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Abstract: In a general class of Bayesian nonparametric models, we prove that the posterior
distribution can be asymptotically approximated by a Gaussian process. Our results apply
to nonparametric exponential family that contains both Gaussian and non-Gaussian regres-
sion, and also hold for both efficient (root-n) and inefficient (non root-n) estimation. Our
general approximation theorem does not rely on posterior conjugacy, and can be verified
in a class of Gaussian process priors that has a smoothing spline interpretation [59, 44].
In particular, the limiting posterior measure becomes prior-free under a Bayesian version
of “under-smoothing” condition. Finally, we apply our approximation theorem to examine

the asymptotic frequentist properties of Bayesian procedures such as credible regions and

credible intervals.
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1. Introduction

A common practice in quantifying Bayesian uncertainty is to construct credible regions that cover
a large fraction of posterior mass. In some cases, it is of interest to investigate the probability that
the true parameter (that generates observations) is covered by the credible regions, the so-called
frequentist property. Such frequentist studies on Bayesian procedures often rely on the asymptotic
shapes of posterior distributions, which may be characterized by the Bernstein-von Mises (BvM)
theorem.

In nonparametric settings, Freedman [14, 15] found that “almost all” Bayesian prior distribu-
tions yield inconsistent posteriors. After three decades, Cox [4] and Freedman [16] found that
credible regions for nonparametric function cover the truth with probability approaching to zero.
In the decades since their seminal work, achievements were made mostly in Gaussian settings.
For instance, BvM theorem has been established for mean sequences (or signals) in Gaussian
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sequence models (equivalently, Gaussian white noise models); see [26, 22, 23, 50, 51, 7, 8, 31, 30].
In Gaussian regression with fixed design, [47, 48] proposed adaptive credible regions for regression
functions; with random design, [61] proposed credible sets under sieved priors. In models where
efficient estimation (at \/n-rate) is possible, [41, 7, 8, 3] proposed credible intervals for functionals
of infinite-dimensional parameters. As far as we are aware, posterior approximation in a general
nonparametric context remains an open problem, despite the importance of non-Gaussian data.

The major goal of this paper is to prove a Gaussian approximation result in more general
Bayesian nonparametric settings without relying on posterior conjugacy. Specifically, we consider
a nonparametric exponential family that covers both Gaussian and non-Gaussian regression. As
far as we know, even for the special Gaussian setup, the random design case was not investigated in
the literature. Also, our framework is applicable even when the efficient estimation is unavailable.
As explained later, our result is established based on substantially different techniques from those
in the aforementioned literature.

Under total variation distance, we prove Gaussian process approximation of general posterior
distributions, which significantly generalizes the (total variation) BvM result obtained by Leahu
[26] in the special Gaussian white noise model. This posterior approximation result is useful
in studying the frequentist properties of finite sample (or asymptotic) valid credible regions for
regression functions. For instance, the frequentist coverage of the credible regions is proven to
approach one given any credibility level, and can be further corrected to the credibility level by
invoking a weaker topology (inspired by [7, 8]). We point out that, different from the bounded
Lipschitz metric [7, 8], our approximation results hold under (stronger) total variation metric that
also applies to L? credible balls and point-wise credible intervals. Our result can be viewed as
complementary to [33, 36, 34, 35] who showed that although Bayesian methods are robust with
finite information, they could be brittle when handling continuous systems. Rather, our positive
results rely on the facts that the statistical models in consideration are correctly specified and the
assigned priors charge the function space (with proper topological and geometrical details) with
full mass.

Our general approximation theorem can be verified in a class of Gaussian process priors that
implicitly controls the magnitude of higher-order derivatives of regression functions through a
(non-random) hyper-parameter. Also, in the special Gaussian regression, these Gaussian pro-
cesses match with the sequence priors considered in [59]. This leads to an interesting smoothing
spline interpretation [59], which can be rigorously justified by an application of Hajek’s Lemma
([19]). More importantly, this allows us to develop new technical tools based on recent progress in
smoothing spline inferences (e.g.,[44]). For the above reasons, this class of Gaussian process priors
can be viewed as “tuning prior.” We will suggest a practical means for selecting priors via gener-
alized cross validation (GCV). Simulation results in Section 6 strongly support this proposal. As
mentioned by one referee, empirical Bayes approach for determining priors has been considered
by [42] which is different from our GCV approach.
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A somewhat surprising discovery in our paper is that the hyper-parameter affects the limiting
posterior measure in a very subtle manner. Explicitly, we find that prior information persists
in the Gaussian approximation measure under the (nearly) optimal choice of hyper-parameter.
By optimal choice of hyper-parameter, we mean the one that leads to optimal contraction rate.
Nevertheless, when the hyper-parameter is sub-optimal, the Gaussian approximation measure
becomes prior free. This is consistent with the folklore that “data wash out prior effect” in the
parametric models; see BvM theorem in [18]. The sub-optimal choice of hyper-parameter can be
viewed as a Bayesian analog of the “under-smoothing” condition in the nonparametric literature.

The rest of this article is organized as follows. In Section 2, we present a general nonparamet-
ric exponential framework covering Gaussian regression and non-Gaussian regression. Section 3
includes the main results of the article. Specifically, Section 3.1 presents a general formulation
of nonparametric posterior distribution. Under this formulation, Section 3.2 derives a Gaussian
approximation theorem, and Section 3.3 constructs a class of Gaussian process priors for this
theorem. Section 4 presents a series of applications of our main theorem that include credible
region of the regression function and credible interval of a general class of linear functionals. Fre-
quentist validity is also investigated in this section. Section 5 develops a prior-free approximation
theorem and relevant inferential methods. Section 6 includes a simulation study. All proof details
are postponed to a Supplementary Document [45]. A set of contraction rate results is included in

the latter, and may be of independent interest.

2. Nonparametric Exponential Family

In this section, we present a general class of nonparametric regression models beyond Gaussian
regression. Let Y € J C R be response variable and X € I := [0, 1] be covariate variable. Our
model lies in an (natural) exponential family where given a functional parameter f, the random
pair (Y, X) follows:

pily.a) = pilylo)(a)
— exp{yf(a) — Af(2)) + ey, 2)br(a), (2.1)

where A(+) is a known function defined upon R, ¢(y, z) is a quantity depending on y,z to make
(2.1) a valid density, and m(z) represents marginal density of X. For technical convenience, we
assume 7 < infyepm(z) < sup,m(z) < 7, for constants w,7 > 0. The above framework (2.1)
covers many non-Gaussian models; see Examples 2.1-2.4.

Assume that there exists a “true” parameter fy under which the sample is drawn from (2.1),

and that fp belongs to an m-th order Sobolev space:
S™I) = {fe L*W)|f9are abs. cont. for j =0,1,...,m — 1, and f™ e L*(I)}.

Throughout the paper, we let m > 1 such that S™(I) is a RKHS; see [37].
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The primary model assumption is given below. Let A, A, A be the first-, second- and third-order
derivatives of A. Denote || f||s as the sup-norm of f. For any fixed C' > 0, define F(C) = {f €
S™(I) : || flle < C}. Let P} denote the probability of the data under f, and Ey is the expectation
under f.

Assumption Al. A is three-times continuously differentiable on R. For any z € R, A(z) >
0. Moreover, for any constant C > | follso, there exist positive constants Cy,C1,Co (possibly

depending on C') such that

sup Ef {exp(]Y — A(f(X))|/Ch) X} < (i, a.s., (2.2)

JeF(C)

and for any z € [—2C,2C],
1/Cy < A(z) < Gy, and |A(2)] < Ca. (2.3)

Assumption Al can be easily verified in various settings including the following examples.

Example 2.1 (Normal regression). Suppose that under f, (Y, X) follows normal regression:
Y = f(X)+e,

where € ~ N(0,1). Then A(z) = 22/2. For any f € S™(I),

By {expw - A(f(X))D‘X} = Blewp(|d)} = 21— 2(1)

where ®(-) is the cumulative distribution function of e. Therefore, (2.2) holds for Cp = 1 and

Ch = %(1 — ®(1)). It is easy to see that (2.3) holds for Cy = 1.

Example 2.2 (Logistic regression). Suppose that under f, (Y, X) follows logistic regression:
exp(yf(z))
prlylr) = , fory=0,1.
) = T (@)
Here, A(z) = log(1 + exp(z)). For any C' > || folleo and f € F(C), |A(f(X))| < (1 4 exp(=C))~ 1,
leading to that
2+ exp(—C))

sup Ej {GXP(’Y - A(f(X))D‘X} < exp (1 T exp(—C)

feF(©)
and for any z € [—-2C, 2C],

exp(2C .
p(20) <(x) <

1+ exp20))2 and |A(z)| <

1 1
4’ =y

which means that (2.2) holds for Cp = 1 and C; = exp <ﬁ$§:g;), (2.3) holds for Cy =

max{%, (1 + exp(2C))% exp(—2C)}.
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Example 2.3 (Binomial regression). Suppose that under f, (Y, X) follows binomial regression:

a) exp(yf(x))
y) (14 exp(f(x)))*’

where a is a known positive integer. In particular, a = 1 reduces to logistic regression in Example

fory=0,1,...,qa,

pitle) = (

2.2. It is easy to see that A(z) = alog (1 + exp(z)). Similar to Example 2.2, it can be shown
that (2.2) holds for Cy = 1 and C; = exp (%ﬁ), (2.3) holds for Cy = max{%, (1 +
exp(20))%a~t exp(—2C)}.

Example 2.4 (Poisson regression). Suppose that under f, (Y, X) follows Poisson regression:

pi(yla) = ‘Wexm—exp(f(xm, for y = 0,1,2,. .

Therefore, A(z) = exp(z). For any C > || fo|leo and f € F(C),

£y {esplly — AGCOID|X] < explesp(€))y fexpiv)|x]
— explexp(C)) x explexp(C)(e — 1)) = explexp(C)e).

and for any z € [—2C,2C], exp(—2C) < A(z) < exp(2C) and |A(2)| < exp(2C), implying that
(2.2) holds for Cy =1 and C; = exp(exp(C)e), (2.3) holds for Cy = exp(2C).

Remark 2.1. With stronger assumptions (e.g., stronger smoothness condition on f) and more

tedious technical arguments, the results in this paper can be generalized to the following model:

p(ylz) ~ exp(yAi(f(z)) — A2(f(2)) + c(y, ),

where A1, Ao are known functions.

Under the model Assumption Al, there exists an underlying eigen-system (i, (+), p,) that si-

multaneously diagonalizes two bilinear forms V and U, where

1
V(9.9) = E{A(fo(X))g(X)g(X)} and U(g.9) :—/0 9" (2)3"™ (x)dz (2.4)

for any g,g € S™(I), where the expectation in the definition of V' is taken with respect to =, the
design density. For simplicity, denote V(g) = V(g,¢9) and U(g) = U(g,g) from now on. It follows
by Proposition 2.2 of [44] that (¢,,p,) is a solution of the following ordinary differential system

(whose existence and uniequeness is guaranteed by [3]):

(=)™ () = p A(fo())m()eu (),
eD0) =W (1)=0, j=m,m+1,...,2m— 1. (2.5)

This eigen-system is building blocks of Gaussian process priors considered in this paper.
The following proposition summarizes some useful properties of (¢, (-), pv). Its proof can be

found in [44, Proposition 2.2]. Two positive sequences a,, b, are asymptotically equivalent, denoted
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a, < by, if a, /b, is bounded below from zero and above from infinity. Define an inner product

on S™(I): (9,9)vv = U(g,9) + V(g,§). Let || - ||,y be the corresponding norm, i.e., ||g|
NVAUN AT

Proposition 2.1. Let Assumption A1 be satisfied. Then there exist a nondecreasing sequence p,

AT

2m

and a sequence of functions ¢, € S™(I) such that pr = -+ = pm =0, py, >0 forv>m, p, < v

and
V(‘Pua SDU) = 5#:/7 U(‘Pua 9011) = puéuua u,v €N, (2'6)

where 6,, is the Kronecker’s delta. In particular, any f € S™(I) admits a Fourier expansion

f=>,V([f,¢v)p, with convergence held in the | - ||,y -norm.

For any f,g € S™(I), define J(f,9) =>_, %V (f,¢v)V (g, ¢v), where

1, v=1,2,...,m,
Pus v>m.

Obviously, the null space of J is trivial in the sense that J(g) := J(g,9) = 0 if and only if g = 0.
Furthermore, J(g) = fol g™ (z)2dx if V(g, 1) = - =V (g, om) = 0.

3. Main Results
3.1. Nonparametric Posterior Distribution

In this section, we introduce a general nonparametric Bayesian framework. Generically, f is as-
sumed to follow a probability measure II (possibly involving a hyper-parameter \). The spec-
ification of IT) can be naturally carried out through its Radon-Nikodym (RN) derivative with
respect to a base measure II. Here, we assume that IT is any (not necessarily Gaussian) proba-
bility measure on (S™(I), B), where B is the smallest o-algebra that contains all open subsets in
(S™(D), - llow)-

The posterior distribution of f can be written as

_ [pexp(nla(f))dIIN(f)
P(BD,) = Jsmzy XD (nn(£))dITA(f)’

B e B. (3.1)

for any II-measurable subset B C S™(I), where the log-likelihood £, (f) = 237" | [Vif(X;) —

A(f(X;))]. Here, D, ={Z1,...,Z,} and Z; = (YV;, X;), i = 1,...,n are iid copies of Z = (Y, X)

As for nonparametric priors, we choose the RN derivative as a function of roughness penalty J(f):

i e (200 ) (32)

where A > 0 is a hyper-parameter. We remark that the nonparametric prior (3.2) implicitly
depends on U defined in (2.4), which controls the growth of f(™),
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We will discuss in Section 3.3 a class of Gaussian process priors satisfying (3.2); see Lemma
3.3. Under (3.2), we can re-write

fB exp ngn )\( )) H(f)
fS'm(]I) exp(nfn )\(f))dn(f)

Here, £, »(f) represents the penalized likelihood

() = 5705

which is often used in the smoothing spline literature [59]. We remark that (3.1) and (3.3) hold

universally irrespective of the model assumption Al.

P(BD,) = Be B. (3.3)

The hyper-parameter A\ induces a new inner product for S™(I) defined by

(f:9) =V(f,9)+ X (f,9), f.ge€S™(). (3.4)

Let ||f]| = +/([, f) denote the corresponding norm. Both (-,-) and || - || will be very useful for
subsequent theoretical analysis. For any g = >_>7 ; gu, € S™(I), it can be seen that

HgHUv—Zgy +p), gl = ZngA%

v=1

Therefore,
min{1, \}|gllZ < llgll* < (1 +MlglEy, g€ S™D).

Thus, we have proved the following lemma.

Lemma 3.1. For any A > 0, || - |[uv and || - || are equivalent norms (in the sense of [15]) for
S™(T).
By Lemma 3.1, S™(I) has the same topology under || - ||y, and || - ||. Therefore, B can also

be viewed as the Borel o-algebra in (S™(I), | - ||). Moreover, it follows by [44] that the space
(S™(I), (-,-)) is a reproducing kernel Hilbert space (RKHS), with K(,-) being the reproducing

kernel function.

Proposition 1. Under Assumption Al, for any f € S™(I) and z € I, we have |f||* =
S, V(o) PO+ M) and K.() = K(z,) = ¥, £, ().

3.2. A General Approximation Result

In this section, we show that P(-|D,) expressed in (3.3) can be asymptotically approximated by
a posterior measure, denoted as Fy. Furthermore, if the imposed prior II, is Gaussian, Fy is also
Gaussian as shown in Section 3.3.

We start from a prior concentration condition (Assumption A2) on II, which will be verified
by Lemma 3.4 for a class of Gaussian process priors specified in Section 3.3. Assumption A2 is
typical in Bayesian nonparametric literature; see [7]. It requires suitably large prior mass on the

e-ball centering at the true function.
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Assumption A2. There exist positive constants cg,c1,v such that, for any € > A ,

__2
H(Hf - fOH < E) > exp(—cog 2m+¢)'

Our next assumption is on the smoothness of fj, expressed through its Fourier coefficients, i.e.,
fol) =2202 flen(): .
. 1+5—
Condition (S): > >7 |f,9|2pl,Jrzm < 0.

Heuristically, Condition (S) means that fy € S"”%(]I), which requires the regularity of fy to be
higher than that of S (I). Such a requirement is usually needed for deriving the optimal rate of
contraction; see [56]. This condition is also used to quantify the remainder term of the quadratic
approximation to likelihood ratio.

The following theorem says that P(B|D,,) can be well approximated by

—2|1f = fanll?)dIl
Py(B) = Jpexp(—3 ’llf f L:\H JdIL(f) , for any B € B, (3.5)
me(H) eXp(_§||f - fn,)\ ’2)dﬂ(f)
where ﬁl » is a smoothing spline estimate defined as
ﬁm =arg max {p\(f). (3.6)

fesm(I)

We can view Py as a posterior measure obtained by replacing the penalized likelihood ¢,, z(f) in
(3.3) by its quadratic approximation —|| f — fn Al|2/2. The validity of this quadratic approximation
is guaranteed by Assumption A2.

Let h = \/@m) and h, =n~ 2m+1w+1.

Theorem 3.2. (Nonparametric Posterior Approximation) Suppose prior (3.2) is imposed on f,
Assumptions A1 and A2 hold, and fo =", 120, satisfies Condition (S). Furthermore, suppose

m>1+ § ~ 1.866, 0 < <m — %, and h < n=% with a being a constant satisfying

2 o2m 1), 1 57)
max , , — a< . .
6m + 30— 1 2m(dm + 24 — 3) + 1" 4m 2m + 1

Then we have, as n — oo,

sup [P(B|D,) — Po(B)| = opy (1). (3.8)
BeB

We remark that the asymptotic posterior Py implicitly depends on the prior Il and is not
necessarily a Gaussian measure. A prior-free Gaussian approximation can be obtained under
suitable choices of h; see Section 5.

We sketch the proof of Theorem 3.2. According to a contraction rate result (see Proposition
A1), the posterior mass is mostly concentrated on an M7,-ball of fy, denoted as By (fo),
where 7, = (nh)~/2 + S and M > 0is a suitably large constant. Hence, for any B € B, we
decompose P(B|Dy) = P(BNBy, (fo)|Dn) + P(BNBY5 (fo)|Dy). The second term is uniformly
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negligible for all B € B. By applying Taylor expansion to the penalized likelihood ¢,  (in terms
of Fréchet derivatives) and empirical processes techniques, we can show that the first term is

asymptotically close to Py(B) uniformly for B € B.

Remark 3.1. It holds trivially that h < h, = n~ @m0+ " among others, satisfies Condition
(3.7). The choice h < h, can simultaneously yield the optimal contraction rate of the credible balls
as will be seen in Section 4. We also remark that Theorem 3.2 still holds by replacing Condition
(3.7) with the following more general Rate Condition (R):

Tn = 0(h3/2)7 h1/2 logn = 0(1)7 nh2m+1 > 17 Dn = O(Fn)7
Fabn <1, bpg <1, 1pbp1 < Ty Tbpa < Ty 0 (Fabnt + bna) = o(1),

where r, = (nh)™Y2 + h™, 7, = (nh)~V? + hm+%, D, = n Y20 " 1, logn 4+ h='/2r2 logn,

8m—1 m
4

bot = n~ Y20~ " (logn)? + h=Y2(log n)3/2 and bus = n~Y/2h~ " (log n)3/2.

Remark 3.2. The TV-distance used in Theorem 3.2 is stronger than the bounded Lipschitz metric
used by [7]. Hence, Theorem 3.2 can treat inferential problems with stronger topological structures,
typically leading to mnon-root-n rate, such as the construction of L? credible region and pointwise
credible interval (see Sections 4.1 and 4.3). Of course, Theorem 3.2 can also treat problems with

weaker topological structures such as those in Section 4.2.

3.3. Gaussian Process Prior

In this section, we demonstrate that the general approximation Theorem 3.2 holds for the proba-
bility measures II and IT) induced by a class of Gaussian process (GP) priors. In other words, we
will show these IT and IT, satisfy (3.2). Under this class of GP priors, the limiting posterior Py is
shown to be Gaussian, whose explicit characterization is given.

Let II be a probability measure induced by the following GP:
G(t) = ZUVSDV(t)7 (3.9)
v=1

in the sense that II(B) = P(G € B) for any B € B. Here, {v,}2, is a sequence of independent

random variables (independent of D,,) satisfying

—2

o v=12,...,m,
v, ~ N(0,7,2), with 72 = v (3.10)
Vs v >m,
a%, ...,02 are fixed constants and 6, < pi+ﬁ /™) for a constant 6> 1.

We next define another GP inducing II:

G/\(t) = Zwu()pu(t)a (3.11)
v=1



Z. Shang € G. Cheng/Approximation of Nonparametric Posterior 10

where w,’s are independent of the observations with

N(0,02/(1+nXo2)), v=1,2,...,m,
Y N(0,1/(0, +nApy)), v>m.

Note that G = G when A = 0. Hence, we form a prior family G = {G () : A > 0}. In fact, G(-)
can be viewed as an envelope of G since their prior variances are the largest. The requirement
B > 1 is necessary for G being a valid prior on S™(I). In fact, if 5 = 1, then the path of
G, does not belong to S™(I) almost surely (see [62, pp. 541]). However, if 5 > 1, we have
E{U(G)\)} = > ,ompv/(0y +n)p,) < 00, indicating that the path of G\ belongs to S™(I).

Remark 3.3. Recall that the regularity of the parameter space S™(I) is characterized through
py = V2™ in comparison with 0, < v*™ 8 for that of the GP prior Gy for any A > 0. Then,
it follows from [56] that the RKHS of G is S"H'g(]l), while the parameter space S™(I) can be
viewed as its completion in || - ||y, yv-norm. Therefore, the parameter [ represents the ‘“relative
smoothness” of the prior to the parameter space. Similar correspondence between the parameter
space and prior can be found in [56, 57]. It will be seen in Section 4 that the optimal contraction

rate of the posterior distribution is determined by both smoothness, i.e., the values of m and (.

Remark 3.4. The GPs G and Gy can also be written in terms of mean functions and covari-
ance kernels. Specifically, they both have zero mean functions with covariance kernels R(s,t) =
B{G(5)G(0)} = Xyn1 00(8)pu(8)/72 and Ry (s,) = E{GA(5)GA(B)} = S pu(s)pu(8)/ (0% +
NA) Do P (8)@u(t) /(Ou+nApy). Similar to [2], our GP prior can be also viewed as a Gaussian
measure with covariance being a positive, self-adjoint and trace-class operator on the functional

space. Note that the covariance might not be a Matérn kernel.
In the following lemma, we show that (3.2) holds under the above class of GP priors.

Lemma 3.3. [19, Hdajek’s Lemma] With f € S™(I), we have the following Radon-Nikodym deriva-
tive of 11 with respect to I1:

M@ = Taemed T1 asmionen (~20)

v=1 v=m+1
A
X exp <—n2J(f)> .

It should be mentioned that Wahba [59] designed a set of Gaussian sequence priors to estimate
the smoothing parameter. Her prior yields a similar RN derivative as the one in Lemma 3.3.

Our next lemma shows that Assumption A2 holds under the above II induced by (3.9).
Lemma 3.4. Assumption A2 holds for ¢» =  — 1 for Il induced by (3.9).

Lemma 3.4 will be needed in constructing Bayesian inference procedures; see Section 4.
Given the above II and I, we next show that Py is essentially a Gaussian measure Ily, induced
by the following Gaussian process W, in the sense that Py(B) = P(W € B|D,,) := Iy (B). Given
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the Fourier expansion ﬁm() =3, ]?Vgoy(-), we define a GP

o

W)= Z(an,ufu + bnw&) e (), (3.12)

v=1
where ap,, = n(1+ M) {12 +n(1 + M)}, buy = {12 + (1 + M)} V2 &, = v, are iid
standard normal variables with v, and 72 satisfying (3.10), and the sequence v, is defined in (2.7).

For better illustration, we decompose W as
W = fox+ Wy, (3.13)

where foa(-) == 30, n(1 4+ M) {72 + n(1 + M)} foeu(s) and Wi (-) = Yoo {2+ n(1 +
M)} 2€,0,(¢) is a zero-mean GP. Note that the posterior mode fn A is asymptotically equiva-
lent to the efficient linear estimate ﬁ%)\ since Hﬁm - anH = opp (1). This is consistent with the
traditional BvM theorem in the parametric setup ([18]).

Theorem 3.5 presents the Gaussian characterization of Fj.

Theorem 3.5. With f € S™(I), the Radon-Nikodym derivative of Iy with respect to 11 is

exp(-3lf —Furl®)
me(]I) eXP(—%Hf - fn)\”2)dn(f)

dllyy
) =

Hence, we have
dPy _dlly

Together with Theorem 3.2, Theorem 3.5 implies that the posterior distribution P(:|D,,) and
ITyy (-) are asymptotically close under the total variation distance. This approximation result
greatly facilitates the construction and theoretical analysis of nonparametric Bayesian inference
procedures in Section 4. For example, from (3.13), we can tell that ﬁz,k is approximately the

posterior mode of P(:|D,,), and can be used as the center of credible region, e.g., (4.1).

4. Bayesian Inference Procedures

In this section, we consider Bayesian inference procedures such as credible balls and point-wise
credible intervals. These inference procedures are fully driven by posterior samples, so-called finite
sample construction. For example, the radius of the credible ball is directly drawn from MCMC
samples so that the posterior coverage is exact. We also comment on the asymptotic construction
where the radius is obtained by asymptotic theory in Remark 4.1. Under a proper choice of A,
these Bayesian inference procedures are shown to possess frequentist validity.

Throughout this section, we choose II, 11y as GPs designed in Section 3.3 for technical conve-

nience. We also suppose that fy satisfies Condition (S), and let h < h,.
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4.1. Credible Region in Strong Topology

We consider the construction of credible region for f in terms of L?-norm, and also study its
frequentist property. The existing literature mostly focuses on Gaussian setup: [26, 22, 7, 23, 50,
8, 31, 51] for Gaussian white noise, [47, 48] for Gaussian regression with fixed design, and [61] for
Gaussian regression with sieved priors. In contrast, our results are established in the more general
nonparametric exponential family.

For any f,g € S™(I), define (f, g)2 = V(f,g), an inner product on S™(I), and || ||z = V(f)/?
its corresponding norm, which is a type of L?-norm. For any a € (0,1), let r,(a) > 0 satisfy
P(fesS™):|f- ﬁl7/\‘|2 < rp(a)|Dy,) = 1—a. In practice, r,(«) can be computed as the (1 —«)
posterior quantile of || f — ﬁl All2 through MCMC samples of f; see [29] for more introduction. A

credible region with an exact credibility level (1 — «) is constructed as
Ro(@) = {f € $™W) : |f = Fanllz < al) } (4.1)
We next examine the frequentist property of R, ().

Theorem 4.1. Suppose that Assumption A1 holds, fo satisfies Condition (S), m > 1+ ?,
1< B <m+1/2, and h < hy. Then for any o € (0,1), limp—00 P (fo € Rp(a)) = 1.

It is easy to see that the L2-diameter of R,,(c) is 2r,,(a). Remark 4.1 reveals that r, () achieves
the optimal rate nf% when h < h,, therefore, the L?-diameter of R,(a) attains optimality.
A relevant result in [22] says that the credible region of the mean sequence in Gaussian sequence
models has coverage probability approaching one when the hyper-parameter is properly selected

as an order of n. Theorem 4.1 generalizes their result to nonparametric exponential family.

4.2. Credible Region in Weak Topology

The frequentist coverage of the credible region (4.1) asymptotically approaches one regardless of
the credibility level. This motivates us to construct a modified credible region using a weaker
topology such that the truth can be covered with probability approaching ezactly the credibility
level. Besides Theorem 3.2, our proof also relies on a strong approximation result ([52]).

We first define a weaker metric by following [7, 8]. For any f € S™(I) with f(-) = > 02 fupu(*),
define ||f]|2 = > 50, w, f2, where w, is a given positive sequence satisfying w, = v~ !(log2v)~"
for a constant 7 > 1. Since w, < 1 for all ¥ > 1, it is easy to see that || f||, < ||f]|2. Therefore,
|- || is weaker than || - [|2. We will show that under this weaker norm, any (1 — «) credible region
can recover exactly (1 — «) frequentist coverage.

For any o € (0,1), let 7y, n(a) > 0 satisfy P(f € S™(I) : || f — E’LJ\HM <ryn(a)Dy) =1-a.

We construct a credible region with credibility level (1 — a):

Ry(a) = {f € S"(0): |f = Fanllo < runl@) } (4.2)

Theorem 4.2 proves that R*(«) asymptotically possesses the frequentist coverage (1 — ).
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Theorem 4.2. Suppose that Assumption A1 holds, fo satisfies Condition (S), m > 1+ ‘[ 1<
B < min{m+ 3, (2m 1)? } and h < h.. Then for any a € (0,1), lim, o Pf (fo € Ry () =1 -«

[7, 8] consider credible regions with similar frequentist property in Gaussian sequence models
an density estimation. Theorem 4.2 generalize their results to nonparametric exponential family.
We note that the L2-diameter of R¥(a) is infinity (see Section A.4 of appendix). But we can
impose a restriction to make its L2-diameter being finite, by using a strategy of [7]. Specifically,
define
R (o) = Ry (o) n{f € S™(I) : J(f) < M},
for a constant M > 0. It can be shown that the L2-diameter of R**(a) is Opfno( ~3omre) logn)

_2m+4pB-1
(see Section A.4 of appendix). The leading factor n= 22m+8) is the optimal contraction rate under

Sobolev norm (see Section A.6). So the L?-diameter is now rate optimal upto a logarithmic factor.

4.3. Linear Functionals on the Regression Function

We construct credible intervals for a general class of linear functionals in nonparametric exponen-
tial family. Frequentist coverage of the proposed credible interval is also investigated. In particular,
we consider two important special cases: (1) evaluation functional: F,(f) = f(z), where z € I is a
fixed number; (ii) integral functional: F,,( fo z)dz, where w(-) is a known deterministic
integrable function such as an indicator funct1on. We ﬁnd that the former leads to an interval
contracting at slower than root-n rate, while the latter leads to root-n rate.

The existing literature mostly focus on functionals where efficient estimation with /n-rate is
available ([41, 7, 8, 3]). The more general inefficient estimation with slower than root-n rate (e.g.,
evaluation functional) is only treated recently by [49] in Gaussian white noise model. As will be
seen, our theory treat efficient and inefficient estimation in a unified framework.

Let F: S™(I) — R be a linear II-measurable functional, i.e., F(af + bg) = aF(f) + bF(g) for
any a,b € R and f, g € S™(I). We say that F satisfies Condition (F) if there exist constants x > 0
and r € [0,1] such that for any f € S™(I),

[F(F)] < h™ (| £ (4.3)
Lemma 4.3 below (given in [44]) implies that both F, and F,, satisfy (4.3).

Lemma 4.3. There exists a universal constant ¢ > 0 s.t. for any f € S™(1), ||flleo < ch™2||f].

Let rppn(a) > 0 satisty P(f € S™(I) : |F(f) — F(fvn,\)\ < rpn(a)|Dy) =1— . Define (1 — «)
credible interval for F(f) as

CIF(a): F(fu)) £ rrn(). (4.4)

Theorem 4.4 below shows that CI!" covers the true value F(fy) with probability asymptotically

at least (1 — ) for any F satisfying Condition (F'). Our result holds for both efficient estimation

such as F' = F,, and inefficient case such as F' = F, in contrast with the existing literature.
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For k£ > 1, define

- F(SOV)Q
2
Ohin = ; (72 +n(1 +Ap)F

Theorem 4.4. Suppose that Assumption A1 holds, fo = Y .00, fl¢, satisfies Condition (S'):
S P HE < 0o, mo> 1+ @, 1< B <min{m+ 1, (2m71)2}, and h =< h,. Meanwhile,

2m
kp2 _ 3—r _
O, <h™" fork=1,2. (4.5)
Then for any o € (0,1), we have
lim inf Pj(F(fo) € CIF(a) >1—a, (4.6)

given that Condition (F) holds. Moreover, if 0 < Yo%, F(p,)? < oo, then lim, o0 PP (F(fo) €
CIf(a)=1-a.

By carefully examining the proof of Theorem 4.4, we find that when F' = F,, the inequality (4.6)
is actually strict, and the length of CIL («) satisfies 7, () < n_%. When F = F,, CI(a)
covers the truth with probability approaching 1 —c, and its length satisfies rp,, (a) = n~1/2. Please
see Remark 4.1 for more details. Therefore, there exists a subtle difference between the two types
of functionals. Simulation results in Section 6 empirically confirm this subtle distinction.

Remark that Condition (S’) is slightly stronger than Condition (S), which is used to correct
certain bias arising from the prior. Such a condition can be understood as the “under-smoothing”
condition in smoothing spline; see [44]. Condition (4.5) is not restrictive and can be verified in
concrete settings; see Proposition 4.5 below. The proof of Proposition 4.5 relies on a nice closed

form of ¢, and a careful analysis of the trigonometric functions.
Proposition 4.5. Suppose m =2, X ~ Unif[0,1], and Y|f, X ~ N(f(X),1).

(i) If F = F, for any z € (0,1), then (4.5) holds for r = 1;
(ii) If F = F,, for any w € L*>(I)\{0}, then 0 < >°°°, F(p,)% < 0o and (4.5) holds for r = 0.
Remark 4.1. The radii (), 7y n(c) and rpy,(a) are determined by posterior samples of f This

might be time-consuming in practice. In fact, the proofs of Theorems 4.1, 4.2 and 4.4 reveal that
the radii satisfy the following large-sample (data-free) limits:

Cin + v/ 2C2n%a - 1
= 2 ’ 1 n (1 ) 5 h = )
ra(@) \/ n ( Fory (1)), where G 1,221 (14 My +n-Lr2)k

roale) = % (1+ o 1)

rEal@) = Oinzag (1+0pp (1)),
(4.7)
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where cq > 0 satisfies P(3°°0 ; wyn? < co) = 1 — a with n, being independent standard Gaussian,
and zo = ®~1(1 — ) with ® being the standard Gaussian c.d.f. Replacing the radii by the above
limits (4.7), one can establish the asymptotic proxies of (4.1), (4.2) and (4.4), which can reduce
computational burden. The frequentist coverage of these asymptotic regions/intervals remains the
same as the original ones. Proof of Theorem 4.1 indicates that rn(«) attains the optimal rate of
contraction nf% when h < hy and (. < nt/@mtB) for k = 1,2. The optimal contraction
rate can be viewed as a Bayesian counterpart of the minimax estimation rate in classic frequentist

literature, e.g., [53].

5. Nonparametric BvM Theorem

The traditional BvM theorem ([18]) in parametric models requires the limit posterior measure
to be prior free. However, the posterior approximation in Section 3 still contains some prior
information, i.e., the sequences o2 and 72 in W. Similar phenomenon has also been observed in
Bayesian sparse linear models; see Theorem 6 in [2].

In this section, we derive a limit Gaussian posterior that is nonetheless prior free, and thus
establish nonparametric BvM theorem in the traditional sense. This can be achieved by simply
choosing a sub-optimal A, in contrast with the optimal choice of h in Section 3. This finding can
be viewed as a Bayesian analog of the well known “under-smoothing” idea in the nonparametric
literature. Additionally, we prove that some other choices of h lead to the failure of BvM. Con-
struction of posterior balls together with their asymptotic validity are also investigated based on
the new nonparametric BvM theorem.

The intuition behind our prior-free limit Gaussian measure is quite simple: we set the prior

information 7, = 0 in the expression of W given in (3.13). The resulting GP becomes

W* = fux + Wy,
where W () = Y, o {n(1+ M)} 7Y26,0,(-) and &, w N(0,1). Notably, W* depends only on the
smoothing spline estimate fn » and the sequence 7,. The latter depends on differential equations
(2.5) which involve only the function A(-) and true fy. Hence, W* contains no prior information.
Define P, as the probability measure of W* (conditional on Dy,).

We next show that P, is indeed an asymptotic posterior measure. Based on Theorem 3.2, it
suffices to show that the deviation between Py and P, is sufficiently small. Unfortunately, this
cannot be achieved if we choose h =< h, or its small neighborhood, i.e., (5.3). In this case, the mean
of Py, i.e., ﬁm, and that of P, i.e., ﬁb)\, are found not to converge to each other fast enough.
This leads to the failure of BvM theorem. However, if we choose h converging to zero significantly

slower than h, in the sense of (5.1), a prior-free nonparametric BvM theorem holds.

Theorem 5.1. Suppose Assumption Al holds and fo = >0, fOp, satisfies Condition (S) with
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p=B—-1.Letm>1+2 ~1.866,1<8<m—1 andh=n" with

2 2m 1 cae 2 (5.1)
max — a T e—— .
6m+ 38 —4’2m(4m + 28 —5)+ 1" 4m dm + 26 +1

Then we have, as n — o0,
sup [P(If = Fualla  1D0) = Po((f = Funllz < 0] = o (1). (5.2

a

Moreover, there ezists a fo satisfying Condition (S) such that, for any h < n™=% with a satisfying

2 cu< 8m 440 + 2
a )
dm+20+1 — 8m+46+1)2m + p)

(5.3)

(5.2) does not hold.

Based on Theorem 5.1, we are ready to construct (prior-free) credible balls with the center fn A
that asymptotically attain desirable credibility levels. Unfortunately, the corresponding radii in
this case converge to zero even faster than the optimal rate of contraction such that the truth will
be excluded from the credible balls. A simple remedy is to “blow up” the radius (see the similar

idea of [51]). To be more specific, we construct a ball centering at ﬁl7,\ with radius (1 + )r}:

Ry(e) ={f € ™M) : | f = fanlla < (1 +€)ry}, for any & >0, (5.4)

1~
oy ey R — A 2
T \/nh/o Atz

The above choice of 7% is of the order r,, = (nh)~/2 4+ h™ which can achieve the rate n~""/(2m+1)
2m+1).

where

by using h = n~1/( see Remark 3.1. Note that we may use generalized cross validation

to select such a h; see [58]. In practice, one may replace 7} by a finite-sample counterpart, e.g.,
rn(a)%, which can be shown to also achieve the rate n=™/(2m+1) (recalling that 7, (c)
is the radius of the ball R, (a) determined in Section 4.1).

A direct consequence of Theorem 5.1 implies that R} (e) asymptotically possesses large credi-

bility level and frequentist coverage.

Corollary 5.2. Suppose Assumption A1 holds and fy satisfies Condition (S) with ¢ = —1. Let
m>1+ @ ~ 1.866, 1 < f <m — % and h < n~% with a satisfying (5.1). Then for any € > 0,
as n — o0, P(Ry(e)|Dn) > 1 — a with P} -probability approaching one, and P} (fo € Ry, (e)) =
1+ o(1).

6. Simulations

In this section, we empirically investigate the frequentist coverage probabilities of the credible

region (4.1) and modified credible region (4.2), and credible intervals for evaluation functional and
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integral functional. As for the choice of A (equivalently, h) in the GP prior, we suggest employing
the generalized cross validation (GCV) method. For example, let hgoy be the GCV-selection of

h, which is known to achieve an rate n~"/(™+1); see [58]. Then, we can set h, = hggl‘j /@m+B)
This method works very well as demonstrated in the simulations.
We generated data from the following model
Yi:fO(Xi)"i'Eia 1=1,2,...,n, (61)

where X; are id uniform over [0, 1], and ¢; are iid standard normal random variables independent
of X;. The true regression function fy was chosen as fo(x) = 3f830,17(z) + 283,11(x), where B4 is
the probability density function for Beta(a,b). Figure 1 displays the true function fp, from which
it can be seen that fp has both peaks and troughs. GP prior defined in Section 3.3 was used
with m = 8 = 2. The h was selected based on GCV proposed by [59]. MCMC algorithms were

employed to draw posterior samples of f.

0.0 0.2 0.4 0.6 0.8 1.0

F1G 1. Plot of the true function fo used in model (6.1).

To examine the coverage property of the credible regions, we chose n ranging from 20 to 2000.
For each n, 1,000 independent trials were conducted. From each trial, a credible region (CR) based
on (4.1) and a modified credible region (MCR) based on (4.2) were constructed. Proportions of the
CR and MCR covering fy were calculated, and were displayed against the sample sizes. Results
are summarized in Figure 2. It can be seen that for different 1 — «, i.e., the credibility levels,
the coverage proportions (CP) of CR are greater than 1 — « when n is large enough. They even
tend to one for large sample sizes. However, the CP of the MCR tends to exactly 1 — a when n
increases. Thus, the numerical results confirm our theory developed in Sections 4.1 and 4.2.

To examine the coverage property of credible intervals, we chose n = 25,27, 28 29 to demonstrate

the trend of coverage along with increasing sample sizes. For evaluation functional, we considered
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Fia 2. Coverage proportion (CFP) of CR and MCR, constructed by (§.1) and (§.2) respectively, bosed on various
sample sizes and credibility levels. The dotted red line indicates the position of the 1 — a credibility level.

F = F. for 15 evenly-spaced z points in [0,1]. For each z, a credible interval based on (4.4)
was constructed. We then calculated the coverage probability of this interval based on 1,000
independent experiments, that is, the empirical proportion of the intervals (among the 1,000
intervals) that cover the true value fp(z). Figure 3 summarizes the results for different credibility
levels o, where coverage probabilities are plotted against the corresponding points z. It can be
seen that the coverage probability of the pointwise intervals is a bit larger than 1 — o for all o
and n being considered. This is consistent with Proposition 4.5 (i), except for the points near the
right peak of fj. Indeed, at those points near the right peak, under-coverage has been observed.
This is a common phenomenon in the frequentist literature: the peak and trouts may affect the
coverage property of the pointwise interval; see [32, 44]. This is also possible due to the mismatch
of smoothness level between the prior and true parameter.

For integral functional, we considered F' = F,  for wz(z) = I(0 < 2z < 2p) with 15 evenly-
spaced zp points in [0, 1]. We evaluated the coverage probability at each zp based on 1,000 exper-
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iments. Figure 4 summarizes the results for different credibility levels o, where coverage proba-
bilities are plotted against the corresponding points zp. It can be seen that, as n increases, the
coverage probability of the integral intervals tends to 1 —a for all &, This phenomenon is consistent
with our theory, i.e., Proposition 4.5 (ii).
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Supplementary document to

Gaussian Approximation of General Nonparametric

Posterior Distributions

This supplementary document consists of two parts. Part I contains the proofs of the main results

in this paper. Part II contains the proofs of auxiliary results.

Supplementary Document: Part 1

This section contains proofs of main results in Sections 3, 4 and 5.

A.1. Proofs in Section 3

Before proving Theorem 3.2, let us state several preliminary results.
Lemma A.1. Under Condition (S), we have ||]?M — Joll = Opy, (7).
Proposition A.1. (Contraction Rate) Suppose Assumption A1 holds, and fo = > oo o,
satisfies Condition (S). Furthermore, the following Rate Condition holds:
r = o(h*?), h'?logn = o(1), nh®" ' > 1, D, = O(7,),

7nbn1 S 17 bn2 S ]-a T?zbnl S ?)7217 7"721an S ;’;?l
Then, for any €1,e2 € (0,1), there exist positive constants M', N’ s.t. for any n > N’,
PE(P(||f = foll = M'T|Dy) > &) < e, (A1)

where P}‘ denotes the probability measure induced by D,, under f.

Lemmas A.1 is a direct consequence of Lemma A.12 in online supplementary and ||.S, x(fo)|| =
Oprn (hm*¥/2) where S, A(fo) is defined according to [16], i.e.,
0

n

Snalho) = + (¥ = Ao (X)) Kx, ~ Pao.

=1

Lemma A.2. It holds that

() = (o) + 17 = Foal? = T3() + Tl ), (A2)
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where
o1 1 18" N N ed(f T ' 2 \2
Ti(f) = n/o /0 iE_l[A(fn,A(Xz)Jr (f = fa ) (X)) (f = fur)(X3)

—A(fo(X)(f — Far)(X:)2)dsds’,
T(f) = —— STAG(X)ANX)? — EX A - Fn) (X2 (A3)

2n
i=1

Proof of Lemma A.2. By Taylor expansion in terms of Fréchet derivative, the result holds. See
Section A.6. 0

Proof of Theorem 3.2. Tt follows by Remark 3.1 that Rate Condition (R) holds. We will prove
the theorem under Rate Condition (R).
Let 1,9 be arbitrarily small positive constants. Let €3 be small fixed with 0 < €3 < log2 and

deszexp(es) + 2e3 < £9/3. Consider three events:
& = {llfax — foll < M7}
& = A{P(If = foll > Mary|Dy) < e3}
&) = APR(If = foll = M) < e3},

where My, My are large enough constants. It follows from Lemma A.1 and Proposition A.1 that
we can choose My > M (both large enough) s.t. P (€, N &) > 1 —¢1/2. On &, we have

1 = foll = Mi7 < |f = Farll < |If = foll + M7,

Hence,

Jis=soliz a7, P <—%Hf - J?n,AH2) dIl(f)
Jsmy 50 (=317 = Faall2) d1t(s)
Jis=soliz a7, P <—%Hf - ﬁz,)\||2) dII(f)

Sis—porn &0 (<315 = Fanll2) dri(s)
< exp (= ((My— M1)?/2 — (My +1)%/2) nd2) TI(|| f = foll < 7)™
< expey! (< ((Ma — My)?/2 — (My +1)%/2 — o /4) n7) (A.4)

Po(llf = foll = Mary,) =

. o . .. - v e
where the last inequality is due to Assumption A2 and the trivial fact 7, > A2 and 7, "™ <
n72 /4. The last inequality follows by

S o
T > 2n 2@mt9+1)

We can even manage M to be large so that the quantity (A.4) is less than 3. Therefore, we get
that Pp (&) > Pp (€, NEY) > 1 —e1/2. Define &, = &, NENEY, then it can be seen that

P]%(gn) > 1—81.
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Using an empirical process argument (see (A.73) and (A.74) of Section A.6), it can be shown

that on &,, for any f € S™(I) satisfying ||f — fol| < Mary,

IT1(f)] < Dy x Tobp1, |Ta(f)| < Do x 72bpa,

(A.5)

where D1, Dy are constants depending on M, Ma. Since n72 (7,bn1 + bp2) = o(1), we choose n to

be large enouch so that Dy x n7ob,; + Da X ni2bps < e3.
Define

D= [ e (nltaats) ~ ualFan)) ),
D= [ e (<5l = Fual?) anis),

JIn1 /”f foll<Mars exp (n(gn,/\(f) - gn,)\(fn,)\))) dl‘I(f)7

e [ e
If = foll<M27r

a1 — J, T2 — J,
S nl nl S £3, 0 S n2 n2 S £3.
Jnl Jn2

2) drif).

It is easy to see that on &,

By some algebra, it can be shown that the above inequalities lead to

Jn2 In2 1 jn2
1— —_— =K .
e Ly S P ply

(A.6)

Meanwhile, on &,, using (A.5), Lemma A.2 and the elementary inequality |exp(z) — 1| < 2|x|

for |z| <log2, we get that

’jn? - jnl‘
n o2
= /”f <M exp (‘5\\f—fn,A!! ) x |exp(n(Ty(f) + To(f))) — 1|dII(f)
< 2e3Jn2,

leading to that

1 Jno 1
< =<
1423~ J, = 1—2e3

Combining (A.6) and (A.7), on &,,

—_

l—es <@
14263 = Ju1 — (1—2e3)(1 —e3)’

N

leading to
1-— J, 1
B << 1< 4eg
1—|—2€3 nl (1 —263)(1—63)

—4e3 <
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For simplicity, denote R, (f) = n(T1(f) + T2(f)). For any S € S, let S’ = Sn{f € S™(1) :
lf — foll < Mar,}. Then on &,, we get that

[P(S/Dy) — Po(S)| < [P(S'[Dn) — Po(S")] + 2.
Moreover, it follows from Lemma A.2 and (A.8) that on &,,
|P(S"Dn) = Po(S")]

/ exp(n(lur(F) — bon(an))) &P (Z317 = Fuall?) dH(f)‘

Jnl Jn2
~ R, 1
[ o (=518 = Fal?) x | =2 - lan)

M7 ) e~ 1]
[ e (<508 = Funl?) < R Han )

IN

IN

1 1

n .
+/S/ exp (—§”f - fn,AH2> x exp(Rn(f)) x In1 In2

Jyrexp (=515 = Fanl?) dIL(f)

Jn2
1 1

Jnl Jn2

IN

253

+exp(ez) X

e (=517 = Ful) amt(

J,
< 2e3 4 exp(eg) x 2

‘ < 2e3 + 4egexp(es) < e9/3.

nl

Note that the right hand side is free of S. Then we get that on &,,

sup |P(S|Dy,) — Po(S)| < e2/3 + 223 < e3.
Ses

This implies that for sufficiently large n,
Py <sup |P(S|D,,) — Py(S)| > 62)
Ses

< Pp(&)+ Py <€n, zlég |P(S|D,,) — Po(S)| > 82)

— PP(ES) <er

This completes the proof. O

Proof of Lemma 3.3. For any f € S™(I), by Proposition 2.1, f admits a unique series representa-
tion f =300, fuu, where f, = V(f, ¢, ) satisfies Y f2p, < oo. Therefore, T : f + {f, : v > 1}
defines a one-to-one map from S™(I) to R, = {{f,}52, € R®:Y"°°, f2p, < oo}

Let IIy and IT be the probability measures induced by {w, : v > m} and {v, : v > m},
respectively, which are both defined on R*. That is, for any subset S € R®, II,(S) = P({w, :
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v>m} € 8) and TI(S) = P({v, : v > m} € S). Likewise, let IT} and IT’ be probability measures
induced by {w, : v > 1} and {v, : v > 1}. It is easy to see that, for any measurable B C R,,,

I\(T7'B) = P(Gy € T7'B) = P({w, : v > 1} € B) = II}(B), and
I(T7'B) = P(GeT'B)=P{v,:v>1} € B) =1I'(B).
The following result can be found in Héjek [19].

Proposition A.2. The Radon-Nikodym derivative of Iy w.r.t. II is

[e.9]

dIl nA
2({fyiv>my) = ] (40 /0,)2 exp(——=f2p)
dH v>m 2
o0 ’I’l)\ o0
= ] @ +nrou/0,)"? - exp (—2 > ffm) :
v>m v>m

0
v>m

Note that in Proposition A.2, [ (1+ n)\pl,/ﬁl,)l/2 is convergent since ) . p, /0, < oo.

Therefore, by Proposition A.2, we have

dIT,
M (v = 1)
m 2no2 —1/2 14+nAo2) f2 ~
Hl/:l (l—i-n)\a,%) exXp (_( 205) )> dIl)
= - = X —{fu :v>m})
HV:1(27T0-12/)71/2 eXp <_2;2) dil
= [Ja+nro))exp <—”;f3> < [T @ +nxon/6.)"?
v=1 v>m
nA
X €Xp <_2 Z fz?pu>
v>m

m

_ 2\1/2 - 1/2 f@ N 2
H(l +n>\al,) H (1 +n)\py/eu) X exp ( 92 ;fy7V> .

v=1 v>m
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Then for any measurable S C S™(I), by change of variable, we have
IA(S) = IL(TS)
— [ amqg =1
TS

= JIa+mae2)2 I] 1 +nrp,/6,)"?
v=1

v>m
(—”j fo%) av({f, v 2 1))
v=1

(L +nxe2) 2 T (1 +nrpu/6,)"?

v>m

(<@ v 2 1)) dTo T (£ v 2 1)

S~
W
a
=]
he}

I
=

<

T -
95}
D
»
ke

I
b

nAo2)1/2 = n 12 [ o _nA
(o) T @+ uvn 00 [ exp (20000 ) ant).

1 v>m

N
Il

This completes the proof of the lemma. O

The proof of Lemma 3.4 requires a concentration result (Lemma A.3). Let {¢, : v > 1} be a

bounded orthonormal basis of L?(I) under usual L? inner product. For any b € [0, 3], define
Hy={>_ fuv: > Fopu(00/p,)"? < o0},
v=1 v=1

Then H, can be viewed as a version of Sobolev space with regularity m -+ b/2. Define G =

S22 w,Py, a centered GP, and fo = 3.2, f9%,. Define V(f,g) = (f,g)r2 = fol f(z)g(x)dz, the
usual L? inner product, J(f) = >0l \V(f,%u)2py, a functional on Hy. For simplicity, denote
‘7( f) = ‘7( f, f). Clearly, foe H 3. Since G is a Gaussian process with covariance function

R(s,t) = E{G(S)é(t)} = ZUESEV(S)@u(t) + Z 9;1()51,(8)()51,@),

v>m

it follows by [56] that H 3 is the RKHS of G. For any Hp with 0 < b < 3, define inner product

O f0:> gv@de=> 0,2 fogv + > fogupu(0u/p0)"".
v=1 v=1 v=1

v>m
Let || - ||p be the norm corresponding to the above inner product.

Lemma A.3. Let d, be any positive sequence. If Condition (S) holds, then there exists w € ﬁﬂ
such that
(i). V(w— fo) < d2,

B B 2(8—1)
(ii). J(w— fo) < 1da™""7",
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-2
(iii). ||wl|3 = O(dn *™ 7).

Proof of Lemma A.3. Let w = 23021 wy Py, where w, = %, = di/(2m+ﬁ_1), b, = pi/@m)

)

a=m+ (- 1)/2 and d > 0 is a constant to be described. It is easy to see that for any v,
fl—w, = (90 )*fuy  Then

d+(oby )
¥ 3 _OO 0 2 S |f21? (b, )** 2m+8—1 —2Oo 02 1+52
V(W—fO)—;(fu —wy)” = IZW < PP ;|fv| Pv ;
and
j(w_.fO) = Z(fg_wy)qu
v=1
= o’ 1Z|f0 (d(aby) ™™ + (ob,)P1/%)72

_B-1,, 2m _m 2m -1 o 5 4 148-1
< (G ) E R Y R

Therefore, we choose d as a suitably large fixed constant such that (i) and (ii) hold.

To show (iii), observe that

d2’f0 p "‘ 2m
]| = Za—%ﬂ + > w2, < Za_2|f0 + Z v bl, =0(c™Y).

= (d+ (oby)
The result follows by o = d2/ (2m+5 _1). O
Proof of Lemma 3.4. Let ¢ > A . Hence, A\ = h?™ < £2m+6 1. It follows by Lemma A.3

by replacing d,, therein by e, by Gaussian correlation inequality (see Theorem 1.1 of [12]), by
Cameron-Martin theorem (see [6] or [11, eqn (4.18)]) and [8, Example 4.5] that

([ f = foll <¢)
= PG - fol <e)
> P(V(G - fo) <e*/2,AJ(G — fo) < 52/2)
> P(V(G— fo) <*/2,J(G - fo) < 52m+[3 1/2)
= P(V(C— fo) < 22, (G — fo) < ermir1 j2)
> P(V(G—w) < (1/V2— 1/2)%2, (G — w) < (1/V2 — 1/2)% 3 551)
> exp(—[lwl3/2) x P(V(G) < (1/v2 = 1/2P2, J(G) < (1/VE = 1/2)%3m570)
> p(—uwuﬂ/m P(V(G) < (1/V2=1/2P%/2) x P(J(G) < (1/V2 = 1/2Pem 71 /2)
> exp(—coe m),

where ¢y > 0 is a universal constant. O
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Proof of Theorem 3.5. Let T : f — {f, : v > 1} be the one-to-one map from S™(I) to R, as
defined in the proof of Lemma 3.3.

Let HQ,V and II' be the probability measures induced by {an,yfy + bpymyvy, @ v > 1} and
{v, : v > 1}. Then dII};, /dII" equals imy_o0 P18 (f15- -5 fN)/D2.N(f1,-- ., fn) (see [17, Section
I1I]), where p; n and py n are the probability densities under f, ~ an,yﬁ, + bn,mv, and f, ~ vy,

v=1,...,N, respectively. A direct evaluation leads to that
dIly, n < 0
V> = _ L — 1 ),
g (v v 2 1}) = Coyexp(—5 ;:l(f P2+ M)
where

v=1 v=1

) )
o= Tlnar oo (335 0020 7).
Since ), j?%, < oo and > 1, it is not hard to see that C), 5 is an almost surely finite constant.
For any B C R, y (T~'B) = II}j;,(B), and II(T"' B) = II'(B). To see this, note that
My (T'B) = P(W € T~'B) = P({an,fy + buyrov, : v > 1} € B) = I}y (B), and
I(T7'B)= P(GeT'B)=P{v,:v>1} € B) =1I'(B).
By change of variable, for any II-measurable S C S™(I),

Ow(S) = My (TS)

= / iy, ({fy : v > 1})
TS
= Cpa /TS exp(— ;(fy — ﬁ,)Q(l + A ) (f, :v > 1)

_ chﬁéemx_;wwaﬂﬂﬁmnu»

n

\]

In particular, let S = S™(I) in the above equations, we get that

-1
_ M Tl
cm_<émfw<yu mwmmﬂ>.

This proves the desired result. O

A.2. Proofs in Section /4

Before proving Theorem 4.1, we give some preliminary results.

Lemma A.4. As n — oo, we have

n|[Wall3 — Gin

\/ﬁ — N(0,1),

where Cen = Y00y (A+dy+n=TIr2)F
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Proof of Lemma A.J. Let n, = 1pv,. Then n, is a sequence of iid standard normals. Note that

e}

2
n
Walls = = :
H nHQ 1,217_3 n(l >\'Yu)

Let U, = (nHWnH% — C1,n)//2C2,n, then we have

I/_l)

n(n
\/242112 2+n 1"_)‘711)

By straightforward calculations and Taylor’s expansion of log(1 — x), it can be shown that the

U, =

logarithm of the moment generating function of U, equals

log E{exp(tUy)} = t2/2 + O (t3 32, n) . (A.9)

It can be examined that (2, nt/(m+8) and (3,n nt/@m+8) 5o the remainder term in (A.9)

is O(n~Y/2Em+A)) = 5(1). So hmTHOO E{exp(tU,)} = exp(t2/2). Proof is completed. O
Define

R(z,y) = s~ wul2)euly) z,y el (A.10)

— 1+ Xy, +ntr
Lemma A.5. sup, g |R(z, y)| <h7! and SUP, et ’(%R(m,y)’ <h2

Proof of Lemma A.5. For any g € S™(I) and x € L, it follows from [6, Lemmas (2.10) and (2.17)]
that there exist constants ¢/, c”, " s.t.

0 0
‘<g> %Kr” = ‘%<97Kz>‘

= 1g/@)] < n 2\l 3, + B2l
= Clh_g/z\/hzl\g/llé + hd{|g" |17
Bl + R2Nlg'122) + (lgl2, + hlg12.)

¢ gl + h2m g2,
g

IN

IN

IN

This implies that || 2 K,|| < ¢”h~%2. For convenience, let Ry(-) = R(-,y). It is easy to see that

R |I2 Zoo eu(y)?
H yH (1 +)\'71/ _|_n,17_3)2( + v )

v=1
ou(y)? 2 -1
- K <c2ht
T it (v.9) < ci

This implies that |R(z,y)| = [(Ry, Kz)| < |Ry|l - || Kz|| < c%-h~L. This also leads to that, for any

z,y €l 5 8

The desired result follows by the fact that both ¢; and ¢” are universal constants free of z,y. [

0

Ko)| < |1By|l -l - Kol < exch™,
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Proof of Theorem 4.1. By direct examinations, we can show that the Rate Conditions (R), n72 (7,bn1+
bn2) = o(1), nhD? = o(1) are all satisfied.
It is sufficient to investigate the Pf -probability of the event HJ}; A — foll2 < ru(@). To achieve

this goal, we first prove the following fact:

|2n (@) — 24l :OP}B(l), (A.11)

where z, = ®71(1 — ) and @ is the c.d.f. of N(0,1), and z,(a) = (nrp(a)? — C1.n)/v/2¢2.n- The
proof of the theorem follows by (A.11) and a careful analysis of fo — fax.
We first show (A.11). It follows by Theorem 3.2 that,

|P(Bn(a)[Dn) — Po(Rn(a))] < sup |P(B|Dy) — Po(B)| = opy (1).

Together with P(R,,(a)|D,) = 1—a, we have | Py(Ry,(a))—(1—a)| = Opﬁ)(l). Since W = ﬁ7A+Wn,

BPo(Bn(a)) = P(W € Ry(a)Dy)
= P([Wal2 < ra(@)[Dn) = P(Un < za(a)|Dn),

and P(U, < z4) = 1 — «, where U, is defined in the proof of Lemma A.4, we get that

[P(Un < 20(0)[Dy) = P(Un < z)| = 0pp (1), (A.12)

where U, = (n|Wyl|3 — C1.n)/+/2C2.n- Let @, be the c.d.f. of U,. Since U, is independent of the
data, we have from (A.12) that

[ (20(0)) — Du(za)| = opy (1). (A.13)

Now for any € > 0, if |z, () — 24| > €, then either |®,,(z,()) — Pp(24)| = Pr(zq +€) — Pp(2a) or
|y (2 (@) — Pr(2a)] > Pn(2a) — Pn(zq — €). Since @, pointwise congerges to @, both ®,,(z4 +
g) — P, (2zq) and @y, (24) — Pn(zq —€) are asymptotically lower bounded by some positive numbers
(possibly depending on ¢). This implies by (A.13) that (A.11) holds.

Next we prove the theorem. Define Rem,, = ]?n,A — fo — Sua(fo). It follows by Functional
Bahadur Representation ([16] or [44, Theorem 3.4]) that ||Rem,]| = OP}B (Dy,) with Dy, = ayn +by,.

By direct examination, we have

far—fo = i <an,uv(ﬁL,)\7 Pv) — fB) Pv

v=1
o0

= Z (an,uv(Remn + fo+ Sn,)\(f(])7 901/) - fyo) Pv

v=1

0o 00
= Z an,VV(Remn, 901/)901/ + Z(an,u - 1)f19%0u
v=1 v=1

o0 18 00
+ Z an,uv(a Z fiKXip SDV)SOV - Z an,l/v(P}\f()a @V)@V? (A14)
v=1 i=1 v=1
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where ¢, = Y; — A(fO(Xi)). Denote the four terms in the above equation by Ty, 15, T3, Ty.
Since a,, <1, it is easy to see that

o

ITVE = Y an,|V(Remn, o))
v=1

< D IV(Rema, pu)P = |Remall3 < | Rema|* = Opy (D7) (A.15)
v=1

Using h < n~Y@m+6) and a direct algebra we get that

(o]
Il = > (any = Df)P
v=1
2
- i i ‘f0’2
A — v2mtB 4 (1 4 Av2m) v

2m4+8—1
= o(n~ 2t ) =o(n " th7h).

Meanwhile, it follows by Proposition 1 that

00 )\’}/ 2
T3 = > az, I <1+/\V%>

v=1

00 A'Y 2
< 02 v
< S (%)
0 hy)2m—ﬁ+l
< 02 h 2m+pL—1 (
~ Vz::l‘fy| ( V) (1—|—(hl/)2m)2
2m+B8—1

= o(n~ 248 ) =o(n thh).

It is easy to see that R(z,2') = > 07, anvu%ﬁfz/) for any z,2’ € 1. Also define R,(-) =

R(z,-). It is easy to see that R, € S™(I) for any x € I. Then it can be shown that T3 =
LS | €iRx,, leading to || 7513 = V/(T5,T3) = -5 Y1) €2V (Rx,, Rx,) 4% Y1<icpen €V (Rx,, Rx,).
Define W(n) = 2% . _, €,V (Rx,, Rx,). Let Wi, = 2¢;6,V(Rx,, Rx,) for 1 < i < k < n, then
W(n) =31 <;cp<n Wik. Note that W (n) is clean in the sense of [5]. Let o%(n) = E {W(n)*} and

Gr, Gy, GI; beideﬁned as

Gr = Z Efo{vvz%}’
1<i<j<n
G o= Y, (Bp{WiWal + En{WiW5i} + Ep{WEWi)
1<i<j<k<n
Grv = Z (B {Wi Wit Wiy Wi} + E {WisWaWii Wi} + E g AW Wa Wi Wji}).
1<i<j<k<i<n

Since ¢, are uniformly bounded, we get that

R =3 B
T - — ~ )
= (1+n7177 4+ Ap)?
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where “<” is free of z. This implies that G; = O(n?h™) and G = O(n3h™). Tt can also be
shown that for pairwise distinct 4, k,¢,1,
E AW Wy Wy Wy }
= 24Ef0{6 Ekft GZQV(RX Rx, )V(Rx,, Rx,)V(Rx,, Rx,)V(Rx,, Bx,)}

_ o4 —1
=2 Z 1+)\% =00,

which implies that Gjy = O(n*h™!). In the mean time, a straight algebra leads to that

4

00 = 4(3) 2 i

ad 4
- 4<2> 2 <73 +n(l+ A%)) =2n(n —1)Gun =< n"h"".

v=1

Since nh? = n'=2/Cm+8) _ o we get that Gy, Gy and Gy are all of order o(c*(n)). Then it

follows by [5] that as n — oo,
W(n)

LAY 2C4n

Since ¢4, < h™!, the above equation leads to that W(n)/n = Opﬁ)(h_l/Q). It follows by direct
examination that Vary, {31, eV (Rx,, Rx,)} < nEs{e}|Rx,||3} = O(nh~2), leading to that

—>N01)

ZG?V(RXi,RXi) = EfO{ZE?V(RXi,RXi)}—|—OP]%(7’LI/2]”L_1)
i=1 i=1

= nCQ,n + OP}I) (n1/2h’1).

Therefore, it follows by condition nthL = o(1) and the above analysis on T3, T5, T3, Ty that

nh| fax — fol3 nh||Ts[|5 + Opyp (nhD2) + opy (1)

= hGan +opr (1). (A.16)

In the end, note from (A.11) and ¢y, < n'/?™+5) (see the proof of Lemma A.4) that nr,(a)? =
Cin+ /20 n2a + opp (1/C2,n). Therefore, nhry(a)? = h¢in(1 +OP;LO£1)). Since liminf,, o0 (h¢1 5 —
h(2,n) > 0, we get that, with Pf-probability approaching one, [|f,x — foll2 < ru(a), Le., fo €
R, (). Proof is completed. O

Before proving Theorem 4.2, let us present two preliminary lemmas.

Lemma A.6. Asn — oo,
o0
d
n||Wal2 = Zwunfa
v=1

where 1, are independent standard normal random variables.
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Proof of Lemma A.6. The proof follows by moment generating function approach and direct cal-

culations, as in the proof of Lemma A .4. O

Proof of Theorem 4.2. By direct examinations, one can show that Rate Conditions (R.), n72 (7,,b,1+
bn2) = o(1), and nD? = o(1) are all satisfied.
We first have the following fact:

[Vnrun(a) = Veal = opp (1), (A.17)

where ¢, > 0 satisfies P(Y 00 w,n2 < ¢o) = 1 — a with 7, being independent standard normal
random variables. It follows from (A.17) that nr,,(a)? = co + 0}:%(1). The proof of (A.17) is
similar to the proof of (A.11) and is omitted.
Let T1,T,T3,Ty be items defined in (A.14). It follows from the proof of Theorem 4.1 that
1112 < || T3 = Op;% (D2). So, n|| T = OP},B (nD2) = opy (1) due to the condition nD? = o(1).
It follows by condition h < n~1/2m+5) dominated convergence theorem and direct examina-
tions that

9
ITl2 = > wilan, — 1A
v=1

) o] V2m+,8+1 511 012
= n- . B
' Vzlwy(l + ()2 + (hwyzmtB)2 © 7 |f]
o
h,/)2m+ﬁ+1
< pl ( i 0
= ; L+ ()2 ¢ (hoyemByz =Y P =o(n™h),

and

00 )\’7 2
T2 — a2 v 02
H 4Hw ;w a’n,u (1+)\,}/V> |f1/’

- (hw)?m—F+1 02 2m+B8—1
< y h m
S L s ey < 0

< p2mtB i (hv)*m—F
~ = (L4 (hv)?™ + (hw)?m+0)

5 X LOPAmHI = o),

Next we handle T3. By proof of Theorem 4.1, we have T3 = n~! Yo, €iRx,, where ¢ =
Yi — A(fo(Xi)), which implies n|T3(12 = n~ || 30, 6B, |12

Since Ef,{exp(|e|/Co)} < C1, we can choose a constant L > Cjp such that Pf (&) — 1, where
En = {maxi<i<n |€;| < b, = Llogn}. We can even choose the above L to be properly large so

that the following rate condition holds:

b2 exp(=b,/(2C0)) = 0(1), h™2exp(—bn/(2C))) = o(1). (A.18)
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Define H,(-) = n= 23" ;Rx,(-) and H2(-) = n= 23" eI(|e;] < bn)Rx, (). Write H,, =
H, — HY — Es {H, — H.} + H — Ey, {HL}. Clearly, on &,, H,, = HE, and hence,

|Hp(2) — Hy)(2) = Ef{Hn(2) = Hy(2)} = |Ep{Hn(2) — Hp(2)}|

n' | Eg,{el(Je] > b)Rx(2)}]
nl/Qh_lEf0{62}1/2P}E(|€| > bn)1/2
n2h " exp(—bn /(2C0)) = o(1),

AN N

where the last o(1)-term follows by (A.18) and is free of the argument z. Thus,

Sup |[Hn(2) — Hp(2) = Eg{Ha(2) — H;(2)}| = opyp (1). (A.19)
Define R,, = HY — E;{H.} and Z,(e,z) = n'/?(P,(e,xz) — P(e,x)), where P,(e,x) is the
empirical distribution of (¢, X) and P(e, z) is the population distribution of (¢, X) under Pj -

probability. It follows by Theorem 1 of [52] that
sup | Zn(e,x) — W (t(e,2))| = Opp (n~"?(logn)?), (A.20)

e€eR,xel

where W(-,-) is Brownian bridge indexed on I?, t(e,x) = (Fy(x), Fy(e|r)), Fy is the marginal
distribution of X and F2 is the conditional distribution of € given X both under Pf -probability.
It can be seen that R, ( fo f ., €Ra(2)dZy (e, x). Define RO(z fo f y,, eRa(2)dW (t(e, 2)).
Write dU,( f edZ , dUY(x f edW(t(e,x)). It follows from integration by parts

where all quadratlc var1at1on terms are zero that

b bn
U (z) :/ edeZy(e,x) = Zn(e,x)elbg_bn - /b Zn (e, x)de,

by,
bn, bn,
USw) = [ ed W tle. ) = Witte, o)l — [ Witle,a)de
—by, —bn
and hence, it follows by (A.20) that sup,¢y |Un(z) — UL(z)| = Opj% (bon~Y2(logn)?). Tt follows
from integration by parts again and sup, ,cy |B%R(x, y)| = O(h™2) (Lemma A.5) that

1 1
Rn(2) :/0 Ry (2)dUy(x) = Up(z)R(z, 2)| Ly — /0 Un(x)%R(m,z)dx,

0 = 1 0 _033' l‘Zl — 10.%& xTr,zZ)axr
RAE) = [ Re(2)U@) = U@ R(e Dl = [ US(@) SRl 2)da,

and hence,

sg) IRu(2) — R2(2)| = OP}B (h2b,n~%(logn)?) = opp (1), (A.21)

due to the fact 2m + B > 4, hence h=2n"1/2b,(logn)? = O(n=Y/*+2/2m+8) (log n)3) = o(1).
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Next we handle the term RY. Write W(s,t) = B( t) — stB(1,1), where B(s,t) is stan-
dard Brownian motion indexed on I2. Define RO (z fo f b, €l (2)dB(t(e, x)). Let F(e,z) =
Fi(z)Fs(e,x) be the joint distribution of (e, X). It is easy to see that

RO - RAU) = IB(L, |//

(2)

— BOL|- [Bpdel(ld < b)Rx(2)}
= [B(L D] |Ep{el(le] > ba) Rx (2)}]
= Opyp (™" exp(=bn/(2Co))) = opy (1),

where the last equality follows by (A.18). Therefore, we have shown that

dF(e,x)|

sup |R2(2) — R2(2)| = opn (1). (A.22)
z€l fo
By (A.19), (A.21) and (A.22) that

nl| 3112 = [ Hull, = IRAIE + opp (1) (A.23)

Define R(2) = [ [*_ eR.(2)dB(t(e,x)). Let A(z) = R(2) — R%(2). Then

1
A(z) = / / eRy(2)dB(t(e, 7).
0 Jle|>bn
For each z, A(z) is a zero-mean Gaussian random variable with variance
1
Ep{A(2)?} = / / e’R,(2)%dF (e, x)
le|>bn
< hPEp{e’1(Je] > ba)} = O(h™2 exp(—ba/(2Co))) = o(1),
where the last o(1)-term follows from (A.18) and is free of the argument z. Therefore,
. 1
Ba{IlR =R S B IAlR} = [ Bi{A)Ph = of1),
implying that |R — RY|,, = opy (1). Therefore, it follows by (A.23) that
n|Ts)1% = IRIIZ + oy (1). (A.24)

It follows from the definition of R(-,-) that

(e 9]

IR =Y e NS
= (14 +n7l1)) —
where 7, = fo 75 epu(x)dB(t(e, x)). It is easy to see that for any v, u,

B i} = Ep{e0u(X)ou(X)} = Er {B(X)eu (X)ou(X)} = V(pw, ou) = dup,

that is, 77, are 7id standard normal random variables. Combined with the above analysis of terms

Ty,Ty,T5, Ty, we have shown that as n — oo, nl|fo — fn)\Hfj 4 o0 L wyn2. This implies that as
n — oo, Pf (fo € Ry () = P (nf fo — !}‘7”7,\H2 < ¢q) — 1 — a. The proof is completed. O
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Proof of Theorem /.4. Recall in the proof of Theorem 4.2 we show that Rate Conditions (R),
nT2 (Tpbn1 + bp2) = o(1) and nD? = o(1) are all satisfied.
It is easy to see that

F(W,) £ N(0,6%,,). (A.25)
Define R (a) = {f € S™(1) : |F(f) — F(fn,\)\ < rpp(a)}. It follows by Theorem 3.2 that
1 —a— Py(RE(a))| = OP}B(l). It is easy to see that
Po(RE (@) = PUFOV)] < 7rin(@)]Dn) = 2070 (0)/01,0) — 1
which leads to
rEn(@)/01n = Zap2| = opp (1). (A.26)

Consider the decomposition (A.14) with Ty, Ts, T5, Ty being defined therein. It follows by (A.15)
and rate condition nD2 = o(1) that n||Ty||? = Opy, (nD2) = Op};(l). Meanwhile, it follows by

Condition (8'), n=! =< A2+ and X\ = h*™ and direct examinations that

nHT2H2 = nzanu_ |f1/ (1—’_)‘711)

2m+5

2
01201 4 \p2m
nz(yzm+5+n(l+)\vzm)) [fu (14 A)

hl/ 2m+3 + (hy>4m+ﬁ
+ (h)2m + (hy)2m+B)2

X

x| [P = o(1),

¢
M

1/:1

and

00 )\’Yy 2
mmwznZ%(HM)MWHm»

Qm,B

> O XA = o),

X

v=1

Therefore, || fux — fo— T3] = [Ty + To 4+ Ty|| = opy (n~'/?). 1f follows from (4.3) that |F(fox —
fo) = F(T5)| = OPZ)(hfr/zn*l/Q)-

Recall F(T3) = 13" | ¢;F(Ry,), where the kernel R, is defined in (A.10). We will derive the
asymptotic distribution for F(T3). Let s2 = Vary, (31, €,F(Rx,)). It is easy to show that

2
2 3 32 —r
= g =n°05_ =<nh™".
=N + A"yy)) =N 2.n n

By (4.3) and ||R.| < cxh™'/? (see proof of Lemma A.5), we get |F(R;)| < kh™"/?|R,|| <
ke h~ (4772 Meanwhile,

e 2

Ef{?F(Rx)?} = n? Z =n03, <h". (A.27)
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By Assumption Al there exists a constant My s.t. Eg {e*|X} < My a.s. Then for any § > 0,

1 n
S > Ep A F(Rx) P (Rx,)| = d5a)}
=1

n _
< g@sn) *Ef{'F(Rx)"}
S S0 BB (EF(Rx)?) S 87 = o(1),

where the last o(1)-term follows by h < h, and 2m+ > 1. By Lindeberg’s central limit theorem,

as n — 0o,

F(T3) 1~ d
N ;GZF(RXZ.) S N(0,1). (A.28)

By condition n?03, < h™", we have

F(fox — fo—T3)
\/EOQ,TL

h—r/2n—1/2
— OPJ% W = Op;z)(].)

rF,n(a) _ gl,n % 2
Vnba,  /nbay o/2

It follows by (A.26) that

(1+ opp (1)).

It can be easily seen that

2 }:OO F(py)?
el,n N v=1 14Ny, +n—172 >1
S R T
o v=1 (14+Ay,+n—172)2

together with (A.28) we get that

P2 (IF(fo) = F(Jar)| < rrn(a)
— P}% (‘F(ﬁz,)\ — fO —T3) 4 F(Tg)

\/EGQ,n \/EGQ,n
Py (‘F(fn,)\ — fo—1T3) n F(T3)

rEn (@)
S \/502,71 )

< zap(1 + 0pf0(1))) s 1-a.  (A.29)

v

Vb Vnba

2

Notice that when 0 < >°°°, F(p,)? < oo, PN 1, leading to that the probability in (A.29)
O

neg,n
approaches exactly 1 — a. Proof is completed.

Proof of Proposition 4.5. Under the setup of Proposition 4.5, it follows from [44] that A() =1,

and hence, (2.5) becomes the following uniform free beam problem:

) = ppu(), ©9(0) = (1) =0, j=2,3. (A.30)

The eigenvalues satisfy lim, o0 p,/(70)* = 1; see [9, Problem 3.10]. The normalized solutions to
(A.30) are
e1(2) =1, @a(2) = V3(2z — 1), (A.31)
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sin(yar41(2 — 1/2)) | sinh(yap41(2 — 1/2))

Par(2) = sin(vok11/2) sinh(yors1/2) k21l (A-32)
_ cos(yart2(z — 1/2)) | cosh(yaps2(z —1/2))
Paia(z) = cos(Yak+2/2) " cosh(var42/2) Bl (A.33)

/4 satisfying cos(7, ) cosh(v,) = 1; see [5, page 295-296].

where v, = p,ﬁ
Proof of (i). By direct examinations, it can be shown that when v > 3 is odd, cos(z) cosh(z) = 1
has a unique solution in ((v +1/2)m, (v 4 1)7), that is, v, € (v +1/2)7, (v + 1)7); when v > 3 is
even, cos(x) cosh(z) = 1 has a unique solution in (vm, (v 4+ 1/2)7), that is, v, € (vm, (v + 1/2)7).
Consequently, for any k > 1, 0 < Yop12 — Yora1 < 7.
Let dp be constant such that 0 < g < 7/2 — 7|z — 1/2|, and dy = min{sin?(dp), cos? (6o + 7|z —

1/2])}. Clearly, dy > 0 is a constant. It is easy to see that when k — oo,

sinh(y2k+1(2 — 1/2)) cosh(yar42(z —1/2))
sinh(y2x+1/2) cosh(Y2x+2/2)

Then for arbitrarily small € € (0,dy/8), there exists N s.t. for any &k > N,

— 0, and — 0.

1.
poni1(2)2 = = sin®(yorsa(z — 1/2)) — = and gppa(2)? > 5 cos® (ansa(z — 1/2)) — <.

2

| =

Let ¢} = (Yok+2 — Y2k+1)(2 — 1/2). Then |¢)| < 7|z — 1/2| < 7/2. There exists an integer
Ik st Yors1(z — 1/2) = ¢y, + lxm, where ¢y € [0, 7). Then, sin?(yop11(2 — 1/2)) = sin?(¢y) and

cos?(yart2(z — 1/2)) = cos? (¢ + ¢},).
If 0 < ¢ < o, then it can be seen that

—7lz = 1/2] < ¢, < dp + ¢ < G0 + Gy < do + 7]z — 1/2].

Therefore, cos?(¢g + @) > cos?(8p + 7|z — 1/2]). If 6 < ¢p < ™ — o, then sin?(¢y) > sin(8p). If
m— 0 < ¢ < m, then it can be seen that

T—0— 7z —1/2] < ¢+ ¢ < T+ 7|z —1/2].

Therefore, cos®(¢y, + ¢},) > cos®(6y + 7|z — 1/2|). Consequently, for any k > N,

1

Po+1(2)% + Pansa(2)? > §(Sin2('72k+1(z — 1/2)) + cos® (Yopt2(z — 1/2))) — 2¢

> %min{sinQ(éo),cosz(éo Frle—1/2])} — 2¢ > do/A.
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Then we have

Z hSDV(Z)Q
>0 (1+ Apy + (Apy,)1H8/4)d
= Z hpag(2)? +Z hepart2(2)?
= (14 Ap2ksr + (Apoapa )T = (14 Apapa + (Ap2kg2) THA/4)0
> 3 hepae+1(2)* + hpaia(2)”
TS (L Apasya + (Apagy2) /)T
hdo /4
>
B ,; (1+ A2k + (Ap2ky2)tP/4)7
> h
YA (L (keh)t o+ (kmh)H7)T
>

/N (L+ (wha)t + (wha)+8)i

1/00 ! da 29 1/ ! dx > 0.
e — - A — X
T Jonn (142t + zd+8)i wJo (1+4azt+4z4t8)

This shows that condition (4.5) holds for r = 1.
Proof of ( ii). Write w = ) w, ¢, where w, is a square-summable real sequence. Then F,(¢,) =
fo dz = w,. Therefore, > F,(p,)? = >, w? < oo. Meanwhile, since w # 0, Y 00 | F,, (¢,

0. Conbequently, for j = 1,2, it follows by dominated convergence theorem that as n — oo,

= Fu(p)? Fo(py)?
-+ N B
; (1+X+nlo, %) V;ﬂ (14 Apy + (Ap,)1+8/(2m) Z (¢v)

Hence (4.5) holds for r = 0. O

A.3. Proofs in Section 5
Proof of Theorem 5.1. Tt follows by Theorem 3.2 that

sup |P(Vnh||f = farlle < tDy) — Po(Vnh||f — faxll2 < t)]

< sup |P(B|Dy) — Py(B)| = opy (1).
BeB 0

It is sufficient to prove

sup | Py( < 1) = P(Vnh|[f = funllz < )] = opp (1). (A.34)

Define Af = ﬁw\ — fn’A and AW = W,, — W}. Define Rem,, = ﬁb’A — fo — Sp(fo), where
Sua(fo) = L3570 &Ky, — Pafo, & = Y; — A(fo(X;)), K = K/0 and P\ = 73{0- See [45] for
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definition of K/0 and 7710. It follows by [44, Theorem 3.4]) or [16] that ||Rem,|| = Op}z0 (Dy,) with
D, = ay, + b,. Then

fv = V(ﬁ’b,)\? 9011) = V(fO + Sn,)\(fO) + Remy,, (Pz/)

= fS + V(Sn,/\(f())a 801/) + V(Remna 901/)

1 1<
= - ZK i) PV ny ¥v)-
T o VG ol g0 + ViRema )

It holds that Af =3 (an, — 1)y, which leads to

2 2
— Opn (n2 Ty 72
o () + = <T3 +n(l+ )\’yl,)) v
2 n_'m ’ 1 0)2 I\ 2
5 OP}:)(?’L )+ <1_|_)\fy +n—17-2> (1+)\')/ )Q‘fl/’ +‘V(n ZﬁiKXwSOV)‘
v>m v v v =1
+HV (Remn, 0,)]?)
= Opp (W) + 1+ 11 +1II.
Next we will analyze the terms I, 11, I11.
(hav) 26 0|2
I = rEEEsvravilil
>
_ (hy)4m+2ﬂ 02
= (hh™ )Ny e )
PO
hy)2m+ﬁ+1
= (h hL)im+28p2m+6-1 (— 0(2,,2m+B-1
( ) V;ﬂ 0+ (i 1Y
= of(hah )R = ofn 2B = o ),
2
(recall h = n~* with a < m)

By [13] we have Ej,{¢?| X} = A(fo(X)), leading to

Oup = B{A(fo(X))u(X)ou(X)} = Eg {00 (X)pu(X)}.
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Then

Define A ey I R
Clne Any = I+ Av+n=172 | (1+Av)2"

n 2
I = > A, (iZeigoy(Xi)>

v>m =1

= n2 Z €i€;j Z An,u@u(Xi)<Pu(Xj)

3,j=1 v>m

= n2 2612 Z An,zﬁPu(XiP + 2261'63' Z An,v‘Pu(Xz’)SOV(Xj) . (A.35)
=1

v>m 1<J v>m

Through direct examinations similar to the proof of Theorem 4.1, we have the following

Z (612 Z An,u@u(Xi)z _ Efo{ﬁzz Z An,u@u(Xi)2}> _ OP}B (n—3/2h—(4m+2/3+1)),

i=1 v>m v>m

Z €i€j Z Ap v (Xi)eu(X;) = OPJ’? (”71h7(8m+46+1)/2)7

1<J v>m 0

Epdel > Anppn(Xi)?} =Y Any =dji/h. (A.36)
v>m v>m

Since ¢/ < n~2h~(m+20)  we have IT = Opr (n=3h~Wm+28+1)) — o(n=1), implying that [T =
opy (n~1). Meanwhile,

LAm+28 )
I < SV (Rema, 0|

" AT )

v>m

ot hy 2m+20 m
= ) S Y (Remn )
v>m

< n’Qh’(‘*m”'B)HRemnHz _ OP}B (n72h7(4m+2ﬁ)DT2L) = opp. (n’lh*1/2), (A.37)

where the last equation follows by D2 = o(nh*™*26=1/2) which can be verified by a < T +22 5T
and direct calculations. In summary, |Af]]3 = opy (n~1h=1/2).
Meanwhile, by g <m —1/2,

2
1 1 1
E|AW|3 = O ®)+=> -
1AW (™) n V1t +nirz I+ Ay

v>m

B 1 h*V Am+26
O™+ g (1(+ (Ly)Qm)?»

— O(nig) +O(n73h7(4m+2ﬁ+1)) — O(nil),

AN

implying that ||AW|]3 = op(n~!). It follows by analysis of the terms I, II, [T and direct calcu-
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lations that
E ((Af, W;)2|*|Dy)

(an,v - 1)2 )
; n(l+ \y) Iv

0 LA N G i ST S o
(2 1+)\ <1+m+n—173> T+ Am)e Ze% Xor )|

v>m

+HV (Rem, ¢u)|?)

— OPE) (n73) + n73h7(2m+ﬂ+1) Z

(hy)4m+26
v>m (1 (h’ ) )50P}6(1)

+ —3h—(4m+2ﬁ) Z (hy)4m+2ﬂ ’V(R )‘2
" 2 W GuylV (erns

— OP}; (77,73) + 0(n73h7(2m+5+1)) 4 OP}:) (n74h7(4m+2ﬁ+1)) + OP}B (n73h7(4m+25)D72L)

= opp (n?h7Y),

N

(hV)2m+6+1 ’f0|2y2m+671
(1 + (hv)2m)> ¥

44y~ (Amt26) Z

—+

(A.38)

where the last equation follows by D2 = 0(nh4m+25_1). This implies that, with P;% -probability
approaching one,

P (\(Af, W)| > m_lh_l/Q]Dn) <, (A.39)

for arbitrary € > 0.

Define Uy = (nh||W||3 — cu)/v/2Rhdy, where ¢ = 37 ﬁ, dn =751 W Similar to
the proof of Lemma A.4, Ux 47~ N(0,1). So ||[W]|2 = Op((nh)~1). Therefore, we have proved
the following: with P}(L) -probability or P-probability approaching one,

-1

IAW]3 < en!,
IAfI3 < en 'R
(AW, Af)s| < AW |2l|Af]l2 < en™th™ Y4,
(AW, W2)a| < (AW |2]|Will2 < en th/2, (A.40)
Note that
W = fuxl3 = [W;+Af+AW|3

= W23+ |AW|3 + [|AF]3 + 2(AW, Af)2 + 2(AW, W)a + 2(A f, W,E)o.
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Together with (A.39) and (A.40), we have that, with Py -probability approaching one,

~ t2 t2
— 2 < < *|2 < —13-1/2
P (||W faalz < nh|Dn) < P <||Wn]2 < +8en'h |Dn> te

< % t2 — Ch 8¢ )
= U, +e
= ahd, | 2d,

and
P(IW-Fali< o) > p(IwiB<l —senn D, ) e
A2 = p - nli2 = nh "
< t2—ch 8e )
= P|U) < — €.
J2hd, 24,
Since 2 o
PIW* =2 < 2D, Ur < -
we have

sup |y ( <t|D,) = P (Vihllf = Fualle < tiD,) |
t>

N 2 N 2
= P(|W - < —Dy | —P(|W*~ 2<—|D
sup [P (IW = Fulf < 17100 ) = P (197 = Fusll < 21D, )|

2 — ¢y, 8¢ 2 — ¢, 8¢ >
< P — <Ur< + A A1
= <~/2hdh 3, — "= 2R, 24, (A.41)

It follows by Polya’s theorem ([11]), the cdf of U} uniformly converges to ®(-), the cdf of Z ~
N(0,1). We have that, as n — oo,

“u <t2—ch 8e < U < t2—ch 8e >
W\ Voha,  vad S aha, | Vad

(it vam) (i) =

Since
<t2 — ch 8¢ > <t2 — 8e )
sup - - < ce,
>0 v 2hd,, \/2dh V2hdy,  /2dy,
where ¢ > \/1267’1 is a constant. Therefore, with n — oo,
2 — ¢, 8¢ t2 — ch 8e )
P < (1 ) A.42
>0 <\/2hdh vaar =0 eyt e ) S teF (A42)

The result (5.2) then follows from (A.41) and (A.42).
1 8m-+453+2
I BFI2 = O S Bmtadr1)@mB)

To finish the rest of the proof, we show that (5.2) fails when
= and dj, =), % Let fo = 0, then it holds that I = 0.

/o h
Define Ch = ZV 1+ Ay, +n—1 1+ Ay, +n—172)
The proof relies on the following decomposition

IW — Farll3 = Wall3 + |AFI3 + 2(Af, Wa)a.
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Similar to the proof of (A.38) and (A.39), one can show that
E ({Af, Wa)2[*|Dn) = Opyp (n~*h=(m+2040),
and hence, with P}f)—probability approaching one,
<‘<Af7 | > Con~2p~(Um+28+1)/2p ) ‘. (A.43)

where C; > 0 is a (possibly large) constant. By definitions of ¢, ¢}, ¢ we have

h Z 220y, + X222 +n7 22+ (nm ) ()

o A.44
€h = Ch T Ch n (14 My +n7172)2(1 + My, )2 ( )

v>m

Keep in mind that, since ﬁwﬂ <a< it holds that nhD2 = o(1). The proof proceeds

2m+1 +17
in two cases.

Case 1: m <a< 4o +B In this case, it can be verified that ch = p2p~(m+26)  And it
follows from (A.35), (A.36) and (A.37) that

/!
2 _ “n .
1AFllz = (1 +opp (1)).

By a < m and (A.44) we have

en—ch =l =n T8 and o <o — ), — ¢

Therefore,

P

VR

Ch
[Wall3 + NAFI +2(A7. W)z < D)

cn = ¢, = nh||Aflla = 2nh(Af, Wa)a )
> P|U,< Dy
( \/2hd,
(0 — ch = &)1+ opy (1)) — Con™ 1= (m+25-1)2
> plu < (ch—dj, —¢})/2 = Cen™h™ (4m+26 /2 .
- "o /2hd),
(with P -probability approaching one)
> 1/24c—¢,

where ¢ > 0 is a constant. The existence of ¢ in the last inequality follows by n~th~(4m+26-1)/2 —

olep, — ¢, — ), Uy LN N(0,1), and the fact that (c, — ¢} — c//)/Vh < n=th=(m+8+1/2) which is
greater than some fixed constant. Note that we should select € > 0 to be small enough (at least
smaller than ¢/2). Since P(v/nh|W* — ]?,MHQ < cn|Dy) = P(U) <0) = 1/2, the above analysis
implies that, with P};—probability approaching one, the left side of (5.2) is greater than a positive
constant. So (5.2) does not hold.
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Case 2: <a<q 8midfi2 ___ In this case, hy/h — 0. It follows from (A.35), (A.36),

2m +ﬁ 8m+4B+1)(2m+B)
(A.37), (A.43), (A.44) that the following consequences immediately hold:
—1_92 2
” n-oT, h >
= h/hy,
h VZ: <1—|—/\—|—n—173> (1+M,)2 "™ /
2 _ G
1813 = (14 0p (1),
(Af W)z = orp (IAFI3),
ch—c,—cp 2 h/h,
o
ST 00, as n — 00.

Vh

The proof of the above assertions rely on the specified range of a and direct calculations. Therefore,

(HW I3+ IA£13 + 2(Af, Wa)z < D)

Ch
P (Iwal3+ HAsz(lJroPn) h|Dn)
Ch
— P ]_ n ]_ <—Dn
IWall + £ 1+ o (1) < 1D, )

( h—Ch—Ch(lﬂLOP;a(l))) L1
(

P|U, <

\/2hd]
where the last limit follows by (A.43). This would violate (5.2) based on arguments in Case 1.
Proof is completed. ]

Proof of Corollary 5.2. Recall that Rem,, = ﬁ%)\ — fo— Sn(fo) satisfies || Remy||2 = Opfvt) (Dy) =
opp, with nhD2 = o(1). By the proof of Theorem 4.1, we have

1Fon = foll
= [ISu(fo) 3+ Opy, (D2)

n

1 o 2 2
= 3 > E(Kx, Kx,)2 + 3 > e (Kx, Kx))a + - > ei(Kx,, Pafo)

i=1 i<j i=1

+Prfoll3 +Opp (D2)

1 [ 1
— nh/ (1 - me)Qdiﬂ + O(h2m+ﬁ—1) + OP}B (n_3/2h_1 + n—lh—l/Q + n—1/2h(2m+ﬂ—1)/2)

(re)?(1+ opy (1)).

IN

Therefore, for any € > 0, with PJ?O -probability approaching one,

far = folla < (14 ),

This implies that Pf (fo € Ry (g)) — 1 as n — oo.
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Next we examine the posterior coverage of R} (¢). Since a satisfies (5.1), by Theorem 5.2,

Since 2= < (r%)?, we have

P (R, (¢)[Dn) = Pu(Ry(e)) = opy (1).

2hdy,

P.(Ri(e) =P (U; < Qo) - ch) Sl

This shows that P (R (¢)|Dy) =1+ opy (1), completing the proofs. O

A.4. L2-diameter of R%(a)

Without additional restrictions, the L2-diameter of R¥ () in (4.2) is infinity. To see this, consider
f= }:;z,/\ + 5N fopu, where f2 = M for 1 <v < N. Then f € R¥(«) since >0 | w, f2 =

rw,n(a)Q. However,

N
TE Zf2 Mzw Twna
2 — v =
v=1

rwn (N+1)

HMZ

Letting N — 0o, we can see that || f||3 — oo. Therefore, the L2-diameter of R¥(«) is infinity.

Next we investigate the L2-diameter of R (a). For any g,f € R¥(a), let u = g — f =
230:1 Uy, and choose J,, ~ nt/@m+6) 1t follows by Remark 4.1 in the revised manuscript that
rwn(a) = Op; (n=1/2), and hence, |july < 2ryn(a) = Op,, (n~1/2). Then

a3

IA

Z u?,—i—Zu?,

1<v<Jy v>Jp
5— —(1
S e+ 30 A a0
1<v<Jn v>Jn
4T, 108(2, )1 () 4+ 4M T, Gm+A=1)
2m—+pB—1

Opy, (n~ 27+ logn),

2m+p8—1

indicating that the L2-diameter of R (a) is Op,, (n”2@n55) \/log n).
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Supplementary Document: Part 11

We first establish a theoretical foundation including a Bayesian RKHS framework in Section A.5,

and then prove Proposition A.1 in Section A.6.

A.5. Some Preliminary Results

In this section, let us introduce some technical preliminaries. Using (2.7), for any g = > g.¢v,
g =2, 9vpv € S™(I), we have J(g,3) = >~ gvGuv- It therefore holds that

J(‘Pw SO;L) = ’Yudu,u» v,p > 1. (A.45)

This shows that

gl =D g2l +p0), J(g) =D g2

v>1 v>1
Since 7, =< 1 + p,, we can see that the || - ||yy-norm and J%/?-norm are equivalent. By Sobolev
embedding theorem ([1]) which implies that the supremum norm is “weaker” than the || - ||y y-

norm, there exists an absolute constant C5 > 0 s.t. for any g € S™(I),
9lloe < C3+/J(9). (A.46)

For any f,g,§ € S™(I), define Vi(g,§) = E{A(f(X))g(X)3§(X)}. In particular, Vy,(-,-) =
V(-,-). Let (¢, pr.) be the eigen-system corresponding to the following ODE:

(~1)"o P () = pra ATV (),
P9 0) =¥ (1) =0, =mm+1,...,2m 1. (A.47)

It follows from [44, Proposition 2.2] that (¢, py, ) satisfy the properties stated in Proposition
2.1 with V' therein replaced by Vy. Let v, = 1 if v = 1,2,...,m; = py, if v > m. For any
g,g € S™(I) with g = >, g9y, and § = >, Gy, define J¢(g9,9) = >, 909v7f,- Define an
inner product

(9,9)r = Vi(9,9) + As(9,9), g € S™(I),

and let || - || be the corresponding norm. Let 73{ be a self-adjoint positive-definite operator from
S™(I) to itself s.t. (Pf\cg,@f = AJ¢(g, g) for any g,g € S™(I). For convenience, define Py = P/J\IO.

In particular,
I10(9:9) = J(9,9), (9:9) 50 = (9,9); llgllso = llgll-

For any constant C' with C' > || fo|leo, let Co, C1, Ca be positive constants satisfying Assumption
Al. Since 1/Cy < A(z) < Oy if |z < 2C (Assumption Al), we get that for any f € F(C) and
g € S™(I), (leading to that Cy ' < A(f(X)) < Cy a.s.)

C5*V(g,9) < Vi(g,9) < C3V(g,9), (A.48)
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that is, V} is uniformly equivalent to V for f € F(C'). This leads to

-2 V(g) < Vf(g) < 2 V(g)
2 V(g +Ulg) ~ Vilg)+Ulg) ~ V(g +U(g)

It follows from (A.48) and mapping principle (see [19, Theorem 5.3]) that

C’{Qp,, <pfu < C3p,, for any v >m and f € F(C).

The following lemma says that the norms || - || and || - || are equivalent.

Lemma A.7. [f0 < A < ﬁ, then for any f € F(C) and g € S™(I),
2

1
— gl < < V209l
\/502\\9\\ <lglly < 2[lgll

1

Pm+1

cz\!
(1+ ) C;2J<g>st<g>s(1+
Pm+1

) et

Proof of Lemma A.7. For any g € S™(Il) with g =), 9., we have

Vi) =00 U9) = > Gorsw J5(@) =D go+ D 9opsu
v=1

v>1 v>m v>m

So, J(g) < Vi(9) + U(g) and U(g) < J¢(g). Therefore, it follows by (A.48) that

Vi(g) + AJs(9)
< (IT+NVi(g) +AU(9)
< 1+ NCV(g)+ M (g9) < (1+NC5(V(g) + A (g)) < 2C3|g]1%,

lgl?

where the last inequality is because A < 72&‘2 < 1.
2
On the other hand,

lgll} = Vilg) +AJs(9)

Cy?V(9) +AU(9)
Cy*V(g) + A(J(9) — V(9))
(C3% =NV (g) + A (g)

v

v

1 1 )
> — = — .
Z 5c3 (V(g) +AJ(g)) 2022H9H

Meanwhile, J¢(g) < Vi(g9) + U(g) < C3V(g) + J(g). It can be shown that V(g) + U(g) <
(14 1/pm+1)J(g). To see this, write g = >, gy Then it follows by 1+ p, < (1 + 1/pm+1)W
that

V(g)+U(9) =Y g2 +p) < L+ 1/pmi1) Y_givw = (1L +1/pms1)J ().

14

So J(g) < (1+1/pm11)C5J(9)-
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Similarly, we have that J(g) < V(g) + U(g) < C3Vs(g) + U(g). Write g = >, gupf.,. Since
C3py > pro > C3%py > Cy 2 pmyr for v > m, we have 1+ pg, < (14 C3/pm41)7fw- S0

Vilg)+Ulg) = Y go(l+psw)

< (1+C3/pmi1) Y 075w = (14 C3/pmi1)I5(9).

Therefore, J;(g) > (1+ C3/pm+1)"*Cy > J(g). Proof is completed. O

The equivalence of || - || and || - || stated in Lemma A.7 leads to that S™(I) is a RKHS under
(-,-) for any f € F(CO). Let K/(x,2') be the corresponding reproducing kernel function. In
particular, define K = K/ for simplicity. By [44, Proposition 2.1] (see an online supplement
document therein for its proof) we have the following series representation.

Proposition A.3. Forany f € F(C), g € S™(I) and x € 1, we have HgH?c =3, IVi(g.pr0) 2 (1+
Mr)s KLY = K (@,) = 2, #5052 01,(), and Pl () = 5301,

The following lemma demonstrates a uniform bound for the kernel K7.

Lemma A.8. It holds that

C:
cx(C)= sup sup sup hl/QHKQJ;Hf < ey | 2 1,
m

feF(C)0<h<1 z€l
where ¢y, > 0 is a universal constant depending on m only.

Proof of Lemma A.8. For any f € F(C), g € S™(I) and = € I, it follows by [6, Lemma (2.11),
pp. 54] that

(KL, )5l = 9(@)] < emh™2\/gll32 + Alg®™ |2,

where ¢,, > 0 is a universal constant depending on m only, and || - ||;2 denotes the usual L2-
norm. Since ||g|2, < %Vf(g) and ||g(m)||%2 =U(g) < J¢(g) (see proof of Lemma A.7 for the last

C
(KL, 9)¢] < cm\/f + 107 2|lgl 7,

implying that || Kf||; < cmy/S + 10712 So ek (C) < cm\/%. 0

The lemma below directly comes from Lemma A.8, which relates the norms || - || and || - ||sc.

inequality). Then

Lemma A.9. For any f € F(C) and g € S™(I), ||gllcc < cx(C)R™Y2| gl

Suppose that (Y, X) follows model (2.1) based on f. The following conditional expectation can
be found based on [13]:

Ef{Y|X} = A(f(X)). (A.49)
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Let g,gr € S™(I) for k = 1,2,3. The Fréchet derivative of £, y can be identified as

Dipa(9)gr = fZY Alg(X))KL, 915 — (PLg. 1)

= (Sn, (g),91>f-

Define S)(g9) = E¢{Sn.(g9)}. We also use DSy and D?S), to represent the second- and third-order
Fréchet derivatives of S). Note that Sn)\(ﬁh,\) =0, and Sy, x(f) can be expressed as

n

Sual) = = (¥~ AU CNEL, ~ Pr. (4,50

=1

The Fréchet derivatives of S, \ and DS, , are denoted DS, x(g9)g192 and D25}, A(g)g19293. These

derivatives can be explicitly written as

D (9)g192 = DSn)\( )g192
= ——ZA Xi)92(X:) — (P{g1,92) 1+
D0y A(9)g19293 = DQSn,A(9)919293
- —jliA(g@@))gl<Xi>gz<Xi>gs<Xi>,
DS\(9)g1 = —E{ZA1<g<X>>gl<X>K§}—P{gl,
D*S\(9)gngs = —E{A(g9(X))g1(X)g2(X) K}

Consider a function class
G(C) ={g € ™M) : llglloo < 1,J(g,9) < 2C3ek(C)2h7>m 1},

Let N(g,G(C), |- |loo) be € packing number in terms of supremum norm. The following result can
be found in [55].

Lemma A.10. There exists a universal constant cg > 0 s.t. for any e > 0,

log N (£,G(C), || - loo) < co(v2Cs¢x (C)"H)Mmh "5 e~ 1/m,

In the future, for notational simplicity, we will simply drop C from cx(C) and G(C) if there is
no confusion.
For r > 0, define ¥(r) = [ Vlog(1 + exp(z=1/m))dx. For arbitrary € > 0, define

A(h,e) = 32*[\f02 Lemp=m= 1>/2x1/<

10v/24¢
+ T

Crc mh(Qm 1)/2 )
2v/2C, 0

\/log (1 + exp (200((\/502)—10;(11(2’”_1)/25)_1/’”)),

where 7 = 1/log 1.5 = 0.6368. We have the following useful lemma.
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Lemma A.11. For any f € S™(I), suppose that v, ¢(z;g) is a measurable function defined
upon z = (y,x) € Y x I and g € G satisfying vy, r(2;0) = 0 and the following Lipschitz continuity
condition: for any 1 <i<n and g1,g92 € G,

Wt (Zis 1) — Unp(Zis 2)| < et b2 g1 — g2 co- (A.51)

Then for any constantt > 0 and n > 1,

t2
sup Py (sup 1 Zus(g)ly > ¢ s2exp(— )
S f(geg nr(@9)ll B(h)?

where B(h) = A(h,2) and

1 n
Zn,f(9) = 7 > [np(Zis 9) K%, — Ep{tn.r(Zis 9) K4 3.
i=1
Proof of Lemma A.11. For any f € S™(I) and n > 1, and any g1, g2 € G, we get that

1 (n, g (Zis 91) — W, (Zi 92)) KX | ¢

1/2

< 2 g1 = gallocckh ™2 = [lg1 — g2loo-

By Theorem 3.5 of [14], for any ¢ > 0, Pr (|| Zn,f(91) — Zn,f(g2)|lf > t) < 2exp (—W).

Then by Lemma 8.1 in [10], we have

1Zn.5(g1) = Zn. 5 (92)ll 5]l y, < V24|91 = g2|o0,

where || - ||, denotes the Orlicz norm associated with t(s) := exp(s?) — 1. Recall 7 = y/log 1.5 ~
0.6368. Define ¢(z) = ¢2(7x). Then it can be shown by elementary calculus that ¢(1) < 1/2, and
for any x,y > 1, ¢(z)p(y) < ¢(zy). By a careful examination of the proof of Lemma 8.2, it can

be shown that for any random variables &1, ..., &,
2 1
; < — i . .
Il max Gilly, < 95 (1) max [1&i]ly, (A.52)

Next we use a “chaining” argument. Let Ty C T3 C Ty C -+ C T, := G be a sequence of finite

nested sets satisfying the following properties:

e for any T; and any s,t € g, ||s — t]|oc > €279; each T}, is “maximal” in the sense that if one
adds any point in Tj, then the inequality will fail;
e the cardinality of Tj is upper bounded by

log|T;| < log N(e27.G,|- )
< CO(\60261—{1)1/mh—(2m—1)/(2m)(52—Q)_1/m’

where ¢y > 0 is absolute constant;
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e cach element t,1; € Ty41 is uniquely linked to an element ¢, € Tj, which satisfies ||t —
tq+1||oo <e2™h

For arbitrary sgi1,tk+1 € Tky1 with ||sg41 — tet1lleo < €, choose two chains (both being of
length k + 2) t, and s, with t,,s, € T for 0 < ¢ < k + 1. The ending points sg and o satisfy

k
[so —tolls < Z[qu — Sg+1lloc + lltg — tarlloc] + [[Sk41 — ts1lloo
=0

[}

k
< 2252_‘1 + & < be,
q=0

and hence, [|[[Zn,f(s0) — Zn,f(to)l f]l,, < 5v24e. It follows by the proof of Theorem 8.4 of [10]
and (A.52) that

Sk+1,tk+1€T k11

max || Zp f(8k+1) = Znp(tkt1) — (Zn,f(80) — me(to))”f‘

2
k
< 2 Z -7
< 2) wer®% 120 (w) = Zn s )]s
9=V ||u, v link each other W2
4 k
< - DU (N e, G| o))
q=0
Zn — Zn
a7 () = Zus@)ll,
u, v link each other
4
< \ﬁz\/log (1+NE2771G, | - [loo))e27¢
q=0
k+1
< S\ﬁ \/Iog (1-+ exp (co(v2Cacg ) /mhem—b/am) (e2-0)-1/m) ) 2
5/2
< 32\[ / \/log <1 + exp (co(\/50201_{1)1/mh—(2m—1)/(2m)x_1/m))dac

_ 32[\[02 1 m (2m—1)/2\11< mh(2m—1)/2€>'

1 _
CKC
2\/§CQ K0
On the other hand,

2 2
_ < 2 B
e N =Zug@ls) < Z0(0F) - max 120 () = Zns ()1l
l[u—vl|oo <5e o TN
2
< U NG o)) (5V24e).
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Therefore,

max || Z, 5(s) — Zn,r(t)| 5

S,tETk+1
Js—tlloo<e "

< 32\/6\/§CQC_Ith_(2m_1)/2\I/ 1 CKC_mh(2m_1)/2€
T K0 2/2C,

+ 205 (V2,6 - oe) ) (5v/2E2)

IN

1
32\/6\/56202(166nh—(2m—1)/2\11 < CKCOmh(2m_1)/25)
T

2v2C;
+ 10v24e \/log (1 + exp (200((\/502)_1cKh(2m_1)/25)_1/m))
-
= A(h,e).

Now for any g¢1,g2 € G with [|g1 — g2|lcc < €/2. Let k > 2, hence, 1=k <1 — llg1 — 92llco/€-
Since T}, is “maximal”, there exist sy, tx € T s.t. max{||g1 — sx/loo, |92 — tk|loo} < €27F. It is easy

to see that ||si — tx|lec < €. So

1 Zn,1(91) = Zn,r(92) Iy
1Zn.£(91) = Zn,g (k)5 + 1 Zn.7(92) — Zn,p (tic) |l 7
AN Zn, (%) = Zn,p (te)l ¢

< 4vne2 ™t 4+ max |[Z, 5 (w) = Zn f(0)]l5.
u, €T},
lu—vlloo<e

IA

Therefore, letting kK — oo we get that

sup [ Zn,£(91) = Zn,r(92)ll1

91,92€G
llg1—g2llcc<e/2 W2
< ayme2 ) logZ+ || max | Zus(u) = Zos(0)l;
u,v€Ty,
lu—v|loo<e b

4y/ne27%/\/log2 + A(h,e) — A(h,e).

Taking € = 2 in the above inequality, we get that

IN

sup (| Zn,(g1) — Znp(92)llf]| < A(h,2) = B(h).
9179269
lg1—g2llc <1 e

By Lemma 8.1 in [10], we have

2
Pr | sup || Zn,r(g >t] <2exp (— ) .
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Note that the right hand side in the above does not depend on f. This completes the proof. [

Define
H™C) ={fe8™I): J(f) <C*/C3}.

It follows from (A.46) that for any g € H™(C), ||g]lcc < C3+/J(g) < C, implying that g € F(C).
Thus, we have proved the following inclusion:

H™(C) C F(C). (A.53)

It is easy to see that when C' > C3+/J(fo), then fo € H™(C), and hence, fy € F(C).

Lemma A.12. Suppose that Assumption A1 holds. For any constant C' satisfying C > Cs+/J(fo),
let Cy, C1,Co be positive constants satisfying Assumption A1, and define

y,C 1
b= 1+ . A.54
Cs \/ Pm+1 ( )

If r,h, M are positives satisfying the following Rate Condition (H):

(i) (4Cyc2 + 5)bh™ =12 < 2(log 2)Cock, Cocbh™ 12 < 1/4,
200, h™ /2 < ¢,
(i) h'/?r <1,
(iii) Coct M'2rh=12B(h) < 1/6,
(iv) 12CoChct (4Cy + M)h=Lr(MV2rB(h) + C3/%c;) < 1/6,

then, for any 1 < j <'s, the following two results hold:

(a)

sup Py (Ifan = flls = 6a) < 6exp(~Mnhr?),
feH™(C)

where 6, = 2bh™ + 24Cycx (4C1 + M)r;
(b) if in addition, cxh~1/26, < C, then

sup Pr (||j?n)\ —f=Sux(Hllf > an+ bn) < 8exp(—Mnhr?),
fed™(C)

where

an = Cocae MY2h=120:B(h)6,,, and b, = Cexh™ /262

We remark that Part (b) of Lemma A.12 can be viewed as a uniform extension of the functional
Bahadur representation established by [16, 44].

Proof of Lemma A.12. Let f € H™(C) be the parameter based on which the data are drawn.

It is easy to see that

DS\(f)g = —E{A(f(X))g(X)KL} — P{g,
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for any g € S™(I). Therefore, for any g, g € S™(I), (DS\(f)9,9)f = —(9,3) s, leading to DS)\(f) =
—id.

The proof of (a) is finished in two parts.

Part I: Define an operator mapping S™(I) to S™(I):

Tif(g) = g+ Sx(f +g), g€ S™(D).

First observe that

ISs(F)lly = IPLflly = sup [(P{f.q)sl < \/AJs(f) < h™b,

llglly=1

where the last inequality follows by Lemma A.7 and f € H™(C). Let ri,, = 2bh™. Let B(r1,) =
{g € S™() : ||gll < rin} be the ri,-ball. For any g € B(r1,), using DS\(f) = —id and ||g/cs
ch™Y2r1, = 2c bR Y2 < O it is easy to see that

N

1T17 ()l
< g+ SA(f +9) = SA(Dllf + 1ISA(H)
1 1
= ||9+DS>\(f)9+/O /0 sD?S\(f + ss'g)ggdsds’|| s + [|SA(F)|l
1 1
~ /0 /0 SD2S\(f + s5'9)ggdsds’||; + |1 S(F)]l;
1 1
_ / / SE{A(F(X) + 58'9(X))g(X)2 KL Ydsds'| ; + rin/2
0 0
1 1
< Cocgh™ /2 / / sE{g(X)*}dsds' + r1,,/2
0 0
< Clexh™2||gll3/2 + r1n/2
< C%cKh_l/zr%n/Q +7r1n/2 = C%chhm_l/znn +71n/2 < 3r1, /4,

where the last step follows from the assumption C%chhm_l/ 2 < 1/4. Therefore, T} ; maps B(r1,)
to itself.

For any g1, 92 € B(r1,), denote g = g1 — g2. Note that for any 0 < s <1, ||g2+sgl| < s|lg1]ls +
(1—5)|lg2|lf < 71n- By rate assumption we get that ||ga +sg[lcc < cxh™"/?r1, = 2bexgh™ 12 < C,

and hence |f(X) + §'(g2(X) + sg(X))| < 2C for any s,s’ € [0,1]. By Taylor’s expansion and
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Lemma A.9 we have

|T1f(g1) — T1p(92)lf
= g1 — g2+ Sa(f +91) = SA(f + 92) Iy

1
— gi—go+ / DSA(f + g2 + sg)gds s
0
1
= /O [DSA(f + g2+ 59) — DS\(f)gdsl;

1 1
= [ [ DPSa(s + Slaa + s9))02 + so)gdsds'|
0 0

IN

1 1 P
/O /0 IECAF(X) + ' (92(X) + 59(X)) (92(X) + 59(X))g(X) KL} | pdsds’

IN

1
Cocrch™/? /0 E{lga(X) + s9(X)| x |g(X)[}ds

IN

1
C2eh=11? /0 lg2 + sgll sds x llgll;

203 cibh™ 2 ||g1 — gally < llg1 — goll /2.

IN

This shows that 77y is a contraction mapping which maps B(ry,) into B(ri,). By contraction
mapping theorem (see [39]), 71 has a unique fixed point ¢’ € B(r1,) satisfying T1¢(¢’) = ¢’. Let
fr=[f+¢". Then S\(fn) =0and || fx — flf < Tin.

Part II: For any f € H™(C), under (2.1) with f being the truth, let fy be the function obtained
in Part Is.t. || fx — fll; < rin, and hence, || fx — flloo < cxh 2| fx — fllf < exh™/?ry, < C/4

so that |f(X) + s(fu(X) — f(X))] < 2C as. for any s € [0,1]. It can be shown that for all
91,92 € S™(I),

[[DSA(fr) — DSA(f)]g192]
1
— /0 D25\(f + s(fr — 1) — Porgads|

IN

1 P
/0 BLAGAX) + 50— DEO) (i — H(X) a1 (X)ga(X)ds

CoE{[fA(X) = F(X)] - [91(X)g2(X)[}
< 203exbh™ Pllgrlllg2lls < llovllsllgzlls/2.

IA

where the last inequality follows by CZcbh™ /2 < 1/4. Together with the fact DS\ (f) = —id, we
get that the operator norm |[DS\(fy) + ¢d||operator < 1/2. This implies that DSy (fy) is invertible

with operator norm within [1/2,3/2], and hence, ||[DS)(fx) ™ !operator < 2.

Define an operator

Tor(9) = g — [DSA(f2)] " Sun(fr +9), g € S™(T).
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Rewrite 1oy as

Tor(g) = —DS\(f)

TDSua(fr)g — DSA(fr)g]
—DS\(f2) " [Sua (S + 9) = Sua(f1) — DSna(f)9]
—DSy\(£) 1S (£

Denote the above three terms by I ¢, Isf, I35, respectively.

For any 1 < i <mn, let

Since E/{Y — A(f(X))|X} = 0, it can be shown that for some (random) s € [0, 1],

IN

IN

IN

Therefore,

1Rl

which leads to that

Ri = (Y — A(A(X)) K%, — B{(Y — A(fA(X)) K% ).

IEH{(Y — A(fr (X)) KL s
sup [(E{(Y — A(A(X))ELY, g)f]

::‘fz EH{(Y — A(2(X))g(X)}]

e 1B {(AGA() = AN}

s |Br AP — F(X))g(X) )

5B {0 + (%) — FEONAX) — FX))0(X) ) ‘
2y [V~ S8

+3B7 {AU00 + 50O - FCONAE) - 0P}
53—l + 2B — 10Ple(X)])

1 _
Ifx = Flly + 5Cexh™ 2|1 £ = fII3

Tin + C%chhm_l/an < 5r1, /4.

exhY2|Y; — A(fA(X0))] + 5r1n/4
exch™2 (1Y = A(F(X)] + 2Coekbh™Y/2) + 5740 /4,

IN A

. 2 m—1/2
E {exp <M>} < Cyexp <(4C2CK + 5)bh ) <207,

CoCKh_1/2 QCUCK

37
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where the last inequality follows by condition
(4C5c% 4 5)bh™ 12 < 2(log 2)Coc .
Let & = hr/(2Cyck ). Recall the condition h'/2r < 1 which implies § < (2Cocxh~'/2)~1. Therefore,
Efexp(20][Rill )} < Efexp(|[Rill/(Coexch™/2))} < 26,
Moreover, ||RZH?¢ < 802c%-h~ exp(||Ri| 1/ (2Cock h™1/2)), which leads to that

E{exp(d[|Ril[f) — 1 — o[ Rill 1}
E{(8][Rilly)? exp(8]| Rill )}

1
2.2 1—-1¢2

16C2C 3 h™ 162

IN A

IN

It follows by Theorem 3.2 of [14] that, for L(M) := 2Cyck(4C1 + M),

Py <|ZR1»||f zL(M)nr) < 2exp (—L(M)énr + 16C;Cycinh 1 6%)
1=1
= 2exp(—Mnhr?), (A.55)

We note that the right hand side in the above inequality does not depend on f. It is easy to see
that Sn,)\(f)\) = Sn’)\(f)\) — S)\(f)\) = %Z?:l R;. Let

En = A{l[Sna(f)llf < L(M)r},

then sup e gmc) Pr(€r 1) < 2 exp(—Mnhr?).
Define
O (Xisg) = [Coek] T RPA(A(X))g(Xi), i =1,...m,

and Z{}(g) = = S [l (Xs; 9) KX, — Ep{wl}(Xi; 9) K% }]. Tt follows by Lemma A.11 that
SUp fepm () Pf(gfm) < 2exp(—Mnhr?), where Eng = {supgeg ||Zr(jj)c(g)||f <V Mnhr?B(h)}.

For any g € S™(I)\{0}, let g = g/d.,, where d/, = cxh~'/?||g||;. Tt follows by Lemma A.7 that

Igllee < exch™2lglly = exch™2lgls/d;, = 1, and

J(g.9) = d,;%J(g,9)
_ A (g,9) -2 ||9||2 2 -2, -2
= pm DI cpm2m UL < 902 2 2mAL
cih=HlgllF cih=gllF 2K
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Therefore, g € G. Consequently, on &, 2, for any g € S (I)\{0}, we get HZS}@)Hf < VMnhr?B(h),
which leads to that

|DSna(fx)g — DSA(fr)gllf
= %H Z[A(f/\(Xi))g(Xi)K;(i — Ef{A(AA (X)) g(X) K5 ¢
=1
< Cocie MY 2B(h)||glly < llglly /6, (A.56)

where the last inequality follows by condition Cac% M'/2rh=1/2B(h) < 1/6. Note that the above
inequality also holds for g = 0.
Next we define T5¢(g) = Spa(fr + 9) — Sux(fr) — DSpa(fr)g. Let ro, = 6L(M)r. For any

g€Gand1<i<n, define Yn;(9) = |9(X;)|, and let Zy(g9) = = 27 [Pn.i(9) — E{dni(9)}]. It
is easy to see that for any g1,92 € G, |[¥n.i(g1) — ¥n.i(g2)| < |lg1 — g2/lce- Following the proof of
Lemma A.11 it can be shown that for any ¢ > 0,

~ t2
P (3‘25 Z0(g)] > t) < 2exp (‘B(h)?) ’

and hence, we get that P(E 3) < 2 exp(—Mnhr?), where

Enz = {sup|Zn(g9)| < VMnhr2B(h)}.

g€eg

On &,2 N &3, for any gi,92 € B(re,) (with g1 # g¢2) and letting g = g1 — g2 (and hence
g2 + 59lle0 < cxh™'/?rg, < C/4 for any s € [0,1]), together with | fx — f|lee < C/4, we have

1 T57(91) — T35(g2)lly
= [ISna(fa +91) = Sua(fa +92) — DS (fA)ally

1 1
= / / D2Sun(fr + (g2 + 59)) (g2 + sg)gdsds’|
0 0

IN

1 1
/ / ID?Spx(fr + 8 (g2 + 59)) (g2 + 59)g| rdsds’
0o Jo

IN

1 1 n .ee
/0 /0 H% Z A(fA(X3) + 8 (92(X5) + s9(X3)))
i=1
(92(X3) + s9(X:))g(Xi)) K% || pdsds’

1 rl n
Cs
/0 /0 2D Mg + slloe x lg(X0)| x | KL | dsds
=1

Colexh™12)2rq, &
2lerch” ) ron 55 x|
=1

IN

IN

n

n

e h—1/2)3,. n_o
_ Calexh™ ) ron (Zwm(g)) lglly. (A57)
=1
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where g = g/(cKh_l/ZHng). Recalling the previous arguments we get g € G. It can be shown by
Cauchy-Schwartz inequality that

- Ble) G Vi0.9) 2 e i
E{, (3)} = < <C R'/2.
{¢ , (g)} CKh_1/2Hng = CKh_1/2Hng S GOy O

Since &, 3 implies | Z, ()| < VMnhr2B(h), we get that
1~ -
LS dnilg) < VAREB(R) + O3 e 12
i=1

Therefore, (A.57) has upper bound

IN

(A.57) Colcxch™ /2P ron(VMEr2B(h) + Cy ¢ h ) gl
12CCacke (ACy + M)B ™ r(MY2rB(h) + C3* ;) glls

lg1 — g2ll£/6, (A.58)

IN

where the last inequality follows by condition
12C0Cack (4Cy + MR 'r(M2rB(h) + Cy/%cilt) < 1/6.

Taking g2 = 0 in (A.58) we get that [ T57(g1)lly < llg1lls/6 for any g1 € B(r2,). Therefore, it
follows by (A.56) that, for any f € H™(C), on &, :=&,1 NEp2N &y 3 and for any g € B(ra,),

HTQf(g)Hf < 2(”ng/6 + Hng/G +720/6) < 2(120/6 + 12,/6 + 12,/6) = T2

Meanwhile, for any g1, g2 € B(ray), replacing g by g1 — g2 in (A.56), together with (A.57) and
(A.58), we get that

ITaf(91) — Tag(g2)lly < 291 — 92ll /6 + llgr — g2ll£/6) = 2[l91 — g2l 1/3-

Therefore, for any f € H™(C), on &,, Ty is a contraction mapping from B(rg,) to itself. By
contraction mapping theorem, there exists uniquely an element ¢g” € B(r2y,) s.t. Tor(¢”) = ¢".
Let fn’A = fn +¢". Clearly, Sn,)\(ﬁz,)\) = 0, and hence, ]‘A}M is the maximizer of ¢, x; see (3.6). So
we get that, on En, [ fax — fllr < /s = Flly + 1 fax — Ally < Fin + ron = 26h™ + 6L(M)r. The
desired conclusion follows by the trivial fact: sup pcgm oy Pr(Ey) < 6exp(—M nhr?). Proof of (a)
is completed.

Next we show (b).

For any f € H™(C), let ﬁ%)\ be the penalized MLE of f obtained by (3.6). Let g, = fn,)\ - f,
6p = 20h™ + 6L(M)r, d!, = cxh™1/25,, and for g € G define

WO (X g) = et hM2[Cadl ] A (XG) + dlg(X2) — AGF(X0)):
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It can be seen that for any g1,92 € G, by d/, = cxh™1/26, < C, we have
W& (Xisg1) — (X 92)]
< P [Cady) 7 Codyllgr — g2lloe = it P9 — g2lloc.

Let Enu = {supyeq |25 1(9)lly < \/MnthB(h)} where

At) - = LS (X g) KL — EX (P (X9 KL,

i€l

41

Ej)f denotes the expectation with respect to X (under Py). It follows by Lemma A.11 that

sup pe gm(cy Pr(E5 1) < 2exp(—Mnhr?).

On &, =&, N Ena, we have | gn|lf < 6,. Let g = g,/d,. Clearly, g € G. Then we get that

HSn)\(f + gn) = Sua(f) = (S\(f + gn) — S\(F)ly

_ *HZ Xi) + gn(X0)) — A(f(X2)) K,
_Ef {( i(f(x >+gn<X>>—A<f<X>>>K£}H|f

_ H; Xi) + dyg(X2) — A(F(X0) K,
~EF (A () + dg(X)) — A(F(ONEL Y5

_ G S (X i, - EX KL
Cocrch™1/2d! -

= ST @) < Cock MY PhT 2B ()5, = an.

It is easy to show that
1 1
I / / sD*S\(f + 55'9n)gngndsds’|| s
0 0
1 1
~ / / SEFCA(F(X) + 5890 (X))gn(X)2 K x Ydsds'|

< Cacih™ 1/2/ / sEf {gn(X }dsds

< Clexh™ 1/2||gn||f§C'220Kh 1262 —p,,.

Since Sy A(f + gn) = 0 and DS)(f) = —id, from (A.59) and (A.60) we have on En,

1 1
an > [1San(f) £ DS(F)gn + / / SD2S\(f + 55'gn)gngndsds’|
0 0
1 1
= 1Sun(f) — gn + / / SD2S\(f + 55'gn)gngndsds’|
0 0
1 1
> 1Sualf) — gully — | / / SD2S)(f + 55'gn)gngndsds'|

(A.59)

(A.60)
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which implies that
||fn,>\ - f - Sn)\(f)”f <ay,+ bn

Since sup e pm(cy Pr(&y) < 8 exp(—Mmnhr?), proof of (b) is completed.

42
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A.6. Proof of Proposition A.1

The proof requires the following result.

Proposition A.4. (An initial contraction rate) Under Assumption A1, if r, = o(h3/?), h*/?log N =
o(1), nh®™ 1 > 1 and fo = Y00, fl¢, satisfies Condition (S), then there exists a universal con-
stant M > 0 s.t. P(||f — fol| > Mr,|D;) = opy (1) as n — oo.

0

Proof of Proposition A.4. Note that there exists a universal constant ¢’ > 0 such that ¥(z) <
'z1=1/2m) for any 0 < x < 1. Therefore, there exists a universal constant ¢/ > 0 s.t. B(h) <

' h—@m=1)/(4m)
To prove the theorem, we first show the following posterior consistency: for any € > 0, as
n — 00,

P(|lf = follo = €/Dy) — 0, in Pf -probability. (A.61)

We can rewrite the posterior density of f by

[l 1(pf/pfo)( i) exp(—nAJ(f)/2)dII(f)
Jsm Ili=1 (P /p10)(Zi) exp(—=nAJ () /2)dIL(f)’

where recall that ps(2) is the probability density of Z = (Y, X) under f.

First of all, we give a lower bound for

p(f|Dn) =

I = / pr/pfo ) exp(—nAJ(f)/2)dII(f).

Define B, = {f € S™() : ||f — fOH < rp}. Then

n o> / TT00s /o) (Z0) exp(—nAJ () /2)d1()

”zl

-/ exp(>" Rilf, Jo)) exp(—nAJ()/2)dII( ).

n =1

where Ri(f, fo) = log (ps(Z)/pso(Z0)) = YilF(Xs) — fo(X0) — A(F(X:)) + A(fo(X:)) for amy
1 < i < n. Define dIT*(f) = dII(f)/II(B,), a reduced probability measure on B,. By Jensen’s

inequality,

log /B exp(>" Ri(f, fo)) exp(—nAJ (£)/2)dIT (f)

=1
> / (ZR' fofo) — nAI(f )/2) 41T ()
- /B Ri(f. fo) — Ep{Ri(f, fo)}JdIT*(f)
n g=1
nAJI(f)

on [ Egtrg gy - [ mag)

n

= J1+Jy+ Js.
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For any f € By, ||f — fol < rn. By Lemma A.9 and the condition h=%/?r,, = o(1), we can choose
n to be sufficiently large so that ||f — follee < ch 2| f — fol < ch™ %1, < 1.

It follows from Assumption Al that for C = 1+ C3+/J(fo), there exist positives Cj, C}, C4 s.t.
(2.2) and (2.3) hold with Cy, C4, Cy therein replaced by Cj), C1, C), respectively.

It follows by Taylor’s expansion, Ef,{Y; — A(fo(X;))|Xi} =0, 1/Ch < A(z) < C} for |2] < 2C
and Assumption Al that for any f € B,,

B {Ri(f, fo)}] < CoEp {(£(X) = fo(X))*} < (C2)*V(f — fo) < (C)*r.

Therefore, Jo > —(C%)*nr2.
Since r2 = o(1), we can choose n to be large so that |E, {R;(f, fo)}| < 1. Meanwhile, for any
f € By, for some s € [0, 1], we have

[Ri(f fo)]
= Yi(f(Xi) = fo(X3)) — A(F(X3)) + A(fo(Xi))]
= ¥~ A(o(X)
— S Ao (X0) + 5(F06) = o(EN)(F ~ P X I(f — fo)(X)
< Y= A(fo(X)| + Cy/2.
We have used ||f — follo < 1 in the above inequalities.
For any 1 < i < n, define 4; = {|Y; — A(fo(X:))| < 2C)logn}. It follows by Assumption Al

that Pf (U AS) < C7/n — 0, as n — oo. Define &§ = [ Ri(f, fo)dII*(f) x Ia,, we get that
€| < 2C)logn + C%/2, a.s. It can also be shown by 72 > 1/n that

|Efo{/ i(f, fo)dIT* (f) x Lac}]
Ep{(1Yi = fo(Xi)| + C5/2) x Iac}
= EpllYi = fo(X)l x Lag} + CQPfO(AC)
o201 PR (492 + S p (4]

VIGICY | CiC
<
n 2n?

IN

IN

< (V2CiCy + Ciey)r?

Let 6 = 1/(y/nry). Note that by the condition h'/?log n = o(1) we have §logn = (logn)/(y/nry,) <
h'/2logn = o(1), we can let n be large so that §(4C)logn + C4) < 1. Let d; = & — Ey,{&} for
1 <1 < n, then it is easy to see that

di| < |&|+ |Ep{&} < 4Cylogn + C5, a.s.

Let e; = Ey,{exp(d|d;|) — 1 — d|d;|}. It can be shown using inequality exp(z) — 1 —x < 22 exp(z)
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for z > 0 and Cauchy-Schwartz inequality that

leq]

IN

By, {8%d? exp(3|di])}

652Ef0{d12}

6(52Ef0 {§z2}

es? / B {Ri(f, fo)2}dIT* (f)
Bn

IN N

IN

IN

e [ B~ AX0)]+ G322 — o) (X}t (£)
< e(4(Ch)*C10s + (C3)*)%r,
where the last step follows from V(f — fo) < 72 for any f € B,. Therefore, it follows by [14
Theorem 3.2] that
Py (IZ — B {&]| = (e(4(Cp)*C103 + (C2)°) + 2)/nry, 10gn)

2 exp(—(e(4(Cp)?C1Cy + (C)*) + 2)V/nrn(log n)é
+e(4(Cp)?C1Ch + (C5)*)6°nry)

< 2/n* =0, as n — oo.

IN

(A.62)

Since /nry, > logn, we can let n be large so that (e(4(C})2C1Ch + (C5)3) + 2)y/nrplogn < nr2.
Since on NI'_; A;,

n

=3 Bg &) - nEy { / (. Jo)AIT(f) % L},

i=1
we get from (A.62) that with P} -probability approaching one,
J1 > —(e(4(CH)2C1Ch + (Ch)3) + 2)v/nrp logn — nr2 > —2nr2.

Meanwhile, for any f € By, AJ(f — fo) < r2. Therefore, J3 > —wmﬁ. So, with proba-
bility approaching one,

1 1/2)2
I > exp (—(2 (Y2 - Wn) 1(B,)
By Assumption A2,
I(B,) > ¢ exp(—cory, 2/ 3m+¥), (A.63)

2(2m+p) _ 2m(2m4y+1)
Since 1 > 0 and 72 = (nh) ' 4X > n=2m/CmHD) we get 72 > X and nr, Y > CrADEmR) >
2

1, s0 nr2 > r, "% Consequently, with P} -probability approaching one,

I > ¢ exp(—conr?), (A.64)
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where co = 2+ (C5)? + (1 + J(f0)/?)?/2 + co.

Now we choose a different constant C:

C = max{2Cs5v/co + 1,c0 + 1,2(1 + C3+/J(fo))}- (A.65)

It follows by Assumption Al that there exist positives Cp, C1, Co s.t. (2.2) and (2.3) hold. Next
we examine
e nA
b= [ TLs/o0)(Z0 esp(="3 3.
n =1

where A, = {f € ™) : ||f — foll > 3C20n}, 0, = 2b0h™ + 24Chcx (C)(4Cy + C)r, 7 = rph= /2,
and b = %301 /1+ ﬁ. By the condition h=3/2r, = o(1) and B(h) < h~3m=D/(m) it can be
easily checked that the Rate Condition (H): (i)—(iv) are satisfied (when n becomes large) with M
therein replaced by C. Define test ¢, = I(||fn>\ — fol| = C26,). Since Cy > 1, it follows by part

(a) of Lemma A.12 that

Ejy{¢n} = P (Ifar = foll = C26n) < PR (I fup = foll = 8) < 6exp(~Crnry),

and by (A.48),

sup  Ep{l—¢n} sup  PP(|fux — foll < Cad,)
feH™(C) feH™(C)
I f—fol|>3C26n Il f—foll>3C26n

sup  Pr(|[fax — fIl = 2C26,)
feH™(0C)
1f=Foll=3C26n

sup PP far — Flly > 6n)
JEH™(C)
1~ ol >3C24n

< 6exp(—Cnr?),

IA

IN

where the second last inequality follows by Lemma A.7.
Note that for any f € A,\H™(C),

J(f) > (1 41/ pmy1) 10 20% = C%/C2 > 4(cp +1).
Since nh®™+1 > 1 leads to 72 = (nh)™' + A < 2), it then holds that,
Ep{I2(1 = ¢n)}
= [ B oemina ()
= [ iy Bl el sl (2m(

+/ E {1 — ¢n}texp(—nAJ(f)/2)dII(f)
ApNH™(C)

exp(—2nX(co + 1)) 4 6exp(—(ca + 1)nr?)

IN

IN

exp(—(co + 1)m‘i) + 6exp(—(c2 + l)nri) = Texp(—(co + 1)m"721),
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S0
Ep{Io(1 — ¢n)} < Texp(—(c2 + L)nry),
which implies Iz(1 — ¢p) = Op}lo (exp(—(c2 + 1)nr2)). On the other hand,

B, {P(An|Dp)dn} < PF ([ fap — foll = Cadn) < 6exp(—(ca + 1)nr?),

SO as n — 00,
E;{P(An|Dyn)én} < 6exp(—(c2 + 1)m’ ) — 0,
which implies that P(A,|Dy)¢, = opy (1). By the above arguments and (A.64), we have
P(An|Dy)
= P(4u[Dp)én + P(A|Dp)(1 — ¢n)
< P(A,D,)4, + 2L =)

I

= opy (1) + Opp (exp(—(e2 + Dnr?) exp(eanrl)) = opy (1),

where the last step follows from exp(—nr2) < exp(—h~') = o(1). By condition r,h=3/2 = o(1)
and the trivial fact 8, < r,h~'/2, we have that h=1/24, = o(1), together with Lemma A.9 we have
that (A.61) holds.

To prove the theorem, we let

i / TLs/o)(2 Z3)exp(~"2X ()1 f).

nzl

where A" = {f € S™(I) : ||f — foll > V2Mr,} for a fixed number

M > max{2, J(fo)"/? + /2(ca + 1), 1+ || folloo }
to be further described later. Let
ALy ={fe€8™W) : V(f — fo) > My, N(f — fo) < M*r}

and
ALy ={feS™I): NI (f — fo) = M*r2}.

For any f € Al,, it can be shown that
Mo < /AI(f = fo) < VAT + J(fo)'7?) < ATV + T (fo) /7,
which leads to A\J(f) > (M — J(fo)"/?)?r2. So we have

Bt Tle/on) @ esp-"atani)}

n211

- /  exp(— I (IIF) < exp(~(M — J(fo)*)Pnr? 2),
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which leads to that

/ L5/ Z2)exp(~"ot ()l )

= (eXp( (M — J(fo)/*)*nrp/2)). (A.66)
To continue, we need to build uniformly consistent test. Let d2 (Py, Py) = 5 f (\/dPs—\/dPy)

be the squared Hellinger distance between the two probability measures Pf( z) and Py(z). Recall
that their corresponding probability density functions are p; and p,, respectively. Nextwe present

a lemma showing the local equivalence of V' and d%{.

Lemma A.13. Let C be chosen as (A.65) and Cy,Cy,Cy be positives satisfying Assumption
Al. Let e > 0 satisfy e < min{1,1/Cy,C'} and

%0225 + 2C’ + C’gCnggeXp ( Cy + CQ) < i

3 4Cy 16

Then for any f,g € F(C) satisfying || f — gllco < €,

V(f —9)/16 < dF (P, Py) <3V (f — g)/16.

Proof of Lemma A.13. For any f,g € F(C) with ||f — gll < €, define Az(f,g) = 3[Y(f(X) —

9(X)) —A(f(X))+ A(g9(X))], where recall and Z = (Y, X). It is easy to see by direct calculations
that

dyr(Pr, Py) = 1 — Eg{exp(Az(f,9))}-

By Taylor’s expansion, for some random ¢ € [0, 1],

1 — Eg{exp(Az(f,9))}
= —E{Az(f,9)} - %EQ{AZ(fv 9)%} - éEg{eXp(tAZ(f, 9)Az(f.9)°}.

We will analyze the terms on the right side of the equation.
Define € =Y — A(g(X)). By [13] we get E,{¢|X} = 0 and E,{¢?|X} = A(g(X)). By Taylor’s
expansion,
1 1.
Az(f.g) = FE(F(X) = 9(X)) = SAGX)(f(X) - g(X))?

~ AL — g(X))7,

As(f,9) = IEFX) — 9(X)) — AU (XN (FX) — g(X))7],

where fi.(X) is between g(X) and f(X) for k = 1,2. It clearly holds that || frs|lsc < [|f[loc + llg —
flloo < 2C. Then we get that

~Ey{As(f.0)} = (VI — ) + 15 B CONF(X) - (X)),
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Z. Shang & G. Cheng/Supplement to Nonparametric Gaussian Approzimation

EQ{AZ(f7g)2}

= B{GESO0) — 9(X) — JA ()0 — g(X)))
= LEACU) = g0} = LB () — g(X)PAfon (X))
g B AU COP(O0 - 900)")

= VU~ 0) 4 e B AR (X)) (7(X) — (X))

49

Since ||f — glloo < € < min{1,1/Cy,C} and 0 < A(z) < Cy for any z € [-2C,2C], implying
1Az (f,9) < 5018l + C2/2)f(X) — g(X)], we get

IN A

INIA A

’Eg{exp(tAZ(fa g))AZ(f,g)?’}]
Eg{exp(|Az(f.9)D)I1AZ(f,9)I*}
Eg{exp(el€]/2 + Cac/4)(€]/2 + Ca/4)°| (X) — 9(X)°}

3
6CHE, {exp(alé/z +Cae/yx g (2R —g<X>|3}

6C Eg{exp(elé] /2 + Cae/4) exp(|€]/(2C0) + Ca/(4C0))|f(X) — 9(X) |’}
6C5 exp(Cae /4 + Ca/(4C0)) Eg{exp([€]/Co)| f(X) — g(X)|*}
6C3C1Cy exp(Cae /4 + Co/(4Co))eV (f — g).

It also holds that

Therefore, by the above argument it holds that, for any f,g € F(C) with ||f — g|lec < &,

B {A(f1(X))(f(X) = 9(X))*} < C3eV(f —g),
[ Eg{A(f2+(X))*(f(X) = 9(X) '} < C32V(f — 9).

|7 (Py, Py) = V(f = 9)/8]

= B AL ()Y (X) — (X))
2 B AU ()P () — (X))

_éEg{exp(tAz(f,g))AZ(fv 9)3}’

IN

1 1 . .
(126’228 + 502‘352 + C3C1Cy exp(Cae /4 + CQ/(4C()))€> V(f-g9)

< V(f—g)/16,

which implies V(f — ¢)/16 < d% (P, Py) < 3V (f — g)/16. This proves Lemma A.13.
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Let ¢ satisfy the conditions in Lemma A.13. Define F,, = {f € S™(D) : || f — folloo <e/2,J(f) <
(M + J(fo)'/?)%r2A~1}. Note that for any f € Fy,, we have ||f|lco < || folloo +£/2 < C. Therefore,
Fn C F(C). Let P, = {P} : f € Fn} and D(0,Pn,dp) be the d-packing number in terms of dp.
Since 72 > X which leads to (M + J(fo)"/?)rnh™™ > M + J(f0)/? > € + || folloo, it can be easily
checked that F,, C (M + J(fo)Y?)r,h~™T, where T = {f € S™(I) : ||flloo < 1,J(f) <1}.

For any f,g € F, (implying f,g € F(C)) with ||f — g|lcc < ¢, it follows by Lemma A.13
that D(6, Py, dy) < D(46//3, Fn,dyv), where dy is the distance induced by V, i.e., d(f,g) =

V1/2(f — g). And hence, it follows by [10, Theorem 9.21] that

log D(6, Py, dp) < log D(46/V/3, Fp,dy)

log D(46/v/3, (M + J(fo)"/*)ruh ™™ T, dv')
—1/m

< ¢y ( g > )

(M + J(fo)/2)rnh—m

where cy is a universal constant only depending on the regularity level m. This implies that for

A

any 0 > 2r,,
log D(6/2,Pn,dy) < log D(ry,Pn,dpy)

< (M + J(fo)/2)Hmp!
< ey(M+ J(fo)A) Y2,

N

where the last inequality follows by the fact 72 > (nh)~!. Thus, the right side of the above
inequality is constant in §. By [7, Theorem 7.1], with § = M, /4, there exists test ¢, and a

universal constant kg > 0 satisfying

Efo{én} = P]%an
exp(ey (M + J(fo)Y?)Y™nr2) exp(—kond?)
- 1 — exp(—kond?)
exp(cy (M + J(fo)'/?)nry — koM>nr; /16)
1 — exp(—koM?nr2 /16) ’

and, combined with Lemma A.13,

sup  Ep{l—¢,} = sup  PP{1— ¢}
fEFn feFn
dy (f,fo)>40 dv (f,fo)>46
< sup  PP{l —¢n}
fe n

dyg (PP )6

< exp(—kond?) = exp(—koM?nr2/16).
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This implies that

n

Bl [ yer, TL00/o)(Z) exp(-nAT(1)/2a0(7)(1 - 6,))

dy (f,fo) =44 =1

< [ er Eallls/p0)200 - ba)an(s)

dy (f,fo)>46 i=1
dy (f,fo)>46

< exp(—koM?nr2 /16).

Therefore,

n

[ ser. TLs/om) @) exp-nri(/aann - é.)
dy (f,fo)>46 i=1
= Op;% (exp(—koM?nr2/16)).

(A.67)
It follows from (A.64) and (A.66) that

P(A4],,|D,) = Opp (exp(—(M = J(fo) /222 /2 + eanr) ) = opp (1),

where the last inequality follows by (M — J(f)'/?)? > 2(cz + 1) and exp(—nr2) = o(1). Together
with (A.61), we get that

P(A,Dy)
< P(A41|Dy) + P(4,5Dy)
< P(Au, If = follo < €/2Dn) + P(IIf = folls > €/2|Dy) + P(A72Dr)
< P = folleo < 2/2Dn) + opr (1)
< PALL S = follss < 2/2/Dn)dn

+P (AL 1 = folloo < €/2[Dn)(1 = én) + opy (1).
Choose the constant M to be even bigger so that
ey (M + J(fo)'/?) +1 < koM?/16, 1+ ¢y < koM?/16.
Then we get that

EfO{P( fn,l) ”f - fOHoo S 5/2|Dn)¢~)n}
exp(ey (M + J(fo)l/Q)nrfL - ]CgM2TL’I“3L/16)

IN A

exp(—nry,) = o(1),
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leading to P(A’,, If — folleo < /2|Dy)bn = = opp. (1). Meanwhile, it follows by (A.64) and (A.67)
that

P(AL, LS = folloo < €/2[Dy)(1 — én)

< P(f € Fuodv(f, fo) = 46Dy)(1 — ¢y,) )
[ rer TTi(or/pso)(Zi) exp(—nAJ (£)/2)dTI(f)(1 — )
< dv (f,fo)>46

I

= OPJ% (exp(—k:oMznri/w + czm"?l))

= Opp (exp(—nry)) = opp (1).

Thus, we have shown that P(||f — fol| > v2Mr,|D,,) = opy (1). This completes the proof. [

Proof of Proposition A.1. Fix any e1,62 € (0,1). Let C = Cs+/J(fo) + 1, and Cp,C1,Cs be
positive constants satisfying (2.2) and (2.3) in Assumptions Al. It follows by Lemma A.12 that
for any fixed constant M > 1, if we set

CyC 1

b= 1+ 7= (nh/log2s)”Y2,6, = 2bh™ + 24Cycx (4C, + M)r, (A.68)
Cs Pm+1

an = Coce MY2h=12:B(h)6,,, and b, = C2cxh™ /252, (A.69)

then as n — oo,
Ppy (Ifan = foll = 8) <60~ =0,

and
Piy (I = fo = Sualfo)ll > an +b2) <807 0.

By B(h) S h™ “Im and the simple fact a,, + b, < Dy, we get that
1 Fnx = fo = Sun(fo)ll = Opy (an + bn) = Opy (Dn). (A.70)

Recall that

n

Sualfo) = = S (%~ Afo(X)Kx, — Pafo,

=1

It was shown by [44] that Pyp, = li‘f\’fpy ¢y, Since fy satisfies Condition (S),
oo
APy APy
2 _ 0 0
||7D)\f0|| - <;fl/1+)\ V’nyl+)\p
— i|f0|2 )\291,
— YT 14 Apy
B-1

(Apy)' ™o -
— O\t 012, 1+ o APy — O(p2m+B-1
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_B=1

where the last equation follows by XA = h*™, sup,~ ””11# < 00, and Condition (S). On the other

side, it follows by the proof of (A.55) that

P, (H > (Y = A(fo(X0))) K x| = L(M)n(nh/ log 2)_1/2>

i=1
< 2exp (—Mnh(nh/log2) ) =2"M -0, as M — o0,
implying that .
1D (¥i = A(fo(Xi))Ex. || = Opy (n(nh/log2)~"/?),
i=1
and hence,
ISnAU)ll = Opp (nh) ™2 4 B+ 55) = Opn (7).

Together with (A.70) and the rate condition D,, < 7, we get that
[fnx = foll = Opy (7).
Let M; be large constant so that event

&l = {1 fax — foll < Mi7} (A.71)

has probability approaching one. Meanwhile, form some positive constant My, it follows by The-
orem A.4 that P(||f — fol| > Mory|Dy) converges to zero in P -probability. Let ¢’ > M be a

constant to be further determined later, then we have that

P(Hf - fOH > 2C,Fn‘Dn)
< P(lf = foll = Mor,|Dy) +P(20,77n < |f = foll £ Morn|Dy).

Thanks to Theorem A.4, the first term converges to zero in P;%—probability. Thus, when n is
sufficiently large,
P (P([lf = foll =2 Morn|Dn) = €2/2) < e1/2.

We only need to handle the second term.

Define
&= {225 12,5, (0)]| < B/ Mlogn, 1 = 172} 7 (A.72)
where .
Z,,(9) = \/15 Z;[wq(zl,)fo(zi;g)KXi = Bl (Zi ) K} for 1 = 1,2,
and :

Y (Zis9) = C}lhl/gg(Xz’),

n:fO

W) (Zi.g) = C3 e WA fol X:)) g (X0).
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It is easy to see that wﬁ)fo(Z,-;g) satisfies (A.51). By Lemma A.11 we have that &, has PJ-
probability approaching one. Thus, it holds that, when n becomes large, Pf (En) >1—¢1/2. In
the rest of the proof we simply assume that &, = &/, N &/ holds.

Let In(f) = Jy Jy sDSna(Fur+ 38/ (F = Fad))(f = Fax)(f = Fun)dsds’ for amy f € 5™ (D). Let
Af = f — fux. Therefore,

L(f)
- L / / ZA Fan(X2) + 55/ (AF) (X)) (AF)(X0)?dsds
—AJ( Af,Af)/Q

- _// z (Frn(X0) + 58/ (Af) (X)) (AS) (X

(Af)( i)’ ]dsds’

[A(fo(Xi))(AF)(X:)* _Efo{A(fO(X))(Af)(X)2}]_%HAf‘F

1

n

2
Z

T\()+ Tof) — | AFI

where recall that

Ti(f) = -+ / / AFon(X) + 55 (AF)(X0) (AS)(X0)?
Ao (A )X dsds.
To(f) = ;n Afo(X)) (AS)(X0)? — EXLA(fo(X))(AS) (X)),
=1

By Taylor’s expansion in terms of Fréchet derivatives,

Can(F) = bar(Fax) = Sur(Fan) (f = fan) + In(f) = Ln(f)-
Therefore,

Ja, exp(n (f AF) = Lo (Fap)))dIL(f)
Jsm @ eXP(Lar(f) = Lar(fa)))dII(f)
Ja, exp(nf (f))dH(f)
Jsmpy exp(ndn(f))dIL(f)’
where A, = {f € S™(I) : 2C'7, < ||f — foll < Mory,}.

Let

P(An|Dn) =

n- | oy PO, o = / exp(nd(£)dm(f)
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Then on &, and for ||f — foll < 7, we have [|f — fuxll < If = foll + [ fax = foll < (M + 1)7.

Let d,, = cx(My + 1)h=Y/%7,. Tt follows by similar arguments above (A.56) that d;'Af € G. It
follows by Lemma A.9 that ||Af|so < cxh V2| Af|| < ex(My + 1)h~1/?7,. By rate assumption
r, = o(h%/?) and h'/?logn = o(1) and the simple fact 7, < r,+/Iog2n, we get that

K25, < b2, \/log 2N = o(hy/logn) = o(1)

Therefore, we can let n be large so that, on &, and || fol/co + ||ﬁ1,>\ — Jfolloo + IAf]loc < C. Then

on &,, we have

7))
- e’} A 0 =
< cyla il £ 18 e $ sy
/;1 - e’} A o] =
= o Mna = Ioloe IR e 5 )2 - BY (A1) (X))
=1
. C2||fn,x—fo\2o; 1Al 5
X\IZ (Af)(Xi)Kx, — EX{(Af)(X)Kx ]|
. dann,A—foHQooﬂLHAfHooHAfH
n
X\\Z Xi)Kx, — EX{d, (Af)(X)Ex}]|
< dn||fn,x—f0|!2<>;+ HAfHooHAf” - exn/mh=Y2B(h)\/ M Tog N
< 20 G M Y263 (2My +1)2h 3273 0~ Y2 B(h)y/log N
+fC'22cK(2M1 + 1)3h*1/2?3
< Di(Ca e, M, My) x 7 (n~ V20" \/log N + h™Y/2)
< Di(Cy,ex, M, M) x Tnbnla

(A.73)

where D1 (Cy, cx, M, My) is constant depending only on Co, cx, M, M.
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We can use similar empirical processes techniques to handle T5. Note that on &, and for

Il — fol| < 7, using Assumption Al,

73(9)
= g SR ANEN = BEAGREANC0R)
=1
= 5 OCUADANCE K, ~ B UARNAN ORI AT)
=1
1
< Ljafl
ISR AFXD K, — EEARBE)ANE) K]
=1
e h-1/2
= o B2 @ran)
< CQCKh;l/\/Q;nHAfHB(h) /MlogN
< Dy(Co,cxc, M, M) x 0= Y20~ "5 72 /log N
< Da(Co,cic, M, My) X Thbpa,

(A.74)

where Do(Cy, cie, M, My) is constant depending only on Co, cx, My, M.
It follows that on &,

J1
> [ b))
Il f—foll<n

\Y

= [ ew (Tl +atuh) - GIF - Fonl?) dil(s)
lf—foll<7n
> exp (—[D1(Ca,cx, M, M1)Ty,bp1 + D2(Ca, cie, M, My )bpa
+(My + 1) /2002 (|| f = foll < 7).

To continue, we provide a lower bound for II(||f — fo|| < 7,,) using the same arguments as in

4m

(A.63). Note that A < 7,;""°~'. Then it follows by Assumption A2, with ¢ replaced by 7, that

__2
(|| f = foll £ 7n) > c1exp(—corn 2m+w)'

Note that
2m+1p
Fo > (nh)"V2 4 BEE > op 2w

we get that

2452 _2m4v gL 1
nry, 2m+1p 2 n(4n 2m+p+1 )1+ 2m+y — 4‘
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2
Therefore, 7, ™% < n72 /4, leading to

~ C
(I = foll < 7a) = crexp (—ni).

This implies by rate conditions 7,b,1 < 1 and b, < 1 that, on &,,

J1 > caexp(—[D1(Caycx, M, M1)rnbp1 + Da(Co, cxey My My)bpo
(M +1)%/2 + co/4Ini)

c1exp (—[D1(Cay e, M, My) + Da(Co, ciey, M, My)

+(My +1)%/2 4 co/4In72) .

v

57

(A.75)

Next we handle Jy. The idea is similar to how we handle J; but with technical difference. Let
Af=f-— ﬁz,/\~ Note that 7, < r,+/logn, and hence, on &,, for any f € A,, i.e., ||f — fol| < Morn,
we get that [AF] = | Fax — £l < | Fax — foll + 11f = foll < M+ Mora < (Mo + My)ryy/Togm.
This implies that on &,, [|Af]lee < e (Mo + My)h~'/?r,\/logn, where the last term by our rate

assumption is o(1), and hence, we can choose n to be large enough so that || folleo + Foy— 0lloo +
p ( )7 ) g g A

|Aflloo < C. Let duy, = cx (Mo + My)h=/?r,\/logn. Then d,,)Af € G. Using previous similar

arguments handling T (f), i.e., (A.73) , we have that on &,, for any f € A,,

T2 (/)]

2M, + M,
Cack ( ! 1+ O)h’1/2rn\/@
n

IN

X (d*n| Dl (AN XKy, = EX{d (AN XOExHI - |AS]
i=1

+nEX{(Af)(X)?*})

2My + M,
e T T
n

X (v/negh ™ 2dyy, - (Mo 4+ My)rp\/logn - B(h)\/M log N
+nCo[(My + Ml)rn\/logn]2)
= %CQC%@Ml + Mo)> M2 =323 =12 B(h) (log n)?

IN

1
+§C’220K(2M1 + My)>h™%r3 (log n)?/?

m—1

IN

= D3(Ca,cx, M, My, My) X r3bp1 < D3(Ca, e, M, My, My) x 72,

D3(Cy, cxe, M, Mo, My) x 13 (n_l/Qh_SW (logn)? + h_1/2(logn)3/2)

where D3(Co, cx, M, My, My) is constant depending only on Co,cx, M, My, M; and the last in-
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equality follows by rate condition r3b,; < 72. Likewise, on &, and for any f € A,

1| < o H w2, B /AT Togn
n

1
< 502cif;((Mo + My)2M Y2207 12 B(h) (log n)3/?
< Dy(Ca, e, M, Mo, My) x 0~ "/2r2h =55 (log n)?/*

Dy(Ca, cre, M, My, My) X r2bpa < Dy(Ca, e, M, My, My) x 72,

where D4(Co, cx, M, My, My) is constant only depending on Cs,cg, M, My, My and the last in-

equality follows by rate condition r2b,s < 72. It is easy to see that on &, and for any f € A,,
1 fax = £ 2 1F = foll = [ fax = foll = (2C" = M),
leading to that
Jo <

20" — M,)?
exp <— ((21) - D3(CQ,CK,M, MOyMl) - D4(0250K5M7 M07M1)> n??l,) :

Choose C" > M to be large s.t.

(2c’ —2M1)2 -
14 Dy(Ca,cx, M, My) + Dao(Co, cir, M, My) 4+ D3(Co, cxe, M, My, M)
+Dy4(Cy, cxc, M, My, My) + (My + 1)%/2 + c3/4.

Therefore, on &,

P(A,|D,) < % < exp(—mﬂn).
1

When n becomes large s.t. exp(—n72) < e2/2, we get that
P (P(A4[Dy) > £2/2) < PJL(ES) < &1/2.

This shows that
P?(P(|If = foll > 2C"7|Dy) > £2) < e
Proof is completed. O

Verification of (3.7)—> Rate Condition (R). Consider two cases.

Casel 2 2m 1 <g< 1
asel :  max — a< ———
6m + 3¢ — 1" 2m(4dm + 21 — 3) + 1" 4m “2m+Y+1

1
Case2 : — < a <
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We only verify that Case 1 satisfies Rate Condition (R). The verification of Case 2 is similar. By

Case 1, we have

~ _ _1,6m—-1, a_
< B = n—ma’ 7= hm+1/)/2 =n (m+w/2)a’ D, = (n 5+ "4 a—ma +n? 2ma) logn

1 8m—1 a 1 6m—1
bpy < n "2t am a(logn)2 + ni(logn)g/Q, bpo < n 2" am 3/2

“(logn)

Then the following hold:

o m>3/2=r,=o0(h%?)

h'2logn = n=%?logn = o(1)

a<1/(2m+1) = nh®™*l >1

2m/(6m —1+42my) > 1/2m 4+ +1) >aand Y <m —1/2 = D, = O(7,)
Am? —8m+1>0,9>0,2m+1 > 1 = b1 < 1

Am?2 4+2mYp —4m+1>0 = b, < 1

e p<m—1/2,-1/2+ (8m —1)a/(4m) < a/2 < (m —)a = riby <72

e p<m—1/2,a<1/2m+v+1)= 1r2by, <72

e a>2/(6m+3Y—1),a>2m/[2m(4m + 2¢p — 3) + 1] = nrob,1 = o(1)

e a>2m/[2m(4m + 2¢p — 3) + 1] = n72b,e = o(1)

Hence, Rate Condition (R) holds. O
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