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A b s t r a c t

Lit er at ur e o n c h a n g e p oi nt a n al y si s m o stl y r e q uir e a s u d d e n c h a n g e i n t h e d at a
di stri b uti o n, eit h er i n a f e w p ar a m et er s or t h e di stri b uti o n a s a w h ol e. We ar e i n-
t er e st e d i n t h e s c e n ari o t h at t h e v ari a n c e of d at a m a y m a k e a si g ni fi c a nt j u m p w hil e
t h e m e a n of d at a c h a n g e s i n a s m o ot h f a s hi o n. It i s m oti v at e d fr o m a li v er pr o c ur e-
m e nt e x p eri m e nt wit h or g a n s u rf a c e t e m p e r at ur e m o nit ori n g. Bli n dl y a p pl yi n g t h e
e xi sti n g c h a n g e p oi nt a n al y si s m et h o d s t o t h e e x a m pl e c a n yi el d err ati c c h a n g e p oi nt
e sti m at e s si n c e t h e s m o ot hl y- c h a n gi n g m e a n vi ol at e s t h e s u d d e n- c h a n g e a s s u m pti o n.
I n t hi s p a p er w e pr o p o s e a p e n ali z e d w ei g ht e d l e a st s q u ar e s a p p r o a c h wit h a n it er ati v e
e sti m ati o n pr o c e d ur e t h at n at ur all y i nt e gr at e s v a ri a n c e c h a n g e p oi nt d et e cti o n a n d
s m o ot h m e a n f u n cti o n e sti m ati o n. Gi v e n t h e v ari a n c e c o m p o n e nt s t h e m e a n f u n cti o n
i s e sti m at e d b y s m o ot hi n g s pli n e s a s t h e mi ni mi z e r of t h e p e n ali z e d w ei g ht e d l e a st
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s q u ar e s. Gi v e n t h e m e a n f u n cti o n, w e p r o p o s e a li k eli h o o d r ati o t e st st ati sti c f or
i d e ntif yi n g t h e v ari a n c e c h a n g e p oi nt. T h e n ull di stri b uti o n of t h e t e st st ati sti c i s
d eri v e d t o g et h e r wit h t h e r at e s of c o n v er g e n c e of all t h e p ar a m et er e sti m at e s. Si m-
ul ati o n s s h o w e x c ell e nt p erf or m a n c e of t h e pr o p o s e d m et h o d. A p pli c ati o n a n al y si s
o ff er s n u m eri c al s u p p ort t o t h e n o n-i n v a si v e or g a n vi a bilit y a s s e s s m e nt b y s urf a c e
t e m p er at ur e m o nit ori n g.

K e y w o r d s: V ari a n c e c h a n g e p oi nt; S m o ot hl y- c h a n gi n g m e a n tr e n d; H y p ot h esis t esti n g i n
n o n p ar a m etri c s m o ot hi n g; C h a n g e p oi nt c o nsist e n c y; As y m pt oti c n ull distri b uti o n.
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1 I n t r o d u c ti o n

C h a n g e p oi nt d et e cti o n is a cl assi c al t o pi c t h at h as attr a ct e d a l ot of att e nti o n f or d e c a d es.

E ff orts h a v e m ostl y f o c us e d o n d et e cti o n of s u d d e n c h a n g es i n a f e w p ar a m et ers, s u c h as

t h e m e a n a n d / or v ari a n c e, of t h e u n d erl yi n g distri b uti o n, or t h e distri b uti o n its elf as a

w h ol e e ntit y. I n t his p a p er, w e ar e c o n c er n e d wit h v ari a n c e c h a n g e p oi nt d et e cti o n u n d er a

s m o ot hl y- c h a n gi n g m e a n tr e n d. P arti c ul arl y, t h e c o nst a ntl y c h a n gi n g m e a n tr e n d vi ol at es

t h e ass u m pti o ns of m ost e xisti n g c h a n g e p oi nt d et e cti o n m et h o ds. As d e m o nstr at e d i n

t h e p a p er, a n aı̈ v e a p pli c ati o n of t h es e e xisti n g m et h o ds t o s u c h ki n d of d at a w o ul d yi el d

err ati c c h a n g e p oi nt esti m at es.

O ur m et h o d is m oti v at e d fr o m a n e x p eri m e nt a b o ut t h e pr o c ur e m e nt of tr a ns pl a nt

li v ers. Q u alit y / vi a bilit y e v al u ati o n is a k e y iss u e i n t h e pr o c ur e m e nt of tr a ns pl a nt or g a ns.

C urr e ntl y, s u c h e v al u ati o ns ar e m ostl y p erf or m e d t hr o u g h vis u al i ns p e cti o n b y s ur g e o ns

or bi o ps y i m a g e ass ess m e nt b y p at h ol o gists. B ot h a p pr o a c h es ar e s u bj e cti v e j u d g e m e nts.

Bi o ps y is m or e a c c ur at e t h a n s ur g e o ns’ vis u al i ns p e cti o n, b ut it is als o i n v asi v e a n d d a m a g es

t h e p art of t h e or g a n w h er e t h e bi o ps y s a m pl e is c oll e ct e d. A n d t h e vi a bilit y st at us of t h e

bi o ps y s a m pl e m a y n ot r e pr es e nt t h at of t h e w h ol e or g a n. I n t h e e x p eri m e nt c o nsi d er e d i n

t h e p a p er, s urf a c e t e m p er at ur e of a s e v er e d p or ci n e li v er w as c o nst a ntl y m o nit or e d u p o n

t h e i nf usi o n of t h e p erf usi o n li q ui d t o t h e or g a n. T h e m e as ur e m e nts c o nsist e d of s urf a c e

t e m p er at ur es m e as ur e d e v er y 1 0 mi n ut es o n a d e ns e gri d c o v eri n g t h e w h ol e or g a n f or a

s p a n of 2 4 h o urs. T h e l eft p a n els i n Fi g ur e 1 w er e t h e t e m p er at ur e pr o fil es f or t hr e e s p ots

o n t h e s urf a c e. T h e t e m p er at ur e of t h e p erf usi o n li q ui d w as oft e n sli g htl y di ff er e nt fr o m

t h e b o d y t e m p er at ur e. S o t h e t e m p er at ur e of t h e or g a n c h a n g e d i n a sl o w f as hi o n a n d

dis pl a y e d a n o v er all s m o ot h m e a n tr e n d. T h e hi g h os cill ati o ns i n t h e first h alf r e fl e ct e d t h e

r esist a n c e of t h e or g a n t o t h e a br u pt t e m p er at ur e c h a n g e i n t h e e n vir o n m e nt. Ar o u n d t h e
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1 0t h h o ur, t h e or g a n st art e d t o l os e its vi a bilit y a n d t his c h a n g e w as r e fl e ct e d i n a s u d d e n

dr o p i n t h e v ari a n c e of t h e t e m p er at ur e, as s h o w n i n t h e pl ot of r esi d u als v ers us ti m e i n

t h e ri g ht p a n els of Fi g ur e 1. O ur g o al is t o d esi g n a t esti n g pr o c e d ur e f or i d e ntif yi n g t h e

v ari a n c e c h a n g e p oi nt of t h e r esi d u als aft er r e m o vi n g t h e s m o ot hl y c h a n gi n g m e a n tr e n d.

Fi g ur e 1: R a w t e m p er at ur e pr o fil es (l eft p a n els) a n d d etr e n d e d t e m p er at ur e pr o fil es (ri g ht

p a n els) at t hr e e s p ots of t h e li v er. T h e x- a xis l a b els i n b ot h p a n els r e pr es e nt 2 4 h o urs.

N ot e t h at t his p h e n o m e n o n of h a vi n g a v ari a n c e c h a n g e p oi nt u n d erl yi n g a s m o ot h

m e a n tr e n d a ct u all y o c c urs i n m a n y ot h er s etti n gs b esi d es t h e li v er pr o c ur e m e nt e x p eri-

m e nt c o nsi d er e d h er e. F or e x a m pl e, s eis mi c a cti vit y m o nit ori n g oft e n s e es a s m o ot h m e a n

tr e n d wit h s m all v ari ati o n a n d a s u d d e n c h a n g e i n v ari ati o n c o ul d b e t h e e arl y si g n of a n

e art h q u a k e; t h e E E G si g n al f or a n e pil e ps y p ati e nt g e n er all y s h o ws a s m o ot h m e a n tr e n d

a n d a s u d d e n v ari ati o n c h a n g e i n t h e si g n al mi g ht m e a n t h e o ns et of a s ei z ur e; t h e st o c k
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pri c e f or a bi g c o m p a n y oft e n s h o ws a s m o ot h m e a n tr e n d a n d a s u d d e n i n cr e as e i n v ari-

ati o n c o ul d m e a n a t ur m oil o n t h e st o c k m ar k et or st o c k h ol d ers’ risi n g p a ni c a b o ut t h e

c o m p a n y’s h e alt h. S o t h e c h a n g e p oi nt d et e cti o n pr o c e d ur e pr o p os e d h er e is a n e w m et h o d

t h at aris es n at ur all y fr o m o ur m oti v ati n g e x a m pl e o n li v er pr o c ur e m e nt a n d c a n b e als o

a p pli e d t o m a n y ot h er ar e as.

T h e e xisti n g lit er at ur e o n c h a n g e p oi nt a n al ysis c a n b e r o u g hl y di vi d e d i nt o t w o c at-

e g ori es. I n t h e d o m ai n of p ar a m etri c c h a n g e p oi nt a n al ysis, r es e ar c h ers ass u m e t h at t h e

u n d erl yi n g distri b uti o n b el o n gs t o s o m e k n o w n f a mil y a n d s u d d e n s hift c h a n g es i n t h e

m e a n, v ari a n c e, or b ot h ar e c o nsi d er e d. F or e x a m pl e, w h e n c h a n g e of v ari a n c e is t h e

o nl y c o n c er n, t w o r e pr es e nt ati v e a p pr o a c h es ar e t h e c u m ul ati v e s u m of s q u ar es a p pr o a c h

i n I n cl á n a n d Ti a o ( 1 9 9 4) a n d t h e S c h w art z i nf or m ati o n crit eri o n i n C h e n a n d G u pt a

( 1 9 9 7). W h e n si m ult a n e o us s hifts i n m e a n a n d v ari a n c e ar e c o nsi d er e d, H or v á t h ( 1 9 9 3)

a n d P a n a n d C h e n ( 2 0 0 6) st u di e d t h e t h e or eti c al pr o p erti es of li k eli h o o d r ati o t est a n d

m o di fi e d i nf or m ati o n crit eri o n r es p e cti v el y. O n e c a n r ef er t o C h e n a n d G u pt a ( 2 0 1 2) f or

a c o m pr e h e nsi v e list of p u bli c ati o ns i n p ar a m etri c c h a n g e p oi nt a n al ysis. I n t h e d o m ai n

of n o n p ar a m etri c c h a n g e p oi nt a n al ysis, t h e ass u m pti o n is t h at t h er e is a s u d d e n c h a n g e

i n t h e pr o b a bilit y distri b uti o n of t h e d at a. V ari o us m e as ur es f or s u c h c h a n g e h a v e b e e n

d e v el o p e d i n t h e lit er at ur e t o d es cri b e t h e di ff er e n c es b et w e e n pr o b a bilit y distri b uti o ns.

F or e x a m pl e, H ari z et al. ( 2 0 0 7) d e v el o p e d a s e mi- n or m t o m e as ur e t h e di ff er e n c e b et w e e n

e m piri c al pr o b a bilit y distri b uti o ns a n d esti m at e d t h e c h a n g e p oi nt as t h e p ositi o n w h er e a

w ei g ht e d v ersi o n of s u c h di ff er e n c e is m a xi mi z e d. M att es o n a n d J a m es ( 2 0 1 4) us e d hi er ar-

c hi c al cl ust eri n g t o esti m at e t h e n u m b er of c h a n g e p oi nts a n d t h eir p ositi o ns si m ult a n e o usl y

f or m ulti v ari at e d at a. H o w e v er, n o n e of t h es e e xisti n g m et h o ds i n t h es e t w o d o m ai ns c a n

a d dr ess t h e pr o bl e m i n o ur e x p eri m e nt w h er e t h e v ari a n c e c h a n g e h a p p e n e d u n d er n e at h a

s m o ot hl y- c h a n gi n g m e a n tr e n d. P arti c ul arl y, a s m o ot h m e a n tr e n d i m pli es t h at t h e m e a n,
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a n d t h us t h e distri b uti o n of t h e d at a, ar e c o nst a ntl y c h a n gi n g o v er ti m e b esi d es t h e s u d d e n

c h a n g e i n v ari a n c e. N eit h er t h e p ar a m etri c n or t h e n o n p ar a m etri c c h a n g e p oi nt a n al ysis

m et h o ds c a n c a pt ur e t h e gr a d u all y c h a n gi n g m e a n tr e n d. As d e m o nstr at e d i n o ur n u m eri-

c al e x p eri m e nts, err ati c b e h a vi or o c c urs w h e n bli n dl y a p pl yi n g t h es e m et h o ds t o s u c h ki n d

of d at a i g n ori n g t h e u n d erl yi n g s m o ot h m e a n tr e n d.

N o n p ar a m etri c s m o ot hi n g a n d c h a n g e p oi nt d et e cti o n ar e oft e n vi e w e d as t w o c o n fli ct-

i n g iss u es i n st atisti cs si n c e t h e f or m er e m p h asi z es o n c o nti n uit y a n d t h e l att er r e pr es e nts

dis c o nti n uit y. T h e v ari a n c e c h a n g e p oi nt d et e cti o n m et h o d pr o p os e d h er e n at ur all y i nt e-

gr at es t h es e t w o d o m ai ns i n b ot h n u m eri c al a n d t h e or eti c al s e ns es. T h er e h as b e e n ot h er

w or k c o m bi ni n g n o n p ar a m etri c r e gr essi o n wit h c h a n g e p oi nt d et e cti o n. F or e x a m pl e, b ot h

L o a d er ( 1 9 9 6) a n d Gr é g oir e a n d H a mr o u ni ( 2 0 0 2) c o nsi d er e d t h e pr o bl e m of d et e cti n g

j u m p p oi nts i n s m o ot h c ur v es. H o w e v er, t h e y b ot h f o c us e d o n j u m ps i n t h e m e a n c ur v e

w h er e as o ur a p pli c ati o n cl e arl y s h o w e d a j u m p i n t h e v ari a n c e. S o t h e m et h o d pr o p os e d

i n t his p a p er is u ni q u el y s uit e d t o t a c kli n g t h e c h a n g e p oi nt pr o bl e m f o u n d i n o ur li v er

pr o c ur e m e nt e x p eri m e nt.

O ur v ari a n c e c h a n g e p oi nt d et e cti o n m et h o d is f or m ul at e d u n d er t h e fr a m e w or k of

p e n ali z e d w ei g ht e d l e ast s q u ar es esti m ati o n. P arti c ul arl y, t h e esti m at es of t h e m e a n f u n c-

ti o n, t h e c h a n g e p oi nt, a n d t h e v ari a n c es ar e a l o c al mi ni mi z er of a p e n ali z e d w ei g ht e d l e ast

s q u ar es s c or e w h os e gl o b al mi ni mi z er m a y n ot e xist. T his o bj e cti v e f u n cti o n al c o nsists of

t hr e e p arts: t h e w ei g ht e d s u m of s q u ar e d err ors r e pr es e nts t h e g o o d n ess- of- fit, t h e r o u g h-

n ess p e n alt y o n t h e m e a n f u n cti o n esti m at e e nf or c es s m o ot h n ess o n t h e m e a n, a n d t h e

s m o ot hi n g p ar a m et er b al a n c es t h e tr a d e o ff. T h e o pti mi z ati o n of t h e o bj e cti v e f u n cti o n al is

c arri e d o ut i n a n it er ati v e f as hi o n st arti n g wit h a c o nsist e nt i niti al m e a n esti m at e. W h e n

t h e m e a n f u n cti o n is gi v e n, t h e v ari a n c e c h a n g e p oi nt a n d t h e c orr es p o n di n g v ari a n c es ar e

esti m at e d t hr o u g h a t esti n g pr o c e d ur e g e n er ali zi n g t h e o n e i n C h e n a n d G u pt a ( 1 9 9 7).
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W h e n t h e v ari a n c e c h a n g e p oi nt a n d t h e v ari a n c es of t w o s u bs e q u e n c es of d at a ar e gi v e n,

t h e m e a n f u n cti o n is esti m at e d b y s m o ot hi n g s pli n es t hr o u g h t h e st a n d ar d o pti mi z ati o n of

t h e p e n ali z e d w ei g ht e d l e ast s q u ar es wit h k n o w n w ei g hts. T h e i niti al m e a n esti m at e is t h e

mi ni mi z er of t h e p e n ali z e d l e ast s q u ar es u n d er t h e w or ki n g i n d e p e n d e n c e ass u m pti o n.

F or t h e or eti c al pr o p erti es, w e d eri v e t h e as y m pt oti c n ull distri b uti o n of o ur t est st atisti c

f or t h e v ari a n c e c h a n g e p oi nt a n d w e s h o w t h at o ur c h a n g e p oi nt esti m at e is c o nsist e nt w h e n

t h e f u n cti o n s p a c e f or t h e m e a n f u n cti o n is a p eri o di c S o bl e v s p a c e. We n ot e t h at t h es e

r es ults h a v e t h eir o w n t h e or eti c al v al u es t o o. Testi n g pr o c e d ur es u n d er n o n p ar a m etri c n ull

a n d alt er n ati v e h y p ot h es es ar e v er y di ffi c ult pr o bl e ms si n c e b ot h t h e n ull a n d alt er n ati v e

s p a c es ar e of i n fi nit e di m e nsi o ns. T h e y b e c o m e e v e n h ar d er i n t h e p e n ali z e d esti m ati o n

s c e n ari o si n c e t h e s m o ot hi n g p ar a m et er i n t h e p e n alt y a d ds a d diti o n al c o m pl e xit y t o t h e

d eri v ati o n of as y m pt oti c t h e or y. F or e x a m pl e, t h e ri g or o us t h e or y f or st atisti c al i nf er e n c e

wit h s m o ot hi n g s pli n e r e gr essi o n u n d er t h e c o nst a nt v ari a n c e ass u m pti o n w as est a blis h e d

b y S h a n g a n d C h e n g ( 2 0 1 3) o nl y a f e w y e ars a g o. A n d t h eir w or k f o c us e d o n t h e i nf er e n c e

of t h e m e a n f u n cti o n. B ut o ur w or k st u di es h y p ot h esis t esti n g o n t h e v ari a n c e c o m p o n e nt.

O ur c o nsist e n c y r es ult o n t h e m e a n a n d v ari a n c e c o m p o n e nt esti m at es is als o n e w. R e c o g-

ni zi n g t h at t h e gl o b al mi ni mi z er of t h e p e n ali z e d w ei g ht e d l e ast s q u ar es m a y n ot e xist, w e

h a v e pr o v e d t h e c o nsist e n c y of t h e esti m at es o bt ai n e d fr o m a n it er ati v e al g orit h m st arti n g

wit h a c o nsist e nt i niti al m e a n esti m at e. T his o p e ns a n e w v e n u e f or st u d yi n g t h e as y m p-

t oti c t h e or y of a n o n p ar a m etri c r e gr essi o n m o d el w h e n t h e r a n d o m err ors ar e n ot II D. S o

t h e t h e or eti c al d e v el o p m e nts h er e ar e n o v el a n d n o ntri vi al.

I n o ur si m ul ati o ns, w e first d e m o nstr at e t h e pitf all of bli n dl y a p pl yi n g t h e e xisti n g

c h a n g e p oi nt pr o c e d ur es wit h o ut r e m o vi n g t h e s m o ot hl y- c h a n gi n g m e a n tr e n d w h e n s u c h

a tr e n d is pr es e nt. T h e n w e s h o w t h e e x c ell e nt p erf or m a n c e of o ur m et h o d i n esti m ati n g

t h e v ari a n c e c h a n g e p oi nt, t h e m e a n f u n cti o ns a n d t h e v ari a n c es. T h e a p pli c ati o n of o ur
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m et h o d t o t h e t e m p er at ur e pr o fil es c oll e ct e d i n t h e li v er pr o c ur e m e nt e x p eri m e nt yi el d

criti c al i nf or m ati o n a b o ut t h e vi a bilit y st at us of t h e or g a n. I n s u m m ar y, o ur m et h o d h as

t h e f oll o wi n g disti n g uis hi n g f e at ur es: ( 1) it is u ni q u el y q u ali fi e d t o a d dr ess t h e s ci e nti fi c

h y p ot h esis r ais e d i n o ur a p pli c ati o n e x p eri m e nt; ( 2) it is a n i n n o v ati v e a d diti o n t o t h e

e xisti n g ri c h lit er at ur e o n c h a n g e p oi nt a n al ysis, ( 3) it n at ur all y i nt e gr at es s m o ot hi n g a n d

c h a n g e p oi nt a n al ysis i n a w a y disti n ct fr o m ot h ers, a n d ( 4) its t h e or eti c al d e v el o p m e nt

o p e ns n e w fr o nts f or t h e i nf er e n c e t h e or y of n o n p ar a m etri c s m o ot hi n g.

T h e r est of t h e p a p er is or g a ni z e d as f oll o ws. I n S e cti o n 2, w e i ntr o d u c e i n t h e or d er:

t h e n ot ati o n a n d m o d el, t h e it er ati v e al g orit h m, t h e m e a n esti m ati o n gi v e n t h e v ari a n c es

a n d c h a n g e p oi nt, t h e t est pr o c e d ur e f or v ari a n c e c h a n g e p oi nt gi v e t h e m e a n f u n cti o n,

a n d t h e t h e or eti c al pr o p erti es of t h e pr o p os e d m et h o d. I n S e cti o n 3 w e pr es e nt all t h e

si m ul ati o ns. We a n al y z e t h e li v er pr o c ur e m e nt d at a i n S e cti o n 4. Dis c ussi o n i n S e cti o n 5

c o n cl u d es t h e p a p er. Pr o ofs of t h e t h e or e ms ar e c oll e ct e d i n t h e A p p e n di x.

2 M e t h o d

2. 1 N o t a ti o n a n d M o d el

S u p p os e t h at y i ar e i n d e p e n d e nt o bs er v ati o ns g e n er at e d fr o m t h e f oll o wi n g m o d el

y i = f 0 (i / n) + i, i = 1 , . . . , n, ( 1)

w h er e f 0 is a n u n k n o w n s m o ot h f u n cti o n, i ∼ N ( 0, σ2i ) wit h σ i = σ 0 w h e n i ≤ τ 0

a n d σ i = δ 0 w h e n i > τ0 , σ 2
0 = δ 2

0 ar e u n k n o w n v ari a n c es, a n d τ 0 is t h e u n k n o w n

v ari a n c e c h a n g e p oi nt. Ass u m e t h at f 0 b el o n gs t o a r e pr o d u ci n g k er n el Hil b ert s p a c e

H = { f |f : [ 0, 1] → R , J(f ) < ∞ } , w h er e J is a s e mi- n or m o n H . F or e x a m pl e, w e

c o nsi d er J (f ) =
1

0
{ f ( m ) (t)} 2 dt i n t his p a p er f or s o m e p ositi v e i nt e g er m . We pr o p os e t o
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esti m at e ( f 0 , τ0 , σ20 , δ20 ) t hr o u g h t h e mi ni mi z ati o n of t h e p e n ali z e d w ei g ht e d l e ast s q u ar es

1

n
(y − f ) T Σ − 1

n, τ, σ, δ (y − f ) + λ J (f ), ( 2)

w h er e f is a f u n cti o n i n H , y = ( y 1 , . . . , yn ) T a n d f = ( f ( 1/ n ), f( 2/ n ), . . . , f( 1)) T ar e r e-

s p e cti v el y t h e v e ct ors of o bs er v e d r es p o ns es a n d fitt e d v al u es, Σ n, τ, σ, δ is a di a g o n al m atri x

wit h t h e first τ di a g o n als e q u al t o σ 2 a n d t h e r est e q u al t o δ 2 , J (f ) a cts as a r o u g h n ess

p e n alt y, a n d λ > 0 is t h e s m o ot hi n g p ar a m et er b al a n ci n g t h e tr a d e o ff b et w e e n t h e s m o ot h-

n ess of t h e m e a n f u n cti o n esti m at e a n d t h e g o o d n ess- of- fit r e pr es e nt e d b y t h e w ei g ht e d

s u m of s q u ar e d err ors.

We n ot e t h at t h e gl o b al mi ni mi z er of ( 2) d o es n ot e xist si n c e it a p pr o a c h es z er o as σ 2

g o es t o i n fi nit y. H e n c e, w e pr o p os e t h e esti m at es ( f, τ, σ 2 , δ 2 ) as t h e l o c al mi ni mi z er of ( 2)

o bt ai n e d t hr o u g h t h e f oll o wi n g it er ati v e al g orit h m. We s h all s h o w i n S e cti o n 2. 4 t h at t h e

esti m at es ar e c o nsist e nt wit h pr o p er r at es of c o n v er g e n c e.

Al g o ri t h m .

1. I niti ali z e f ( 0 ) wit h t h e m e a n f u n cti o n esti m at e ass u mi n g c o nst a nt v ari a n c e. T h at is,

f ( 0 ) mi ni mi z es
1

n
(y − f ) T (y − f ) + λ J (f ). ( 3)

N ot e t h at w h e n σ 2 = δ 2 , t h e c o v ari a n c e m atri x i n ( 2) r e d u c es t o σ 2 I a n d σ 2 c a n b e

a bs or b e d i nt o t h e s m o ot hi n g p ar a m et er λ .

2. E a c h it er ati o n c o nsists of t w o st e ps. At t h e ιt h it er ati o n,

( a) gi v e n t h e m e a n esti m at e f ( ι− 1 ) , w e first us e t h e t esti n g pr o c e d ur e i n S e cti o n 2. 3

t o fi n d a n esti m at e τ ( ι) f or τ 0 . T h e n w e esti m at e t h e v ari a n c e p ar a m et ers r es p e c-

ti v el y b y t h e m a xi m u m li k eli h o o d v ari a n c e esti m at es, [ σ 2 ]( ι) a n d [ δ 2 ]( ι) , of t h e
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s u bs e q u e n c es of r esi d u als, { y i − f ( ι− 1 ) (i / n) : i = 1 , . . . , τ ( ι) } a n d { y i − f ( ι− 1 ) (i / n) :

i = τ ( ι) + 1 , . . . , n} .

( b) N o w gi v e n t h e esti m at es τ ( ι) , [σ 2 ]( ι) a n d [ δ 2 ]( ι) , w e u p d at e t h e m e a n esti m at e

b y t h e mi ni mi z er of ( 2) w h er e τ , σ 2 a n d δ 2 ar e r e pl a c e d r es p e cti v el y b y t h eir

c urr e nt esti m at es.

3. It er at e u ntil t h e al g orit h m c o n v er g es.

2. 2 M e a n E s ti m a ti o n Gi v e n τ , σ 2 , a n d δ 2

W h e n τ, σ 2 a n d δ 2 ar e gi v e n, t h e m e a n f u n cti o n f 0 is esti m at e d as t h e mi ni mi z er of t h e

p e n ali z e d w ei g ht e d l e ast s q u ar es ( 2) i n a r e pr o d u ci n g k er n el Hil b ert s p a c e H of f u n cti o ns

o n t h e d o m ai n T . A r e pr o d u ci n g k er n el Hil b ert s p a c e ( R K H S) is a Hil b ert s p a c e H w h er e

t h e e v al u ati o n f u n cti o n al [ t] : H → R , f → f (t) is c o nti n u o us f or e v er y t ∈ T . T h e Ri es z

R e pr es e nt ati o n T h e or e m t h e n i n di c at es t h at f or all t ∈ T t h er e e xists a u ni q u e f u n cti o n

R t ∈ H wit h t h e r e pr o d u ci n g pr o p ert y R t , f = [ t](f ) = f (t), w h er e ·, · is t h e i n n er

pr o d u ct o n H . N o w t h e r e pr o d u ci n g k er n el R of H is d e fi n e d as a f u n cti o n R : T × T → R

s u c h t h at R (s, t ) = R s , Rt . O n e c a n s h o w t h at e a c h R K H S is u ni q u el y ass o ci at e d wit h a

r e pr o d u ci n g k er n el a n d vi c e v ers a.

N ot e t h at t h e p e n alt y f u n cti o n al J i n ( 2) is a s q u ar e d s e mi- n or m o n H . T h e n ull s p a c e of

J , n a m el y N J = { f : J (f ) = 0} , i n d u c es a dir e ct s u m d e c o m p ositi o n H = N J ⊕ H J , w h er e

H J is t h e c o m pl e m e nt of N J i n H . T his t h e n yi el ds a d e c o m p ositi o n of t h e r e pr o d u ci n g

k er n el R = R 0 + R J , w h er e R 0 a n d R J ar e r es p e cti v el y t h e r e pr o d u ci n g k er n els o n t h e

s u bs p a c es N J a n d H J . S e e, e. g., G u ( 2 0 1 3, C h a pt er 2) f or m or e d et ails o n R K H Ss.

We n o w i ntr o d u c e a n e x a m pl e of c u bi c s m o ot hi n g s pli n es t o ill ustr at e t h es e c o n c e pts.

We s h all us e t h e c u bi c s m o ot hi n g s pli n es i n all t h e n u m eri c al st u di es of t h e p a p er.
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E x a m pl e 2. 1 ( C u bi c S m o ot hi n g S pli n es) . Wit h o ut l o s s of g e n e r alit y a s s u m e T = [ 0 , 1] .

A c h oi c e of J (f ) i s
1

0
(f ) 2 dt , w hi c h yi el d s t h e p o p ul a r c u bi c s pli n e s. If t h e i n n e r p r o d u ct

i n N J i s (
1

0
f dt )(

1

0
g dt ) + (

1

0
f dt )(

1

0
g dt ), t h e n H J = H N J = { f :

1

0
f dt =

1

0
f dt = 0 , J(f ) < ∞ } a n d t h e r e p r o d u ci n g k e r n el R J (s, t ) = k 2 (s )k 2 (t) − k 4 (|s − t|),

w h e r e k ν (t) = B ν (t)/ ν ! a r e s c al e d B e r n o ulli p ol y n o mi al s f o r t ∈ [ 0, 1] . T h e n ull s p a c e N J

h a s a b a si s { 1 , k1 (t)} of 2 f u n cti o n s, w h e r e k 1 (t) = t − 0 .5 f o r t ∈ [ 0, 1] . S e e G u ( 2 0 1 3,

S e cti o n 2. 3. 3 ).

T h e R K H S H is of i n fi nit e di m e nsi o ns, s o a dir e ct o pti mi z ati o n of ( 2) o n H s e e ms

i nf e asi bl e. H o w e v er, si n c e t h e w ei g ht e d l e ast s q u ar es p art i n ( 2) d e p e n ds o n f o nl y t hr o u g h

its e v al u ati o ns at t h e o bs er v ati o n p oi nts ti, i = 1 , . . . , n, t h e R e pr es e nt er T h e or e m ( W a h b a,

1 9 9 0) g u ar a nt e es t h at t h e e x a ct mi ni mi z er of ( 2) a ct u all y r esi d es i n a fi nit e di m e nsi o n al

s u bs p a c e of H , n a m el y, N J ⊕ s p a n{ R J (t1 , ·), . . . , RJ (tn , ·)} . L et φ l, l = 1 , . . . , m b e t h e

b asis f u n cti o ns of N J a n d ξ j = R J (tj , ·), j = 1 , . . . , n. Writ e f = φ T d + ξ T c , w h er e c

a n d d ar e t h e c orr es p o n di n g c o e ffi ci e nt v e ct ors. Als o n ot e t h at J (f ) c a n b e writt e n as a

q u a dr ati c f or m J (f ) = c T Q c , w h er e Q is t h e n × n m atri x wit h t h e ( i, j )t h e ntr y e q u al t o

R J (ti, tj ). S o f or a fi x e d λ , t h e o bj e cti v e f u n cti o n ( 2) is r e d u c e d t o a q u a dr ati c f u n cti o n

of t h e c o e ffi ci e nt v e ct ors c a n d d . Its mi ni mi z er c a n b e o bt ai n e d a n al yti c all y. T o s el e ct

t h e s m o ot hi n g p ar a m et er λ , a n o ut er l o o p f or mi ni mi zi n g t h e g e n er ali z e d cr oss- v ali d ati o n

( G C V) s c or e is s u ffi ci e nt f or t h e j o b; s e e G u ( 2 0 1 3, C h a pt er 3).

2. 3 V a ri a n c e C h a n g e P oi n t D e t e c ti o n Gi v e n f

Gi v e n f , w e n o w i ntr o d u c e a t esti n g pr o c e d ur e t o fi n d a n esti m at e τ f or t h e v ari a n c e c h a n g e

p oi nt τ 0 . T h e n w e c o m p ut e t h e m a xi m u m li k eli h o o d esti m at es f or σ 2 a n d δ 2 r es p e cti v el y

b y σ 2 = τ − 1 τ
i= 1 { y i − f (i / n)} 2 a n d δ 2 = ( n − τ ) − 1 n

i= τ + 1 { y i − f (i / n)} 2 . We pr o p os e a
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t esti n g pr o c e d ur e t h at g e n er ali z es t h e o n e i ntr o d u c e d b y C h e n a n d G u pt a ( 1 9 9 7) f or t h e

p ar a m etri c c as e of n or m al d at a wit h a fi x e d m e a n.

We w a nt t o t est t h e h y p ot h esis

H 0 : σ 2
1 = · · · = σ 2

n v ers us H 1 : σ 2
1 = · · · = σ 2

τ = σ 2
τ + 1 = · · · = σ 2

n , ( 4)

f or a p ot e nti al c h a n g e p oi nt p ositi o n τ . L et

(τ ) = τ l o g
1

τ

τ

i= 1

{ y i − f (i / n)} 2 + ( n − τ ) l o g
1

n − τ

n

i= τ + 1

{ y i − f (i / n)} 2 .

N ot e t h at (n ) = − 2 L 0 (σ
2 ) − n − n l o g 2π a n d (τ ) = − 2 L 1 (σ

2 , δ 2 ) − n − n l o g 2π , w h er e

L 0 a n d L 1 ar e r es p e cti v el y t h e l o g li k eli h o o d f u n cti o ns u n d er t h e n ull a n d alt er n ati v e

h y p ot h es es of ( 4). S o w e d e fi n e t h e t est st atisti c t o b e ∆ 2
n = m a x 1 < τ < n { (n ) − (τ )} .

T o g ai n f urt h er i nsi g ht f or t h e t est st atisti c ∆ 2
n , w e r e c a p t h e m oti v ati o n ill ustr at e d

i n C h e n a n d G u pt a ( 1 9 9 7) b y r ef erri n g t o t h e S c h w art z i nf or m ati o n crit eri o n ( SI C) fr o m

S c h w ar z ( 1 9 7 8). As a crit eri o n f or m o d el s el e cti o n, t h e SI C is d e fi n e d as − 2 l o g L (θ ) +p l o g n ,

w h er e L (θ ) is t h e li k eli h o o d f u n cti o n f or t h e m o d el, θ is t h e m a xi m u m li k eli h o o d esti m at e

of t h e p ar a m et er θ , a n d p is t h e di m e nsi o n of θ . I n o ur c as e, gi v e n f a n d τ w e h a v e

t w o m o d els c orr es p o n di n g t o t h e n ull a n d alt er n ati v e h y p ot h es es wit h t h eir SI Cs r es p e c-

ti v el y d e fi n e d b y SI C( n ) = − 2 L 0 (σ
2 ) + l o g n a n d SI C( τ ) = − 2 L 1 (σ

2 , δ 2 ) + 2 l o g n . B y t h e

pri n ci pl e of mi ni m u m i nf or m ati o n crit eri o n, w e d o n ot r ej e ct H 0 if SI C(n ) ≤ mi n τ SI C( τ ),

or e q ui v al e ntl y (n ) ≤ mi n 1 < τ < n (τ ), a n d r ej e ct H 0 if SI C(n ) > SI C( τ ) f or s o m e τ , or

e q ui v al e ntl y (n ) > (τ ) f or s o m e τ . I n t h e c as e of r ej e cti o n(s), w e esti m at e t h e p ositi o n

of c h a n g e p oi nt b y τ = ar g mi n 1 < τ < n (τ ). S o o ur t est st atisti c c a n als o b e writt e n as

∆ 2
n = l o g n − mi n 1 < τ < n { SI C( τ ) − SI C( n )} . We s h all pr es e nt t h e as y m pt oti c distri b uti o n of

∆ 2
n u n d er t h e n ull h y p ot h esis i n S e cti o n 2. 4.
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2. 4 T h e o r e ti c al P r o p e r ti e s

I n t his s e cti o n w e pr es e nt t h e as y m pt oti c t h e ori es f or t h e pr o p os e d m et h o d. F or si m pli cit y,

w e o nl y c o nsi d er t h e s p e ci al c as e w h e n H is t h e m t h or d er S o b ol e v s p a c e of p eri o di c

f u n cti o ns o n [ 0, 1] wit h p eri o d 1, n a m el y,

H = S m ≡ f : f (t) =

∞

ν = 1

f ν ϕ ν (t) wit h t ∈ [ 0, 1] a n d

∞

ν = 1

f 2
ν γ ν < ∞ ,

w h er e f or k = 1 , 2 , . . ., ϕ 2 k − 1 (t) =
√

2 c os( 2 π kt ), ϕ 2 k (t) =
√

2 si n( 2 π kt ), a n d γ 2 k − 1 = γ 2 k =

( 2π k ) 2 m . N ot e t h at J (f ) =
1

0
{ f ( m ) (t)} 2 dt = ∞

ν = 1 f 2
ν γ ν f or f ∈ S m a n d R J (s, t ) =

( 2π m ) − 2 m ∞
ν = 1 2 c os { 2 π ν (s − t)} / ( 2π m ν ) 2 m .

L et h = λ 1 / ( 2 m ) , r n = l o g n / (n h ) +h m − 1 / 2 , a n d r n = r 2
n +( n h ) − 3 / 4 +(l o g n ) 5 (l o g l o g n ) 2 / n +

n − 1 / 2 . We s h all first s h o w t h e c o nsist e n c y of t h e esti m at es (f, τ, σ 2 , δ 2 ).

T h e o r e m 2. 1 ( C o nsist e n c y of P ar a m et er Esti m at es) . U n d e r C o n diti o n s 1- 3 i n t h e A p-

p e n di x, t h e e sti m at e s (f, τ, σ 2 , δ 2 ) f r o m t h e al g o rit h m i n S e cti o n 2. 1 a r e c o n si st e nt wit h t h e

f oll o wi n g r at e s of c o n v e r g e n c e:

f − f 0
2
n = O P (λ + ( n h ) − 1 + h − 1 r 2

n ), |τ − τ 0 | = O P ((l o g n ) 4 (l o g l o g n ) 2 ),

|σ 2 − σ 2
0 | = O P (r n ), |δ 2 − δ 2

0 | = O P (r n ),

w h e r e f n = n
i= 1 f (i / n) 2 / n i s t h e e m pi ri c al n o r m of a f u n cti o n f .

N ot e t h at w h e n m ≥ 1 a n d λ n − 2 m / ( 2 m + 1 ) , it c a n b e v eri fi e d t h at r n = O (n − 1 / 2 ).

T h e n t his i m pli es t h at σ 2 a n d δ 2 ar e
√

n - c o nsist e nt, a n d t h at f − f 0 n = O P (n − m / ( 2 m + 1 ) )

or f a c hi e v es t h e o pti m al c o n v er g e n c e r at e of a s pli n e f u n cti o n esti m at e.

We t h e n d eri v e t h e as y m pt oti c s a m pli n g distri b uti o n of t h e t est st atisti c ∆ 2
n u n d er t h e

n ull h y p ot h esis H 0 i n ( 4).
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T h e o r e m 2. 2 ( As y m pt oti c N ull Distri b uti o n of Test St atisti c) . S u p p o s e t h at a s n → 0 ,

h → 0 a n d r 2
n l o g n → 0 . U n d e r H 0 i n ( 4) a n d C o n diti o n s 1, 2, a n d 3’ i n t h e A p p e n di x,

f o r a n y t ∈ R ,

P (a n (l o g n ) 1 / 2 ∆ n − b n l o g n ≤ t) → e x p( − 2 e x p( − t)),

w h e r e a n = ( 2 l o g l o g n ) 1 / 2 / l o g n, a n d b n = { 2 l o g l o g n + 1
2

l o g l o g l o g n − l o g Γ( 1/ 2) } / l o g n .

T h e li mit distri b uti o n t ur ns o ut t o b e a n e xtr e m e v al u e distri b uti o n. B as e d o n t his

r es ult, w e pr o p os e t h e f oll o wi n g t esti n g r ul e at t h e si g ni fi c a n c e l e v el 1 − α :

R ej e ct H 0 ⇔ a n (l o g n ) 1 / 2 ∆ n − b n l o g n > − l o g{ − l o g ( 1 − α )/ 2 } .

3 Si m ul a ti o n s

We c o m p ar e d t h e c h a n g e p oi nt esti m ati o n p erf or m a n c e of t h e pr o p os e d v ari a n c e d et e cti o n

m et h o d wit h t w o e xisti n g c h a n g e p oi nt d et e cti o n m et h o ds, o n e fr o m t h e p ar a m etri c d o-

m ai n a n d t h e ot h er fr o m t h e n o n p ar a m etri c d o m ai n. T h e p ar a m etri c m et h o d is t h e SI C

a p pr o a c h i n C h e n a n d G u pt a ( 1 9 9 7) h er e aft er d e n ot e d b y t h e C G m et h o d. We us e d t h e

i m pl e m e nt ati o n i n t h e c h a n g e p o i n t p a c k a g e of R. T h e n o n p ar a m etri c m et h o d is t h e hi er-

ar c hi c al cl ust eri n g a p pr o a c h i n M att es o n a n d J a m es ( 2 0 1 4) h er e aft er d e n ot e d b y t h e M J

m et h o d. We us e d t h e a ut h ors’ i m pl e m e nt ati o n i n t h eir R p a c k a g e e c p . F urt h er m or e, w e

e x a mi n e d t h e p erf or m a n c e of t h e pr o p os e d m et h o d i n esti m ati n g t h e m e a n c ur v e a n d t h e

v ari a n c es.

We c o nsi d er e d t w o m e a n f u n cti o ns f 0 1 (t) = 2 0 + 1 2 t( 1 − t) a n d f 0 2 (t) = si n(t) + t5 −

8 t3 + 1 0 t + 6. T h e first f u n cti o n f 0 1 h a d a tr e n d si mil ar t o t h e m e a n t e m p er at ur e pr o fil e

i n t h e li v er pr o c ur e m e nt st u d y a n d t h e s e c o n d f u n cti o n f 0 2 r e pr es e nt e d a m or e c o m pl e x
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s m o ot h tr e n d. T w o s a m pl e si z es n = 1 3 0 a n d 5 0 0 w er e us e d. T h e tr u e v ari a n c e c h a n g e

p oi nt w as s et at τ 0 = 6 5 w h e n n = 1 3 0, a n d τ 0 = 2 5 0 w h e n n = 5 0 0. T h e tr u e v ari a n c es

w er e σ 2
0 = 0 .2 1 9 a n d δ 2

0 = 0 .0 5 7 w h e n f 0 1 w as t h e tr u e m e a n f u n cti o n, a n d σ 2
0 = 9 a n d

δ 2
0 = 2 w h e n f 0 2 w as t h e tr u e m e a n f u n cti o n. We si m ul at e d 1 0 0 0 d at a r e pli c at es f or e a c h

c o m bi n ati o n of m e a n f u n cti o n a n d s a m pl e si z e.

F or e a c h d at a r e pli c at e, w e a p pli e d t h e t hr e e v ari a n c e c h a n g e p oi nt d et e cti o n m et h o ds

t o o bt ai n t h e c h a n g e p oi nt esti m at e. T h es e esti m at es w er e di vi d e d b y n t o r es c al e t h e m t o

t h e r a n g e of ( 0 , 1) f or e asi er c o m p aris o n. F or t h e pr o p os e d m et h o d, w e als o o bt ai n e d t h e

m e a n f u n cti o n esti m at e a n d t h e t w o v ari a n c e esti m at es. T o e v al u at e t h eir p erf or m a n c es,

w e c o m p ut e d t h e m e a n s q u ar e d err or M S E = n − 1 n
i= 1 { f (i / n) − f 0 (i / n)} 2 a n d t h e l o g

r ati os l o g ( σ 2 / σ 2
0 ) a n d l o g ( δ 2 / δ 2

0 ).

Fi g ur e 2 dis pl a y e d t h e b o x pl ots of c h a n g e p oi nt esti m at es fr o m t h e t hr e e m et h o ds. We

c a n cl e arl y s e e t h at b ot h t h e C G a n d t h e M J m et h o ds s u ff er e d w h e n bli n dl y a p pli e d t o

t h e d at a wit h o ut r e m o vi n g t h e m e a n tr e n d. O n t h e ot h er h a n d, t h e pr o p os e d m et h o d di d

a d e c e nt j o b i n esti m ati n g t h e l o c ati o n of t h e c h a n g e p oi nt. A n d t h e esti m ati o n a c c ur a c y

cl e arl y i m pr o v e d as t h e s a m pl e si z e n i n cr e as e d fr o m 1 3 0 t o 5 0 0.

Fi g ur e 3 ass ess es t h e p erf or m a n c e of m e a n esti m ati o n. T h e t o p p a n els pl ott e d t h e m e a n

esti m at es t h at att ai n e d t h e 2 5t h, 5 0t h a n d 7 5t h p er c e ntil es of t h e M S Es f or s a m pl e si z es

n = 1 3 0 a n d 5 0 0. T h e m e a n f u n cti o n esti m at es all m at c h e d w ell wit h t h e tr u e f u n cti o ns.

T h e 7 5t h p er c e ntil e esti m at e f or t h e tr u e f u n cti o n f 0 1 wit h n = 1 3 0 w as sli g htl y o ff i n t h e

ar e a ar o u n d t h e c h a n g e p oi nt, w hi c h w as r e as o n a bl e c o nsi d eri n g t h e fl u ct u ati o ns i n t h at

ar e a. Als o, t h e esti m ati o n a c c ur a ci es i m pr o v e d as t h e s a m pl e si z e i n cr e as e d.

Fi g ur e 4 us es t h e l o g r ati os of v ari a n c e esti m at es v ers us tr u e v ari a n c es t o ass ess t h e

esti m ati o n p erf or m a n c e f or b ot h v ari a n c es. We c a n s e e t h at b ot h v ari a n c es w er e a c c ur at el y

esti m at e d wit h t h e a c c ur a ci es als o i m pr o v e d as t h e s a m pl e si z e i n cr e as e d.
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Fi g ur e 2: B o x pl ots of c h a n g e p oi nt esti m at es. L eft p a n el: Si m ul ati o ns wit h t h e tr u e m e a n

f u n cti o n = f 0 1 ; Ri g ht p a n el: Si m ul ati o ns wit h t h e tr u e m e a n f u n cti o n = f 0 2 . T h e t hr e e pl ots

o n t h e l eft i n e a c h p a n el w er e t h e c h a n g e p oi nt esti m at es wit h n = 1 3 0 r es p e cti v el y f or

t h e m et h o ds i n M att es o n a n d J a m es ( 2 0 1 4) ( M J), C h e n a n d G u pt a ( 1 9 9 7) ( C G), a n d t h e

n e wl y pr o p os e d m et h o d ( N e w). T h e ri g ht m ost pl ot i n e a c h p a n el w as t h e pr o p os e d m et h o d

wit h n = 5 0 0 ( N e w 5 0 0). T h e r e d d as h e d li n e is t h e tr u e c h a n g e p oi nt τ 0 / n = 0 .5
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Fi g ur e 3: Pl ots f or ass essi n g m e a n esti m ati o n p erf or m a n c e. L eft p a n els: Si m ul ati o ns wit h

t h e tr u e m e a n f u n cti o n = f 0 1 ; Ri g ht p a n els: Si m ul ati o ns wit h t h e tr u e m e a n f u n cti o n = f 0 2 .

T o p: Tr u e m e a n f u n cti o n (s oli d bl a c k) v ers us t h e m e a n esti m at es wit h n = 1 3 0 w h os e M S E

w er e t h e 2 5t h ( d as h e d gr e e n), 5 0t h ( d ott e d r e d), a n d 7 5t h ( d ot- d as h e d bl u e) p er c e ntil es of

t h e 1 0 0 0 M S Es o bt ai n e d i n e a c h s etti n g. Mi d dl e: s a m e as t o p b ut wit h n = 5 0 0. B ott o m:

b o x pl ots of t h e 1 0 0 0 M S Es i n e a c h s etti n g.
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Fi g ur e 4: B o x pl ots of t h e l o g r ati os of v ari a n c e esti m at es v ers us tr u e v ari a n c es. L eft

p a n els: Si m ul ati o ns wit h t h e tr u e m e a n f u n cti o n = f 0 1 ; Ri g ht p a n els: Si m ul ati o ns wit h t h e

tr u e m e a n f u n cti o n = f 0 2 . R e d: n = 1 3 0; Bl u e: n = 5 0 0. Fill e d b o x es: σ 2 ; U n fill e d b o x es:

δ 2 .
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4 A p pli c a ti o n: T e m p e r a t u r e M o ni t o ri n g i n Li v e r P r o-

c u r e m e n t

Vi a bilit y ass ess m e nt is a criti c al st e p i n or g a n tr a ns pl a nt pr o c e d ur es. T h e c urr e nt ass ess-

m e nt pr o c e d ur e p ur el y r eli es o n vis u al i ns p e cti o n of p h ysi ci a ns or bi o ps y. W hil e t h e f or m er

s u ff ers fr o m s u bj e cti v e j u d g e m e nt, t h e l att er is a n i ntr usi v e a p pr o a c h t h at d estr o ys t h e p art

of or g a n w h er e t h e bi o ps y s a m pl e is c oll e ct e d. Ai m e d t o fi n d a n e w n o ni n v asi v e w a y of

ass essi n g t h e vi a bilit y of or g a ns, a bi o m e di c al e n gi n e eri n g t e a m at Vir gi ni a Te c h d esi g n e d a

t e m p er at ur e m o nit ori n g s yst e m s u c h t h at t h e s urf a c e t e m p er at ur e of a p erf us e d or g a n c a n

b e d e ns el y a n d c o nti n u o usl y m o nit or e d. I n t h e e x p eri m e nt c o nsi d er e d i n t his p a p er, a l o b e

of p or ci n e li v er, as s h o w n i n Fi g ur e 5, w as p erf us e d i n a st a n d ar d ki n d of p erf usi o n fl ui d.

Its s urf a c e t e m p er at ur e w as i nt e nsi v el y m o nit or e d f or a c o nti n ui n g p eri o d of 2 4 h o urs. T h e

li v er l o b e w as di vi d e d i nt o a d e ns e gri d of 3 6, 7 9 5 s p ots wit h e a c h s p ot pr o d u ci n g a 2 4-

h o ur t e m p er at ur e pr o fil e. T h e t e m p er at ur e m e as ur e m e nts w er e c oll e ct e d e v er y 1 0 mi n ut es,

yi el di n g a t ot al of 1 4 5 p oi nts i n e a c h pr o fil e. T h e first 2. 5 h o urs of d at a w er e dis c ar d e d

si n c e it t o o k a b o ut o n e t o t w o h o urs f or t h e p erf usi o n fl ui d t o c o m pl et el y s o a k t h e li v er.

T h e d at a b ef or e t h e li v er g etti n g s o a k e d w er e n ot of i nt er est. S o w e h a d n = 1 3 0 p oi nts

l eft i n e a c h pr o fil e.

We a p pli e d t h e pr o p os e d v ari a n c e c h a n g e p oi nt d et e cti o n m et h o d t o t h e 3 6, 7 9 5 t e m p er-

at ur e pr o fil es i n t h e d at a. Si n c e a l ar g e n u m b er of h y p ot h esis t ests w er e i n v ol v e d h er e, w e

c o nsi d er e d t h e B e nj a mi ni- H o c h b er g- Ye k uti eli ( B H Y) pr o c e d ur e ( B e nj a mi ni a n d Ye k uti eli,

2 0 0 1) t o a d dr ess t h e m ulti pl e c o m p aris o n iss u e wit h t h e c o ntr ol of f als e dis c o v er y r at e. T his

pr o c e d ur e is a n e xt e nsi o n of t h e w ell- k n o w n B e nj a mi ni- H o c h b er g pr o c e d ur e ( B e nj a mi ni a n d

H o c h b er g, 1 9 9 5) t o t h e c as e of d e p e n d e nt t ests. D u e t o t h e p ositi v e c orr el ati o n b et w e e n o ur

t e m p er at ur e pr o fil es, w e us e d t h e p ositi v e d e p e n d e n c y v ersi o n of t h e pr o c e d ur e wit h t h e
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f als e dis c o v er y r at e c o ntr oll e d at l e v el 0. 0 5. T h e l ar g est p- v al u e a m o n g all t h e 3 6, 7 9 5 t ests

of v ari a n c e c h a n g e p oi nts w as 0. 0 1 9. H e n c e all t h e c h a n g e p oi nts w er e l e giti m at e f oll o wi n g

t h e pri n ci pl e of t h e B H Y pr o c e d ur e.

T h e h e at m a p of all t h e esti m at e d c h a n g e p oi nts w er e pl ott e d i n Fi g ur e 5. N ot e t h at a n

e arli er c h a n g e p oi nt i n v ari a n c e m e a nt a n e arli er dr o p i n t h e vi a bilit y of t h e c ells ar o u n d

t h e s p ot. We c a n s e e t h at t h e t o p h alf a n d t h e mi d dl e b ott o m p arts of t h e li v er m ostl y

f ail e d ar o u n d 1 2 h o urs w hil e t h e b ott o m l eft a n d ri g ht p orti o ns of t h e li v er l ast e d b e y o n d 1 4

h o urs. T h er e w er e als o a c o u pl e of cl e arl y visi bl e str ai g ht-li n e t y p e of b o u n d ari es b et w e e n

t h e e arl y a n d l at e f ail ur e ar e as. T h es e mi g ht b e t h e p art w h er e t h e p or ci n e li v er l o b e w as

b e nt b et w e e n t h e ti m e of s e v eri n g a n d p erf usi o n.

Fi g ur e 6 pl ott e d t h e m e a n esti m at es a n d v ari a n c e c h a n g e p oi nt esti m at es at t hr e e

r a n d o ml y s el e ct e d s p ots, i m p os e d r es p e cti v el y o n t h e r a w a n d d e-tr e n d e d t e m p er at ur e

pr o fil es. All t h e m e a n esti m at es m at c h e d w ell wit h t h e tr e n ds s h o w n i n t h e d at a. As w e

c a n s e e, t h e m e a n t e m p er at ur e i n cr e as e d at di ff er e nt p a c es at t h e t hr e e s p ots i n t h e first 1 2

h o urs or s o a n d s h ar e d a c o m m o n tr e n d of a q ui c k er dr o p i n t h e s e c o n d h alf of t h e 2 4- h o ur

p eri o d. T h e v ari a n c e c h a n g e p oi nts at t h e t hr e e p oi nts w er e all b et w e e n 1 2 a n d 1 5 h o urs.

5 C o n cl u si o n

I n t his arti cl e, w e h a v e pr es e nt e d a n e w v ari a n c e c h a n g e p oi nt d et e cti o n m et h o d w h e n t h e

u n d erl yi n g m e a n tr e n d c h a n g es s m o ot hl y. M oti v at e d fr o m a li v er pr o c ur e m e nt e x p eri m e nt,

t h e pr o p os e d m et h o d n at ur all y i nt e gr at es t h e s e e mi n gl y c o n fli cti n g g o als of esti m ati n g a

s m o ot h m e a n a n d d et e cti n g a j u m p p oi nt i n v ari a n c e u n d er t h e fr a m e w or k of p e n ali z e d

w ei g ht e d l e ast s q u ar es. As d e m o nstr at e d i n t h e si m ul ati o ns, t his is n ot s o m et hi n g t h at c a n

b e h a n dl e d b y t h e e xisti n g c h a n g e p oi nt d et e cti o n m et h o ds. F urt h er m or e, t h e t esti n g pr o-

2 0



Fi g ur e 5: T h e h e at m a p of esti m at e d v ari a n c e c h a n g e p oi nts of t e m p er at ur es o n t h e l o b e

of li v er i n t h e pr o c ur e m e nt e x p eri m e nt.
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Fi g ur e 6: M e a n a n d v ari a n c e c h a n g e p oi nt esti m at es i m p os e d r es p e cti v el y o n t h e r a w a n d

d e-tr e n d e d t e m p er at ur e pr o fil es at t hr e e r a n d o ml y s el e ct e d s p ots.
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c e d ur e u n d er o ur n o n p ar a m etri c s m o ot hi n g s etti n g is s h o w n t o h a v e t h e or eti c al pr o p erti es

si mil ar t o t h at u n d er a p ar a m et er m o d el. T h e c o nsist e n c y r es ult als o h as its o w n i n n o v a-

ti o n i n t h e p ers p e cti v e of n o n p ar a m etri c r e gr essi o n wit h n o n-II D err ors. T h e a p pli c ati o n

of o ur m et h o d t o t h e li v er pr o c ur e m e nt e x p eri m e nt pr o vi d e d criti c al i nf or m ati o n a b o ut

t h e vi a bilit y st at us of t h e li v er l o b e at di ff er e nt l o c ati o ns. A dir e cti o n t h at m erit f urt h er

i n v esti g ati o n is t h e d e v el o p m e nt of a n o nli n e v ersi o n of o ur pr o c e d ur e. T his c a n b e d eri v e d

wit h a c o m bi n ati o n of a pr o p er c h ar a ct eri z ati o n of i n- c o ntr ol d at a.

S U P P L E M E N T A R Y M A T E R I A L

T h e s u p pl e m e nt ar y m at eri al c oll e cts all t h e c o n diti o ns a n d t e c h ni c al pr o ofs f or t h e

t h e or eti c al r es ults i n S e cti o n 2. 4.

A. 1 C o n di ti o n s a n d T e c h ni c al L e m m a s

C o n di ti o n s :

1. S u p p os e t h at w h e n t h er e is a v ari a n c e c h a n g e p oi nt t h e tr u e c h a n g e p oi nt τ 0 ∈

[c n / l o g n, n − c n / l o g n ] f or s o m e c > 0. A n d ass u m e t h at τ 0 / n → q 0 ∈ ( 0, 1) as

n → ∞ .

2. T h e tr u e m e a n f u n cti o n f 0 ∈ S m , t h e m t h or d er S o b ol e v s p a c e of p eri o di c f u n cti o ns

o n [ 0 , 1] wit h p eri o d 1.

3. T h e r a n d o m err ors i, i = 1 , . . . , n ar e i n d e p e n d e nt n or m al r a n d o m v ari a bl es wit h

m e a n 0 a n d v ari a n c e σ 2
i , w h er e σ i = σ 0 w h e n i ≤ τ 0 a n d σ i = δ 0 w h e n i > τ0 .

3’. T h e r a n d o m err ors i, i = 1 , . . . , n ar e i n d e p e n d e nt a n d i d e nti c all y distri b ut e d n or m al

r a n d o m v ari a bl es wit h m e a n 0 a n d v ari a n c e σ 2
0 .
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C o n diti o n 1 is c o m m o n i n c h a n g e p oi nt a n al ysis lit er at ur e. It b asi c all y e ns ur es t h at

t h e c h a n g e p oi nt is a w a y fr o m t h e b o u n d ari es. C o n diti o n 2 r estri cts o ur t h e or y t o t h e c as e

w h e n H = S m . A m or e g e n er al f u n cti o n s p a c e H is p ossi bl e, b ut t h e m atri x c al c ul ati o n

i n v ol v e d i n t h e t e c h ni c al pr o of w o ul d b e m u c h h ar d er. C o n diti o n 3 s p ells o ur ass u m pti o n

a b o ut t h e err or distri b uti o n a n d v ari a n c es. T h e n or m alit y ass u m pti o n i n n ot n e c ess ar y

h er e. A n y distri b uti o n wit h s u b- G a ussi a n t ails w o ul d b e s u ffi ci e nt b ut t h e pr o of w o ul d b e

m or e t e di o us, t h o u g h n ot n e c ess aril y h ar d er. C o n diti o n 3’ is t h e c orr es p o n di n g ass u m pti o n

a b o ut t h e err or distri b uti o n u n d er t h e n ull h y p ot h esis t h at t h er e is n o v ari a n c e c h a n g e

p oi nt.

We first s h o w t w o t e c h ni c al l e m m as t h at will b e us e d i n t h e pr o ofs of o ur m ai n t h e or e ms.

L et δ i = f ( 0 ) (i / n) − E { f ( 0 ) } (i / n) a n d δ 0
i = E { f ( 0 ) } (i / n) − f 0 (i / n).

L e m m a A. 1. T h e r e e xi st s c o n st a nt c m ( d e p e n di n g o nl y o n m ) s.t.

E { f ( 0 ) } − f 0 s u p ≤ c m J (f 0 )(h
m − 1 / 2 + ( n h ) − 1 / 2 ), ( 5)

L e m m a A. 2. S u p p o s e h y p ot h e si s H 1 h ol d s t r u e. T h e n it h ol d s t h at

m a x
1 ≤ k 1 < k 2 ≤ n

(k 2 − k 1 )
− 1 / 2 |

k 2

i= k 1 + 1

[ 2
i − E ( 2

i )]| = O P (l o g n ), ( 6)

m a x
1 ≤ k ≤ n

1
√

k
|

k

i= 1

i(f
( 0 ) (i / n) − f 0 (i / n))| = O P (n − 1 / 4 h − 3 / 4 ), ( 7)

m a x
1 ≤ k ≤ n

1
√

n − k
|

n

i= k + 1

i(f
( 0 ) (i / n) − f 0 (i / n))| = O P (n − 1 / 4 h − 3 / 4 ), ( 8)

m a x
1 ≤ k ≤ n

|f ( 0 ) (i / n) − f 0 (i / n)| = O P ( l o g n / (n h ) + h m − 1 / 2 ). ( 9)

T h e a b o v e r e s ult s ( 7 ), ( 6 ), ( 8 ) al s o h ol d t r u e u n d e r h y p ot h e si s H 0 .
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P r o of of L e m m a A. 1. Si n c e f ( 0 ) is t h e mi ni mi z er of ( 3), w e h a v e

−
1

n

n

i= 1

(Y i − f ( 0 ) (i / n))R J (i / n, ·) + λ f ( 0 ) = 0 , ( 1 0)

w h er e R J is t h e r e pr o d u ci n g k er n el ass o ci at e d wit h S m ( a n d J ), a n d R J (x, ·) d e n ot es t h e

u ni v ari at e f u n cti o n d eri v e d fr o m R J wit h its first ar g u m e nt fi x e d at x . T a ki n g e x p e ct ati o ns,

w e g et t h at
1

n

n

i= 1

( f̄ (i / n) − f 0 (i / n))R J (i / n, ·) + λ f̄ = 0 , ( 1 1)

w h er e f̄ = E { f ( 0 ) } . T h er ef or e, f̄ i s t h e mi ni mi z er t o t h e f oll o wi n g f u n cti o n al

0 (f ) =
1

n

n

i= 1

(f (i / n) − f 0 (i / n)) 2 + λ J (f ).

Si n c e 0 ( f̄ ) ≤ 0 (f 0 ), w e g et

1

n

n

i= 1

( f̄ (i / n) − f 0 (i / n)) 2 + λ J ( f̄ ) ≤ λ J (f 0 ).

T his m e a ns t h at J ( f̄ ) ≤ J (f 0 ). L et g (t) = ( f̄ (t) − f 0 (t))
2 . M e a n w hil e, b y E g g er m o nt a n d

L a Ri c ci a ( 2 0 0 9, L e m m a ( 2. 2 4), p p. 5 8) w e g et t h at

1

n

n

i= 1

g (i / n) −
1

0

g (t)dt ≤
1

n

1

0

|g (t)|dt

=
2

n

1

0

|f̄ (t) − f 0 (t)| × |f̄ (t) − f 0 (t)|dt

≤
2

n
f̄ − f 0 L 2 [ 0,1] f̄ − f 0 L 2 [ 0,1]

≤
2

n
f̄ ( m ) − f

( m )
0

2
L 2 [ 0,1] ≤

8

n
J (f 0 ). ( 1 2)

I n t h e m e a nti m e, ( 1 1) l e a ds t o

1

n

n

i= 1

g (i / n) + λ J ( f̄ − f 0 ) = − λ J (f 0 , f̄ − f 0 ),

2 5



s o t h at

f̄ − f 0
2 ≡ f̄ − f 0

2
L 2 + λ J ( f̄ − f 0 )

= − λ J (f 0 , f̄ − f 0 ) +
1

0

g (t)dt −
1

n

n

i= 1

g (i / n)

≤ 2 J (f 0 )λ + 8 J (f 0 )/ n = 2 J (f 0 )(λ + 4 / n ).

It f oll o ws fr o m E g g er m o nt a n d L a Ri c ci a ( 2 0 0 9) t h at

f̄ − f 0 s u p ≤ c m h − 1 / 2 f̄ − f 0 ≤ c m J (f 0 )(h
m − 1 / 2 + ( n h ) − 1 / 2 ),

w h er e c m , cm ar e p ositi v e c o nst a nts d e p e n di n g o nl y o n m . T h us ( 5) h ol ds.

P r o of of L e m m a A. 2. L et σ 2
i = E ( 2

i ). Wit h o ut l oss of g e n er alit y, ass u m e σ 2 = σ 2
1 = · · · =

σ 2
k 0

< σ k 0 + 1 = · · · = σ 2
n = δ 2 . Si n c e 2

i − σ 2
i ar e i n d e p e n d e nt c e nt er e d s u b- e x p o n e nti al

r a n d o m v ari a bl es, b y Vers h y ni n ( 2 0 1 2), t h er e e xist c o nst a nts c, d > 0 s u c h t h at, f or a n y

1 ≤ k 2 < k 2 ≤ n ,

P |

k 2

i= k 1 + 1

[ 2
i − σ 2

i ]| ≥ C k 2 − k 1 l o g n

≤ 2 e x p − c mi n C 2 (k 2 − k 1 )(l o g n ) 2 / (d 2 (k 2 − k 1 )), C k 2 − k 1 l o g n / d

≤ 2 e x p − c mi n { C 2 / d 2 , C / d} l o g n ≤ 2 e x p( − 3 l o g n ) = 2/ n 3 ,

w h er e C = m a x { 3 d 2 / c, 3 d / c } > 0. H e n c e, as n → ∞ ,

P m a x
1 ≤ k 1 < k 2 ≤ n

(k 2 − k 1 )
− 1 / 2 |

k 2

i= k 1 + 1

[ 2
i − σ 2

i ]| ≥ C l o g n ≤ 2 / n → 0 .

T his s h o ws ( 6).

N e xt w e s h o w ( 7). We o nl y pr o v e t h e r es ults u n d er H 1 . T h e r es ults u n d er H 0 c a n b e

pr o v e d si mil arl y. D e fi n e Ω = ( Ω T
1 , . . . , Ω T

n ) T wit h Ω i = ( R J ( 1/ n, i / n ), . . . , RJ (n / n, i / n ))/ n.
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T h e n b y t h e r e pr es e nt er t h e or e m ( W a h b a, 1 9 9 0) it c a n b e s h o w n t h at ( f ( 0 ) ( 1/ n ), . . . , f ( 0 ) (n / n )) T =

Ω( Ω + λ I n ) − 1 y .

Fr o m W a h b a ( 1 9 9 0) w e k n o w t h at

R J (x, y ) =
∞

ν = 1

ϕ ν (x )ϕ ν (y )

γ ν

= 2

∞

k = 1

c os( 2 π k (x − y ))

( 2π k ) 2 m
, x, y ∈ I.

F or 0 ≤ l ≤ n − 1, l et c l = 2 / n ∞
k = 1 c os( 2 π kl / n )/ ( 2π k ) 2 m . Si n c e c l = c n − l f or l =

1 , 2 , . . . , n − 1, Ω is s y m m etri c cir c ul a nt of or d er n .

L et ζ = e x p( 2 π
√

− 1 / n ). T h e n or m ali z e d ei g e n v e ct ors of Ω c a n b e s p e ci fi e d as

x k =
1

√
n

( 1, ζk , ζ2 k , . . . , ζ( n − 1 ) k ) T , k = 0 , 1 , . . . , n − 1 .

L et M = ( x 0 , x 1 , . . . , x n − 1 ). D e n ot e M ∗ as t h e c o nj u g at e tr a ns p os e of M . Cl e arl y, M M ∗ =

I n a n d Ω a d mits t h e d e c o m p ositi o n Ω = M Λ M ∗ , w h er e Λ = di a g( λ 0 , λ1 , . . . , λn − 1 ) wit h

λ l = c 0 + c 1 ζ
l + . . . + c n − 1 ζ

( n − 1 ) l.

Dir e ct c al c ul ati o ns s h o w t h at

λ l =






2 ∞
k = 1

1
( 2 π k n ) 2 m , l = 0 ,

∞
k = 1

1
[ 2π ( k n − l)] 2 m + ∞

k = 0
1

[ 2π ( k n + l)] 2 m , 1 ≤ l ≤ n − 1 .

It is e as y t o e x a mi n e t h at λ 0 = 2 ¯c m ( 2π n ) − 2 m w h er e c̄ m : = ∞
k = 1 k − 2 m , a n d f or 1 ≤ l ≤

n − 1,

λ l =
1

[ 2π (n − l)] 2 m
+

1

( 2πl ) 2 m

+
∞

k = 2

1

[ 2π (k n − l)] 2 m
+

∞

k = 1

1

[ 2π (k n + l)] 2 m
. ( 1 3)

L et c m = ∞
k = 2 k − 2 m . T h e n

c m ( 2π n ) − 2 m ≤

∞

k = 2

1

[ 2π (k n − l)] 2 m
≤ c̄ m ( 2π n ) − 2 m ,

c m ( 2π n ) − 2 m ≤

∞

k = 1

1

[ 2π (k n + l)] 2 m
≤ c̄ m ( 2π n ) − 2 m .
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L et e ∼ N ( 0, In ) b e a v e ct or of i n d e p e n d e nt st a n d ar d n or m al r a n d o m v ari a bl es s u c h t h at

w e c a n writ e = ( 1 , . . . , n ) T = D 0 e , w h er e D 0 is t h e s q u ar e-r o ot of t h e tr u e c o v ari a n c e

m atri x Σ 0 of , t h at is, D 0 is a di a g o n al m atri x wit h t h e first τ 0 di a g o n als e q u al t o σ 0

a n d t h e r e m ai ni n g di a g o n als e q u al t o δ 0 . L et δ ( k ) = ( δ 1 , . . . , δk ) T , Ω( k ) = ( Ω T
1 , . . . , Ω T

k ) T ,

( k ) = ( 1 , . . . , k ) T , ∗ ( n − k ) = ( k + 1 , . . . , n ) T , e ( k ) = ( e 1 , . . . , ek ) T , e ∗ ( n − k ) = ( e k + 1 , . . . , en ) T .

T h e n

δ ( k ) = Ω ( k ) ( Ω + λ I n ) − 1

= ( x 0 , . . . , x k − 1 )
T Λ M M ( Λ + λ I n ) − 1 M

= ( x 0 , . . . , x k − 1 )
T Λ( Λ + λ I n ) − 1 M

= ( x 0 , . . . , x k − 1 )
T Λ( Λ + λ I n ) − 1 ( x̄ 0 , . . . , x̄ k − 1 ) ( k )

+( x 0 , . . . , x k − 1 )
T Λ( Λ + λ I n ) − 1 ( x̄ k , . . . , x̄ n − 1 ) ∗ ( n − k ) ,

w h er e x̄ k is t h e c o nj u g at e of x k .

D e fi n e, f or k ≤ τ 0 , D k = di a g( σ 0 , . . . , σ0

k i t e m s

); f or k > τ 0 , D k = di a g( σ 0 , . . . , σ0

τ 0 i t e m s

, δ, . . . , δ

k − τ 0 i t e m s

).

D e fi n e, f or k ≤ n − τ 0 , D ∗ k = di a g( δ 0 , . . . , δ0

k i t e m s

); f or k > n − τ 0 , D ∗ k = di a g( σ 0 , . . . , σ0

k − n + τ 0

, δ0 , . . . , δ0

n − τ 0

).

It is e as y t o s e e t h at ( k ) = D k e ( k ) a n d ∗ ( k ) = D ∗ k e ∗ ( k ) . L et A k = ( x 0 , . . . , x k − 1 )
T Λ( Λ +

λ I n ) − 1 ( x̄ 0 , . . . , x̄ k − 1 ) a n d B k = ( x 0 , . . . , x k − 1 )
T Λ( Λ + λ I n ) − 1 ( x̄ k , . . . , x̄ n − 1 ). D e fi n e A k =

D k A k D k a n d B k = D k B k D ∗ n − k . T h e n

T
( k ) δ ( k ) = e T

( k ) A k e ( k ) + e T
( k ) B k e ∗ ( n − k ) .

B y t h e H a ns o n- Wri g ht i n e q u alit y, f or a n y k = 1 , . . . , n,

P |e T
( k ) A k e ( k ) − E { e T

( k ) A k e ( k ) }| ≥ C n k / (n h ) ≤ 2 e x p − mi n
c 2 C 2

n k / (n h )

A k
2
F

,
c C n k / (n h )

A k o p

,

( 1 4)
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w h er e · F a n d · o p r es p e cti v el y d e n ot e t h e Fr o b e ni us n or m a n d o p er at or n or m of

a m atri x, a n d C n > 0 is a c o nst a nt d e p e n di n g o nl y n a n d c > 0 is a c o nst a nt. L et

Γ = Λ( Λ + λ I n ) − 1 . Si n c e Γ is a di a g o n al m atri x, w e c a n writ e Γ = di a g(γ 0 , . . . , γn − 1 ). L et

M ( k ) = ( x 0 , . . . , x k − 1 )
T . Si n c e M M = I n , M ( k ) M ( k ) ≤ I n . L et a 0 = m a x { σ 2 , δ2 } . We k n o w

t h at

A k
2
F ≤ a 2

0 Tr( A k A k ) = a 2
0 Tr( M ( k ) Γ M ( k ) M ( k ) Γ M ( k ) )

≤ a 2
0 Tr( M ( k ) Γ

2 M ( k ) ) = a 2
0

k − 1

l= 0

x T
l di a g( γ 2

0 , . . . , γ2
n − 1 ) x̄ l

=
a 2

0 k

n

n − 1

r = 0

γ 2
r = O (

k

n h
), u nif or ml y f or k .

T his als o s h o ws t h at A k o p ≤ A k F = O ( k / (n h )) u nif or ml y f or k . S o f or C n > 1, ( 1 4)

b e c o m es

P |e T
( k ) A k e ( k ) − E { e T

( k ) A k e ( k ) }| ≥ C n k / (n h ) ≤ 2 e x p( − c C n ).

T his s h o ws t h at

P m a x
1 ≤ k ≤ n

|e T
( k ) A k e ( k ) − E { e T

( k ) A k e ( k ) }|

k / (n h )
≥ C n ≤ 2 n e x p( − c C n ).

T a ki n g C n = ( 2 / c ) l o g n , w e h a v e s h o w n t h at

m a x
1 ≤ k ≤ n

|e T
( k ) A k e ( k ) − E { e T

( k ) A k e ( k ) }|

k / (n h )
= O P (l o g n ).

I n t h e m e a nti m e,

P



 m a x
1 ≤ k ≤ n

| k
i= 1 δ 0

i i|

k
i= 1 (δ 0

i σ i) 2

≥ C



 ≤ n P (|Z | > C ) = O (n e x p( − C 2 / 2)) ,
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w hi c h i m pli es

m a x
1 ≤ k ≤ n

| k
i= 1 δ 0

i i|

k
i= 1 (δ 0

i σ i) 2

= O P ( l o g n ).

S o b y L e m m a A. 1 a n d c o n diti o ns h (l o g n ) 2 = o ( 1) a n d n h 4 m + 1 (l o g n ) 2 = o ( 1), w e h a v e

1
√

k

k

i= 1

i(δ i + δ 0
i )

=
1

√
k

T
( k ) δ ( k ) +

1
√

k

k

i= 1

iδ
0
i

=
1

√
k

e T
( k ) A k e ( k ) + e T

( k ) B k e ∗ ( n − k ) +
1

√
k

k

i= 1

iδ
0
i

= O P





√
k

n h
+

l o g n
√

n h
+ (

1

n h
+

1

k n h
)(

n − k

n h
+

n − k

n h
) + l o g n (h m − 1 / 2 + ( n h ) − 1 / 2 )





= O P



 1
√

n h
+

l o g n
√

n h
+ (

1

n h
+

1

n h
)(

1

h
+

1

h
) + l o g n (h m − 1 / 2 + ( n h ) − 1 / 2 )





= O P
1

√
n h

+
l o g n
√

n h
+

1

n h 3

1 / 4

+ l o g n (h m − 1 / 2 + ( n h ) − 1 / 2 )

= O P (n − 1 / 4 h − 3 / 4 ),

w h er e t h e O P t er m is u nif or ml y v ali d f or 1 ≤ k ≤ n .

N e xt w e will h a n dl e f ( 0 ) − f̄ s u p . It c a n b e s e e n b y t h e r e pr es e nt er t h e or e m t h at

f ( 0 ) − f̄ = ( R J ( 1/ n, ·), . . . , RJ (n / n, ·))( Ω + λ I n ) − 1 / n. It is e as y t o s e e t h at, wit h Ω i b ei n g

t h e it h r o w of Ω, δ i = Ω i( Ω + λ I n ) − 1 ∼ N ( 0, Ω i( Ω + λ I n ) − 2 Ω T
i σ 2

i ). N ot e t h at

Ω i( Ω + λ I n ) − 2 Ω T
i = x T

i− 1 Λ( Λ + λ I n ) − 2 Λ x̄ i− 1 =
1

n

n − 1

r = 0

λ 2
r

(λ + λ r ) 2

1

n h
.

3 0



T h er ef or e, as n → ∞ ,

P m a x
1 ≤ k ≤ n

|δ i| ≥ C l o g n /
√

n h ≤ n P (|δ i| ≥ C l o g n /
√

n h ) ≤ n e x p( − C l o g n ) → 0 .

T his s h o ws t h at m a x 1 ≤ k ≤ n |δ i| = O P ( l o g n / (n h )). T h e r es ult f oll o ws fr o m L e m m a A. 1.

A. 2 P r o of of T h e o r e m 2. 1

T h e c o nsist e n c y r es ult i n T h e or e m 2. 1 is pr o v e d i n t hr e e st e ps: ( 1) t h e c o nsist e n c y of t h e

i niti al m e a n f u n cti o n esti m at e, ( 2) t h e c o nsist e n c y of v ari a n c e c h a n g e p oi nt esti m at e a n d

v ari a n c e esti m at es gi v e n a c o nsist e nt m e a n f u n cti o n esti m at e, a n d ( 3) t h e c o nsist e n c y of

t h e m e a n esti m at e gi v e n c o nsist e nt v ari a n c e c h a n g e p oi nt esti m at e a n d v ari a n c e esti m at es.

P arti c ul arl y, w e s h all pr o v e t h e f oll o wi n g r es ults.

1. m a x 1 ≤ i≤ n |f ( 0 ) (i / n) − f 0 (i / n)| = O P (r n ).

2. Gi v e n t h at m a x 1 ≤ i≤ n |f ( ι− 1 ) (i / n) − f 0 (i / n)| = O P (r n ), w e h a v e

|τ ( ι) − τ 0 | = O P ((l o g n ) 4 (l o g l o g n ) 2 ), [σ 2 ]( ι) = σ 2
0 + O P (r n ) a n d [δ 2 ]( ι) = δ 2

0 + O P (r n ).

3. Gi v e n t h at |τ ( ι) − τ 0 | = O P ((l o g n ) 4 (l o g l o g n ) 2 ), [σ 2 ]( ι) = σ 2
0 + O P (r n ) a n d [δ 2 ]( ι) =

δ 2
0 + O P (r n ), w e h a v e m a x 1 ≤ i≤ n |f ( ι) (i / n) − f 0 (i / n)| = O P (r n ).

T h es e r es ults, c o m bi n e d t o g et h er, i m m e di at el y g u ar a nt e es t h e c o nsist e n c y r es ult i n

T h e or e m 2. 1. F or si m pli cit y of n ot ati o n, w e s h all dr o p t h e s u p ers cri pts ( ι − 1) a n d ( ι) i n

t his s e cti o n of pr o of.

S t e p 1 . C o nsist e n c y of t h e i niti al m e a n f u n cti o n esti m at e f ( 0 ) .

T his f oll o ws dir e ctl y fr o m L e m m a A. 2.

S t e p 2 . C o nsist e n c y of t h e esti m at es of τ 0 , σ 2
0 a n d δ 2

0 gi v e n a c o nsist e nt m e a n esti m at e.

3 1



Wit h o ut l oss of g e n er alit y ass u m e σ 2
0 < δ 2

0 . T h e i d e a is t o s h o w t h at, (k ) > (τ 0 )

u nif or ml y f or k ∈ [c n / l o g n, n − c n / l o g n ] wit h |k − τ 0 | ≥ (l o g n ) 4 (l o g l o g n ) 2 . We o nl y

c o nsi d er c n / l o g n ≤ k < τ 0 − (l o g n ) 4 (l o g l o g n ) 2 si n c e t h e c as e f or n − c n / l o g n ≥ k >

τ 0 + (l o g n ) 4 (l o g l o g n ) 2 is si mil ar. D e fi n e η i = f (i / n) − f 0 (i / n) a n d l et

σ 2
0 =

1

τ 0

τ 0

i= 1

(η i + i)
2 , σ 2

n =
1

n − τ 0

n

i= τ 0 + 1

(η i + i)
2 , σ 2

k =
1

τ 0 − k

τ 0

i= k + 1

(η i + i)
2 .

It f oll o ws b y L e m m as A. 1 a n d A. 2 t h at 1
τ 0 − k

τ 0

i= k + 1 η i i = O P (r n

√
l o g n ) u nif or ml y f or

k ≤ τ 0 − (l o g n ) 4 (l o g l o g n ) 2 . H e n c e w e h a v e

σ 2
k =

1

τ 0 − k

τ 0

i= k + 1

η 2
i +

2

τ 0 − k

τ 0

i= k + 1

η i i +
1

τ 0 − k

τ 0

i= k + 1

2
i

= σ 2 + O P r 2
n + r n l o g n + (l o g n l o g l o g n ) − 1

= σ 2 + O P (r 2
1 n ),

w h er e r 2
1 n = r 2

n + r n

√
l o g n + (l o g n l o g l o g n ) − 1 w hi c h is o ( 1) b y ass u m pti o ns. M e a n w hil e,

usi n g si mil ar ar g u m e nt w e h a v e σ 2
0 = σ 2 + O P (r 2

1 n ), σ 2
n = δ 2 + O P (r 2

1 n ).

T h er ef or e, wit h pr o b a bilit y a p pr o a c hi n g o n e, u nif or ml y f or k ≤ τ 0 − (l o g n ) 4 (l o g l o g n ) 2 ,

|σ 2
k / σ 2

n − σ 2 / δ 2 | = O P (r 2
1 n ), |σ 2

0 / σ 2
n − σ 2 / δ 2 | = O P (r 2

1 n ),

1 −
σ 2

k

σ 2
0

=
σ 2

0 − σ 2
k

σ 2
0

= O P (r 2
1 n ).

It is e as y t o s e e t h at

1

k

k

i= 1

(y i − f (i / n)) 2 =
1

k

k

i= 1

(δ i + i)
2 = σ 2

0 +
τ 0 − k

k
(σ 2

0 − σ 2
k ),

1

n − k

n

i= k + 1

(y i − f (i / n)) 2 =
1

n − k

n

i= k + 1

(δ i + i)
2 = σ 2

n +
τ 0 − k

n − k
(σ 2

k − σ 2
n ).
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T h er ef or e,

(k )

=
k

n
l o g σ 2

0 +
τ 0 − k

k
(σ 2

0 − σ 2
k ) +

n − k

n
l o g σ 2

n +
τ 0 − k

n − k
(σ 2

k − σ 2
n )

= (τ 0 ) −
τ 0 − k

n
l o g

σ 2
0

σ 2
n

+
n − k

n
l o g 1 +

τ 0 − k

n − k

σ 2
k

σ 2
n

− 1 +
k

n
l o g 1 +

τ 0 − k

k
1 −

σ 2
k

σ 2
0

.

N ot e t h at

n − k

n
l o g 1 +

τ 0 − k

n − k

σ 2
k

σ 2
n

− 1

=
n − k

n
l o g 1 +

τ 0 − k

n − k

σ 2
0

σ 2
n

− 1 +
σ 2

k − σ 2
0

σ 2
n

=
n − k

n
l o g 1 +

τ 0 − k

n − k

σ 2
0

σ 2
n

− 1 +
τ 0 − k

n
O P (r 2

1 n ).

T h er ef or e, wit h pr o b a bilit y a p pr o a c hi n g o n e, u nif or ml y f or k < τ 0 − (l o g n ) 4 (l o g l o g n ) 2 , w e

h a v e

(k ) − (τ 0 )

= −
τ 0 − k

n
l o g

σ 2
0

σ 2
n

+
n − k

n
l o g 1 +

τ 0 − k

n − k

σ 2
k

σ 2
n

− 1 +
k

n
l o g 1 +

τ 0 − k

k
1 −

σ 2
k

σ 2
0

= −
τ 0 − k

n
l o g

σ 2
0

σ 2
n

+
n − k

n
l o g 1 +

τ 0 − k

n − k

σ 2
0

σ 2
n

− 1 +
τ 0 − k

n
O P (r 2

1 n )

=
τ 0 − k

n

∞

l= 1

1

l
1 −

σ 2
0

σ 2
n

l

1 −
τ 0 − k

n − k

l− 1

+
τ 0 − k

n
O P (r 2

1 n )

≥
τ 0 − k

2 n
1 −

σ 2
0

σ 2
n

2
n − τ 0

n − k
+

τ 0 − k

n
O P (r 2

1 n )

≥
τ 0 − k

2 n
( 1 − σ 2 / δ 2 ) 2 ( 1 − q 0 ) + O P (r 2

1 n ) > 0 ,

w h er e t h e l ast i n e q u alit y f oll o ws b y r 2
1 n = o ( 1). T his m e a ns t h at τ ≥ τ 0 − (l o g n ) 4 (l o g l o g n ) 2

wit h pr o b a bilit y a p pr o a c hi n g o n e. Si mil arl y, it c a n b e s h o w n t h at wit h pr o b a bilit y a p-

pr o a c hi n g o n e, (k ) − (τ 0 ) > 0 u nif or ml y f or k > τ 0 + (l o g n ) 4 (l o g l o g n ) 2 , w hi c h i m pli es
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τ ≤ τ 0 + (l o g n ) 4 (l o g l o g n ) 2 . T h er ef or e,

|τ − τ 0 | = O P ((l o g n ) 4 (l o g l o g n ) 2 ). ( 1 5)

T o s h o w t h e c o nsist e n c y of σ 2 a n d δ 2 , n ot e t h at b y L e m m a A. 2 w e h a v e t h at

σ 2 =
1

τ

τ

i= 1

η 2
i +

2

τ

τ

i= 1

iη i +
1

τ

τ

i= 1

2
i

= O P
l o g n

n h
+ h 2 m − 1 + ( n h ) − 3 / 4 +

1

τ

τ

i= 1

2
i

= O P r 2
n + ( n h ) − 3 / 4 +

1

τ

τ

i= 1

2
i −

τ 0

i= 1

2
i +

1

τ

τ 0

i= 1

2
i .

B y L e m m a A. 2 a n d ( 1 5), w e h a v e

1

τ

τ

i= 1

2
i −

τ 0

i= 1

2
i ≤

1

τ

τ 0 + 1 + |τ − τ 0 |

i= τ 0 + 1 −| τ − τ 0 |

2
i

=
2 |τ − τ 0 | + 1

τ
×

1

2 |τ − τ 0 | + 1

τ 0 + 1 + |τ − τ 0 |

i= τ 0 + 1 −| τ − τ 0 |

2
i

=
2 |τ − τ 0 | + 1

τ
× O P 1 +

|τ − τ 0 | l o g n

|τ − τ 0 | + 1

= O P ((l o g n ) 5 (l o g l o g n ) 2 / n ),

a n d
1

τ

τ 0

i= 1

2
i =

τ 0

τ

1

τ 0

τ 0

i= 1

2
i = σ 2

0 + O P (n − 1 / 2 ).

T h er ef or e, w e h a v e pr o v e d t h at

σ 2 = σ 2
0 + O P (r 2

n + ( n h ) − 3 / 4 + (l o g n ) 5 (l o g l o g n ) 2 / n + n − 1 / 2 ) = σ 2
0 + O P (r n ).

T h e pr o of f or δ 2 = δ 2
0 + O P (r n ) is si mil ar.
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S t e p 3 . C o nsist e n c y of t h e m e a n f u n cti o n esti m at e gi v e n t h e c o nsist e nt esti m at es of

τ 0 , σ 2
0 a n d δ 2

0 .

R e c all fr o m t h e pr o of of L e m m a A. 2, w e writ e = D 0 e , w h er e D 0 is t h e s q u ar e-r o ot of

t h e tr u e c o v ari a n c e m atri x of a n d e is a v e ct or of n i n d e p e n d e nt st a n d ar d n or m al r a n d o m

v ari a bl es. B y t h e r e pr es e nt er t h e or e m, t h e esti m at es f ( 0 ) a n d f h a v e e x pli cit e x pr essi o ns

f ( 0 ) = Ω( Ω + λ I ) − 1 f 0 + Ω( Ω + λ I ) − 1 D 0 e ,

f = Ω( Ω + λ n e w Σ) − 1 f 0 + Ω( Ω + λ n e w Σ) − 1 D 0 e .

Wit h o ut l oss of g e n er alit y, ass u m e σ 2 < δ 2 . L et c = δ 2 / σ 2 a n d c 0 = δ 2 / σ 2 . B y

c o nsist e n c y of σ 2 , δ 2 , a n d τ , wit h pr o b a bilit y a p pr o a c hi n g o n e, E n ≡ { σ 2 < δ 2 , |c − c 0 | ≤

C r n } h ol ds, w h er e ε > 0 is ar bitr aril y s m all. L et 1 k b e a v e ct or of k 1’s a n d 0 k b e a v e ct or

of k 0’s. It is e as y t o s e e t h at o n E n ,

λ n e w Σ = λ di a g( c 1 τ , 1 n − τ )

= λ di a g( c 0 1 τ , 1 n − τ ) + λ (c − c 0 ) di a g( 1 τ , 0 n − τ )

≡ λ Γ + λ (c − c 0 )E,

w h er e Γ = di a g( c 0 1 τ , 1 n − τ ) a n d E = di a g( 1 τ , 0 n − τ ). T h e n b y t h e S h er m a n- W o or d b ur y

f or m ul a,

( Ω + λ n e w Σ) − 1 − ( Ω + λ Γ) − 1

= − (c − c 0 )λ ( Ω + λ Γ) − 1 E (I + ( c − c 0 )λ E ( Ω + λ Γ) − 1 E ) − 1 E ( Ω + λ Γ) − 1 ≡ − (c − c 0 ) ∆,

w h er e ∆ = λ ( Ω + λ Γ) − 1 E (I + ( c − c 0 )λ E ( Ω + λ Γ) − 1 E ) − 1 E ( Ω + λ Γ) − 1 . H e n c e, o n E n ,

0 ≤ ∆ ≤ λ
1 − ε

( Ω + λ Γ) − 2 ≤ 1
1 − ε

( Ω + λ I ) − 1 .
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N oti c e t h at λ I ≤ λ n e w Σ ≤ λ c I . H e n c e, it h ol ds t h at

(f − f 0 ) (f − f 0 )

≤ 2 f 0 ( Ω + λ n e w Σ) − 1 (λ n e w Σ) 2 ( Ω + λ n e w Σ) − 1 f 0 + 2 e T D 0 ( Ω + λ n e w Σ) − 1 Ω 2 ( Ω + λ n e w Σ) − 1 D 0 e

≤ 2 c 2 λ 2 f 0 ( Ω + λ I ) − 2 f 0 + 4 e T D 0 ( Ω + λ Γ) − 1 Ω 2 ( Ω + λ Γ) − 1 D 0 e + 4( c − c 0 )
2 e T D 0 ∆ Ω 2 ∆ D 0 e .

We will h a n dl e t h e t hr e e t er ms r es p e cti v el y. T h e first t er m is b o u n d e d b y 2 c 2 (E { f ( 0 ) } −

f 0 ) (E { f ( 0 ) } − f 0 ) = O P (n λ ) b y W a h b a ( 1 9 9 0). T o h a n dl e t h e s e c o n d t er m, n ot e t h at

E { e T D 0 ( Ω + λ Γ) − 1 Ω 2 ( Ω + λ Γ) − 1 D 0 e } = Tr( D 0 ( Ω + λ Γ) − 1 Ω 2 ( Ω + λ Γ) − 1 D 0 )

= Tr( Ω( Ω + λ Γ) − 1 D 2
0 ( Ω + λ Γ) − 1 Ω)

≤ δ 4 Tr( Ω( Ω + λ Γ) − 2 Ω)

≤ δ 4 Tr( Ω( Ω + λ I ) − 2 Ω) = O (h − 1 ),

s o t h e s e c o n d t er m is O P (h − 1 ). As f or t h e t hir d t er m, n oti c e t h at

e T D 0 ∆ Ω 2 ∆ D 0 e ≤ e T e Tr( D 0 ∆ Ω 2 ∆ D 0 )

≤ δ 4 e T e Tr( Ω ∆ 2 Ω)

≤ δ 4 e T e ×
1

( 1 − ε ) 2
Tr( Ω( Ω + λ I ) − 2 Ω) = O P (n h − 1 ),

h e n c e t h e l ast t er m is O P (n h − 1 r 2
n ). T h er ef or e, f − f 0

2
n = O P (λ + ( n h ) − 1 + h − 1 r 2

n ).

A. 3 P r o of of T h e o r e m 2. 2

U n d er H 0 , t h e s a m pl es Y i c o m e fr o m c o n v e nti o n al n o n p ar a m etri c m o d el wit h G a ussi a n

err ors of e q u al v ari a n c e. Wit h o ut l oss of g e n er alit y, ass u m e t h at t h e v ari a n c e of i is o n e.

N ot e t h at t h e m e a n f u n cti o n esti m at e u n d er H 0 is f ( 0 ) .
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R e c all t h at δ i = f ( 0 ) (i / n) − E { f ( 0 ) } (i / n) a n d δ 0
i = E { f ( 0 ) } (i / n) − f 0 (i / n). L et η i =

δ i + δ 0
i = f ( 0 ) (i / n) − f 0 (i / n). F or a n y 1 < k < n , w e h a v e b y T a yl or’s e x p a nsi o n a n d r es ults

fr o m L e m m as A. 1 a n d A. 2 t h at

(k ) − (n ) = n l o g 1 +
n
i= 1 ( 2

i − 1) + 2 n
i= 1 η i i + n

i= 1 η 2
i

n

− k l o g 1 +
k
i= 1 ( 2

i − 1) + 2 k
i= 1 η i i + k

i= 1 η 2
i

k

− (n − k ) l o g 1 +
n
i= k + 1 ( 2

i − 1) + 2 n
i= k + 1 η i i + n

i= k + 1 η 2
i

n − k

= −
1

2 n

n

i= 1

( 2
i − 1) + 2

n

i= 1

η i i +

n

i= 1

η 2
i

2

+
1

2 k

k

i= 1

( 2
i − 1) + 2

k

i= 1

η i i +
k

i= 1

η 2
i

2

+
1

2( n − k )

n

i= k + 1

( 2
i − 1) + 2

n

i= k + 1

η i i +
n

i= k + 1

η 2
i

2

+ O P (n [
n
i= 1 ( 2

i − 1) + 2 n
i= 1 η i i + n

i= 1 η 2
i

n
]3 )

+ O P (k [
k
i= 1 ( 2

i − 1) + 2 k
i= 1 η i i + k

i= 1 η 2
i

k
]3 )

+ O P ((n − k )[
n
i= k + 1 ( 2

i − 1) + 2 n
i= k + 1 η i i + n

i= k + 1 η 2
i

n − k
]3 )
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= −
1

2 n
[

n

i= 1

( 2
i − 1)] 2 +

1

2 k
[

k

i= 1

( 2
i − 1)] +

1

2( n − k )
[

n

i= k + 1

( 2
i − 1)] 2

−
1

n

n

i= 1

( 2
i − 1)[ 2

n

i= 1

η i i +

n

i= 1

η 2
i ] +

1

k

k

i= 1

( 2
i − 1)[ 2

k

i= 1

η i i +

k

i= 1

η 2
i ]

+
1

n − k

n

i= k + 1

( 2
i − 1)[ 2

n

i= k + 1

η i i +
i= k + 1

η 2
i ]

−
1

2 n
[ 2

n

i= 1

η i i +

n

i= 1

η 2
i ]2 +

1

2 k
[ 2

k

i= 1

η i i +

k

i= 1

η 2
i ]2 +

1

2( n − k )
[ 2

n

i= k + 1

η i i +
n

i= k + 1

η 2
i ]2

+ O P (n [
n
i= 1 ( 2

i − 1) + 2 n
i= 1 η i i + n

i= 1 η 2
i

n
]3 )

+ O P (k [
k
i= 1 ( 2

i − 1) + 2 k
i= 1 η i i + k

i= 1 η 2
i

k
]3 )

+ O P ((n − k )[
n
i= k + 1 ( 2

i − 1) + 2 n
i= k + 1 η i i + n

i= k + 1 η 2
i

n − k
]3 )

= − n l o g
n
i= 1

2
i

n
+ k l o g

k
i= 1

2
i

k
+ ( n − k ) l o g

n
i= k + 1

2
i

n − k

+ O P (l o g n (n − 1 / 4 h − 3 / 4 + n − 1 / 2 h − 1 l o g n + n 1 / 2 h 2 m − 1 ))

= SI C( k ) − SI C( n ) + O P (r n ),

w h er e t h e O P t er m h ol ds u nif or ml y f or k a n d r n = l o g n (n − 1 / 4 h − 3 / 4 + n − 1 / 2 h − 1 l o g n +

n 1 / 2 h 2 m − 1 ). It t h e n f oll o ws

m a x
1 ≤ k ≤ n

[ (k ) − (n )] = m a x
1 ≤ k ≤ n

[ SI C(k ) − SI C( n )] + O P (r n ).

B y C h e n a n d G u pt a ( 1 9 9 7) w e h a v e f or a n y x ∈ R ,

P (a n (l o g n ) 1 / 2 λ n − b n l o g n ≤ x ) → e x p( − 2 e x p( − x )).

Si n c e r n s atis fi es r n l o g2 n = o ( 1), w e h a v e a n (l o g n )(λ n − λ n ) = o P ( 1). T h er ef or e,

P (a n (l o g n ) 1 / 2 λ n − b n l o g n ≤ x ) → e x p( − 2 e x p( − x )).
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Gr é g oir e, G. a n d Z. H a mr o u ni ( 2 0 0 2). C h a n g e p oi nt esti m ati o n b y l o c al li n e ar s m o ot hi n g.

J. M ulti v a ri at e A n al. 8 3 ( 1), 5 6 – 8 3.

G u, C. ( 2 0 1 3). S m o ot hi n g S pli n e A N O V A M o d el s ( 2 n d E d. ) . N e w Y or k: S pri n g er- Verl a g.

H ari z, S. B., J. J. W yli e, a n d Q. Z h a n g ( 2 0 0 7). O pti m al r at e of c o n v er g e n c e f or n o n-

p ar a m etri c c h a n g e- p oi nt esti m at ors f or n o nst ati o n ar y s e q u e n c es. A n n. St ati st. 3 5 ( 4),

1 8 0 2 – 1 8 2 6.
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s u bs e q u e n c es of r esi d u als, { y i − f ( ι− 1 ) (i / n) : i = 1 , . . . , τ ( ι) } a n d { y i − f ( ι− 1 ) (i / n) :

i = τ ( ι) + 1 , . . . , n} .

( b)  N o w gi v e n t h e esti m at es τ ( ι) , [σ 2 ]( ι) a n d [ δ 2 ]( ι) ,  w e u p d at e t h e  m e a n esti m at e

b y t h e  mi ni mi z er of ( 2)  w h er e τ , σ 2 a n d δ 2 ar e r e pl a c e d r es p e cti v el y b y t h eir

c urr e nt esti m at es.

3. It er at e u ntil t h e al g orit h m c o n v er g es.

2. 2  M e a n  E s ti m a ti o n  Gi v e n τ , σ 2 , a n d δ 2

W h e n τ,  σ 2 a n d δ 2 ar e gi v e n, t h e  m e a n f u n cti o n f 0 is esti m at e d as t h e  mi ni mi z er of t h e

p e n ali z e d  w ei g ht e d l e ast s q u ar es ( 2) i n a r e pr o d u ci n g k er n el  Hil b ert s p a c e H of f u n cti o ns

o n t h e d o m ai n T .  A r e pr o d u ci n g k er n el  Hil b ert s p a c e ( R K H S) is a  Hil b ert s p a c e H w h er e

t h e e v al u ati o n f u n cti o n al [ t] : H → R , f → f (t) is c o nti n u o us f or e v er y t ∈ T .  T h e  Ri es z

R e pr es e nt ati o n  T h e or e m t h e n i n di c at es t h at f or all t ∈ T t h er e e xists a u ni q u e f u n cti o n

R t ∈ H wit h t h e r e pr o d u ci n g pr o p ert y R t , f = [ t](f ) = f (t),  w h er e ·, · is t h e i n n er

pr o d u ct o n H .  N o w t h e r e pr o d u ci n g k er n el R of H is d e fi n e d as a f u n cti o n R : T  × T  → R

s u c h t h at R (s, t ) = R s , Rt .  O n e c a n s h o w t h at e a c h  R K H S is u ni q u el y ass o ci at e d  wit h a

r e pr o d u ci n g k er n el a n d vi c e v ers a.

N ot e t h at t h e p e n alt y f u n cti o n al J i n ( 2) is a s q u ar e d s e mi- n or m o n H .  T h e n ull s p a c e of

J , n a m el y N J = { f : J (f ) = 0} , i n d u c es a dir e ct s u m d e c o m p ositi o n H = N J ⊕ H J ,  w h er e

H J is t h e c o m pl e m e nt of N J i n H .  T his t h e n yi el ds a d e c o m p ositi o n of t h e r e pr o d u ci n g

k er n el R = R 0 + R J ,  w h er e R 0 a n d R J ar e r es p e cti v el y t h e r e pr o d u ci n g k er n els o n t h e

s u bs p a c es N J a n d H J . S e e, e. g.,  G u ( 2 0 1 3,  C h a pt er 2) f or  m or e d et ails o n  R K H Ss.

We n o w i ntr o d u c e a n e x a m pl e of c u bi c s m o ot hi n g s pli n es t o ill ustr at e t h es e c o n c e pts.

We s h all us e t h e c u bi c s m o ot hi n g s pli n es i n all t h e n u m eri c al st u di es of t h e p a p er.

1 0

3. It er at e u ntil t h e al g orit h m c o n v er g es.

Fan Yang
Sticky Note
The above algorithm is general which allows multiple iterations. As will be demonstrated in Theorem 2.1, the updated estimators will satisfy desirable convergence properties, as long as the estimator from previous step is "good" enough. A simplified version is based on one-iteration which will satisfy Theorem 2.1 if the initial estimator $\widehat f^0$ converges sufficiently fast.




