
Algorithmic Framework for Approximate
Matching Under Bounded Edits

with Applications to Sequence Analysis

Sharma V. Thankachan1(B), Chaitanya Aluru2, Sriram P. Chockalingam3,
and Srinivas Aluru3,4

1 Department of Computer Science, University of Central Florida, Orlando, FL, USA
sharma.thankachan@ucf.edu

2 Department of Computer Science, Princeton University, Princeton, NJ, USA
caluru@princeton.edu

3 School of Computational Science and Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

srirampc@gatech.edu, aluru@cc.gatech.edu
4 Institute for Data Engineering and Science, Georgia Institute of Technology,

Atlanta, GA, USA

Abstract. We present a novel algorithmic framework for solving
approximate sequence matching problems that permit a bounded total
number k of mismatches, insertions, and deletions. The core of the frame-
work relies on transforming an approximate matching problem into a
corresponding exact matching problem on suitably edited string suffixes,
while carefully controlling the required number of such edited suffixes
to enable the design of efficient algorithms. For a total input size of
n, our framework limits the number of generated edited suffixes to no
more than a factor of O(logk n) of the input size (for any constant k),
and restricts the algorithm to linear space usage by overlapping the gen-
eration and processing of edited suffixes. Our framework improves the

best known upper bound of n2k1.5/2Ω(
√

log n/k) for the classic k-edit
longest common substring problem [Abboud, Williams, and Yu; SODA
2015] to yield the first strictly sub-quadratic time algorithm that runs
in O(n logk n) time and O(n) space for any constant k. We present simi-
lar subquadratic time and linear space algorithms for (i) computing the
alignment-free distance between two genomes based on the k-edit average
common substring measure, (ii) mapping reads/read fragments to a ref-
erence genome while allowing up to k edits, and (iii) computing all-pair
maximal k-edit common substrings (also, suffix/prefix overlaps), which
has applications in clustering and assembly. We expect our algorithmic
framework to be a broadly applicable theoretical tool, and may inspire
the design of practical heuristics and software.

1 Introduction

Numerous problems related to exact sequence matching can be solved efficiently,
often within optimal time and space bounds, typically using versatile string
c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 211–224, 2018.
https://doi.org/10.1007/978-3-319-89929-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9_14&domain=pdf


212 S. V. Thankachan et al.

data structures such as suffix trees and suffix arrays. However, variants of such
sequence matching problems that permit a limited number of mismatches or edits
(insertions/deletions/mismatches) are often challenging and many problems are
still open. For example, the classic problem of finding the longest common sub-
string (LCS1) between a pair of sequences is easily solvable in optimal linear
time using suffix trees, a solution that dates back to the 70’s [31]. However,
when the sequences contain (an unbounded number of) wild-card characters,
an n2−o(1) time conditional lower bound, based on the Strong Exponential Time
Hypothesis (SETH), comes into play [2]. As for the k-edit LCS problem2, the best
known result is only slightly better than a straightforward dynamic programming
solution. Specifically, the run time is n2k1.5/2Ω(

√
log n/k) and the algorithm is

randomized [1].
In recent times, there is renewed interest in approximate sequence matching

problems due to their wide applicability in computational biology. Many funda-
mental problems between evolutionarily related genomes, or components to the
solutions thereof, can be cast as edit distance problems, with bounded versions
of significant practical interest. Short read sequencers sport low error rates, typ-
ically <1–3% of sequence length, which is within a few hundred bases. Many
problems in relating such reads to each other, or to the source genomes they
originate from, can be effectively modeled as bounded edit distance problems.
While many such problems can be solved efficiently in practice via heuristics,
their worst-case run times are often the same as alignment-based methods that
allow unconstrained edit distance. Thus, an algorithmic framework for approxi-
mate sequence matching that can lead to the design of strictly subquadratic time
algorithms for such problems is of significant theoretical and practical interest.

Our Contributions and Relation to Prior Work

In this work, we focus on multiple approximate sequencing matching problems
under a bounded number k of edits. We expect k to be a small constant in
practice. Our algorithms work for arbitrary values of k, but they are designed
to be superior in both asymptotic and practical runtimes for small values of k.
We first develop a novel algorithmic framework that is potentially applicable to
a broad class of problems, including the four problems solved in this paper. The
core of the framework is a transformation by which an approximate matching
problem on exact suffixes can be converted into an exact matching counterpart
on approximate suffixes, specifically, suffixes with at most k edits. The number
of such k-edited suffixes generated is constrained to a polylog factor of the input
size, through a non-trivial application of Sleator and Tarjan’s classic heavy path
tree decomposition technique [26]. As a result, the framework yields algorithms
with runtime behavior of O(n poly log(n)) while consuming only linear O(n)
space, for a total input of size n, marking a significant improvement over current

1 In this paper, we use LCS to denote the longest common substring. Note that LCS
is frequently used in literature to refer to the longest common subsequence instead.

2 Find the longest substring of a sequence that matches with a substring of another
sequence, allowing ≤ k edits.



Algorithmic Framework for Approximate Matching Under Bounded Edits 213

worst-case runtimes that are quadratic or near quadratic. Using this framework,
we propose asymptotically faster algorithms for three well known and widely
applicable problems in biological sequence analysis, and derive the first strictly
sub-quadratic time algorithm for the k-edit LCS problem as a corollary to one
of these. As will become evident later, the design of appropriate k-edited suffixes
and algorithms for processing them are specific to the problem at hand, leading
to a rich algorithmic framework for tackling additional approximate sequence
matching problems.

Our first result concerns alignment-free genomic distance based on the aver-
age common substring (ACS) measure, proposed by Burstein et al. [9]. The ACS
between genomes X and Y is:

ACS(X,Y) =
1

|X|

|X|∑

i=1

L[i], where L[i] = max
j

|LCP(Xi,Yj)|

Here Xi is the i-th longest suffix of X and LCP denotes the longest common
prefix. The distance metric based on ACS is defined as

Dist(X,Y) =
1
2

(
log |Y|

ACS(X,Y)
+

log |X|
ACS(Y,X)

)
− 1

2

(
log |X|

ACS(X,X)
+

log |Y|
ACS(Y,Y)

)
.

Since its introduction, ACS has proven to be useful in multiple applications
including phylogeny reconstruction [4,6,10,12,13,15]. It was later observed that
its approximate variants, k-mismatch and k-edit ACS, that are based on permit-
ting k mismatches (or k edits, respectively) in the LCP computation, more accu-
rately model genome evolution and lead to higher quality phylogenetic trees [18].
The ACS computation using exact substring composition, as described above, is
straightforward to compute in linear time using suffix trees [9]. The k-mismatch
ACS and the k-edit ACS can be computed by a trivial O(n2k) dynamic program-
ming algorithm, which is prohibitively expensive for large genomes. Leimeis-
ter and Morgenstern [18] proposed algorithms that heuristically estimate k-
mismatch ACS. Apostolico et al. [5] were the first to break the O(n2k) bound
for an exact solution by proposing an O(n2/ log n) run time algorithm. However,
the first strictly sub-quadratic algorithms are by Thankachan et al. [3,27], that
run in O(n logk n) time. Also see [22,24,28,29].

To date, there is no non-trivial solution for the k-edit ACS, beyond the
straightforward O(n2k) algorithm. Unfortunately, the previous techniques for k-
mismatch ACS do not easily extend to k-edit ACS. In comparison to mismatches,
insertions and deletions are much harder to account for as they introduce a
combinatorially larger number of possibilities (3k ways of making modifications
at k given locations) and also alter sequence lengths. Using the algorithmic
framework presented in this paper, we present the first strictly sub-quadratic
time algorithms for both k-edit ACS and k-edit LCS, that run in O(n logk n)
time and O(n) space for any constant k3.
3 Throughout the analysis, we treat k as a constant for brevity. However, with a

tighter analysis (deferred to full version), we can bound the time and space by
O(n(c log n)k/k!) and O(ckn), respectively for a constant c without making any
such assumption on the value of k.



214 S. V. Thankachan et al.

Theorem 1. Given two sequences X and Y of n characters in total and a con-
stant k, we can compute ∀i, L[i] = maxj |LCPk(Xi,Yj)| in O(n logk n) time using
O(n) space. Here |LCPk(Xi,Yj)| is the length of the longest common prefix of Xi

and Yj after allowing ≤ k edits.

In addition, we provide sub-quadratic algorithms for the following problems.
Note that the size of the alphabet set is O(1) in all these applications, however
we make no such assumptions in the complexity analysis.

– Read mapping: A collection of m reads of length � each can be mapped to
a reference genome G while permitting at most k edits per read in O((n +
occ) logk n) time using O(n) space for any constant k. Here n = |G| + m� is
the input size and occ is the output size.

– All-pair Maximal k-edit Common Substrings: Given a collection of m
reads of total length n, all pairwise k-edit maximal common substrings of
length ≥ τ can be computed in O((n+ occ) logk n) time using O(n) space for
any constant k. Here occ is the output size.

– All-pair Maximal k-edit suffix/prefix overlaps: Given a collection of m
reads of total length n and a length threshold τ , all pairwise k-edit maximal
suffix/prefix overlaps of length ≥ τ can be computed in O((n + occ) logk n)
time using O(n) space for any constant k. Here occ is the output size.

All of these are widely studied problems with excellent heuristic solutions and
software availability. The read mapping problem is typically solved using seed-
and-extend heuristics with exact matching or spaced seeds computed using a
pre-built index of the genome such as BWT or FM-index (e.g. [17,19,21]; see [20]
for a survey). Similarly, the other two problems are also solved through seed-
and-extend type filtering solutions such as suffix filtering [16,30], spaced seeds
filtering [8], and substring filtering [25]. Our goal is to present asymptotically
efficient and sub-quadratic worst-case run-time algorithms for these commonly
solved problems to improve upon their upper bounds. We remark that the algo-
rithms presented here can also be used in conjunction with any existing seed-
based heuristics by permitting seeds with bounded edit distance.

Roadmap. In Sect. 2, we present an overview of our framework and the key
results, which are instrumental in achieving the above claimed worst-case run
times. The proofs of the key results of our framework are described in detail in
Sect. 3. We complete the proof of Theorem 1 in Sect. 4. In Sect. 5, we present our
solutions to the other problems listed.

2 Our Algorithmic Framework

Our approximate sequence matching framework takes a collection of two or more
sequences and a constant k as input. Then, a controlled number of changes
(edits) are applied to the suffixes of all input sequences, so that an approximate
sequence matching task over the input can now be transformed to an equivalent
exact prefix matching over the newly generated edited-suffixes. We illustrate our



Algorithmic Framework for Approximate Matching Under Bounded Edits 215

framework with a collection of two input sequences (X and Y of total length
n). The framework relies on a Generalized Suffix Tree (GST), a compact trie
representation of all suffixes of all input sequences. It takes O(n) space for storage
and O(n) time for construction [23,31]. For any two suffixes Xi and Yj , we can
compute |LCP0(Xi,Yj)| = |LCP(Xi,Yj)| = z in constant time using GST and
|LCPk(Xi,Yj)| for any k > 0 in O(3k) time via the following recursion:

|LCPk(Xi,Yj)| = z + max

⎧
⎨

⎩

1 + |LCPk−1(Xi+z+1,Yj+z+1)| (substitution)
|LCPk−1(Xi+z+1,Yj+z)| (deletion in Xi)
|LCPk−1(Xi+z,Yj+z+1)| (deletion in Yj)

Observe that while computing LCPk, a substitution (in at least one suffix)
is equivalent to deletions in both suffixes at the same location. For example,
Xi = AATCGGT.. and Yj = AATGGTT.. disagree at the 4th position. To make
them agree more, we can either delete the 4th character from both suffixes, or
change the 4th character in at least one suffix to match the 4th character of
the other. Also, deletion in Xi (respectively, Yj) is equivalent to an appropriate
insertion in Yj (respectively, Xi). Therefore, in general we have many possible
(equivalent) ways of correcting the first k disagreements between Xi and Yj .
Note that the length of the resulting LCPk may differ (slightly) as per our choice
within the equivalent cases. However, the framework we propose exploits the fact
that many of the equivalent cases will lead to the correct solution, and makes a
suitable fixed choice.

Overview. A suffix after applying ≤ k edits is called a k-edited suffix. Let X′
i

and Y′
j be k-edited suffixes derived from Xi and Yj , respectively. Then, the value

of |LCP(X′
i,Y

′
j)| can range anywhere between 0 and |LCP2k(Xi,Yj)|. However, if

the modifications turn exactly the first k disagreeing positions into agreements,
then |LCP(X′

i,Y
′
j)| is precisely |LCPk(Xi,Yj)|. A set of two such edited suffixes

is called an (i, j)k-maxpair. We call a collection of k-edited suffixes an order-
k universe (denoted by Uk) if for all (i, j) pairs, ∃(i, j)k-maxpair ⊆ Uk. Note
that U0 is simply the set of all suffixes of X and Y. Trivially, there exists an
order-k universe of size

(
n
2

)
. However, the core of our framework is a meticulous

construction of an order k universe of size O(n logk n), based on the heavy path
decomposition strategy by Sleator and Tarjan [26] as in Cole et al. [11]. Various
approximate sequence matching problems can then be solved via processing Uk

in linear or near-linear time.

Representation of Edited Suffixes. Clearly, it is cumbersome to keep track
of all edits applied on suffixes during the creation of edited-suffixes. However,
we have the following crucial observation: for each edited suffix, we do not need
to keep track of all edits, but only substitutions and the total number of
insertions and deletions. Specifically, let X′

i be a k-edited suffix obtained via
a combination of insertions, deletions and substitutions on Xi. Then, X′

i can
be simply represented as a concatenation of a combination of O(k) sub-strings
of X and characters in the alphabet set, along with the following two satellite
information.



216 S. V. Thankachan et al.

– δ(X′
i): number of insertions and deletions made to transform Xi to X′

i.
– Δ(X′

i): set of positions in X′
i corresponding to substitutions in Xi.

Example: Let Xi = CATCATCATCAT . We consider the following edits simul-
taneously on Xi: delete the 2nd and 10th character, change the 4th charac-
ter to T and the 9th character to A, and insert G after position 6. Then,
X′

i = CTTATGCAAAT , δ(X′
i) = 3 and Δ(X′

i) = {3, 9}.

Lemma 1. Let X′
i (respectively, Y′

j) be obtained via at most k edits on Xi

(respectively, Yj). Then, the value of |LCP(X′
i,Y

′
j)| can range anywhere between

0 and |LCP2k(Xi,Yj)|. However, if we impose the following condition, then
|LCP(X′

i,Y
′
j)| is at most |LCPk(Xi,Yj)|.

|Δ(X′
i) ∪ Δ(Y′

j)| + δ(X′
i) + δ(Y′

j) ≤ k.

Proof. If we allow k edits on each suffix, we can correct at most 2k disagree-
ments. However, the condition limits the total number of insertions/deletions
and distinct substitution positions. 	


We now define the notion of (i, j)k-maxpair in a formal way.

Definition 1. Let X′
i be a k-edited suffix derived from Xi and Y′

j be a k-edited
suffix derived from Yj. Then, we call the set {X′

i,Y
′
j} an (i, j)k-maxpair iff

|LCP(X′
i,Y

′
j)| = |LCPk(Xi,Yj)| and |Δ(X′

i) ∪ Δ(Y′
j)| + δ(X′

i) + δ(Y′
j) ≤ k.

Lemma 2. Given two k-edited suffixes, we can compute the length of their
longest common prefix (hence their lexicographic order) in O(k) time via O(k)
number of |LCP| queries on the GST.

3 Details of the Construction of Uk

We show how to construct the universe Uk in small parts (in linear work space).
The parts of Uk, denoted by {Pk

1 ,Pk
2 ,Pk

3 , ...} are its subsets (not necessary
disjoint) such that the following properties are ensured.

1. maxf |Pk
f | = O(n)

2.
∑

f |Pk
f | = O(n logk n)

3. for any (i, j), ∃f such that a two-element subset of Pk
f is an (i, j)k-maxpair

The construction procedure is recursive. We first construct U0, then U1 from U0

and so on. The base case, i.e., an order 0 universe U0 has exactly one part, the
set of all suffixes of X and Y. We now proceed to the inductive step, where we
assume the availability of order-h universe Uh (specifically, its parts Ph

1 ,Ph
2 , . . . )

for an h ≥ 0 and the task is to obtain the parts Ph+1
1 ,Ph+1

2 , . . . of Uh+1. To do
so, we apply the following steps on each Ph

f . We describe the procedure first and
prove its correctness later.



Algorithmic Framework for Approximate Matching Under Bounded Edits 217

1. Let m = |Ph
f | and T be a compact trie of all h-edited suffixes in Ph

f . Notice
that T is GST when h = 0. Classify the nodes in T into light or heavy: the
root is always light and any other node is heavy, if it is the heaviest child4

of its parent. Furthermore, a maximal downward path starting from a light
node where all other nodes on the path are heavy is called a heavy path. A
key property is that the number of heavy paths that intersect any root to leaf
path is ≤ log m [11,26]. Equivalently, the number of light nodes on any root
to leaf path is ≤ log m. Therefore the sum of subtree sizes of all light nodes
in T is ≤ m log m, because each leaf contributes to at most log m light rooted
subtree.

2. Corresponding to each internal light node u in T , there will be a part, say
Ph+1

t . The steps involved in its construction are as follows. Let Q be the set
of h-edited suffixes corresponding to the leaves in the subtree of u, α be the
h-edited suffix corresponding to the particular leaf on the heavy path through
u. Then,

Ph+1
t = {α}

⋃

β∈Q,β �=α

{β, βI , βD, βS}

Here, βI , βD and βS are (h+1)-edited suffixes, obtained by performing exactly
one edit on β w.r.t. α as follows: Let z = |LCP(α, β)| and σ be the (z + 1)th
character of α, then

– βI is obtained by inserting the character σ in β after the zth character.
– βD is obtained by deleting the (z + 1)th character of β.
– βS is obtained by substituting the (z + 1)th character of β by σ.

See Fig. 1 for an illustration. We now prove that the parts created in the
above manner satisfy the desired properties.

3.1 Correctness Proof (via Mathematical Induction)

All three properties hold true for k = 0 (base case). Assuming they are true
for all values of k up to h, we now prove it for h + 1. From our construction
procedure, |Ph+1

t | = 1 + 4(|Q| − 1) < 4|Ph
f | = 4m. Therefore, the maximum size

of a part can be bounded by maxt |Ph+1
t | < 4maxf |Ph

f | = O(n). The total size of
all pairs derived from Ph

f is 4
∑

u is light subtree-size(u) ≤ 4m log m. Therefore,
the total size of all parts in Uh+1 is
∑

t

|Ph+1
t | ≤ 4

∑

f

|Ph
f | log |Ph

f | < 4
( ∑

f

|Ph
f |

)(
log

∑

f

|Ph
f |

)
= O(n logh+1 n)

Next we prove the existence of an (i, j)h+1-maxpair in at least one part, say
Ph+1

t . Without loss of generality, assume {X′
i,Y

′
j} is an (i, j)h-maxpair and is a

subset of Ph
f . Then,

|LCP(X′
i,Y

′
j)| = |LCPh(Xi,Yj)| and |Δ(X′

i) ∪ Δ(Y′
j)| + δ(X′

i) + δ(Y′
j) ≤ h

4 The child with the largest number of leaves in its subtree (ties broken arbitrarily)
among its siblings.



218 S. V. Thankachan et al.

root

α β

u

C
G

T
G

C
A
A
G
.
.

G
T
C
T
.
.

βI

C
G

T
G

C
G
T
C
T
.

βD

C
G

T
G

T
C
T
.
.
.

βS

C
G

T
G

C
T
C
T
.
.

Fig. 1. Illustrates an edit operation along a suffix β, at the point where it diverges
from a heavy path (shown as a thick wavy line). For insertion (βI) and substitution
(βS), the modification is made to conform to the next character along the heavy path.

Let w be the lowest common ancestor of the leaves corresponding to X′
i and Y′

j

in the trie T , l = |LCP(X′
i,Y

′
j)|, σ be the leading character on the outgoing edge

from w towards its heavy child, and Ph+1
t be the part created w.r.t. the heavy

path through w. We now prove there exists an (i, j)h+1-maxpair ⊆ Ph+1
t . We

have the following cases.

Case 1: At w, both X′
i and Y′

j diverge from the heavy path through w. Then the
following edited suffixes, in addition to X′

i and Y′
j , are in Ph+1

f . Let

– X′′
i be the edited suffix obtained by deleting the (l + 1)th character of X′

i.
– Y′′

j be the edited suffix obtained by deleting the (l + 1)th character of Y′
j .

– X′′′
i be the edited suffix obtained by substituting the (l + 1)th character of X′

i

by σ.
– Y′′′

j be the edited suffix obtained by substituting the (l +1)th character of Y′
j

by σ.

It can be easily verified that one of the following subsets of Ph+1
t is an (i, j)h+1-

maxpair: {X′
i,Y

′′
j }, {X′′

i ,Y′
j}, {X′′′

i ,Y′′′
j }.

Case 2: At w, exactly one among X′
i and Y′

j diverges from the heavy path. With-
out loss of generality, assume the diverging suffix is X′

i. Then the following edited
suffixes, in addition to X′

i and Y′
j , are in Ph+1

f . Let

– X′′
i be the edited suffix obtained by deleting the (l + 1)th character of X′

i.
– X′′′

i be the edited suffix obtained by substituting the (l + 1)th character of X′
i

by σ.
– X′′′′

i be the edited suffix obtained by inserting σ in X′
i after l characters.

Here also, it can be easily verified that one of the following subset of Ph+1
t is

an (i, j)h+1-maxpair: {X′′
i ,Y′

j}, {X′′′
i ,Y′

j}, {X′′′′
i ,Y′

j}. This completes the correct-
ness proof.



Algorithmic Framework for Approximate Matching Under Bounded Edits 219

3.2 Time and Space Complexity Analysis

First, we consider the recursive step of creating parts out of Ph
f . The trie T can

be constructed in O(m log m) time (recall m = |Ph
f |) with the following steps.

1. First, sort the edited suffixes in Ph
f in time O(m log m) via merge sorting.

Note that any two k-edited suffixes can be compared in O(k) time (refer to
Lemma 2).

2. Then, compute the LCP between every consecutive pair of edited suffixes in
the sorted list and build the trie T using standard techniques from the suffix
tree construction algorithms [14]. This step takes only O(m) time.

Note that the part corresponding to each light node u can be obtained in
time proportional to the subtree size of u. Therefore, the time for deriving parts
from Ph

f is O(m log m). In other words, parts of Uh+1 can be obtained from
parts of Uh in O(log n

∑
f |Ph

f |) time for h = 0, 1, 2, . . . , k − 1. Total time is

log n
∑k−1

h=0 |Ph
f | = O(n logk n).

The parts can be created (and processed) one at a time by keeping exactly
one partition in each Uh for h = 0, 1, 2, . . . , k. Therefore, the working space is∑k

h=0 maxt |Ph
t | = O(n).

Lemma 3. The universe Uk can be created in parts in O(n logk n) time using
O(n) space.

3.3 Obtaining the Parts of Uk with Its Elements Sorted

We now present a more careful implementation of the above steps, so that the
parts can be generated with their elements in sorted order without incurring
additional comparison sorting costs. Specifically, we show how to process a light
node u in T (the trie over all edited suffixes in Ph

f ) and construct the correspond-
ing part Ph+1

t in Uh+1 with its elements sorted. We use the classic result that
two sorted lists of sizes p and q (q ≤ p) in the form of balanced binary search
trees (BSTs) can be merged using O(q log(p/q)) comparisons [7]. Throughout the
execution of our algorithm, we maintain edited suffixes in the form of a BST.
Key steps are below.

1. Initialize BST with exactly one element α.
2. Visit the heavy internal nodes on the heavy path through u in a bottom up

fashion. For each light child w of a heavy node v on the path (let l be the
string depth of v), merge BST with BSTw, BST I

w, BSTD
w and BSTS

w . Here,
– BSTw is the set of all strings corresponding to the leaves in the subtree

of w.
– BST I

w is BSTw after inserting the character α[l + 1] after lth position of
all strings in it.

– BSTD
w is BSTw after deleting the (l + 1)th character of all strings in it.



220 S. V. Thankachan et al.

– BSTS
w is BSTw after replacing the (l + 1)th character by α[l + 1] for all

its strings.
Note that BSTw can be created from T in time linear to its size. Since the
LCP of any two strings in BSTw is at least (l + 1), we can generate BST I

w,
BSTD

w and BSTS
w also in time linear to their size. Therefore, the merging

can be performed in time O(size(w) log(size(v)/size(w)) via fast merging.

The correctness is ensured as we are implementing the same algorithm described
earlier. The time for processing all light nodes in T is the sum of size(·) ×
log(size(parent(·))/size(·)) over all light nodes. This is the same as the sum
of log(size(parent(·))/size(·)) over all light ancestors of all leaves. However,
sum of log(size(parent(·))/size(·)) over all nodes on any root to leaf path is
log(size(root)). In summary, we have the following.

Lemma 4. We can generate Uk with its parts sorted in O(n logk n) time using
O(n) space.

4 Our Algorithm for Computing the Array L

We can compute ∀i, L[i] = maxj |LCPk(Xi,Yj)| with the following procedure.
First, initialize all entries in array L to 0 and then, process each part Pk

f one
after another as follows:

∀ X′
i,Y

′
j ∈ Pk

f s.t. |Δ(X′
i) ∪ Δ(Y′

j)| + δ(X′
i) + δ(Y′

j) ≤ k,

update L[i] ← max{L[i], |LCP(X′
i,Y

′
j)|}

After processing all the parts of Uk, we have maxj |LCPk(Xi,Yj)| = L[i] for all values
of i. Correctness follows from the fact that at some point during the execution of
the algorithm, we will process a pair X∗

i ,Y∗
d corresponding an (i, d)-maxpair with d =

arg maxj |LCPk(Xi,Yj)| and update L[i] ← |LCPk(Xi,Yd)|. However, we cannot afford
to examine all the pairs.

Our Strategy. ∀ h, t ∈ [0, k] and set φ, generate all non-empty sets S(h, t, φ) from
Pk

f , such that S(h, t, φ) =

{X′
i | φ ⊆ Δ(X′

i) and |Δ(X′
i)|+δ(X′

i) = h}∪{Y′
j | φ ⊆ Δ(Y′

j) and |Δ(Y′
j)|+δ(Y′

j) = t}
Observe that ∀ X′

i,Y
′
j ∈ S(h, t, φ), |Δ(X′

i) ∪ Δ(Y′
j)| + δ(X′

i) + δ(Y′
j)

= |Δ(X′
i)| + |Δ(Y′

j)| − |Δ(X′
i) ∩ Δ(Y′

j)| + δ(X′
i) + δ(Y′

j)

= h + t − |Δ(X′
i) ∩ Δ(Y′

j)|
≤ h + t − |φ|

This in turn implies that |LCP(X′
i,Y

′
j)| ≤ |LCPh+t−|φ|(Xi,Yj)|. Therefore,

∀ X′
i,Y

′
j ∈ S(h, t, φ) with h + t − |φ| ≤ k, |LCP(X′

i,Y
′
j)| ≤ |LCPk(Xi,Yj)|

Additionally, ∀ (i, j) pairs, there exists an (i, j)k-maxpair, say {X′′
i ,Y′′

j } and an f , such
that X′′

i ,Y′′
j ∈ Pk

f . In other words, there exists a non-empty set S(a, b, μ), such that
X′′

i ,Y′′
j ∈ S(a, b, μ). Specifically, a = |Δ(X′′

i )| + δ(X′′
i ), b = |Δ(Y′′

j )| + δ(Y′′
j ) and μ =



Algorithmic Framework for Approximate Matching Under Bounded Edits 221

Δ(X′′
i ) ∩ Δ(Y′′

j ). Since {X′′
i ,Y′′

j } is an (i, j)k-maxpair, |LCP(X′′
i ,Y′′

j )| = |LCPk(Xi,Yj)|
and a + b − |μ| ≤ k. Therefore,

|LCPk(Xi,Yj)| = max{|LCP(X′
i,Y

′
j)| | X′

i,Y
′
j ∈ S(h, t, φ) and (h + t − |φ| ≤ k)}

L[i] = max
j

{|LCP(X′
i,Y

′
j)| | X′

i,Y
′
j ∈ S(h, t, φ) and (h + t − |φ| ≤ k)}

Note that there is no |LCPk(·, ·)| in the above equation. Equivalently, we have
a new definition for L[·] using exact matching over k-edited suffixes. Therefore, the
computation of L is straightforward.

Proposed Algorithm. Initialize L[i] ← 0, ∀i. Then, ∀ h, t ∈ [0, k] and set φ
with h + t − |φ| ≤ k, process S(h, t, φ) as follows: sort all of its strings, and visit
the strings in both ascending and descending order. For each X′

i visited, update
L[i] ← max{L[i], |LCP(X′

i,Y
′
l)|}, where Y′

l is the last visited k-edited suffix of Y. Cor-
rectness is immediate from the above discussions.

Space and Time Analysis. Since we process the parts Pk
f one after another, space

is O(n). W.r.t. time complexity, note that each S(·, ·, ·) can be processed in time linear
plus the time for sorting its strings, which is O(|S(·, ·, ·)| log(|S(·, ·, ·)|)) using Lemma 2.
The sum of sizes of all S(·, ·, ·) generated from a particular Pk

f is at most k × 2k × |Pk
f |

i.e.,
∑ |S(·, ·, ·)| = O(n logk n). Total time is

∑ |S(·, ·, ·)| log(|S(·, ·, ·)|) = O(n logk+1 n).
To shave off an additional log n factor from the time complexity, we replace the

merge sorting by integer sorting. Specifically, we generate all Pk
f ’s with their elements

sorted using Lemma 4. We then process Pk
f s after replacing each edited suffix within

Pk
f by its lexicographic rank in Pk

f . Essentially, we replace all string comparison tasks
by integer comparison. Therefore, the main task now is the sorting of several sets of
integers of total size O(n logk n) and maximum size O(n). On sets of size Θ(n), we
employ counting sort. To sort smaller sets, we combine several of them up to a total
size of Θ(n). Then, a counting sort is performed, followed by a stable sort with the id
associated with the set in which each integer belongs to as the key. By scanning the
output in linear time, we can segregate the individual sorted lists. The time in both
cases is constant per element. By combining this with Lemma 4, we obtain the result
in Theorem 1.

5 Solving Approximate Sequence Matching Problems

5.1 Computing the k-edit Average Common Substring

The computation of ACSk from L is straightforward. We now demonstrate the appli-
cability of our algorithmic framework to three other important problems. The general
strategy is to begin with an order-0 universe U0 with one part: the set of all suffixes
of all input sequences. Then create Uk, in parts and process them one by one, using
problem specific steps. In all three cases, the correctness (deferred to full version) can
be obtained via straightforward adaptations of the correctness proof of Theorem 1.



222 S. V. Thankachan et al.

5.2 Our Algorithm for the Mapping Problem

Let {R1, R2, .., Rm} be the set of input reads and G be the reference genome. Our task
is to report all (i, j) pairs, s.t. the edit distance between Ri and G[j..(j + � − 1)] is
≤ k, where � is the read length. We use R′

i (resp., G′
j) for a k-edited copy of Ri (resp.,

Gj). Let S(h, t, φ) w.r.t. Pk
f be {R′

i ∈ Pk
f | |Δ(R′

i)| + δ(R′
i) = h and φ ⊆ Δ(R′

i)} ∪
{G′

j ∈ Pk
f | |Δ(G′

j)| + δ(G′
j) = t and φ ⊆ Δ(G′

j)}. Then, ∀ h, t ∈ [0, k] and set φ with
h+t−|φ| ≤ k, process all S(h, t, φ) as follows: ∀ R′

i, G
′
j ∈ S(h, t, φ) s.t. |LCP(R′

i, G
′
j)| ≥

�, report (i, j). The following correctness argument can be easily verified: we report a
pair (i, j) iff it is a valid output.

The processing of an S(·, ·, ·) is now an exact matching task. It can be implemented
in time linear to its size and the number of pairs reported. Therefore, time over all
S(·, ·, ·) is O(n logk n) plus the total number of pairs reported. Note that our algorithm
might report the same pair multiple times, but not more than O(logk n) times, because
for any (i, j) pair, the number of parts containing an R′

i and a G′
j is O(logk n) (follows

from our construction). Therefore total time is O((n + occ) logk n).

5.3 All-Pair Maximal k-edit Common Substrings

Let {R1, R2, .., Rm} be the set of input reads. Let Ri,x denotes the xth longest suffix
of Ri and let R′

i,x denotes a k-edited copy of Ri,x. Our task is to report all tuples
(i, x, j, y), s.t. |LCPk(Ri,x, Rj,y)| ≥ τ , i �= j and Ri[x − 1] �= Rj [y − 1]. Let S(h, t, φ)
w.r.t. a part Pk

f is the union of the following two sets.

{R′
i,x ∈ Pk

f | |Δ(R′
i,x)| + δ(R′

i,x) = h and φ ⊆ Δ(R′
i,x)}

{R′
j,y ∈ Pk

f | |Δ(R′
j,y)| + δ(R′

j,y) = t and φ ⊆ Δ(R′
j,y)}

Then, ∀ h, t ∈ [0, k] and set φ with h + t − |φ| ≤ k, process S(h, t, φ) as follows:
∀ R′

i,x, R′
j,y ∈ S(h, t, φ) s.t. |LCP(R′

i,x, R′
j,y)| ≥ τ, |Δ(R′

i,x)| + δ(R′
i,x) = h, |Δ(R′

j,y)| +
δ(R′

j,y) = t, Ri[x − 1] �= Rj [y − 1] and i �= j, report (i, x, j, y). This (exact matching)
task can be easily implemented in time linear to |S(h, t, φ)| and the number of tuples
generated using standard techniques (details deferred to full version). Also, we report
a tuple iff it is a valid output and we report one only O(logk n) times. Hence the total
run time is O((n + occ) logk n).

5.4 All-Pair Maximal k-edit Suffix/Prefix Overlaps

Borrowing from the terminologies defined in Sect. 5.3, the task here is to report all
tuples (i, j, y), s.t. i �= j and |LCPk(Ri, Rj,y)| ≥ (� − y + 1) ≥ τ . To do so, we process
all S(h, t, φ) with h+ t−|φ| ≤ k as follows: ∀ R′

i, R
′
j,y ∈ S(h, t, φ) s.t. |LCP(R′

i, R
′
j,y)| ≥

� − y + 1 ≥ τ, |Δ(R′
i)| + δ(R′

i) = h, |Δ(R′
j,y)| + δ(R′

j,y) = t and i �= j, report (i, j, y).
Again, this is an exact matching task, which can be easily implemented in time linear
to |S(h, t, φ)| and the number of tuples generated using standard techniques (details
deferred to full version). Also, we report a tuple iff it is a valid output and we report
one only O(logk n) times across all S(·, ·, ·)’s, yielding O((n + occ) logk n) total time.

Acknowledgments. This research is supported in part by the U.S. National Science
Foundation under CCF-1704552 and CCF-1703489.



Algorithmic Framework for Approximate Matching Under Bounded Edits 223

References

1. Abboud, A., Williams, R., Yu, H.: More applications of the polynomial method to
algorithm design. In: Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 218–230 (2015)

2. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7 4

3. Aluru, S., Apostolico, A., Thankachan, S.V.: Efficient alignment free sequence
comparison with bounded mismatches. In: Przytycka, T.M. (ed.) RECOMB 2015.
LNCS, vol. 9029, pp. 1–12. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16706-0 1

4. Apostolico, A.: Maximal words in sequence comparisons based on subword com-
position. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Algorithms and Appli-
cations. LNCS, vol. 6060, pp. 34–44. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12476-1 2

5. Apostolico, A., Guerra, C., Landau, G.M., Pizzi, C.: Sequence similarity measures
based on bounded hamming distance. Theoret. Comput. Sci. 638, 76–90 (2016)

6. Bonham-Carter, O., Steele, J., Bastola, D.: Alignment-free genetic sequence com-
parisons: a review of recent approaches by word analysis. Briefings Bioinform.
15(6), 890–905 (2013)

7. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM 26(2), 211–226
(1979)

8. Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams. Fundam.
Inform. 56(1–2), 51–70 (2003)

9. Burstein, D., Ulitsky, I., Tuller, T., Chor, B.: Information theoretic approaches
to whole genome phylogenies. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S.,
Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS, vol. 3500, pp. 283–
295. Springer, Heidelberg (2005). https://doi.org/10.1007/11415770 22

10. Chang, G., Wang, T.: Phylogenetic analysis of protein sequences based on distri-
bution of length about common substring. Protein J. 30(3), 167–172 (2011)

11. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proceedings of the 36th Annual ACM Symposium on
Theory of computing (STOC), pp. 91–100. ACM (2004)

12. Comin, M., Verzotto, D.: Alignment-free phylogeny of whole genomes using under-
lying subwords. Algorithms Mol. Biol. 7(1), 1 (2012)

13. Domazet-Lošo, M., Haubold, B.: Efficient estimation of pairwise distances between
genomes. Bioinformatics 25(24), 3221–3227 (2009)

14. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

15. Guyon, F., Brochier-Armanet, C., Guénoche, A.: Comparison of alignment free
string distances for complete genome phylogeny. Adv. Data Anal. Classif. 3(2),
95–108 (2009)

16. Kucherov, G., Tsur, D.: Improved filters for the approximate suffix-prefix overlap
problem. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol. 8799, pp.
139–148. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11918-2 14

17. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-319-16706-0_1
https://doi.org/10.1007/978-3-319-16706-0_1
https://doi.org/10.1007/978-3-642-12476-1_2
https://doi.org/10.1007/978-3-642-12476-1_2
https://doi.org/10.1007/11415770_22
https://doi.org/10.1007/978-3-319-11918-2_14


224 S. V. Thankachan et al.

18. Leimeister, C.-A., Morgenstern, B.: kmacs: the k-mismatch average common sub-
string approach to alignment-free sequence comparison. Bioinformatics 30(14),
2000–2008 (2014)

19. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

20. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation
sequencing. Briefings Bioinform. 11(5), 473–483 (2010)

21. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: SOAP2:
an improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–
1967 (2009)

22. Manzini, G.: Longest common prefix with mismatches. In: Iliopoulos, C., Puglisi,
S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 299–310. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23826-5 29

23. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
(JACM) 23(2), 262–272 (1976)

24. Pizzi, C.: A filtering approach for alignment-free biosequences comparison with
mismatches. In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp. 231–
242. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48221-6 17

25. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Res. 22(3), 549–556 (2012)

26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

27. Thankachan, S.V., Apostolico, A., Aluru, S.: A provably efficient algorithm for the
k-mismatch average common substring problem. J. Comput. Biol. 23(6), 472–482
(2016)

28. Thankachan, S.V., Chockalingam, S.P., Liu, Y., Apostolico, A., Aluru, S.:
ALFRED: a practical method for alignment-free distance computation. J. Comput.
Biol. 23(6), 452–460 (2016)

29. Thankachan, S.V., Chockalingam, S.P., Liu, Y., Krishnan, A., Aluru, S.: A greedy
alignment-free distance estimator for phylogenetic inference. In: Proceedings of 5th
International Conference on Computational Advances in Bio and Medical Sciences
(ICCABS) (2015)

30. Välimäki, N., Ladra, S., Mäkinen, V.: Approximate all-pairs suffix/prefix overlaps.
Inf. Comput. 213, 49–58 (2012)

31. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
IEEE Symposium on Switching and Automata Theory (SWAT), pp. 1–11 (1973)

https://doi.org/10.1007/978-3-319-23826-5_29
https://doi.org/10.1007/978-3-662-48221-6_17

	Algorithmic Framework for Approximate Matching Under Bounded Edits with Applications to Sequence Analysis
	1 Introduction
	2 Our Algorithmic Framework
	3 Details of the Construction of Uk
	3.1 Correctness Proof (via Mathematical Induction)
	3.2 Time and Space Complexity Analysis
	3.3 Obtaining the Parts of Uk with Its Elements Sorted

	4 Our Algorithm for Computing the Array L
	5 Solving Approximate Sequence Matching Problems
	5.1 Computing the k-edit Average Common Substring
	5.2 Our Algorithm for the Mapping Problem
	5.3 All-Pair Maximal k-edit Common Substrings
	5.4 All-Pair Maximal k-edit Suffix/Prefix Overlaps

	References




