1

0

∫
|e|>bn

eRx(z)dB(t(e, x)).

For each z, ∆(z) is a zero-mean Gaussian random variable with variance

Ef0{∆(z)2} =

∫ 1

0

∫
|e|>bn

e2Rx(z)2dF (e, x)

. h−2Ef0{ε2I(|ε| > bn)} = O(h−2 exp(−bn/(2C0))) = o(1),

where the last o(1)-term follows from (A.18) and is free of the argument z. Therefore,

Ef0{‖R̃ − R̄0
n‖2ω} . Ef0{‖∆‖2L2} =

∫ 1

0
Ef0{∆(z)2}dz = o(1),

implying that ‖R̃ − R̄0
n‖ω = oPnf0

(1). Therefore, it follows by (A.23) that

n‖T3‖2ω = ‖R̃‖2ω + oPnf0
(1). (A.24)

It follows from the definition of R(·, ·) that

‖R̃‖2ω =
∞∑
ν=1

ων η̃
2
ν

(1 + λγν + n−1τ2ν )2
d→
∞∑
ν=1

ων η̃
2
ν ,

where η̃ν =
∫ 1
0

∫∞
−∞ eϕν(x)dB(t(e, x)). It is easy to see that for any ν, µ,

Ef0{η̃ν η̃µ} = Ef0{ε2ϕν(X)ϕµ(X)} = Ef0{B(X)ϕν(X)ϕµ(X)} = V (ϕν , ϕµ) = δνµ,

that is, η̃ν are iid standard normal random variables. Combined with the above analysis of terms

T1, T2, T3, T4, we have shown that as n → ∞, n‖f0 − f̃n,λ‖2ω
d→
∑∞

ν=1 ων η̃
2
ν . This implies that as

n→∞, Pnf0(f0 ∈ Rωn(α)) = Pnf0(n‖f0 − f̃n,λ‖2ω ≤ cα)→ 1− α. The proof is completed.
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Proof of Theorem 4.4. Recall in the proof of Theorem 4.2 we show that Rate Conditions (R),

nr̃2n(r̃nbn1 + bn2) = o(1) and nD2
n = o(1) are all satisfied.

It is easy to see that

F (Wn)
d
= N(0, θ21,n). (A.25)

Define RFn (α) = {f ∈ Sm(I) : |F (f) − F (f̃n,λ)| ≤ rF,n(α)}. It follows by Theorem 3.2 that

|1− α− P0(R
F
n (α))| = oPnf0

(1). It is easy to see that

P0(R
F
n (α)) = P (|F (Wn)| ≤ rF,n(α)|Dn) = 2Φ(rF,n(α)/θ1,n)− 1,

which leads to

|rF,n(α)/θ1,n − zα/2| = oPnf0
(1). (A.26)

Consider the decomposition (A.14) with T1, T2, T3, T4 being defined therein. It follows by (A.15)

and rate condition nD2
n = o(1) that n‖T1‖2 = OPf0 (nD2

n) = oPnf0
(1). Meanwhile, it follows by

Condition (S′), n−1 � h2m+β and λ = h2m and direct examinations that

n‖T2‖2 = n
∞∑
ν=1

(an,ν − 1)2|f0ν |2(1 + λγν)

� n
∞∑
ν=1

(
ν2m+β

ν2m+β + n(1 + λν2m)

)2

|f0ν |2(1 + λν2m)

�
∞∑
ν=1

(hν)2m+β + (hν)4m+β

(1 + (hν)2m + (hν)2m+β)2
× |f0ν |2ν2m+β = o(1),

and

n‖T4‖2 = n
∞∑
ν=1

a2n,ν

(
λγν

1 + λγν

)2

|f0ν |2(1 + λγν)

�
∞∑
ν=1

(hν)2m−β

1 + (hν)2m
× |f0ν |2ν2m+β = o(1).

Therefore, ‖f̃n,λ − f0 − T3‖ = ‖T1 + T2 + T4‖ = oPnf0
(n−1/2). If follows from (4.3) that |F (f̃n,λ −

f0)− F (T3)| = oPnf0
(h−r/2n−1/2).

Recall F (T3) = 1
n

∑n
i=1 εiF (RXi), where the kernel Rx is defined in (A.10). We will derive the

asymptotic distribution for F (T3). Let s2n = V arf0(
∑n

i=1 εiF (RXi)). It is easy to show that

s2n = n3
∞∑
ν=1

F (ϕν)2

(τ2ν + n(1 + λγν))2
= n3θ22,n � nh−r.

By (4.3) and ‖Rx‖ ≤ cKh
−1/2 (see proof of Lemma A.5), we get |F (Rx)| ≤ κh−r/2‖Rx‖ ≤

κcKh
−(1+r)/2. Meanwhile,

Ef0{ε2F (RX)2} = n2
∞∑
ν=1

F (ϕν)2

(τ2ν + n(1 + λγν))2
= n2θ22,n � h−r. (A.27)
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By Assumption A1 there exists a constant M4 s.t. Ef0{ε4|X} ≤M4 a.s. Then for any δ > 0,

1

s2n

n∑
i=1

Ef0{ε2iF (RXi)
2I(|εiF (RXi)| ≥ δsn)}

≤ n

s2n
(δsn)−2Ef0{ε4F (RX)4}

.
n

s2n
(δsn)−2h−(1+r)Ef0{ε2F (RX)2} . δ−2n−1h−1 = o(1),

where the last o(1)-term follows by h � h∗ and 2m+β > 1. By Lindeberg’s central limit theorem,

as n→∞,

F (T3)√
nθ2,n

=
1

sn

n∑
i=1

εiF (RXi)
d→ N(0, 1). (A.28)

By condition n2θ22,n � h−r, we have∣∣∣∣F (f̃n,λ − f0 − T3)√
nθ2,n

∣∣∣∣ = oPnf0

(
h−r/2n−1/2√

nθ2,n

)
= oPnf0

(1).

It follows by (A.26) that
rF,n(α)√
nθ2,n

=
θ1,n√
nθ2,n

× zα/2(1 + oPnf0
(1)).

It can be easily seen that

θ21,n
nθ22,n

=

∑∞
ν=1

F (ϕν)2

1+λγν+n−1τ2ν∑∞
ν=1

F (ϕν)2

(1+λγν+n−1τ2ν )
2

≥ 1,

together with (A.28) we get that

Pnf0(|F (f0)− F (f̃n,λ)| ≤ rF,n(α))

= Pnf0

(∣∣∣∣F (f̃n,λ − f0 − T3)√
nθ2,n

+
F (T3)√
nθ2,n

∣∣∣∣ ≤ rF,n(α)√
nθ2,n

)

≥ Pnf0

(∣∣∣∣F (f̃n,λ − f0 − T3)√
nθ2,n

+
F (T3)√
nθ2,n

∣∣∣∣ ≤ zα/2(1 + oPf0 (1))

)
−→ 1− α. (A.29)

Notice that when 0 <
∑∞

ν=1 F (ϕν)2 < ∞,
θ21,n
nθ22,n

→ 1, leading to that the probability in (A.29)

approaches exactly 1− α. Proof is completed.

Proof of Proposition 4.5. Under the setup of Proposition 4.5, it follows from [44] that Ä(·) ≡ 1,

and hence, (2.5) becomes the following uniform free beam problem:

ϕ(4)
ν (·) = ρνϕν(·), ϕ(j)

ν (0) = ϕ(j)
ν (1) = 0, j = 2, 3. (A.30)

The eigenvalues satisfy limν→∞ ρν/(πν)4 = 1; see [9, Problem 3.10]. The normalized solutions to

(A.30) are

ϕ1(z) = 1, ϕ2(z) =
√

3(2z − 1), (A.31)
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ϕ2k+1(z) =
sin(γ2k+1(z − 1/2))

sin(γ2k+1/2)
+

sinh(γ2k+1(z − 1/2))

sinh(γ2k+1/2)
, k ≥ 1. (A.32)

ϕ2k+2(z) =
cos(γ2k+2(z − 1/2))

cos(γ2k+2/2)
+

cosh(γ2k+2(z − 1/2))

cosh(γ2k+2/2)
, k ≥ 1, (A.33)

where γν = ρ
1/4
ν satisfying cos(γν) cosh(γν) = 1; see [5, page 295–296].

Proof of (i). By direct examinations, it can be shown that when ν ≥ 3 is odd, cos(x) cosh(x) = 1

has a unique solution in ((ν + 1/2)π, (ν + 1)π), that is, γν ∈ ((ν + 1/2)π, (ν + 1)π); when ν ≥ 3 is

even, cos(x) cosh(x) = 1 has a unique solution in (νπ, (ν + 1/2)π), that is, γν ∈ (νπ, (ν + 1/2)π).

Consequently, for any k ≥ 1, 0 < γ2k+2 − γ2k+1 < π.

Let δ0 be constant such that 0 < δ0 < π/2− π|z − 1/2|, and d0 = min{sin2(δ0), cos2(δ0 + π|z −
1/2|)}. Clearly, d0 > 0 is a constant. It is easy to see that when k →∞,

sinh(γ2k+1(z − 1/2))

sinh(γ2k+1/2)
→ 0, and

cosh(γ2k+2(z − 1/2))

cosh(γ2k+2/2)
→ 0.

Then for arbitrarily small ε ∈ (0, d0/8), there exists N s.t. for any k ≥ N ,

ϕ2k+1(z)2 ≥ 1

2
sin2(γ2k+1(z − 1/2))− ε and ϕ2k+2(z)2 ≥ 1

2
cos2(γ2k+2(z − 1/2))− ε.

Let φ′k = (γ2k+2 − γ2k+1)(z − 1/2). Then |φ′k| ≤ π|z − 1/2| < π/2. There exists an integer

lk s.t. γ2k+1(z − 1/2) = φk + lkπ, where φk ∈ [0, π). Then, sin2(γ2k+1(z − 1/2)) = sin2(φk) and

cos2(γ2k+2(z − 1/2)) = cos2(φk + φ′k).

If 0 ≤ φk ≤ δ0, then it can be seen that

−π|z − 1/2| ≤ φ′k ≤ φk + φ′k ≤ δ0 + φ′k ≤ δ0 + π|z − 1/2|.

Therefore, cos2(φk + φ′k) ≥ cos2(δ0 + π|z − 1/2|). If δ0 < φk < π − δ0, then sin2(φk) ≥ sin2(δ0). If

π − δ ≤ φk < π, then it can be seen that

π − δ0 − π|z − 1/2| ≤ φk + φ′k < π + π|z − 1/2|.

Therefore, cos2(φk + φ′k) ≥ cos2(δ0 + π|z − 1/2|). Consequently, for any k ≥ N ,

ϕ2k+1(z)2 + ϕ2k+2(z)2 ≥ 1

2
(sin2(γ2k+1(z − 1/2)) + cos2(γ2k+2(z − 1/2)))− 2ε

≥ 1

2
min{sin2(δ0), cos2(δ0 + π|z − 1/2|)} − 2ε ≥ d0/4.
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Then we have ∑
ν>2

hϕν(z)2

(1 + λρν + (λρν)1+β/4)j

=
∑
k≥1

hϕ2k+1(z)2

(1 + λρ2k+1 + (λρ2k+1)1+β/4)j
+
∑
k≥1

hϕ2k+2(z)2

(1 + λρ2k+2 + (λρ2k+2)1+β/4)j

≥
∑
k≥1

hϕ2k+1(z)2 + hϕ2k+2(z)2

(1 + λρ2k+2 + (λρ2k+2)1+β/4)j

≥
∑
k≥N

hd0/4

(1 + λρ2k+2 + (λρ2k+2)1+β/4)j

&
∑
k≥N

h

(1 + (kπh)4 + (kπh)4+β)j

≥
∫ ∞
N

h

(1 + (πhx)4 + (πhx)4+β)j
dx

=
1

π

∫ ∞
πNh

1

(1 + x4 + x4+β)j
dx

h→0−→ 1

π

∫ ∞
0

1

(1 + x4 + x4+β)j
dx > 0.

This shows that condition (4.5) holds for r = 1.

Proof of (ii). Write ω =
∑

ν ωνϕν where ων is a square-summable real sequence. Then Fω(ϕν) =∫ 1
0 ω(z)ϕν(z)dz = ων . Therefore,

∑
ν Fω(ϕν)2 =

∑
ν ω

2
ν <∞. Meanwhile, since ω 6= 0,

∑∞
ν=1 Fω(ϕν)2 >

0. Consequently, for j = 1, 2, it follows by dominated convergence theorem that as n→∞,

m∑
ν=1

Fω(ϕν)2

(1 + λ+ n−1σ−2ν )j
+
∑
ν>m

Fω(ϕν)2

(1 + λρν + (λρν)1+β/(2m))j
→

∞∑
ν=1

Fω(ϕν)2 > 0.

Hence (4.5) holds for r = 0.

A.3. Proofs in Section 5

Proof of Theorem 5.1. It follows by Theorem 3.2 that

sup
t≥0
|P (
√
nh‖f − f̂n,λ‖2 ≤ t|Dn)− P0(

√
nh‖f − f̂n,λ‖2 ≤ t)|

≤ sup
B∈B
|P (B|Dn)− P0(B)| = oPnf0

(1).

It is sufficient to prove

sup
t≥0
|P0(
√
nh‖f − f̂n,λ‖2 ≤ t)− P?(

√
nh‖f − f̂n,λ‖2 ≤ t)| = oPnf0

(1). (A.34)

Define ∆f = f̃n,λ − f̂n,λ and ∆W = Wn − W ?
n . Define Remn = f̂n,λ − f0 − Sn,λ(f0), where

Sn,λ(f0) = 1
n

∑n
i=1 εiKXi − Pλf0, εi = Yi − Ȧ(f0(Xi)), K = Kf0 and Pλ = Pf0λ . See [45] for
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definition of Kf0 and Pf0λ . It follows by [44, Theorem 3.4]) or [16] that ‖Remn‖ = OPnf0
(Dn) with

Dn = an + bn. Then

f̂ν = V (f̂n,λ, ϕν) = V (f0 + Sn,λ(f0) +Remn, ϕν)

= f0ν + V (Sn,λ(f0), ϕν) + V (Remn, ϕν)

=
1

1 + λγν
f0ν + V (

1

n

n∑
i=1

εiKXi , ϕν) + V (Remn, ϕν).

It holds that ∆f =
∑

ν(an,ν − 1)f̂νϕν , which leads to

‖∆f‖22
=

∑
ν

(an,ν − 1)2f̂2ν

= OPnf0
(n−2) +

∑
ν>m

(
τ2ν

τ2ν + n(1 + λγν)

)2

f̂2ν

. OPnf0
(n−2) +

∑
ν>m

(
n−1τ2ν

1 + λγν + n−1τ2ν

)2
(

1

(1 + λγν)2
|f0ν |2 + |V (n−1

n∑
i=1

εiKXi , ϕν)|2

+|V (Remn, ϕν)|2
)

≡ OPnf0
(n−2) + I + II + III.

Next we will analyze the terms I, II, III .

I ≤
∑
ν>m

(h∗ν)4m+2β

(1 + (hν)2m)4
|f0ν |2

= (h∗h
−1)4m+2β

∑
ν>m

(hν)4m+2β

(1 + (hν)2m)4
|f0ν |2

= (h∗h
−1)4m+2βh2m+β−1

∑
ν>m

(hν)2m+β+1

(1 + (hν)2m)4
|f0ν |2ν2m+β−1

= o((h∗h
−1)4m+2βh2m+β−1) = o(n−2h−(2m+β+1)) = o(n−1h−1/2),

(recall h = n−a with a <
2

4m+ 2β + 1
)

By [13] we have Ef0{ε2|X} = Ä(f0(X)), leading to

δνµ = E{Ä(f0(X))ϕν(X)ϕµ(X)} = Ef0{ε2ϕν(X)ϕµ(X)}.
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Define An,ν =
(

n−1τ2ν
1+λγν+n−1τ2ν

)2
1

(1+λγν)2
. Then

II =
∑
ν>m

An,ν

(
1

n

n∑
i=1

εiϕν(Xi)

)2

= n−2
n∑

i,j=1

εiεj
∑
ν>m

An,νϕν(Xi)ϕν(Xj)

= n−2

 n∑
i=1

ε2i
∑
ν>m

An,νϕν(Xi)
2 + 2

∑
i<j

εiεj
∑
ν>m

An,νϕν(Xi)ϕν(Xj)

 . (A.35)

Through direct examinations similar to the proof of Theorem 4.1, we have the following

n∑
i=1

(
ε2i
∑
ν>m

An,νϕν(Xi)
2 − Ef0{ε2i

∑
ν>m

An,νϕν(Xi)
2}

)
= OPnf0

(n−3/2h−(4m+2β+1)),∑
i<j

εiεj
∑
ν>m

An,νϕν(Xi)ϕν(Xj) = OPnf0
(n−1h−(8m+4β+1)/2),

Ef0{ε2i
∑
ν>m

An,νϕν(Xi)
2} =

∑
ν>m

An,ν ≡ c′′h/h. (A.36)

Since c′′h . n−2h−(4m+2β), we have II = OPnf0
(n−3h−(4m+2β+1)) = o(n−1), implying that II =

oPnf0
(n−1). Meanwhile,

III ≤ n−2
∑
ν>m

ν4m+2β

(1 + (hν)2m)2
|V (Remn, ϕν)|2

= n−2h−(4m+2β)
∑
ν>m

(hν)2m+2β

(1 + (hν)2m)2
|V (Remn, ϕν)|2(hν)2m

. n−2h−(4m+2β)‖Remn‖2 = OPnf0
(n−2h−(4m+2β)D2

n) = oPnf0
(n−1h−1/2), (A.37)

where the last equation follows by D2
n = o(nh4m+2β−1/2) which can be verified by a < 2

4m+2β+1

and direct calculations. In summary, ‖∆f‖22 = oPnf0
(n−1h−1/2).

Meanwhile, by β < m− 1/2,

E‖∆W‖22 = O(n−3) +
1

n

∑
ν>m

(
1√

1 + λγν + n−1τ2ν
− 1√

1 + λγν

)2

. O(n−3) +
1

n

∑
ν>m

(h∗ν)4m+2β

(1 + (hν)2m)3

= O(n−3) +O(n−3h−(4m+2β+1)) = o(n−1),

implying that ‖∆W‖22 = oP (n−1). It follows by analysis of the terms I, II, III and direct calcu-
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lations that

E
(
|〈∆f,W ?

n〉2|2|Dn

)
=

∑
ν

(an,ν − 1)2

n(1 + λγν)
f̂2ν

. OPnf0
(n−3) +

∑
ν>m

1

n(1 + λ)

(
n−1τ2ν

1 + λγν + n−1τ2ν

)2
(

|f0ν |2

(1 + λγν)2
+ |V (

1

n

n∑
i=1

εiKXi , ϕν)|2

+|V (Remn, ϕν)|2
)

= OPnf0
(n−3) + n−3h−(2m+β+1)

∑
ν>m

(hν)2m+β+1

(1 + (hν)2m)5
|f0ν |2ν2m+β−1

+n−4h−(4m+2β)
∑
ν>m

(hν)4m+2β

(1 + (hν)2m)5
OPnf0

(1)

+n−3h−(4m+2β)
∑
ν>m

(hν)4m+2β

(1 + (hν)2m)3
|V (Remn, ϕν)|2

= OPnf0
(n−3) + o(n−3h−(2m+β+1)) +OPnf0

(n−4h−(4m+2β+1)) +OPnf0
(n−3h−(4m+2β)D2

n)

= oPnf0
(n−2h−1),

(A.38)

where the last equation follows by D2
n = o(nh4m+2β−1). This implies that, with Pnf0-probability

approaching one,

P
(
|〈∆f,W ?

n〉2| ≥ εn−1h−1/2|Dn

)
≤ ε, (A.39)

for arbitrary ε > 0.

Define U?n = (nh‖W ?
n‖22 − ch)/

√
2hdh, where ch =

∑
ν≥1

h
1+λγν

, dh =
∑

ν≥1
h

(1+λγν)2
. Similar to

the proof of Lemma A.4, U?n
d→ Z ∼ N(0, 1). So ‖W ?

n‖22 = OP ((nh)−1). Therefore, we have proved

the following: with Pnf0-probability or P -probability approaching one,

‖∆W‖22 ≤ εn−1,

‖∆f‖22 ≤ εn−1h−1/2,

|〈∆W,∆f〉2| ≤ ‖∆W‖2‖∆f‖2 ≤ εn−1h−1/4,

|〈∆W,W ?
n〉2| ≤ ‖∆W‖2‖W ?

n‖2 ≤ εn−1h−1/2, (A.40)

Note that

‖W − f̂n,λ‖22 = ‖W ?
n + ∆f + ∆W‖22

= ‖W ?
n‖22 + ‖∆W‖22 + ‖∆f‖22 + 2〈∆W,∆f〉2 + 2〈∆W,W ?

n〉2 + 2〈∆f,W ?
n〉2.
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Together with (A.39) and (A.40), we have that, with Pnf0-probability approaching one,

P

(
‖W − f̂n,λ‖22 ≤

t2

nh
|Dn

)
≤ P

(
‖W ?

n‖22 ≤
t2

nh
+ 8εn−1h−1/2|Dn

)
+ ε

= P

(
U?n ≤

t2 − ch√
2hdh

+
8ε√
2dh

)
+ ε,

and

P

(
‖W − f̂n,λ‖22 ≤

t2

nh
|Dn

)
≥ P

(
‖W ?

n‖22 ≤
t2

nh
− 8εn−1h−1/2|Dn

)
− ε

= P

(
U?n ≤

t2 − ch√
2hdh

− 8ε√
2dh

)
− ε.

Since

P

(
‖W ? − f̂n,λ‖22 ≤

t2

nh
|Dn

)
= P

(
U?n ≤

t2 − ch√
2hdh

)
,

we have

sup
t≥0
|P0

(√
nh‖f − f̂n,λ‖2 ≤ t|Dn

)
− P?

(√
nh‖f − f̂n,λ‖2 ≤ t|Dn

)
|

= sup
t≥0
|P
(
‖W − f̂n,λ‖22 ≤

t2

nh
|Dn

)
− P

(
‖W ? − f̂n,λ‖22 ≤

t2

nh
|Dn

)
|

≤ sup
t≥0

P

(
t2 − ch√

2hdh
− 8ε√

2dh
≤ U?n ≤

t2 − ch√
2hdh

+
8ε√
2dh

)
+ ε. (A.41)

It follows by Polya’s theorem ([11]), the cdf of U?n uniformly converges to Φ(·), the cdf of Z ∼
N(0, 1). We have that, as n→∞,

sup
t≥0

∣∣∣∣P ( t2 − ch√
2hdh

− 8ε√
2dh
≤ U?n ≤

t2 − ch√
2hdh

+
8ε√
2dh

)
−
(

Φ

(
t2 − ch√

2hdh
+

8ε√
2dh

)
− Φ

(
t2 − ch√

2hdh
− 8ε√

2dh

)) ∣∣∣∣ ≤ ε.
Since

sup
t≥0

∣∣∣∣Φ( t2 − ch√
2hdh

+
8ε√
2dh

)
− Φ

(
t2 − ch√

2hdh
− 8ε√

2dh

) ∣∣∣∣ ≤ cε,
where c ≥ 16√

2dh
is a constant. Therefore, with n→∞,

sup
t≥0

P

(
t2 − ch√

2hdh
− 8ε√

2dh
≤ U?n ≤

t2 − ch√
2hdh

+
8ε√
2dh

)
≤ (1 + c)ε. (A.42)

The result (5.2) then follows from (A.41) and (A.42).

To finish the rest of the proof, we show that (5.2) fails when 1
2m+β+1/2 ≤ a ≤

8m+4β+2
(8m+4β+1)(2m+β) .

Define c′h =
∑

ν
h

1+λγν+n−1τ2ν
and d′h =

∑
ν

h
(1+λγν+n−1τ2ν )

2 . Let f0 = 0, then it holds that I = 0.

The proof relies on the following decomposition

‖W − f̂n,λ‖22 = ‖Wn‖22 + ‖∆f‖22 + 2〈∆f,Wn〉2.
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Similar to the proof of (A.38) and (A.39), one can show that

E
(
|〈∆f,Wn〉2|2|Dn

)
= OPnf0

(n−4h−(4m+2β+1)),

and hence, with Pnf0-probability approaching one,

P
(
|〈∆f,Wn〉2| ≥ Cεn−2h−(4m+2β+1)/2|Dn

)
≤ ε, (A.43)

where Cε > 0 is a (possibly large) constant. By definitions of ch, c
′
h, c
′′
h we have

ch − c′h − c′′h =
h

n

∑
ν>m

τ2ν (2λγν + λ2γ2ν + n−1τ2ν + (n−1τ2ν )(λγν))

(1 + λγν + n−1τ2ν )2(1 + λγν)2
. (A.44)

Keep in mind that, since 2
4m+2β+1 ≤ a ≤ 1

2m+1 , it holds that nhD2
n = o(1). The proof proceeds

in two cases.

Case 1: 2
4m+2β+1 ≤ a ≤

1
2m+β . In this case, it can be verified that c′′h � n−2h−(4m+2β). And it

follows from (A.35), (A.36) and (A.37) that

‖∆f‖22 =
c′′h
nh

(1 + oPnf0
(1)).

By a ≤ 1
2m+β and (A.44) we have

ch − c′h − c′′h � n−1h−(2m+β), and c′′h . ch − c′h − c′′h.

Therefore,

P
(
‖Wn‖22 + ‖∆f‖22 + 2〈∆f,Wn〉2 ≤

ch
nh
|Dn

)
≥ P

(
Un ≤

ch − c′h − nh‖∆f‖2 − 2nh〈∆f,Wn〉2√
2hd′h

|Dn

)

≥ P

(
Un ≤

(ch − c′h − c′′h)(1 + oPnf0
(1))− Cεn−1h−(4m+2β−1)/2√
2hd′h

|Dn

)
− ε

≥ P

(
Un ≤

(ch − c′h − c′′h)/2− Cεn−1h−(4m+2β−1)/2√
2hd′h

)
− ε

(with Pnf0-probability approaching one)

≥ 1/2 + c− ε,

where c > 0 is a constant. The existence of c in the last inequality follows by n−1h−(4m+2β−1)/2 =

o(ch − c′h − c′′h), Un
d→ N(0, 1), and the fact that (ch − c′h − c′′h)/

√
h � n−1h−(2m+β+1/2) which is

greater than some fixed constant. Note that we should select ε > 0 to be small enough (at least

smaller than c/2). Since P (
√
nh‖W ?− f̂n,λ‖2 ≤

√
ch|Dn) = P (U?n ≤ 0)→ 1/2, the above analysis

implies that, with Pnf0-probability approaching one, the left side of (5.2) is greater than a positive

constant. So (5.2) does not hold.
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Case 2: 1
2m+β < a < 8m+4β+2

(8m+4β+1)(2m+β) . In this case, h∗/h→∞. It follows from (A.35), (A.36),

(A.37), (A.43), (A.44) that the following consequences immediately hold:

c′′h =
∑
ν>m

(
n−1τ2ν

1 + λ+ n−1τ2ν

)2
h

(1 + λγν)2
& h/h∗,

‖∆f‖22 =
c′′h
nh

(1 + oPnf0
(1)),

〈∆f,Wn〉2 = oPnf0
(‖∆f‖22),

ch − c′h − c′′h & h/h∗,

ch − c′h − c′′h√
h

→ ∞, as n→∞.

The proof of the above assertions rely on the specified range of a and direct calculations. Therefore,

P
(
‖Wn‖22 + ‖∆f‖22 + 2〈∆f,Wn〉2 ≤

ch
nh
|Dn

)
= P

(
‖Wn‖22 + ‖∆f‖22(1 + oPnf0

) ≤ ch
nh
|Dn

)
= P

(
‖Wn‖22 +

c′′h
nh

(1 + oPnf0
(1)) ≤ ch

nh
|Dn

)
= P

(
Un ≤

ch − c′h − c′′h(1 + oPnf0
(1))√

2hd′h

)
→ 1,

where the last limit follows by (A.43). This would violate (5.2) based on arguments in Case 1.

Proof is completed.

Proof of Corollary 5.2. Recall that Remn = f̂n,λ−f0−Sn,λ(f0) satisfies ‖Remn‖2 = OPnf0
(Dn) =

oPDn with nhD2
n = o(1). By the proof of Theorem 4.1, we have

‖f̂n,λ − f0‖22
= ‖Sn,λ(f0)‖22 +OPnf0

(D2
n)

=
1

n2

n∑
i=1

ε2i 〈KXi ,KXi〉2 +
2

n2

∑
i<j

εiεj〈KXi ,KXj 〉2 +
2

n

n∑
i=1

εi〈KXi ,Pλf0〉2

+‖Pλf0‖22 +OPnf0
(D2

n)

=
1

nh

∫ ∞
0

1

(1 + x2m)2
dx+ o(h2m+β−1) +OPnf0

(n−3/2h−1 + n−1h−1/2 + n−1/2h(2m+β−1)/2)

≤ (r?n)2(1 + oPnf0
(1)).

Therefore, for any ε > 0, with Pnf0-probability approaching one,

‖f̂n,λ − f0‖2 ≤ (1 + ε)r?n.

This implies that Pnf0 (f0 ∈ R?n(ε))→ 1 as n→∞.
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Next we examine the posterior coverage of R?n(ε). Since a satisfies (5.1), by Theorem 5.2,

P (R?n(ε)|Dn)− P?(R?n(ε)) = oPnf0
(1).

Since 1
nh � (r?n)2, we have

P?(R
?
n(ε)) = P

(
U?n ≤

(1 + ε)nh(r?n)2 − ch√
2hdh

)
→ 1.

This shows that P (R?n(ε)|Dn) = 1 + oPnf0
(1), completing the proofs.

A.4. L2-diameter of Rω
n(α)

Without additional restrictions, the L2-diameter of Rωn(α) in (4.2) is infinity. To see this, consider

f = f̃n,λ +
∑N

ν=1 fνϕν , where f2ν =
rω,n(α)2

Nων
for 1 ≤ ν ≤ N . Then f ∈ Rωn(α) since

∑N
ν=1 ωνf

2
ν =

rω,n(α)2. However,

‖f‖22 =
N∑
ν=1

f2ν =
rω,n(α)2

N

N∑
ν=1

ω−1ν ≥
rω,n(α)2

N

N∑
ν=1

ν =
rω,n(α)2(N + 1)

2
.

Letting N →∞, we can see that ‖f‖22 →∞. Therefore, the L2-diameter of Rωn(α) is infinity.

Next we investigate the L2-diameter of R?ωn (α). For any g, f ∈ R?ωn (α), let u = g − f ≡∑∞
ν=1 uνϕν , and choose Jn ∼ n1/(2m+β). It follows by Remark 4.1 in the revised manuscript that

rω,n(α) = OPf0 (n−1/2), and hence, ‖u‖ω ≤ 2rω,n(α) = OPf0 (n−1/2). Then

‖u‖22 =
∑

1≤ν≤Jn

u2ν +
∑
ν>Jn

u2ν

=
∑

1≤ν≤Jn

ωνu
2
νω
−1 +

∑
ν≥Jn

ρ
1+β−1

2m
ν u2νρ

−(1+β−1
2m

)
ν

≤ 4Jn log(2Jn)rω,n(α)2 + 4MJ−(2m+β−1)
n

= OPf0 (n
− 2m+β−1

2m+β log n),

indicating that the L2-diameter of R?ωn (α) is OPf0 (n
− 2m+β−1

2(2m+β)
√

log n).
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Supplementary Document: Part II

We first establish a theoretical foundation including a Bayesian RKHS framework in Section A.5,

and then prove Proposition A.1 in Section A.6.

A.5. Some Preliminary Results

In this section, let us introduce some technical preliminaries. Using (2.7), for any g =
∑

ν gνϕν ,

g̃ =
∑

ν g̃νϕν ∈ Sm(I), we have J(g, g̃) =
∑

ν≥1 gν g̃νγν . It therefore holds that

J(ϕν , ϕµ) = γνδνµ, ν, µ ≥ 1. (A.45)

This shows that

‖g‖2U,V =
∑
ν≥1

g2ν(1 + ρν), J(g) =
∑
ν≥1

g2νγν .

Since γν � 1 + ρν , we can see that the ‖ · ‖U,V -norm and J1/2-norm are equivalent. By Sobolev

embedding theorem ([1]) which implies that the supremum norm is “weaker” than the ‖ · ‖U,V -

norm, there exists an absolute constant C3 > 0 s.t. for any g ∈ Sm(I),

‖g‖∞ ≤ C3

√
J(g). (A.46)

For any f, g, g̃ ∈ Sm(I), define Vf (g, g̃) = E{Ä(f(X))g(X)g̃(X)}. In particular, Vf0(·, ·) =

V (·, ·). Let (ϕf,ν , ρf,ν) be the eigen-system corresponding to the following ODE:

(−1)mϕ
(2m)
f,ν (·) = ρf,νÄ(f(·))π(·)ϕf,ν(·),

ϕ
(j)
f,ν(0) = ϕ

(j)
f,ν(1) = 0, j = m,m+ 1, . . . , 2m− 1. (A.47)

It follows from [44, Proposition 2.2] that (ϕf,ν , ρf,ν) satisfy the properties stated in Proposition

2.1 with V therein replaced by Vf . Let γf,ν = 1 if ν = 1, 2, . . . ,m; = ρf,ν if ν > m. For any

g, g̃ ∈ Sm(I) with g =
∑

ν gνϕf,ν and g̃ =
∑

ν g̃νϕf,ν , define Jf (g, g̃) =
∑

ν gν g̃νγf,ν . Define an

inner product

〈g, g̃〉f = Vf (g, g̃) + λJf (g, g̃), g ∈ Sm(I),

and let ‖ · ‖f be the corresponding norm. Let Pfλ be a self-adjoint positive-definite operator from

Sm(I) to itself s.t. 〈Pfλg, g̃〉f = λJf (g, g̃) for any g, g̃ ∈ Sm(I). For convenience, define Pλ = Pf0λ .

In particular,

Jf0(g, g̃) = J(g, g̃), 〈g, g̃〉f0 = 〈g, g̃〉, ‖g‖f0 = ‖g‖.

For any constant C with C > ‖f0‖∞, let C0, C1, C2 be positive constants satisfying Assumption

A1. Since 1/C2 ≤ Ä(z) ≤ C2 if |z| ≤ 2C (Assumption A1), we get that for any f ∈ F(C) and

g ∈ Sm(I), (leading to that C−12 ≤ Ä(f(X)) ≤ C2 a.s.)

C−22 V (g, g) ≤ Vf (g, g) ≤ C2
2V (g, g), (A.48)
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that is, Vf is uniformly equivalent to V for f ∈ F(C). This leads to

C−22

V (g)

V (g) + U(g)
≤

Vf (g)

Vf (g) + U(g)
≤ C2

2

V (g)

V (g) + U(g)
.

It follows from (A.48) and mapping principle (see [19, Theorem 5.3]) that

C−22 ρν ≤ ρf,ν ≤ C2
2ρν , for any ν > m and f ∈ F(C).

The following lemma says that the norms ‖ · ‖ and ‖ · ‖f are equivalent.

Lemma A.7. If 0 < λ ≤ 1
2C2

2
, then for any f ∈ F(C) and g ∈ Sm(I),

1√
2C2

‖g‖ ≤ ‖g‖f ≤
√

2C2‖g‖,

(
1 +

C2
2

ρm+1

)−1
C−22 J(g) ≤ Jf (g) ≤

(
1 +

1

ρm+1

)
C2
2J(g).

Proof of Lemma A.7. For any g ∈ Sm(I) with g =
∑

ν gνϕf,ν , we have

Vf (g) =
∑
ν≥1

g2ν , U(g) =
∑
ν>m

g2νρf,ν , Jf (g) =
m∑
ν=1

g2ν +
∑
ν>m

g2νρf,ν .

So, Jf (g) ≤ Vf (g) + U(g) and U(g) ≤ Jf (g). Therefore, it follows by (A.48) that

‖g‖2f = Vf (g) + λJf (g)

≤ (1 + λ)Vf (g) + λU(g)

≤ (1 + λ)C2
2V (g) + λJ(g) ≤ (1 + λ)C2

2 (V (g) + λJ(g)) ≤ 2C2
2‖g‖2,

where the last inequality is because λ ≤ 1
2C2

2
< 1.

On the other hand,

‖g‖2f = Vf (g) + λJf (g)

≥ C−22 V (g) + λU(g)

≥ C−22 V (g) + λ(J(g)− V (g))

= (C−22 − λ)V (g) + λJ(g) ≥ 1

2C2
2

(V (g) + λJ(g)) =
1

2C2
2

‖g‖2.

Meanwhile, Jf (g) ≤ Vf (g) + U(g) ≤ C2
2V (g) + J(g). It can be shown that V (g) + U(g) ≤

(1 + 1/ρm+1)J(g). To see this, write g =
∑

ν gνϕν . Then it follows by 1 + ρν ≤ (1 + 1/ρm+1)γν

that

V (g) + U(g) =
∑
ν

g2ν(1 + ρν) ≤ (1 + 1/ρm+1)
∑
ν

g2νγν = (1 + 1/ρm+1)J(g).

So Jf (g) ≤ (1 + 1/ρm+1)C
2
2J(g).
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Similarly, we have that J(g) ≤ V (g) + U(g) ≤ C2
2Vf (g) + U(g). Write g =

∑
ν gνϕf,ν . Since

C2
2ρν ≥ ρf,ν ≥ C

−2
2 ρν ≥ C−22 ρm+1 for ν > m, we have 1 + ρf,ν ≤ (1 + C2

2/ρm+1)γf,ν . So

Vf (g) + U(g) =
∑
ν

g2ν(1 + ρf,ν)

≤ (1 + C2
2/ρm+1)

∑
ν

g2νγf,ν = (1 + C2
2/ρm+1)Jf (g).

Therefore, Jf (g) ≥ (1 + C2
2/ρm+1)

−1C−22 J(g). Proof is completed.

The equivalence of ‖ · ‖ and ‖ · ‖f stated in Lemma A.7 leads to that Sm(I) is a RKHS under

〈·, ·〉f for any f ∈ F(C). Let Kf (x, x′) be the corresponding reproducing kernel function. In

particular, define K = Kf0 for simplicity. By [44, Proposition 2.1] (see an online supplement

document therein for its proof) we have the following series representation.

Proposition A.3. For any f ∈ F(C), g ∈ Sm(I) and x ∈ I, we have ‖g‖2f =
∑

ν |Vf (g, ϕf,ν)|2(1+

λγf,ν), Kf
x (·) ≡ Kf (x, ·) =

∑
ν
ϕf,ν(x)
1+λγf,ν

ϕf,ν(·), and Pfλϕf,ν(·) =
λγf,ν

1+λγf,ν
ϕf,ν(·).

The following lemma demonstrates a uniform bound for the kernel Kf .

Lemma A.8. It holds that

cK(C) ≡ sup
f∈F(C)

sup
0<h≤1

sup
x∈I

h1/2‖Kf
x‖f ≤ cm

√
C2

π
+ 1,

where cm > 0 is a universal constant depending on m only.

Proof of Lemma A.8. For any f ∈ F(C), g ∈ Sm(I) and x ∈ I, it follows by [6, Lemma (2.11),

pp. 54] that

|〈Kf
x , g〉f | = |g(x)| ≤ cmh−1/2

√
‖g‖2

L2 + λ‖g(m)‖2
L2 ,

where cm > 0 is a universal constant depending on m only, and ‖ · ‖L2 denotes the usual L2-

norm. Since ‖g‖2L2 ≤ C2
π Vf (g) and ‖g(m)‖2L2 = U(g) ≤ Jf (g) (see proof of Lemma A.7 for the last

inequality). Then

|〈Kf
x , g〉f | ≤ cm

√
C2

π
+ 1h−1/2‖g‖f ,

implying that ‖Kf
x‖f ≤ cm

√
C2
π + 1h−1/2. So cK(C) ≤ cm

√
C2
π + 1.

The lemma below directly comes from Lemma A.8, which relates the norms ‖ · ‖f and ‖ · ‖∞.

Lemma A.9. For any f ∈ F(C) and g ∈ Sm(I), ‖g‖∞ ≤ cK(C)h−1/2‖g‖f .

Suppose that (Y,X) follows model (2.1) based on f . The following conditional expectation can

be found based on [13]:

Ef{Y |X} = Ȧ(f(X)). (A.49)
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Let g, gk ∈ Sm(I) for k = 1, 2, 3. The Fréchet derivative of `n,λ can be identified as

D`n,λ(g)g1 =
1

n

n∑
i=1

(Yi − Ȧ(g(Xi)))〈Kf
Xi
, g1〉f − 〈Pfλg, g1〉f

≡ 〈Sn,λ(g), g1〉f .

Define Sλ(g) = Ef{Sn,λ(g)}. We also use DSλ and D2Sλ to represent the second- and third-order

Fréchet derivatives of Sλ. Note that Sn,λ(f̂n,λ) = 0, and Sn,λ(f) can be expressed as

Sn,λ(f) =
1

n

n∑
i=1

(Yi − Ȧ(f(Xi)))K
f
Xi
− Pfλf. (A.50)

The Fréchet derivatives of Sn,λ and DSn,λ are denoted DSn,λ(g)g1g2 and D2Sn,λ(g)g1g2g3. These

derivatives can be explicitly written as

D2`n,λ(g)g1g2 ≡ DSn,λ(g)g1g2

= − 1

n

n∑
i=1

Ä(g(Xi))g1(Xi)g2(Xi)− 〈Pfλg1, g2〉f ,

D3`n,λ(g)g1g2g3 ≡ D2Sn,λ(g)g1g2g3

= − 1

n

n∑
i=1

...
A(g(Xi))g1(Xi)g2(Xi)g3(Xi),

DSλ(g)g1 = −E{Ä(g(X))g1(X)Kf
X} − P

f
λg1,

D2Sλ(g)g1g2 = −E{
...
A(g(X))g1(X)g2(X)Kf

X}.

Consider a function class

G(C) = {g ∈ Sm(I) : ‖g‖∞ ≤ 1, J(g, g) ≤ 2C2
2cK(C)−2h−2m+1}.

Let N(ε,G(C), ‖ · ‖∞) be ε packing number in terms of supremum norm. The following result can

be found in [55].

Lemma A.10. There exists a universal constant c0 > 0 s.t. for any ε > 0,

logN(ε,G(C), ‖ · ‖∞) ≤ c0(
√

2C2cK(C)−1)1/mh−
2m−1
2m ε−1/m.

In the future, for notational simplicity, we will simply drop C from cK(C) and G(C) if there is

no confusion.

For r ≥ 0, define Ψ(r) =
∫ r
0

√
log(1 + exp(x−1/m))dx. For arbitrary ε > 0, define

A(h, ε) =
32
√

6

τ

√
2C2c

−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
√

2C2

cKc
−m
0 h(2m−1)/2ε

)
+

10
√

24ε

τ

√
log
(

1 + exp
(

2c0((
√

2C2)−1cKh(2m−1)/2ε)−1/m
))
,

where τ =
√

log 1.5 ≈ 0.6368. We have the following useful lemma.
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Lemma A.11. For any f ∈ Sm(I), suppose that ψn,f (z; g) is a measurable function defined

upon z = (y, x) ∈ Y × I and g ∈ G satisfying ψn,f (z; 0) = 0 and the following Lipschitz continuity

condition: for any 1 ≤ i ≤ n and g1, g2 ∈ G,

|ψn,f (Zi; g1)− ψn,f (Zi; g2)| ≤ c−1K h1/2‖g1 − g2‖∞. (A.51)

Then for any constant t ≥ 0 and n ≥ 1,

sup
f∈Sm(I)

Pf

(
sup
g∈G
‖Zn,f (g)‖f > t

)
≤ 2 exp

(
− t2

B(h)2

)
,

where B(h) = A(h, 2) and

Zn,f (g) =
1√
n

n∑
i=1

[ψn,f (Zi; g)Kf
Xi
− Ef{ψn,f (Zi; g)Kf

Xi
}].

Proof of Lemma A.11. For any f ∈ Sm(I) and n ≥ 1, and any g1, g2 ∈ G, we get that

‖(ψn,f (Zi; g1)− ψn,f (Zi; g2))K
f
Xi
‖f

≤ c−1K h1/2‖g1 − g2‖∞cKh−1/2 = ‖g1 − g2‖∞.

By Theorem 3.5 of [14], for any t > 0, Pf (‖Zn,f (g1)− Zn,f (g2)‖f ≥ t) ≤ 2 exp
(
− t2

8‖g1−g2‖2∞

)
.

Then by Lemma 8.1 in [10], we have

‖‖Zn,f (g1)− Zn,f (g2)‖f‖ψ2
≤
√

24‖g1 − g2‖∞,

where ‖ · ‖ψ2 denotes the Orlicz norm associated with ψ2(s) := exp(s2)− 1. Recall τ =
√

log 1.5 ≈
0.6368. Define φ(x) = ψ2(τx). Then it can be shown by elementary calculus that φ(1) ≤ 1/2, and

for any x, y ≥ 1, φ(x)φ(y) ≤ φ(xy). By a careful examination of the proof of Lemma 8.2, it can

be shown that for any random variables ξ1, . . . , ξl,

‖ max
1≤i≤l

ξi‖ψ2 ≤
2

τ
ψ−12 (l) max

1≤i≤l
‖ξi‖ψ2 . (A.52)

Next we use a “chaining” argument. Let T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ T∞ := G be a sequence of finite

nested sets satisfying the following properties:

• for any Tq and any s, t ∈ Tq, ‖s− t‖∞ ≥ ε2−q; each Tq is “maximal” in the sense that if one

adds any point in Tq, then the inequality will fail;

• the cardinality of Tq is upper bounded by

log |Tq| ≤ logN(ε2−q,G, ‖ · ‖∞)

≤ c0(
√

2C2c
−1
K )1/mh−(2m−1)/(2m)(ε2−q)−1/m,

where c0 > 0 is absolute constant;
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• each element tq+1 ∈ Tq+1 is uniquely linked to an element tq ∈ Tq which satisfies ‖tq −
tq+1‖∞ ≤ ε2−q.

For arbitrary sk+1, tk+1 ∈ Tk+1 with ‖sk+1 − tk+1‖∞ ≤ ε, choose two chains (both being of

length k + 2) tq and sq with tq, sq ∈ Tq for 0 ≤ q ≤ k + 1. The ending points s0 and t0 satisfy

‖s0 − t0‖∞ ≤
k∑
q=0

[‖sq − sq+1‖∞ + ‖tq − tq+1‖∞] + ‖sk+1 − tk+1‖∞

≤ 2
k∑
q=0

ε2−q + ε ≤ 5ε,

and hence, ‖‖Zn,f (s0)− Zn,f (t0)‖f‖ψ2
≤ 5
√

24ε. It follows by the proof of Theorem 8.4 of [10]

and (A.52) that∥∥∥∥ max
sk+1,tk+1∈Tk+1

‖Zn,f (sk+1)− Zn,f (tk+1)− (Zn,f (s0)− Zn,f (t0))‖f
∥∥∥∥
ψ2

≤ 2

k∑
q=0

∥∥∥∥∥∥ max
u∈Tq+1,v∈Tq

u, v link each other

‖Zn,f (u)− Zn,f (v)‖f

∥∥∥∥∥∥
ψ2

≤ 4

τ

k∑
q=0

ψ−12 (N(2−q−1ε,G, ‖ · ‖∞))

× max
u∈Tq+1,v∈Tq

u, v link each other

‖‖Zn,f (u)− Zn,f (v)‖f‖ψ2

≤ 4
√

24

τ

k∑
q=0

√
log (1 +N(ε2−q−1,G, ‖ · ‖∞))ε2−q

≤ 8
√

24

τ

k+1∑
q=1

√
log
(

1 + exp
(
c0(
√

2C2c
−1
K )1/mh−(2m−1)/(2m)(ε2−q)−1/m

))
ε2−q

≤ 32
√

6

τ

∫ ε/2

0

√
log
(

1 + exp
(
c0(
√

2C2c
−1
K )1/mh−(2m−1)/(2m)x−1/m

))
dx

=
32
√

6

τ

√
2C2c

−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
√

2C2

cKc
−m
0 h(2m−1)/2ε

)
.

On the other hand,∥∥∥∥∥∥ max
u,v∈T0

‖u−v‖∞≤5ε

‖Zn,f (u)− Zn,f (v)‖f

∥∥∥∥∥∥
ψ2

≤ 2

τ
ψ2(|T0|2) max

u,v∈T0
‖u−v‖∞≤5ε

‖‖Zn,f (u)− Zn,f (v)‖f‖ψ2

≤ 2

τ
ψ−12 (N(ε,G, ‖ · ‖∞)2)(5

√
24ε).
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Therefore, ∥∥∥∥∥∥∥ max
s,t∈Tk+1

‖s−t‖∞≤ε

‖Zn,f (s)− Zn,f (t)‖f

∥∥∥∥∥∥∥
ψ2

≤ 32
√

6

τ

√
2C2c

−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
√

2C2

cKc
−m
0 h(2m−1)/2ε

)
+

2

τ
ψ−12 (N(ε,G, ‖ · ‖∞)2)(5

√
24ε)

≤ 32
√

6

τ

√
2c2c

−1
K cm0 h

−(2m−1)/2Ψ

(
1

2
√

2C2

cKc
−m
0 h(2m−1)/2ε

)
+

10
√

24ε

τ

√
log
(

1 + exp
(

2c0((
√

2C2)−1cKh(2m−1)/2ε)−1/m
))

= A(h, ε).

Now for any g1, g2 ∈ G with ‖g1 − g2‖∞ ≤ ε/2. Let k ≥ 2, hence, 21−k ≤ 1 − ‖g1 − g2‖∞/ε.
Since Tk is “maximal”, there exist sk, tk ∈ Tk s.t. max{‖g1− sk‖∞, ‖g2− tk‖∞} ≤ ε2−k. It is easy

to see that ‖sk − tk‖∞ ≤ ε. So

‖Zn,f (g1)− Zn,f (g2)‖f
≤ ‖Zn,f (g1)− Zn,f (sk)‖f + ‖Zn,f (g2)− Zn,f (tk)‖f

+‖Zn,f (sk)− Zn,f (tk)‖f
≤ 4

√
nε2−k + max

u,v∈Tk
‖u−v‖∞≤ε

‖Zn,f (u)− Zn,f (v)‖f .

Therefore, letting k →∞ we get that∥∥∥∥∥∥∥ sup
g1,g2∈G

‖g1−g2‖∞≤ε/2

‖Zn,f (g1)− Zn,f (g2)‖f

∥∥∥∥∥∥∥
ψ2

≤ 4
√
nε2−k/

√
log 2 +

∥∥∥∥∥∥ max
u,v∈Tk
‖u−v‖∞≤ε

‖Zn,f (u)− Zn,f (v)‖f

∥∥∥∥∥∥
ψ2

≤ 4
√
nε2−k/

√
log 2 +A(h, ε)→ A(h, ε).

Taking ε = 2 in the above inequality, we get that∥∥∥∥∥∥∥ sup
g1,g2∈G

‖g1−g2‖∞≤1

‖Zn,f (g1)− Zn,f (g2)‖f

∥∥∥∥∥∥∥
ψ2

≤ A(h, 2) = B(h).

By Lemma 8.1 in [10], we have

Pf

(
sup
g∈G
‖Zn,f (g)‖f ≥ t

)
≤ 2 exp

(
− t2

B(h)2

)
.
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Note that the right hand side in the above does not depend on f . This completes the proof.

Define

Hm(C) = {f ∈ Sm(I) : J(f) ≤ C2/C2
3}.

It follows from (A.46) that for any g ∈ Hm(C), ‖g‖∞ ≤ C3

√
J(g) ≤ C, implying that g ∈ F(C).

Thus, we have proved the following inclusion:

Hm(C) ⊆ F(C). (A.53)

It is easy to see that when C > C3

√
J(f0), then f0 ∈ Hm(C), and hence, f0 ∈ F(C).

Lemma A.12. Suppose that Assumption A1 holds. For any constant C satisfying C > C3

√
J(f0),

let C0, C1, C2 be positive constants satisfying Assumption A1, and define

b =
C2C

C3

√
1 +

1

ρm+1
. (A.54)

If r, h,M are positives satisfying the following Rate Condition (H):

(i) (4C2c
2
K + 5)bhm−1/2 ≤ 2(log 2)C0cK , C2

2cKbh
m−1/2 ≤ 1/4,

2bC2h
m+1/2 ≤ cK ,

(ii) h1/2r ≤ 1,

(iii) C2c
2
KM

1/2rh−1/2B(h) ≤ 1/6,

(iv) 12C0C2c
4
K(4C1 +M)h−1r(M1/2rB(h) + C

1/2
2 c−1K ) ≤ 1/6,

then, for any 1 ≤ j ≤ s, the following two results hold:

(a)

sup
f∈Hm(C)

Pf

(
‖f̂n,λ − f‖f ≥ δn

)
≤ 6 exp(−Mnhr2),

where δn = 2bhm + 24C0cK(4C1 +M)r;

(b) if in addition, cKh
−1/2δn < C, then

sup
f∈Hm(C)

Pf

(
‖f̂n,λ − f − Sn,λ(f)‖f > an + bn

)
≤ 8 exp(−Mnhr2),

where

an = C2c
2
KM

1/2h−1/2rB(h)δn, and bn = C2
2cKh

−1/2δ2n.

We remark that Part (b) of Lemma A.12 can be viewed as a uniform extension of the functional

Bahadur representation established by [16, 44].

Proof of Lemma A.12. Let f ∈ Hm(C) be the parameter based on which the data are drawn.

It is easy to see that

DSλ(f)g = −E{A(f(X))g(X)Kf
X} − P

f
λg,
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for any g ∈ Sm(I). Therefore, for any g, g̃ ∈ Sm(I), 〈DSλ(f)g, g̃〉f = −〈g, g̃〉f , leading to DSλ(f) =

−id.

The proof of (a) is finished in two parts.

Part I: Define an operator mapping Sm(I) to Sm(I):

T1f (g) = g + Sλ(f + g), g ∈ Sm(I).

First observe that

‖Sλ(f)‖f = ‖Pfλf‖f = sup
‖g‖f=1

|〈Pfλf, g〉f | ≤
√
λJf (f) ≤ hmb,

where the last inequality follows by Lemma A.7 and f ∈ Hm(C). Let r1n = 2bhm. Let B(r1n) =

{g ∈ Sm(I) : ‖g‖f ≤ r1n} be the r1n-ball. For any g ∈ B(r1n), using DSλ(f) = −id and ‖g‖∞ ≤
cKh

−1/2r1n = 2cKbh
m−1/2 ≤ C, it is easy to see that

‖T1f (g)‖f
≤ ‖g + Sλ(f + g)− Sλ(f)‖f + ‖Sλ(f)‖f

= ‖g +DSλ(f)g +

∫ 1

0

∫ 1

0
sD2Sλ(f + ss′g)ggdsds′‖f + ‖Sλ(f)‖f

= ‖
∫ 1

0

∫ 1

0
sD2Sλ(f + ss′g)ggdsds′‖f + ‖Sλ(f)‖f

= ‖
∫ 1

0

∫ 1

0
sE{

...
A(f(X) + ss′g(X))g(X)2Kf

X}dsds
′‖f + r1n/2

≤ C2cKh
−1/2

∫ 1

0

∫ 1

0
sE{g(X)2}dsds′ + r1n/2

≤ C2
2cKh

−1/2‖g‖2f/2 + r1n/2

≤ C2
2cKh

−1/2r21n/2 + r1n/2 = C2
2cKbh

m−1/2r1n + r1n/2 ≤ 3r1n/4,

where the last step follows from the assumption C2
2cKbh

m−1/2 ≤ 1/4. Therefore, T1f maps B(r1n)

to itself.

For any g1, g2 ∈ B(r1n), denote g = g1− g2. Note that for any 0 ≤ s ≤ 1, ‖g2 + sg‖f ≤ s‖g1‖f +

(1−s)‖g2‖f ≤ r1n. By rate assumption we get that ‖g2 +sg‖∞ ≤ cKh−1/2r1n = 2bcKh
m−1/2 < C,

and hence |f(X) + s′(g2(X) + sg(X))| ≤ 2C for any s, s′ ∈ [0, 1]. By Taylor’s expansion and
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Lemma A.9 we have

‖T1f (g1)− T1f (g2)‖f
= ‖g1 − g2 + Sλ(f + g1)− Sλ(f + g2)‖f

= ‖g1 − g2 +

∫ 1

0
DSλ(f + g2 + sg)gds‖f

= ‖
∫ 1

0
[DSλ(f + g2 + sg)−DSλ(f)]gds‖f

= ‖
∫ 1

0

∫ 1

0
D2Sλ(f + s′(g2 + sg))(g2 + sg)gdsds′‖f

≤
∫ 1

0

∫ 1

0
‖E{

...
A(f(X) + s′(g2(X) + sg(X)))(g2(X) + sg(X))g(X)Kf

X}‖fdsds
′

≤ C2cKh
−1/2

∫ 1

0
E{|g2(X) + sg(X)| × |g(X)|}ds

≤ C2
2cKh

−1/2
∫ 1

0
‖g2 + sg‖fds× ‖g‖f

≤ 2C2
2cKbh

m−1/2‖g1 − g2‖f ≤ ‖g1 − g2‖f/2.

This shows that T1f is a contraction mapping which maps B(r1n) into B(r1n). By contraction

mapping theorem (see [39]), T1f has a unique fixed point g′ ∈ B(r1n) satisfying T1f (g′) = g′. Let

fλ = f + g′. Then Sλ(fλ) = 0 and ‖fλ − f‖f ≤ r1n.

Part II: For any f ∈ Hm(C), under (2.1) with f being the truth, let fλ be the function obtained

in Part I s.t. ‖fλ − f‖f ≤ r1n, and hence, ‖fλ − f‖∞ ≤ cKh
−1/2‖fλ − f‖f ≤ cKh

−1/2r1n ≤ C/4

so that |f(X) + s(fλ(X) − f(X))| ≤ 2C a.s. for any s ∈ [0, 1]. It can be shown that for all

g1, g2 ∈ Sm(I),

|[DSλ(fλ)−DSλ(f)]g1g2|

= |
∫ 1

0
D2Sλ(f + s(fλ − f))(fλ − f)g1g2ds|

≤
∫ 1

0
|E{

...
A(f(X) + s(fλ − f)(X))(fλ − f)(X)g1(X)g2(X)}|ds

≤ C2E{|fλ(X)− f(X)| · |g1(X)g2(X)|}

≤ 2C2
2cKbh

m−1/2‖g1‖f‖g2‖f ≤ ‖g1‖f‖g2‖f/2.

where the last inequality follows by C2
2cKbh

m−1/2 ≤ 1/4. Together with the fact DSλ(f) = −id, we

get that the operator norm ‖DSλ(fλ) + id‖operator ≤ 1/2. This implies that DSλ(fλ) is invertible

with operator norm within [1/2, 3/2], and hence, ‖DSλ(fλ)−1‖operator ≤ 2.

Define an operator

T2f (g) = g − [DSλ(fλ)]−1Sn,λ(fλ + g), g ∈ Sm(I).
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Rewrite T2f as

T2f (g) = −DSλ(fλ)−1[DSn,λ(fλ)g −DSλ(fλ)g]

−DSλ(fλ)−1[Sn,λ(fλ + g)− Sn,λ(fλ)−DSn,λ(fλ)g]

−DSλ(fλ)−1Sn,λ(fλ).

Denote the above three terms by I1f , I2f , I3f , respectively.

For any 1 ≤ i ≤ n, let

Ri = (Yi − Ȧ(fλ(Xi)))K
f
Xi
− Ef{(Y − Ȧ(fλ(X)))Kf

X}.

Since Ef{Y − Ȧ(f(X))|X} = 0, it can be shown that for some (random) s ∈ [0, 1],

‖Ef{(Y − Ȧ(fλ(X)))Kf
X}‖f

= sup
‖g‖f=1

|〈Ef{(Y − Ȧ(fλ(X)))Kf
X}, g〉f |

= sup
‖g‖f=1

|Ef{(Y − Ȧ(fλ(X)))g(X)}|

= sup
‖g‖f=1

|Ef{(Ȧ(fλ(X))− Ȧ(f(X)))g(X)}|

= sup
‖g‖f=1

∣∣∣∣Ef {Ä(f(X))(fλ(X)− f(X))g(X)
}

+
1

2
Ef

{...
A(f(X) + s(fλ(X)− f(X)))(fλ(X)− f(X))2g(X)

} ∣∣∣∣
= sup

‖g‖f=1

∣∣∣∣〈fλ − f, g〉f
+

1

2
Ef

{...
A(f(X) + s(fλ(X)− f(X)))(fλ(X)− f(X))2g(X)

} ∣∣∣∣
≤ ‖fλ − f‖f +

C2

2
E{(fλ(X)− f(X))2|g(X)|}

≤ ‖fλ − f‖f +
1

2
C2
2cKh

−1/2‖fλ − f‖2f

≤ r1n + C2
2cKbh

m−1/2r1n ≤ 5r1n/4.

Therefore,

‖Ri‖f ≤ cKh
−1/2|Yi − Ȧ(fλ(Xi))|+ 5r1n/4

≤ cKh
−1/2

(
|Yi − Ȧ(f(Xi))|+ 2C2cKbh

m−1/2
)

+ 5r1n/4,

which leads to that

E

{
exp

(
‖Ri‖f

C0cKh−1/2

)}
≤ C1 exp

(
(4C2c

2
K + 5)bhm−1/2

2C0cK

)
≤ 2C1,
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where the last inequality follows by condition

(4C2c
2
K + 5)bhm−1/2 ≤ 2(log 2)C0cK .

Let δ = hr/(2C0cK). Recall the condition h1/2r ≤ 1 which implies δ ≤ (2C0cKh
−1/2)−1. Therefore,

E{exp(2δ‖Ri‖f )} ≤ E{exp(‖Ri‖f/(C0cKh
−1/2))} ≤ 2C1.

Moreover, ‖Ri‖2f ≤ 8C2
0c

2
Kh
−1 exp(‖Ri‖f/(2C0cKh

−1/2)), which leads to that

E{exp(δ‖Ri‖f )− 1− δ‖Ri‖f}

≤ E{(δ‖Ri‖f )2 exp(δ‖Ri‖f )}

≤ 8C2
0c

2
Kh
−1δ2E

{
exp

((
δ +

1

2C0cKh−1/2

)
‖Ri‖f

)}
≤ 16C2

0C1c
2
Kh
−1δ2.

It follows by Theorem 3.2 of [14] that, for L(M) := 2C0cK(4C1 +M),

Pf

(
‖

n∑
i=1

Ri‖f ≥ L(M)nr

)
≤ 2 exp

(
−L(M)δnr + 16C2

0C1c
2
Knh

−1δ2
)

= 2 exp(−Mnhr2), (A.55)

We note that the right hand side in the above inequality does not depend on f . It is easy to see

that Sn,λ(fλ) = Sn,λ(fλ)− Sλ(fλ) = 1
n

∑n
i=1Ri. Let

En,1 = {‖Sn,λ(fλ)‖f ≤ L(M)r},

then supf∈Hm(C) Pf (Ecn,1) ≤ 2 exp(−Mnhr2).

Define

ψ
(1)
n,f (Xi; g) = [C2cK ]−1h1/2Ä(fλ(Xi))g(Xi), i = 1, . . . , n,

and Z
(1)
n,f (g) = 1√

n

∑n
i=1[ψ

(1)
n,f (Xi; g)Kf

Xi
− Ef{ψ

(1)
n,f (Xi; g)Kf

Xi
}]. It follows by Lemma A.11 that

supf∈Hm(C) Pf (Ecn,2) ≤ 2 exp(−Mnhr2), where En,2 = {supg∈G ‖Z
(1)
n,f (g)‖f ≤

√
Mnhr2B(h)}.

For any g ∈ Sm(I)\{0}, let ḡ = g/d′n, where d′n = cKh
−1/2‖g‖f . It follows by Lemma A.7 that

‖ḡ‖∞ ≤ cKh−1/2‖ḡ‖f = cKh
−1/2‖g‖f/d′n = 1, and

J(ḡ, ḡ) = d′−2n J(g, g)

= h−2m
λJ(g, g)

c2Kh
−1‖g‖2f

≤ h−2m ‖g‖2

c2Kh
−1‖g‖2f

≤ 2C2
2c
−2
K h−2m+1.
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Therefore, ḡ ∈ G. Consequently, on En,2, for any g ∈ Sm(I)\{0}, we get ‖Z(1)
n,f (ḡ)‖f ≤

√
Mnhr2B(h),

which leads to that

‖DSn,λ(fλ)g −DSλ(fλ)g‖f

=
1

n
‖

n∑
i=1

[Ä(fλ(Xi))g(Xi)K
f
Xi
− Ef{Ä(fλ(Xi))g(Xi)K

f
Xi
}]‖f

≤ C2c
2
KM

1/2rh−1/2B(h)‖g‖f ≤ ‖g‖f/6, (A.56)

where the last inequality follows by condition C2c
2
KM

1/2rh−1/2B(h) ≤ 1/6. Note that the above

inequality also holds for g = 0.

Next we define T3f (g) = Sn,λ(fλ + g) − Sn,λ(fλ) − DSn,λ(fλ)g. Let r2n = 6L(M)r. For any

g ∈ G and 1 ≤ i ≤ n, define ψ̃n,i(g) = |g(Xi)|, and let Z̃n(g) = 1√
n

∑n
i=1[ψ̃n,i(g)− E{ψ̃n,i(g)}]. It

is easy to see that for any g1, g2 ∈ G, |ψ̃n,i(g1) − ψ̃n,i(g2)| ≤ ‖g1 − g2‖∞. Following the proof of

Lemma A.11 it can be shown that for any t ≥ 0,

P

(
sup
g∈G
|Z̃n(g)| ≥ t

)
≤ 2 exp

(
− t2

B(h)2

)
,

and hence, we get that P (Ecn,3) ≤ 2 exp(−Mnhr2), where

En,3 = {sup
g∈G
|Z̃n(g)| ≤

√
Mnhr2B(h)}.

On En,2 ∩ En,3, for any g1, g2 ∈ B(r2n) (with g1 6= g2) and letting g = g1 − g2 (and hence

‖g2 + sg‖∞ ≤ cKh−1/2r2n ≤ C/4 for any s ∈ [0, 1]), together with ‖fλ − f‖∞ ≤ C/4, we have

‖T3f (g1)− T3f (g2)‖f
= ‖Sn,λ(fλ + g1)− Sn,λ(fλ + g2)−DSn,λ(fλ)g‖f

= ‖
∫ 1

0

∫ 1

0
D2Sn,λ(fλ + s′(g2 + sg))(g2 + sg)gdsds′‖f

≤
∫ 1

0

∫ 1

0
‖D2Sn,λ(fλ + s′(g2 + sg))(g2 + sg)g‖fdsds′

≤
∫ 1

0

∫ 1

0
‖ 1

n

n∑
i=1

...
A(fλ(Xi) + s′(g2(Xi) + sg(Xi)))

(g2(Xi) + sg(Xi))g(Xi)K
f
Xi
‖fdsds′

≤
∫ 1

0

∫ 1

0

C2

n

n∑
i=1

‖g2 + sg‖∞ × |g(Xi)| × ‖Kf
Xi
‖fdsds′

≤ C2(cKh
−1/2)2r2n
n

n∑
i=1

|g(Xi)|

=
C2(cKh

−1/2)3r2n
n

(
n∑
i=1

ψ̃n,i(ḡ)

)
‖g‖f , (A.57)
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where ḡ = g/(cKh
−1/2‖g‖f ). Recalling the previous arguments we get ḡ ∈ G. It can be shown by

Cauchy-Schwartz inequality that

E{ψ̃n,i(ḡ)} =
E{|g(Xi)|}
cKh−1/2‖g‖f

≤
C

1/2
2 Vf (g, g)1/2

cKh−1/2‖g‖f
≤ C1/2

2 c−1K h1/2.

Since En,3 implies |Z̃n(ḡ)| ≤
√
Mnhr2B(h), we get that

1

n

n∑
i=1

ψ̃n,i(ḡ) ≤
√
Mhr2B(h) + C

1/2
2 c−1K h1/2.

Therefore, (A.57) has upper bound

(A.57) ≤ C2(cKh
−1/2)3r2n(

√
Mhr2B(h) + C

1/2
2 c−1K h1/2)‖g‖f

= 12C0C2c
4
K(4C1 +M)h−1r(M1/2rB(h) + C

1/2
2 c−1K )‖g‖f

≤ ‖g1 − g2‖f/6, (A.58)

where the last inequality follows by condition

12C0C2c
4
K(4C1 +M)h−1r(M1/2rB(h) + C

1/2
2 c−1K ) ≤ 1/6.

Taking g2 = 0 in (A.58) we get that ‖T3f (g1)‖f ≤ ‖g1‖f/6 for any g1 ∈ B(r2n). Therefore, it

follows by (A.56) that, for any f ∈ Hm(C), on En := En,1 ∩ En,2 ∩ En,3 and for any g ∈ B(r2n),

‖T2f (g)‖f ≤ 2(‖g‖f/6 + ‖g‖f/6 + r2n/6) ≤ 2(r2n/6 + r2n/6 + r2n/6) = r2n.

Meanwhile, for any g1, g2 ∈ B(r2n), replacing g by g1 − g2 in (A.56), together with (A.57) and

(A.58), we get that

‖T2f (g1)− T2f (g2)‖f ≤ 2(‖g1 − g2‖f/6 + ‖g1 − g2‖f/6) = 2‖g1 − g2‖f/3.

Therefore, for any f ∈ Hm(C), on En, T2f is a contraction mapping from B(r2n) to itself. By

contraction mapping theorem, there exists uniquely an element g′′ ∈ B(r2n) s.t. T2f (g′′) = g′′.

Let f̂n,λ = fλ + g′′. Clearly, Sn,λ(f̂n,λ) = 0, and hence, f̂n,λ is the maximizer of `n,λ; see (3.6). So

we get that, on En, ‖f̂n,λ − f‖f ≤ ‖fλ − f‖f + ‖f̂n,λ − fλ‖f ≤ r1n + r2n = 2bhm + 6L(M)r. The

desired conclusion follows by the trivial fact: supf∈Hm(C) Pf (Ecn) ≤ 6 exp(−Mnhr2). Proof of (a)

is completed.

Next we show (b).

For any f ∈ Hm(C), let f̂n,λ be the penalized MLE of f obtained by (3.6). Let gn = f̂n,λ − f ,

δn = 2bhm + 6L(M)r, d′n = cKh
−1/2δn, and for g ∈ G define

ψ
(2)
n,f (Xi; g) = c−1K h1/2[C2d

′
n]−1(Ȧ(f(Xi) + d′ng(Xi))− Ȧ(f(Xi))).
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It can be seen that for any g1, g2 ∈ G, by δ′n = cKh
−1/2δn < C, we have

|ψ(2)
n,f (Xi; g1)− ψ(2)

n,f (Xi; g2)|

≤ c−1K h1/2[C2d
′
n]−1C2d

′
n‖g1 − g2‖∞ = c−1K h1/2‖g1 − g2‖∞.

Let En,4 = {supg∈G ‖Z
(2)
n,f (g)‖f ≤

√
Mnhr2B(h)}, where

Z
(2)
n,f (g) =

1√
n

∑
i∈Ij

[ψ
(2)
n,f (Xi; g)Kf

Xi
− EXf {ψ

(2)
n,f (X; g)Kf

X}],

EXf denotes the expectation with respect to X (under Pf ). It follows by Lemma A.11 that

supf∈Hm(C) Pf (Ecn,4) ≤ 2 exp(−Mnhr2).

On Ẽn := En ∩ En,4, we have ‖gn‖f ≤ δn. Let ḡ = gn/d
′
n. Clearly, ḡ ∈ G. Then we get that

‖Sn,λ(f + gn)− Sn,λ(f)− (Sλ(f + gn)− Sλ(f))‖f

=
1

n
‖

n∑
i=1

[(Ȧ(f(Xi) + gn(Xi))− Ȧ(f(Xi)))K
f
Xi

−EX
f {(Ȧ(f(X) + gn(X))− Ȧ(f(X)))Kf

X}]‖f

=
1

n
‖
∑
i∈Ij

[(Ȧ(f(Xi) + d′nḡ(Xi))− Ȧ(f(Xi)))K
f
Xi

−EX
f {(Ȧ(f(X) + d′nḡ(X))− Ȧ(f(X)))Kf

X}]‖f

=
C2cKh

−1/2d′n
n

‖
∑
i∈Ij

[ψ
(2)
n,f (Xi; ḡ)Kf

Xi
− EXf {ψ

(2)
n,f (X; ḡ)Kf

X}]‖f

=
C2cKh

−1/2d′n√
n

‖Z(2)
n,f (ḡ)‖f ≤ C2c

2
KM

1/2h−1/2rB(h)δn = an.

(A.59)

It is easy to show that

‖
∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖f

= ‖
∫ 1

0

∫ 1

0
sEX

f {
...
A(f(X) + ss′gn(X))gn(X)2KX}dsds′‖f

≤ C2cKh
−1/2

∫ 1

0

∫ 1

0
sEX

f {gn(X)2}dsds′

≤ C2
2cKh

−1/2‖gn‖2f ≤ C2
2cKh

−1/2δ2n = bn. (A.60)

Since Sn,λ(f + gn) = 0 and DSλ(f) = −id, from (A.59) and (A.60) we have on Ẽn,

an ≥ ‖Sn,λ(f) +DSλ(f)gn +

∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖f

= ‖Sn,λ(f)− gn +

∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖f

≥ ‖Sn,λ(f)− gn‖f − ‖
∫ 1

0

∫ 1

0
sD2Sλ(f + ss′gn)gngndsds

′‖f ,
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which implies that

‖f̂n,λ − f − Sn,λ(f)‖f ≤ an + bn.

Since supf∈Hm(C) Pf (Ẽcn) ≤ 8 exp(−Mnhr2), proof of (b) is completed.
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A.6. Proof of Proposition A.1

The proof requires the following result.

Proposition A.4. (An initial contraction rate) Under Assumption A1, if rn = o(h3/2), h1/2 logN =

o(1), nh2m+1 ≥ 1, and f0 =
∑∞

ν=1 f
0
νϕν satisfies Condition (S), then there exists a universal con-

stant M > 0 s.t. P (‖f − f0‖ ≥Mrn|Dj) = oPnf0
(1) as n→∞.

Proof of Proposition A.4. Note that there exists a universal constant c′ > 0 such that Ψ(x) ≤
c′x1−1/(2m) for any 0 < x < 1. Therefore, there exists a universal constant c′′ > 0 s.t. B(h) ≤
c′′h−(2m−1)/(4m).

To prove the theorem, we first show the following posterior consistency: for any ε > 0, as

n→∞,

P (‖f − f0‖∞ ≥ ε|Dn)→ 0, in Pnf0-probability. (A.61)

We can rewrite the posterior density of f by

p(f |Dn) =

∏n
i=1(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)∫

Sm(I)
∏n
i=1(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)

,

where recall that pf (z) is the probability density of Z = (Y,X) under f .

First of all, we give a lower bound for

I1 =

∫
Sm(I)

n∏
i=1

(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f).

Define Bn = {f ∈ Sm(I) : ‖f − f0‖ ≤ rn}. Then

I1 ≥
∫
Bn

n∏
i=1

(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)

=

∫
Bn

exp(

n∑
i=1

Ri(f, f0)) exp(−nλJ(f)/2)dΠ(f),

where Ri(f, f0) = log (pf (Zi)/pf0(Zi)) = Yi(f(Xi) − f0(Xi)) − A(f(Xi)) + A(f0(Xi)) for any

1 ≤ i ≤ n. Define dΠ∗(f) = dΠ(f)/Π(Bn), a reduced probability measure on Bn. By Jensen’s

inequality,

log

∫
Bn

exp(
n∑
i=1

Ri(f, f0)) exp(−nλJ(f)/2)dΠ∗(f)

≥
∫
Bn

(
n∑
i=1

Ri(f, f0)− nλJ(f)/2

)
dΠ∗(f)

=

∫
Bn

n∑
i=1

[Ri(f, f0)− Ef0{Ri(f, f0)}]dΠ∗(f)

+n

∫
Bn

Ef0{Ri(f, f0)}dΠ∗(f)−
∫
Bn

nλJ(f)

2
dΠ∗(f)

≡ J1 + J2 + J3.
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For any f ∈ Bn, ‖f − f0‖ ≤ rn. By Lemma A.9 and the condition h−3/2rn = o(1), we can choose

n to be sufficiently large so that ‖f − f0‖∞ ≤ ch−1/2‖f − f0‖ ≤ ch−1/2rn ≤ 1.

It follows from Assumption A1 that for C = 1 +C3

√
J(f0), there exist positives C ′0, C

′
1, C

′
2 s.t.

(2.2) and (2.3) hold with C0, C1, C2 therein replaced by C ′0, C
′
1, C

′
2, respectively.

It follows by Taylor’s expansion, Ef0{Yi − Ȧ(f0(Xi))|Xi} = 0, 1/C ′2 ≤ Ä(z) ≤ C ′2 for |z| ≤ 2C

and Assumption A1 that for any f ∈ Bn,

|Ef0{Ri(f, f0)}| ≤ C ′2Ef0{(f(X)− f0(X))2} ≤ (C ′2)
2V (f − f0) ≤ (C ′2)

2r2n.

Therefore, J2 ≥ −(C ′2)
2nr2n.

Since r2n = o(1), we can choose n to be large so that |Ef0{Ri(f, f0)}| ≤ 1. Meanwhile, for any

f ∈ Bn, for some s ∈ [0, 1], we have

|Ri(f, f0)|

= |Yi(f(Xi)− f0(Xi))−A(f(Xi)) +A(f0(Xi))|

= |Yi − Ȧ(f0(Xi))

−1

2
Ä(f0(Xi) + s(f(Xi)− f0(Xi)))(f − f0)(Xi)| × |(f − f0)(Xi)|

≤ |Yi − Ȧ(f0(Xi))|+ C ′2/2.

We have used ‖f − f0‖∞ ≤ 1 in the above inequalities.

For any 1 ≤ i ≤ n, define Ai = {|Yi − Ȧ(f0(Xi))| ≤ 2C ′0 log n}. It follows by Assumption A1

that Pnf0(∪ni=1A
c
i ) ≤ C ′1/n → 0, as n → ∞. Define ξi =

∫
Bn
Ri(f, f0)dΠ∗(f) × IAi , we get that

|ξi| ≤ 2C ′0 log n+ C ′2/2, a.s. It can also be shown by r2n ≥ 1/n that

|Ef0{
∫
Bn

Ri(f, f0)dΠ∗(f)× IAci }|

≤ Ef0{(|Yi − f0(Xi)|+ C ′2/2)× IAci }

= Ef0{|Yi − f0(Xi)| × IAci }+
C ′2
2
Pnf0(Aci )

≤ C ′0

√
2C ′1P

n
f0(Aci )

1/2 +
C ′2
2
Pnf0(Aci )

≤
√

2C ′0C
′
1

n
+
C ′1C

′
2

2n2
≤ (
√

2C ′0C
′
1 + C ′1C

′
2)r

2
n.

Let δ = 1/(
√
nrn). Note that by the condition h1/2 log n = o(1) we have δ log n = (log n)/(

√
nrn) ≤

h1/2 log n = o(1), we can let n be large so that δ(4C ′0 log n + C ′2) ≤ 1. Let di = ξi − Ef0{ξi} for

1 ≤ i ≤ n, then it is easy to see that

|di| ≤ |ξi|+ |Ef0{ξi}| ≤ 4C ′0 log n+ C ′2, a.s.

Let ei = Ef0{exp(δ|di|)− 1− δ|di|}. It can be shown using inequality exp(x)− 1− x ≤ x2 exp(x)
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for x ≥ 0 and Cauchy-Schwartz inequality that

|ei| ≤ Ef0{δ2d2i exp(δ|di|)}

≤ eδ2Ef0{d2i }

≤ eδ2Ef0{ξ2i }

≤ eδ2
∫
Bn

Ef0{Ri(f, f0)2}dΠ∗(f)

≤ eδ2
∫
Bn

Ef0{(|Yi − Ȧ(f0(Xi))|+ C ′2/2)2(f − f0)(Xi)
2}dΠ∗(f)

≤ e(4(C ′0)
2C ′1C

′
2 + (C ′2)

3)δ2r2n,

where the last step follows from V (f − f0) ≤ r2n for any f ∈ Bn. Therefore, it follows by [14,

Theorem 3.2] that

Pnf0

(
|
n∑
i=1

[ξi − Ef0{ξi}]| ≥ (e(4(C ′0)
2C ′1C

′
2 + (C ′2)

3) + 2)
√
nrn log n

)
≤ 2 exp(−(e(4(C ′0)

2C ′1C
′
2 + (C ′2)

3) + 2)
√
nrn(log n)δ

+e(4(C ′0)
2C ′1C

′
2 + (C ′2)

3)δ2nr2n)

≤ 2/n2 → 0, as n→∞.

(A.62)

Since
√
nrn � log n, we can let n be large so that (e(4(C ′0)

2C ′1C
′
2 + (C ′2)

3) + 2)
√
nrn log n ≤ nr2n.

Since on ∩ni=1Ai,

J1 =

n∑
i=1

[ξi − Ef0{ξi}]− nEf0{
∫
Bn

Ri(f, f0)dΠ∗(f)× IAci },

we get from (A.62) that with Pnf0-probability approaching one,

J1 ≥ −(e(4(C ′0)
2C ′1C

′
2 + (C ′2)

3) + 2)
√
nrn log n− nr2n ≥ −2nr2n.

Meanwhile, for any f ∈ Bn, λJ(f − f0) ≤ r2n. Therefore, J3 ≥ − (1+J(f0)1/2)2

2 nr2n. So, with proba-

bility approaching one,

I1 ≥ exp

(
−(2 + (C ′2)

2)nr2n −
(1 + J(f0)

1/2)2

2
nr2n

)
Π(Bn).

By Assumption A2,

Π(Bn) ≥ c1 exp(−c0r−2/(2m+ψ)
n ). (A.63)

Since ψ > 0 and r2n = (nh)−1+λ ≥ n−2m/(2m+1), we get r2n ≥ λ and nr
2(2m+β)
2m+ψ

n ≥ n1−
2m(2m+ψ+1)
(2m+1)(2m+ψ) >

1, so nr2n > r
− 2

2m+ψ
n . Consequently, with Pnf0-probability approaching one,

I1 ≥ c1 exp(−c2nr2n), (A.64)
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where c2 = 2 + (C ′2)
2 + (1 + J(f0)

1/2)2/2 + c0.

Now we choose a different constant C:

C = max{2C3

√
c2 + 1, c2 + 1, 2(1 + C3

√
J(f0))}. (A.65)

It follows by Assumption A1 that there exist positives C0, C1, C2 s.t. (2.2) and (2.3) hold. Next

we examine

I2 :=

∫
An

n∏
i=1

(pf/pf0)(Zi) exp(−nλ
2
J(f))dΠ(f),

where An = {f ∈ Sm(I) : ‖f − f0‖ ≥ 3C2δn}, δn = 2bhm + 24C0cK(C)(4C1 + C)r, r = rnh
−1/2,

and b = C2C
C3

√
1 + 1

ρm+1
. By the condition h−3/2rn = o(1) and B(h) . h−(2m−1)/(4m) it can be

easily checked that the Rate Condition (H): (i)–(iv) are satisfied (when n becomes large) with M

therein replaced by C. Define test φn = I(‖f̂n,λ − f0‖ ≥ C2δn). Since C2 ≥ 1, it follows by part

(a) of Lemma A.12 that

Ef0{φn} = Pnf0(‖f̂n,λ − f0‖ ≥ C2δn) ≤ Pnf0(‖f̂n,λ − f0‖ ≥ δn) ≤ 6 exp(−Cnr2n),

and by (A.48),

sup
f∈Hm(C)

‖f−f0‖≥3C2δn

Ef{1− φn} = sup
f∈Hm(C)

‖f−f0‖≥3C2δn

Pnf (‖f̂n,λ − f0‖ < C2δn)

≤ sup
f∈Hm(C)

‖f−f0‖≥3C2δn

Pnf (‖f̂n,λ − f‖ ≥ 2C2δn)

≤ sup
f∈Hm(C)

‖f−f0‖≥3C2δn

Pnf (‖f̂n,λ − f‖f ≥ δn)

≤ 6 exp(−Cnr2n),

where the second last inequality follows by Lemma A.7.

Note that for any f ∈ An\Hm(C),

J(f) > (1 + 1/ρm+1)
−1C−22 b2 = C2/C2

3 ≥ 4(c2 + 1).

Since nh2m+1 ≥ 1 leads to r2n = (nh)−1 + λ ≤ 2λ, it then holds that,

Ef0{I2(1− φn)}

=

∫
An

Ef{1− φn} exp(−nλJ(f)/2)dΠ(f)

=

∫
An\Hm(C)

Ef{1− φn} exp(−nλJ(f)/2)dΠ(f)

+

∫
An∩Hm(C)

Ef{1− φn} exp(−nλJ(f)/2)dΠ(f)

≤ exp(−2nλ(c2 + 1)) + 6 exp(−(c2 + 1)nr2n)

≤ exp(−(c2 + 1)nr2n) + 6 exp(−(c2 + 1)nr2n) = 7 exp(−(c2 + 1)nr2n),
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so

Ef0{I2(1− φn)} ≤ 7 exp(−(c2 + 1)nr2n),

which implies I2(1− φn) = OPnf0
(exp(−(c2 + 1)nr2n)). On the other hand,

Ef0{P (An|Dn)φn} ≤ Pnf0(‖f̂n,λ − f0‖ ≥ C2δn) ≤ 6 exp(−(c2 + 1)nr2n),

so as n→∞,

Ef0{P (An|Dn)φn} ≤ 6 exp(−(c2 + 1)nr2n)→ 0,

which implies that P (An|Dn)φn = oPnf0
(1). By the above arguments and (A.64), we have

P (An|Dn)

= P (An|Dn)φn + P (An|Dn)(1− φn)

≤ P (An|Dn)φn +
I2(1− φn)

I1
= oPnf0

(1) +OPnf0
(exp(−(c2 + 1)nr2n) exp(c2nr

2
n)) = oPnf0

(1),

where the last step follows from exp(−nr2n) ≤ exp(−h−1) = o(1). By condition rnh
−3/2 = o(1)

and the trivial fact δn � rnh−1/2, we have that h−1/2δn = o(1), together with Lemma A.9 we have

that (A.61) holds.

To prove the theorem, we let

I ′2 :=

∫
A′n

n∏
i=1

(pf/pf0)(Zi) exp(−nλ
2
J(f))dΠ(f),

where A′n = {f ∈ Sm(I) : ‖f − f0‖ ≥
√

2Mrn} for a fixed number

M > max{2, J(f0)
1/2 +

√
2(c2 + 1), 1 + ‖f0‖∞}

to be further described later. Let

A′n1 = {f ∈ Sm(I) : V (f − f0) ≥M2r2n, λJ(f − f0) ≤M2r2n}

and

A′n2 = {f ∈ Sm(I) : λJ(f − f0) ≥M2r2n}.

For any f ∈ A′n2, it can be shown that

Mrn ≤
√
λJ(f − f0) ≤

√
λ(J(f)1/2 + J(f0)

1/2) ≤ (λJ(f))1/2 + J(f0)
1/2rn,

which leads to λJ(f) ≥ (M − J(f0)
1/2)2r2n. So we have

Ef0{
∫
A′n2

n∏
i=1

(pf/pf0)(Zi) exp(−nλ
2
J(f))dΠ(f)}

=

∫
A′n2

exp(−nλ
2
J(f))dΠ(f) ≤ exp(−(M − J(f0)

1/2)2nr2n/2),
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which leads to that ∫
A′n2

n∏
i=1

(pf/pf0)(Zi) exp(−nλ
2
J(f))dΠ(f)

= OPnf0
(exp(−(M − J(f0)

1/2)2nr2n/2)). (A.66)

To continue, we need to build uniformly consistent test. Let d2H(Pf , Pg) = 1
2

∫
(
√
dPf −

√
dPg)

2

be the squared Hellinger distance between the two probability measures Pf (z) and Pg(z). Recall

that their corresponding probability density functions are pf and pg, respectively. Nextwe present

a lemma showing the local equivalence of V and d2H .

Lemma A.13. Let C be chosen as (A.65) and C0, C1, C2 be positives satisfying Assumption

A1. Let ε > 0 satisfy ε < min{1, 1/C0, C} and

1

12
C2
2ε+

1

32
C3
2ε

2 + C3
0C1C2ε exp

(
ε

4
C2 +

C2

4C0

)
<

1

16
.

Then for any f, g ∈ F(C) satisfying ‖f − g‖∞ ≤ ε,

V (f − g)/16 ≤ d2H(Pf , Pg) ≤ 3V (f − g)/16.

Proof of Lemma A.13. For any f, g ∈ F(C) with ‖f − g‖∞ ≤ ε, define ∆Z(f, g) = 1
2 [Y (f(X) −

g(X))−A(f(X)) +A(g(X))], where recall and Z = (Y,X). It is easy to see by direct calculations

that

d2H(Pf , Pg) = 1− Eg{exp(∆Z(f, g))}.

By Taylor’s expansion, for some random t ∈ [0, 1],

1− Eg{exp(∆Z(f, g))}

= −Eg{∆Z(f, g)} − 1

2
Eg{∆Z(f, g)2} − 1

6
Eg{exp(t∆Z(f, g))∆Z(f, g)3}.

We will analyze the terms on the right side of the equation.

Define ξ = Y − Ȧ(g(X)). By [13] we get Eg{ξ|X} = 0 and Eg{ξ2|X} = Ä(g(X)). By Taylor’s

expansion,

∆Z(f, g) =
1

2
[ξ(f(X)− g(X))− 1

2
Ä(g(X))(f(X)− g(X))2

−1

6

...
A(f1∗(X))(f(X)− g(X))3],

∆Z(f, g) =
1

2
[ξ(f(X)− g(X))− 1

2
Ä(f2∗(X))(f(X)− g(X))2],

where fk∗(X) is between g(X) and f(X) for k = 1, 2. It clearly holds that ‖fk∗‖∞ ≤ ‖f‖∞+ ‖g−
f‖∞ < 2C. Then we get that

−Eg{∆Z(f, g)} =
1

4
V (f − g) +

1

12
Eg{

...
A(f1∗(X))(f(X)− g(X))3},
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and

Eg{∆Z(f, g)2}

= Eg{(
1

2
ξ(f(X)− g(X))− 1

4
Ä(f2∗(X))(f(X)− g(X))2)}

=
1

4
Eg{ξ2(f(X)− g(X))2} − 1

4
Eg{ξ(f(X)− g(X))3Ä(f2∗(X))}

+
1

16
Eg{Ä(f2∗(X))2(f(X)− g(X))4}

=
1

4
V (f − g) +

1

16
Eg{Ä(f2∗(X))2(f(X)− g(X))4}.

Since ‖f − g‖∞ ≤ ε < min{1, 1/C0, C} and 0 < Ä(z) ≤ C2 for any z ∈ [−2C, 2C], implying

|∆Z(f, g)| ≤ 1
2(|ξ|+ C2/2)|f(X)− g(X)|, we get

|Eg{exp(t∆Z(f, g))∆Z(f, g)3}|

≤ Eg{exp(|∆Z(f, g)|)|∆Z(f, g)|3}

≤ Eg{exp(ε|ξ|/2 + C2ε/4)(|ξ|/2 + C2/4)3|f(X)− g(X)|3}

= 6C3
0Eg

{
exp(ε|ξ|/2 + C2ε/4)× 1

3!

(
|ξ|/2 + C2/4

C0

)3

|f(X)− g(X)|3
}

≤ 6C3
0Eg{exp(ε|ξ|/2 + C2ε/4) exp(|ξ|/(2C0) + C2/(4C0))|f(X)− g(X)|3}

≤ 6C3
0 exp(C2ε/4 + C2/(4C0))Eg{exp(|ξ|/C0)|f(X)− g(X)|3}

≤ 6C3
0C1C2 exp(C2ε/4 + C2/(4C0))εV (f − g).

It also holds that

|Eg{
...
A(f1∗(X))(f(X)− g(X))3}| ≤ C2

2εV (f − g),

|Eg{Ä(f2∗(X))2(f(X)− g(X))4}| ≤ C3
2ε

2V (f − g).

Therefore, by the above argument it holds that, for any f, g ∈ F(C) with ‖f − g‖∞ ≤ ε,

|d2H(Pf , Pg)− V (f − g)/8|

= | 1

12
Eg{

...
A(f1∗(X))(f(X)− g(X))3}

− 1

32
Eg{Ä(f2∗(X))2(f(X)− g(X))4}

−1

6
Eg{exp(t∆Z(f, g))∆Z(f, g)3}|

≤
(

1

12
C2
2ε+

1

32
C3
2ε

2 + C3
0C1C2 exp(C2ε/4 + C2/(4C0))ε

)
V (f − g)

< V (f − g)/16,

which implies V (f − g)/16 ≤ d2H(Pf , Pg) ≤ 3V (f − g)/16. This proves Lemma A.13.
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Let ε satisfy the conditions in Lemma A.13. Define Fn = {f ∈ Sm(I) : ‖f−f0‖∞ ≤ ε/2, J(f) ≤
(M + J(f0)

1/2)2r2nλ
−1}. Note that for any f ∈ Fn, we have ‖f‖∞ ≤ ‖f0‖∞+ ε/2 < C. Therefore,

Fn ⊆ F(C). Let Pn = {Pnf : f ∈ Fn} and D(δ,Pn, dH) be the δ-packing number in terms of dH .

Since r2n ≥ λ which leads to (M + J(f0)
1/2)rnh

−m > M + J(f0)
1/2 > ε+ ‖f0‖∞, it can be easily

checked that Fn ⊂ (M + J(f0)
1/2)rnh

−mT , where T = {f ∈ Sm(I) : ‖f‖∞ ≤ 1, J(f) ≤ 1}.
For any f, g ∈ Fn (implying f, g ∈ F(C)) with ‖f − g‖∞ ≤ ε, it follows by Lemma A.13

that D(δ,Pn, dH) ≤ D(4δ/
√

3,Fn, dV ), where dV is the distance induced by V , i.e., d(f, g) =

V 1/2(f − g). And hence, it follows by [10, Theorem 9.21] that

logD(δ,Pn, dH) ≤ logD(4δ/
√

3,Fn, dV )

≤ logD(4δ/
√

3, (M + J(f0)
1/2)rnh

−mT , dV )

≤ cV

(
δ

(M + J(f0)1/2)rnh−m

)−1/m
,

where cV is a universal constant only depending on the regularity level m. This implies that for

any δ > 2rn,

logD(δ/2,Pn, dH) ≤ logD(rn,Pn, dH)

≤ cV (M + J(f0)
1/2)1/mh−1

≤ cV (M + J(f0)
1/2)1/mnr2n,

where the last inequality follows by the fact r2n ≥ (nh)−1. Thus, the right side of the above

inequality is constant in δ. By [7, Theorem 7.1], with δ = Mrn/4, there exists test φ̃n and a

universal constant k0 > 0 satisfying

Ef0{φ̃n} = Pnf0 φ̃n

≤ exp(cV (M + J(f0)
1/2)1/mnr2n) exp(−k0nδ2)

1− exp(−k0nδ2)

=
exp(cV (M + J(f0)

1/2)nr2n − k0M2nr2n/16)

1− exp(−k0M2nr2n/16)
,

and, combined with Lemma A.13,

sup
f∈Fn

dV (f,f0)≥4δ

Ef{1− φ̃n} = sup
f∈Fn

dV (f,f0)≥4δ

Pnf {1− φ̃n}

≤ sup
f∈Fn

dH(Pnf ,P
n
f0

)≥δ

Pnf {1− φ̃n}

≤ exp(−k0nδ2) = exp(−k0M2nr2n/16).
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This implies that

Ef0{
∫

f∈Fn
dV (f,f0)≥4δ

n∏
i=1

(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)(1− φ̃n)}

≤
∫

f∈Fn
dV (f,f0)≥4δ

Ef0{
n∏
i=1

(pf/pf0)(Zi)(1− φ̃n)}dΠ(f)

=

∫
f∈Fn

dV (f,f0)≥4δ

Ef{1− φ̃n}dΠ(f)

≤ exp(−k0M2nr2n/16).

Therefore, ∫
f∈Fn

dV (f,f0)≥4δ

n∏
i=1

(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)(1− φ̃n)

= OPnf0

(
exp(−k0M2nr2n/16)

)
.

(A.67)

It follows from (A.64) and (A.66) that

P (A′n2|Dn) = OPnf0

(
exp(−(M − J(f0)

1/2)2nr2n/2 + c2nr
2
n)
)

= oPnf0
(1),

where the last inequality follows by (M − J(f0)
1/2)2 > 2(c2 + 1) and exp(−nr2n) = o(1). Together

with (A.61), we get that

P (A′n|Dn)

≤ P (A′n1|Dn) + P (A′n2|Dn)

≤ P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn) + P (‖f − f0‖∞ > ε/2|Dn) + P (A′n2|Dn)

≤ P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn) + oPnf0
(1)

≤ P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn)φ̃n

+P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn)(1− φ̃n) + oPnf0
(1).

Choose the constant M to be even bigger so that

cV (M + J(f0)
1/2) + 1 < k0M

2/16, 1 + c2 ≤ k0M2/16.

Then we get that

Ef0{P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn)φ̃n}

. exp(cV (M + J(f0)
1/2)nr2n − k0M2nr2n/16)

≤ exp(−nr2n) = o(1),
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leading to P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn)φ̃n = oPnf0
(1). Meanwhile, it follows by (A.64) and (A.67)

that

P (A′n1, ‖f − f0‖∞ ≤ ε/2|Dn)(1− φ̃n)

≤ P (f ∈ Fn, dV (f, f0) ≥ 4δ|Dn)(1− φ̃n)

≤

∫
f∈Fn

dV (f,f0)≥4δ

∏n
i=1(pf/pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)(1− φ̃n)

I1
= OPnf0

(
exp(−k0M2nr2n/16 + c2nr

2
n)
)

= OPnf0

(
exp(−nr2n)

)
= oPnf0

(1).

Thus, we have shown that P (‖f − f0‖ ≥
√

2Mrn|Dn) = oPnf0
(1). This completes the proof.

Proof of Proposition A.1. Fix any ε1, ε2 ∈ (0, 1). Let C = C3

√
J(f0) + 1, and C0, C1, C2 be

positive constants satisfying (2.2) and (2.3) in Assumptions A1. It follows by Lemma A.12 that

for any fixed constant M > 1, if we set

b =
C2C

C3

√
1 +

1

ρm+1
, r = (nh/ log 2s)−1/2, δn = 2bhm + 24C0cK(4C1 +M)r, (A.68)

an = C2c
2
KM

1/2h−1/2rB(h)δn, and bn = C2
2cKh

−1/2δ2n, (A.69)

then as n→∞,

Pnf0

(
‖f̂n,λ − f0‖ ≥ δn

)
≤ 6n−M → 0,

and

Pnf0

(
‖f̂n,λ − f0 − Sn,λ(f0)‖ > an + bn

)
≤ 8n−M → 0.

By B(h) . h−
2m−1
4m and the simple fact an + bn . Dn, we get that

‖f̂n,λ − f0 − Sn,λ(f0)‖ = OPnf0
(an + bn) = OPnf0

(Dn). (A.70)

Recall that

Sn,λ(f0) =
1

n

n∑
i=1

(Yi − Ȧ(f0(Xi)))KXi − Pλf0.

It was shown by [44] that Pλϕν = λϕν
1+λϕν

ϕν . Since f0 satisfies Condition (S),

‖Pλf0‖2 = 〈
∞∑
ν=1

f0ν
λρν

1 + λρν
ϕν ,

∞∑
ν=1

f0ν
λρν

1 + λρν
ϕν〉

=
∞∑
ν=1

|f0ν |2
λ2ρ2ν

1 + λρν

= λ1+
β−1
2m

∞∑
ν=1

|f0ν |2ρ
1+β−1

2m
ν

(λρν)1−
β−1
2m

1 + λρν
= O(h2m+β−1),
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where the last equation follows by λ = h2m, supx≥0
x1−

β−1
2m

1+x <∞, and Condition (S). On the other

side, it follows by the proof of (A.55) that

Pnf0

(
‖

n∑
i=1

(Yi − Ȧ(f0(Xi)))KXi‖ ≥ L(M)n(nh/ log 2)−1/2

)
≤ 2 exp

(
−Mnh(nh/ log 2)−1

)
= 21−M → 0, as M →∞,

implying that

‖
n∑
i=1

(Yi − Ȧ(f0(Xi)))KXi‖ = OPnf0
(n(nh/ log 2)−1/2),

and hence,

‖Sn,λ(f0)‖ = OPnf0
((nh)−1/2 + hm+β−1

2 ) = OPnf0
(r̃n).

Together with (A.70) and the rate condition Dn . r̃n, we get that

‖f̂n,λ − f0‖ = OPnf0
(r̃n).

Let M1 be large constant so that event

E ′n = {‖f̂n,λ − f0‖ ≤M1r̃n} (A.71)

has probability approaching one. Meanwhile, form some positive constant M0, it follows by The-

orem A.4 that P (‖f − f0‖ ≥ M0rn|Dn) converges to zero in Pnf0-probability. Let C ′ > M1 be a

constant to be further determined later, then we have that

P (‖f − f0‖ ≥ 2C ′r̃n|Dn)

≤ P (‖f − f0‖ ≥M0rn|Dn) + P (2C ′r̃n ≤ ‖f − f0‖ ≤M0rn|Dn).

Thanks to Theorem A.4, the first term converges to zero in Pnf0-probability. Thus, when n is

sufficiently large,

Pnf0 (P (‖f − f0‖ ≥M0rn|Dn) ≥ ε2/2) ≤ ε1/2.

We only need to handle the second term.

Define

E ′′n =

{
sup
g∈G
‖Z(l)

n,f0
(g)‖ ≤ B(h)

√
M log n, l = 1, 2

}
, (A.72)

where

Z
(l)
n,f0

(g) =
1√
n

n∑
i=1

[ψ
(l)
n,f0

(Zi; g)KXi − Ef{ψ
(l)
n,f0

(Zi; g)KXi}] for l = 1, 2,

and

ψ
(1)
n,f0

(Zi; g) = c−1K h1/2g(Xi),

ψ
(2)
n,f0

(Zi; g) = C−12 c−1K h1/2Ä(f0(Xi))g(Xi).
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It is easy to see that ψ
(l)
n,f0

(Zi; g) satisfies (A.51). By Lemma A.11 we have that E ′′n has Pnf0-

probability approaching one. Thus, it holds that, when n becomes large, Pnf0(En) ≥ 1 − ε1/2. In

the rest of the proof we simply assume that En ≡ E ′n ∩ E ′′n holds.

Let In(f) =
∫ 1
0

∫ 1
0 sDSn,λ(f̂n,λ + ss′(f − f̂n,λ))(f − f̂n,λ)(f − f̂n,λ)dsds′ for any f ∈ Sm(I). Let

∆f = f − f̂n,λ. Therefore,

In(f)

= − 1

n

∫ 1

0

∫ 1

0
s

n∑
i=1

Ä(f̂n,λ(Xi) + ss′(∆f)(Xi))(∆f)(Xi)
2dsds′

−λJ(∆f,∆f)/2

= − 1

n

∫ 1

0

∫ 1

0
s

n∑
i=1

[Ä(f̂n,λ(Xi) + ss′(∆f)(Xi))(∆f)(Xi)
2

−Ä(f0(Xi))(∆f)(Xi)
2]dsds′

− 1

2n

n∑
i=1

[Ä(f0(Xi))(∆f)(Xi)
2 − EXf0{Ä(f0(X))(∆f)(X)2}]− 1

2
‖∆f‖2

≡ T1(f) + T2(f)− 1

2
‖∆f‖2,

where recall that

T1(f) = − 1

n

∫ 1

0

∫ 1

0
s

n∑
i=1

[Ä(f̂n,λ(Xi) + ss′(∆f)(Xi))(∆f)(Xi)
2

−Ä(f0(Xi))(∆f)(Xi)
2]dsds′,

T2(f) = − 1

2n

n∑
i=1

[Ä(f0(Xi))(∆f)(Xi)
2 − EXf0{Ä(f0(X))(∆f)(X)2}].

By Taylor’s expansion in terms of Fréchet derivatives,

`n,λ(f)− `n,λ(f̂n,λ) = Sn,λ(f̂n,λ)(f − f̂n,λ) + In(f) = In(f).

Therefore,

P (An|Dn) =

∫
An

exp(n(`n,λ(f)− `n,λ(f̂n,λ)))dΠ(f)∫
Sm(I) exp(n(`n,λ(f)− `n,λ(f̂n,λ)))dΠ(f)

=

∫
An

exp(nIn(f))dΠ(f)∫
Sm(I) exp(nIn(f))dΠ(f)

,

where An = {f ∈ Sm(I) : 2C ′r̃n ≤ ‖f − f0‖ ≤M0rn}.
Let

J1 =

∫
Sm(I)

exp(nIn(f))dΠ(f), J2 =

∫
An

exp(nIn(f))dΠ(f).
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Then on En and for ‖f − f0‖ ≤ r̃n, we have ‖f − f̂n,λ‖ ≤ ‖f − f0‖+ ‖f̂n,λ − f0‖ ≤ (M1 + 1)r̃n.

Let dn = cK(M1 + 1)h−1/2r̃n. It follows by similar arguments above (A.56) that d−1n ∆f ∈ G. It

follows by Lemma A.9 that ‖∆f‖∞ ≤ cKh
−1/2‖∆f‖ ≤ cK(M1 + 1)h−1/2r̃n. By rate assumption

rn = o(h3/2) and h1/2 log n = o(1) and the simple fact r̃n ≤ rn
√

log 2n, we get that

h−1/2r̃n ≤ h−1/2rn
√

log 2N = o(h
√

log n) = o(1).

Therefore, we can let n be large so that, on En and ‖f0‖∞ + ‖f̂n,λ − f0‖∞ + ‖∆f‖∞ < C. Then

on En, we have

|T1(f)|

≤ C2
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2n

n∑
i=1

(∆f)(Xi)
2

= C2
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2n

n∑
i=1

[(∆f)(Xi)
2 − EX{(∆f)(X)2}]

+C2
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2
EX{(∆f)(X)2}

≤ C2
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2n
‖∆f‖

×‖
n∑
i=1

[(∆f)(Xi)KXi − EX{(∆f)(X)KX}]‖

+C2
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2
EX{(∆f)(X)2}

≤ C2dn
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2n
‖∆f‖

×‖
n∑
i=1

[d−1n (∆f)(Xi)KXi − EX{d−1n (∆f)(X)KX}]‖

+C2
2

‖f̂n,λ − f0‖∞ + ‖∆f‖∞
2

‖∆f‖2

≤ C2dn
‖f̂n,λ − f0‖∞ + ‖∆f‖∞

2n
‖∆f‖ · cK

√
nh−1/2B(h)

√
M logN

+C2
2

‖f̂n,λ − f0‖∞ + ‖∆f‖∞
2

‖∆f‖2

≤ 1

2
C2M

1/2c3K(2M1 + 1)3h−3/2r̃3nn
−1/2B(h)

√
logN

+
1

2
C2
2cK(2M1 + 1)3h−1/2r̃3n

≤ D1(C2, cK ,M,M1)× r̃3n(n−1/2h−
8m−1
4m

√
logN + h−1/2)

≤ D1(C2, cK ,M,M1)× r̃3nbn1,

(A.73)

where D1(C2, cK ,M,M1) is constant depending only on C2, cK ,M,M1.
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We can use similar empirical processes techniques to handle T2. Note that on En and for

‖f − f0‖ ≤ r̃n, using Assumption A1,

|T2(f)|

=
1

2n

∣∣∣∣ n∑
i=1

[Ä(f0(Xi))(∆f)(Xi)
2 − EXf0{Ä(f0(X))(∆f)(X)2}]

∣∣∣∣
=

1

2n

∣∣∣∣〈 n∑
i=1

[Ä(f0(Xi))(∆f)(Xi)KXi − EXf0{Ä(f0(X))(∆f)(X)KX}],∆f〉
∣∣∣∣

≤ 1

2n
‖∆f‖

×‖
n∑
i=1

[Ä(f0(Xi))(∆f)(Xi)KXi − EXf0{Ä(f0(X))(∆f)(X)KX}]‖

=
C2cKh

−1/2dn‖∆f‖
2
√
n

× ‖Z(2)
n,f0

(d−1n ∆f)‖

≤ C2cKh
−1/2dn‖∆f‖
2
√
n

B(h)
√
M logN

≤ D2(C2, cK ,M,M1)× n−1/2h−
6m−1
4m r̃2n

√
logN

≤ D2(C2, cK ,M,M1)× r̃2nbn2,

(A.74)

where D2(C2, cK ,M,M1) is constant depending only on C2, cK ,M1,M .

It follows that on En,

J1

≥
∫
‖f−f0‖≤r̃n

exp(nIn(f))dΠ(f)

=

∫
‖f−f0‖≤r̃n

exp
(
nT1(f) + nT2(f)− n

2
‖f − f̂n,λ‖2

)
dΠ(f)

≥ exp (−[D1(C2, cK ,M,M1)r̃nbn1 +D2(C2, cK ,M,M1)bn2

+(M1 + 1)2/2]nr̃2n
)

Π(‖f − f0‖ ≤ r̃n).

To continue, we provide a lower bound for Π(‖f − f0‖ ≤ r̃n) using the same arguments as in

(A.63). Note that λ ≤ r̃
4m

2m+β−1
n . Then it follows by Assumption A2, with ε replaced by r̃n, that

Π(‖f − f0‖ ≤ r̃n) ≥ c1 exp(−c0r̃
− 2

2m+ψ
n ).

Note that

r̃n ≥ (nh)−1/2 + hm+ψ
2 ≥ 2n

− 2m+ψ
2(2m+ψ+1) ,

we get that

nr̃
2+ 2

2m+ψ
n ≥ n(4n

− 2m+ψ
2m+ψ+1 )

1+ 1
2m+ψ = 4.



Z. Shang & G. Cheng/Supplement to Nonparametric Gaussian Approximation 57

Therefore, r̃
− 2

2m+ψ
n ≤ nr̃2n/4, leading to

Π(‖f − f0‖ ≤ r̃n) ≥ c1 exp
(
−c0

4
nr̃2n

)
. (A.75)

This implies by rate conditions r̃nbn1 ≤ 1 and bn2 ≤ 1 that, on En,

J1 ≥ c1 exp (−[D1(C2, cK ,M,M1)r̃nbn1 +D2(C2, cK ,M,M1)bn2

+(M1 + 1)2/2 + c0/4]nr̃2n
)

≥ c1 exp (−[D1(C2, cK ,M,M1) +D2(C2, cK ,M,M1)

+(M1 + 1)2/2 + c0/4]nr̃2n
)
.

Next we handle J2. The idea is similar to how we handle J1 but with technical difference. Let

∆f = f − f̂n,λ. Note that r̃n ≤ rn
√

log n, and hence, on En, for any f ∈ An, i.e., ‖f − f0‖ ≤M0rn,

we get that ‖∆f‖ = ‖f̂n,λ − f‖ ≤ ‖f̂n,λ − f0‖+ ‖f − f0‖ ≤M1r̃n +M0rn ≤ (M0 +M1)rn
√

log n.

This implies that on En, ‖∆f‖∞ ≤ cK(M0 +M1)h
−1/2rn

√
log n, where the last term by our rate

assumption is o(1), and hence, we can choose n to be large enough so that ‖f0‖∞+‖f̂n,λ−f0‖∞+

‖∆f‖∞ < C. Let d∗n = cK(M0 + M1)h
−1/2rn

√
log n. Then d−1∗n∆f ∈ G. Using previous similar

arguments handling T1(f), i.e., (A.73) , we have that on En, for any f ∈ An,

|T1(f)|

≤ C2cK(2M1 +M0)

2n
h−1/2rn

√
log n

×

(
d∗n‖

n∑
i=1

[d−1∗n (∆f)(Xi)KXi − EX{d−1∗n (∆f)(X)KX}]‖ · ‖∆f‖

+nEX{(∆f)(X)2}
)

≤ C2cK(2M1 +M0)

2n
h−1/2rn

√
log n

×(
√
ncKh

−1/2d∗n · (M0 +M1)rn
√

log n ·B(h)
√
M logN

+nC2[(M0 +M1)rn
√

log n]2)

=
1

2
C2c

3
K(2M1 +M0)

3M1/2h−3/2r3nn
−1/2B(h)(log n)2

+
1

2
C2
2cK(2M1 +M0)

3h−1/2r3n(log n)3/2

≤ D3(C2, cK ,M,M0,M1)× r3n
(
n−1/2h−

8m−1
4m (log n)2 + h−1/2(log n)3/2

)
= D3(C2, cK ,M,M0,M1)× r3nbn1 ≤ D3(C2, cK ,M,M0,M1)× r̃2n,

where D3(C2, cK ,M,M0,M1) is constant depending only on C2, cK ,M,M0,M1 and the last in-
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equality follows by rate condition r3nbn1 ≤ r̃2n. Likewise, on En and for any f ∈ An,

|T2(f)| ≤ ‖∆f‖
2
√
n
C2cKh

−1/2d∗n ·B(h)
√
M log n

≤ 1

2
C2c

2
K(M0 +M1)

2M1/2n−1/2h−1r2nB(h)(log n)3/2

≤ D4(C2, cK ,M,M0,M1)× n−1/2r2nh−
6m−1
4m (log n)3/2

= D4(C2, cK ,M,M0,M1)× r2nbn2 ≤ D4(C2, cK ,M,M0,M1)× r̃2n,

where D4(C2, cK ,M,M0,M1) is constant only depending on C2, cK ,M,M0,M1 and the last in-

equality follows by rate condition r2nbn2 ≤ r̃2n. It is easy to see that on En and for any f ∈ An,

‖f̂n,λ − f‖ ≥ ‖f − f0‖ − ‖f̂n,λ − f0‖ ≥ (2C ′ −M1)r̃n,

leading to that

J2 ≤

exp

(
−
(

(2C ′ −M1)
2

2
−D3(C2, cK ,M,M0,M1)−D4(C2, cK ,M,M0,M1)

)
nr̃2n

)
.

Choose C ′ > M1 to be large s.t.

(2C ′ −M1)
2

2
≥

1 +D1(C2, cK ,M,M1) +D2(C2, cK ,M,M1) +D3(C2, cK ,M,M0,M1)

+D4(C2, cK ,M,M0,M1) + (M1 + 1)2/2 + c3/4.

Therefore, on En,

P (An|Dn) ≤ J2
J1
≤ exp(−nr̃2n).

When n becomes large s.t. exp(−nr̃2n) ≤ ε2/2, we get that

Pnf0(P (An|Dn) ≥ ε2/2) ≤ Pnf0(Ecn) ≤ ε1/2.

This shows that

Pnf0
(
P (‖f − f0‖ ≥ 2C ′r̃n|Dn) ≥ ε2

)
≤ ε1.

Proof is completed.

Verification of (3.7)=⇒ Rate Condition (R). Consider two cases.

Case1 : max

{
2

6m+ 3ψ − 1
,

2m

2m(4m+ 2ψ − 3) + 1
,

1

4m

}
< a ≤ 1

2m+ ψ + 1

Case2 :
1

2m+ ψ + 1
< a ≤ 1

2m+ 1
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We only verify that Case 1 satisfies Rate Condition (R). The verification of Case 2 is similar. By

Case 1, we have

rn � hm � n−ma, r̃n � hm+ψ/2 � n−(m+ψ/2)a, Dn � (n−
1
2
+ 6m−1

4m
a−ma + n

a
2
−2ma) log n

bn1 � n−
1
2
+ 8m−1

4m
a(log n)2 + n

a
2 (log n)3/2, bn2 � n−

1
2
+ 6m−1

4m
a(log n)3/2

Then the following hold:

• m > 3/2 =⇒ rn = o(h3/2)

• h1/2 log n = n−a/2 log n = o(1)

• a < 1/(2m+ 1) =⇒ nh2m+1 ≥ 1

• 2m/(6m− 1 + 2mψ) > 1/(2m+ ψ + 1) ≥ a and ψ < m− 1/2 =⇒ Dn = O(r̃n)

• 4m2 − 8m+ 1 > 0, ψ > 0, 2m+ ψ > 1 =⇒ r̃nbn1 ≤ 1

• 4m2 + 2mψ − 4m+ 1 > 0 =⇒ bn2 ≤ 1

• ψ < m− 1/2,−1/2 + (8m− 1)a/(4m) < a/2 < (m− ψ)a =⇒ r3nbn1 ≤ r̃2n
• ψ < m− 1/2, a < 1/(2m+ ψ + 1) =⇒ r2nbn2 ≤ r̃2n
• a > 2/(6m+ 3ψ − 1), a > 2m/[2m(4m+ 2ψ − 3) + 1] =⇒ nr̃3nbn1 = o(1)

• a > 2m/[2m(4m+ 2ψ − 3) + 1] =⇒ nr̃2nbn2 = o(1)

Hence, Rate Condition (R) holds.
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