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We introduce a new sub-linear space sketch—the Weight-Median (xX,51) vi e @ “bar” 1.9
Sketch—for learning compressed linear classifiers over data streams #:Yt t .- “baz” 18
while supporting the efficient recovery of large-magnitude weights query
in the model. This enables memory-limited execution of several streaming  gradient sketched estimates of
statistical analyses over streams, including online feature selec- data estimates classifier largest weights

tion, streaming data explanation, relative deltoid detection, and
streaming estimation of pointwise mutual information. Unlike re-
lated sketches that capture the most frequently-occurring features
(or items) in a data stream, the Weight-Median Sketch captures
the features that are most discriminative of one stream (or class)
compared to another. The Weight-Median Sketch adopts the core
data structure used in the Count-Sketch, but, instead of sketching
counts, it captures sketched gradient updates to the model param-
eters. We provide a theoretical analysis that establishes recovery
guarantees for batch and online learning, and demonstrate empiri-
cal improvements in memory-accuracy trade-offs over alternative
memory-budgeted methods, including count-based sketches and
feature hashing.
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1 INTRODUCTION

With the rapid growth of streaming data volumes, memory-efficient
sketches are an increasingly important tool in analytics tasks such
asfi nding frequent items [10, 15, 41, 52], estimating quantiles [26,
45], and approximating the number of distinct items [24]. Sketching
algorithms trade off between space utilization and approximation
accuracy, and are therefore well suited to settings where mem-
ory is scarce or where highly-accurate estimation is not essential.
For example, sketches are used in measuring traffic statistics on
resource-constrained network switch hardware [74] and in pro-
cessing approximate aggregate queries in sensor networks [12].
Moreover, even in commodity server environments where memory
is more plentiful, sketches are useful as a lightweight means to per-
form approximate analyses like identifying frequent search queries
or URLs within a broader stream processing pipeline [6].
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Figure 1: Overview of our approach, where online updates
are applied to a sketched (i.e., compressed) classifier from
which estimates of the largest weights can be retrieved.

Machine learning is applicable in many of the same resource-
constrained deployment scenarios as existing sketching algorithms.
With the widespread adoption of mobile devices, wearable elec-
tronics, and smart home appliances, there is increasing interest in
memory-constrained learning, where statistical models on these
devices are updated on-the-fly in response to locally-observed data
[36, 44, 49, 62]. These online updates allow ML-enabled systems
to adapt to individual users or local environments. For example,
language models on mobile devices can be personalized in order to
improve the accuracy of speech recognition systems [49], mobile
facial recognition systems can be updated based on user supervi-
sion [36], packetfi lters on network routers can be incrementally
improved [18, 67], and human activity classifiers can be tailored to
individual motion patterns for more accurate classification [44, 75].

Online learning in memory-constrained environments is partic-
ularly challenging in high-dimensional feature spaces. For example,
consider a spam classifier on text data that is continually updated
as new messages are observed and labeled as spam or not spam.
The memory cost of retaining n-gram features grows rapidly as
new token combinations are observed in the stream. In an experi-
ment involving an ~80M token newswire dataset [11], we recorded
~47M unique word pairs that co-occur within 5-word spans of text.
Disregarding the space required to store strings, maintaining inte-
ger vocabulary indexes and 32-bitfl oating point weights for each
of these features would require approximately 560MB of memory.
Thus, the memory footprint of classifiers over high-dimensional
streaming data can quickly exceed the memory constraints of many
deployment environments. Moreover, it is not sufficient to simply
apply existing sketches for identifying frequently-occurring fea-
tures, since the features that occur most often are not necessarily
the most discriminative.

In this work, we develop a new sketching algorithm that targets
ML applications in these memory-constrained settings. Building
on prior work on sketching for identifying frequent items, we
introduce the Weight-Median Sketch (WM-Sketch) for learning com-
pressed linear classifiers over data streams. Figure 1 illustrates the
high-level approach: wefi rst allocate afi xed region of memory as
the sketch data structure, and as new examples are observed in the
stream, the weights stored in this structure are updated via gradi-
ent descent on a given loss function. In contrast to previous work
that employs the “hashing trick” to reduce the memory footprint
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of a classifier [60, 69], the WM-Sketch supports the approximate
recovery of the most heavily-weighted features in the classifier:
at any time, we can efficiently return a list of the top-K features
along with estimates of their weights in an uncompressed classifier
trained over the same sequence of examples.

The ability to retrieve heavily-weighted features from the WM-
Sketch confers several benefits. First, the sketch provides a classifier
with low memory footprint that retains a degree of model inter-
pretability. This is often practically important as understanding
which features are most influential in making predictions is rele-
vant to feature selection [76], model debugging, issues of fairness
in ML systems [13], and human perceptions of model trustworthi-
ness [55]. Second, the ability to retrieve heavily-weighted features
enables the execution of a range of analytics workloads that can
be formulated as classification problems over streaming data. In
this paper, we demonstrate the effectiveness of the WM-Sketch
in three such applications: (i) streaming data explanation [3, 51],
(ii) detecting large relative differences between data streams (i.e.,
detecting relative deltoids) [16] and (iii) streaming identification of
highly-correlated pairs of features via pointwise mutual informa-
tion [22]. The WM-Sketch is able to perform these analyses while
using far less memory than uncompressed classifiers.

The key intuition behind the WM-Sketch is that by randomly pro-
jecting the gradient updates to a linear classifier, we can incremen-
tally maintain a compressed version of the true, high-dimensional
model. By choosing this random projection appropriately, we can
support efficient approximate recovery of the model weights. In par-
ticular, the WM-Sketch maintains a Count-Sketch projection [10]
of the weight vector of the linear classifier. However, unlike Heavy
Hitters sketches that simply increment or decrement counters, the
WM-Sketch updates its state using online gradient descent [29].
Since these updates themselves depend on the current weight es-
timates, a careful analysis is needed to ensure that the estimated
weights do not diverge from the true (uncompressed) model param-
eters over the course of multiple online updates.

We analyze the WM-Sketch both theoretically and empirically.
Theoretically, we provide guarantees on the approximation error
of these weight estimates, showing that it is possible to accurately
recover large-magnitude weights using space sub-linear in the fea-
ture dimension. We describe an optimized variant, the Active-Set
Weight-Median Sketch (AWM-Sketch) that outperforms alterna-
tive memory-constrained algorithms in experiments on benchmark
datasets. For example, on the standard Reuters RCV1 binary classi-
fication benchmark, the AWM-Sketch recovers the most heavily-
weighted features in the model with 4 better approximation error
than a frequent-features baseline using the Space Saving algorithm
[52] and 10x better than a naive weight truncation baseline, while
using the same amount of memory. Moreover, we demonstrate that
the additional interpretability of the AWM-Sketch does not come at
the cost of reduced classification accuracy: empirically, the AWM-
Sketch in fact improves on the classification accuracy of feature
hashing, which does not support weight recovery.

To summarize, we make the following contributions in this work:

e We introduce the Weight-Median Sketch, a new sketch for
learning linear classifiers over data streams that supports
approximate retrieval of the most heavily-weighted features.

758

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

e We provide a theoretical analysis that provides guarantees
on the accuracy of the WM-Sketch estimates. In particular,
we show that for feature dimension d and with success prob-
ability 1 — 8, we can learn a compressed model of dimension
(@) (e"‘ log3(d/s )) that supports approximate recovery of the
optimal weight vector w,, where the absolute error of each
weight is bounded above by €||w.]l;.

o We empirically demonstrate that the optimized AWM-Sketch
outperforms several alternative methods in terms of memory-
accuracy trade-offs across a range of real-world datasets.!

The full version of this paper with extended proofs of our theoretical
results is available at https://arxiv.org/abs/1711.02305.

2 RELATED WORK

Heavy Hitters in Data Streams. Given a sequence of items, the
heavy hitters problem is to return the set of all items whose fre-
quency exceeds a specified fraction of the total number of items.
Algorithms forfi nding frequent items include counter-based ap-
proaches [20, 37, 47, 52], quantile algorithms [26, 61], and sketch-
based methods [10, 15]. Mirylenka et al. [54] develop streaming
algorithms forfinding conditional heavy hitters, i.e. items that are
frequent in the context of a separate “parent” item. Our proposed
sketch builds on the Count-Sketch [10], which was originally in-
troduced for identifying frequent items. In Sec. 4, we show how
frequency estimation can in fact be related to the problem of esti-
mating classifier weights.

Characterizing Changes in Data Streams. Cormode and Muthukr-
ishnan [16] propose a Count-Min-based algorithm for identifying
items whose frequencies change significantly, while Schweller et al.
[57] propose the use of reversible hashes to avoid storing key infor-
mation. In order to explain anomalous trafficfl ows, Brauckhoff et al.
[7] use histogram-based detectors and association rules to detect
large absolute differences. In our network monitoring application
(Sec. 8), we focus instead on detecting large relative differences, a
problem which has previously been found to be challenging [16].

Resource-Constrained and On-Device Learning. In contrast
to federated learning, where the goal is to learn a global model
on distributed data [38] or to enforce global regularization on a
collection of local models [62], our focus is on memory-constrained
learning on a single device without communication over a network.
Gupta et al. [27] and Kumar et al. [39] perform inference with
small-space classifiers on IoT devices, whereas we focus on online
learning. Unlike budget kernel methods that aim the reduce the
number of stored examplars [17, 19], our methods instead reduce
the dimensionality of feature vectors. Our work also differs from
model compression or distillation [2, 8, 31], which aims to imitate a
large, expensive model using a smaller one with lower memory and
computation costs—in our setting, the full uncompressed model is
never instantiated and the compressed model is learned directly.

Sparsity-Inducing Regularization. {;-regularization is a stan-
dard technique for encouraging parameter sparsity in online learn-
ing [21, 40, 71]. In practice, it is difficult to a priori select an {;-
regularization strength in order to satisfy a given sparsity budget.

1Our implementations of the WM-Sketch, AWM-Sketch and the baselines evaluated
in our experiments are available at https://github.com/stanford-futuredata/wmsketch.
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Here, we propose a different approach: wefi rstfi x a memory bud-
get and then use the allocated space to approximate a classifier,
with the property that our approximation will be better for sparse
parameter vectors with small £;-norm.

Learning Compressed Classifiers. Feature hashing [60, 69] is
a technique where the classifier is trained on features that have
been hashed to afi xed-size table. This approach lowers memory
usage by reducing the dimension of the feature space, but at the
cost of model interpretability. Our sketch is closely related to this
approach—we show that an appropriate choice of random pro-
jection enables the recovery of model weights. Calderbank et al.
[9] describe compressed learning, where a classifier is trained on
compressively-measured data. The authors focus on classification
performance in the compressed domain and do not consider the
problem of recovering weights in the original space.

3 BACKGROUND

In Section 3.1, we review the relevant material on random pro-
jections for dimensionality reduction. In Section 3.2, we describe
online learning, which models learning on streaming data.

Conventions and Notation. The notation w; denotes the ith
element of the vector w. The notation [n] denotes the set {1,...,n}.
We write p-norms as ||w||p, where the p-norm of w € RY is defined

1
as [|wllp = (Z?zl [w; |P) /p’ The infinity-norm ||w]|e is defined
as ||W|leo = max; |wjl.

3.1 Dimensionality Reduction via
Random Projection

Count-Sketch. The Count-Sketch [10] is a linear projection of a
vector x € R? that supports efficient approximate recovery of the
entries of x. The sketch of x can be built incrementally as entries
are observed in a stream—for example, x can be a vector of counts
that is updated as new items are observed.

For a given size k and depth s, the Count-Sketch algorithm main-
tains a collection of s hash tables, each with width k/s (Figure 2).
Each index i € [d] is assigned a random bucket k;(i) in table j
along with a random sign ¢;j(i). Increments to the ith entry are
multiplied by oj(i) and then added to the corresponding buckets
hj(i). The estimator for the ith coordinate is the median of the
values in the assigned buckets multiplied by the corresponding sign
flips. Charikar et al. [10] showed the following recovery guarantee
for this procedure:

LEMMAL. [10] Let x¢s be the Count-Sketch estimate of the vector
x. For any vector x, with probability 1 — &, a Count-Sketch matrix
with width ©(1/€2) and depth ©(log(d/5)) satisfies

lIx = Xeslloo < €llxll2-

In other words, point estimates of each entry of the vector x can
be computed from its compressed form x¢s. This enables accurate
recovery of high-magnitude entries that comprise a large fraction
of the norm ||x]|2.

Johnson-Lindenstrauss (JL) property. A random projection ma-
trix is said to have the Johnson-Lindenstrauss (JL) property [33] if
it preserves the norm of a vector with high probability:
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Figure 2: An illustration of the Count-Sketch of size k with
depth s and width k/s. Each feature hashes to s locations,
multiplied by a random =*1 sign.

Definition 1. A random matrix R € RK*d has the JL property
with error € and failure probability § if for any given x € RY, we
have with probability 1 — §:

[Rx = ixlla| < ellxlz

The JL property holds for dense matrices with independent
Gaussian or Bernoulli entries [1], and recent work has shown that
it applies to certain sparse matrices as well [35]. Intuitively, JL ma-
trices preserve the geometry of a set of points, and we leverage this
key fact to ensure that we can still recover the original solution
after projecting to low dimension.

3.2 Online Learning

The online learning framework deals with learning on a stream
of examples, where the model is updated over a series of rounds
t = 1,2,...,T. In each round, we update the model weights w;
via the following process: (1) receive an input example (x;,y;), (2)
incur loss Ly (w;) = €(wW;,X;,y;), where ¢ is a given loss function,
and (3) update weights w; to w; 1. There are numerous algorithms
for updating the model weights (e.g., [21, 30, 71]). In our algorithm,
we use online gradient descent (OGD) [29; Chp. 3], which uses the
following update rule:

Wil = Wi — 1 VL (Wy),

where 1; > 0 is the learning rate at step t. OGD enjoys the advan-
tages of simplicity and minimal space requirements: we only need
to maintain a representation of the weight vector w; and a global
scalar learning rate.

4 PROBLEM STATEMENT

We focus on online learning for binary classification with linear
models. We observe a stream of examples (x;,y;), where each
x; € R is a feature vector and each y; € { %,+1} is a binary
label. A linear classifier parameterized by weights w € R9 makes
predictions § by returning +1 for all inputs with non-negative
inner product with w, and —1 otherwise: § = sign (WTX). The
goal of learning is to select weights w that minimize the total loss
>t Lt (w) on the observed data. In the following, we refer to w
interchangeably as the weights and as the classifier.

Suppose we have observed T examples in the stream, and con-
sider the classifier w, that minimizes the loss over those T examples.
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It may not be possible to precisely represent each entry? of the vec-
tor w, within a memory budget that is much less than the cost
of representing a general vector in R?. In particular, w, may be
a dense vector. Thus, it may not be possible to represent w, in a
memory-constrained setting, and in practical applications this is
particularly problematic when the dimension d is large.

For afi xed memory budget B, our goal is to obtain a summary
z that uses space at most B from which we are able to estimate
the value of each entry of the optimal classifier w.. We formalize
this problem as the Weight Estimation Problem, which we make
precise in the following section. In addition to supporting weight
estimation, a secondary goal is to be able to use the summary z to
perform classification on data points x via some inference function
f,ie. g = f(z,x). We would like to classify data points using the
summary without too much additional error compared to w.

4.1 The Weight Estimation Problem

In this section, we formalize the problem of estimating the weights
of the optimal classifier w from a compact summary. To facilitate
the presentation of this problem and to build intuition, we highlight
the connection between our goal of weight estimation and previous
work on the approximate recovery of frequency estimates from
compressed count vectors. To this end, we formalize a general
problem setup that subsumes both the approximate recovery of
frequencies and the approximate recovery of weights in linear
classifiers as special cases.

The e-approximate frequency estimation problem can be defined
as follows:

Definition 2. [14] (e-Approximate Frequency Estimation) Given
a sequence of T items, each drawn from the set [d], let v; denote
the count of the number of times item i is seen over the stream.
The e-approximate frequency estimation problem is to return, for
any i € [d], a value 9; such that |[0; — v;| < €T.

The frequency estimation problem commonly appears in the
context offi nding heavy hitters—i.e., items whose frequencies ex-
ceed a given threshold ¢T. Given an algorithm that solves the
e-approximate frequency estimation problem, we can thenfi nd all
heavy hitters (possibly with false positives) by returning all items
with estimated frequency above (¢ — €)T.

We now define an analogous setup for online convex optimiza-
tion problems that formalizes our goal of weight recovery from
summarized classifiers:

Definition 3. ((€,p)-Approximate Weight Estimation for Convex
Functions) Given a sequence of T convex functions L; : X —» R
over a convex domain X C R?, let w, = arg min, Zzzl Ly (w).
The (e, p)-approximate weight estimation problem is to return, for
any i € [d], a value w; such that [w; — (ws);| < el|w]lp.

Note that frequency estimation (Definition 2) can be viewed as a
special case of this problem. Set L;(w) = —w’x;, where (x;); = 1
if item i is observed at time ¢ and 0 otherwise (assume that only
one item is observed at each t), define x;.7 = Zthl x¢, and let
X = {w: |lw|lz2 < Ix1.7ll2}. Then w. = x1.7, and we note that

2For example, storing each nonzero entry as a single-precisionfl oating point number.
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[lwill1 = T. Thus, the frequency estimation problem is an instance
of the (e, 1)-approximate weight estimation problem.

Weight Estimation for Linear Classifiers. We now specialize
to the case of online learning for linear classifiers. Define the losses
L; as:

(1)
where ¢ is a convex, differentiable function, (x;,y;) is the exam-
ple observed at time ¢, and A > 0 controls the strength of {5-
regularization. The choice of £ defines the linear classification model
to be used. For example, the logistic loss £(7) = log(1 + exp(—7))
defines logistic regression, and smoothed versions of the hinge loss
{(r) = max{0,1 — 7} define close relatives of linear support vector
machines.

To summarize, for each time step, we wish to maintain a compact
summary z; that allows us to estimate each weight in the optimal
classifier w. over all the examples seen so far in the stream. In the
following sections, we describe a method for maintaining such a
summary and provide theoretical guarantees on the accuracy of
the recovered weights.

A
Le(w) = € (yew"xe) + w3,

5 FINDING HEAVILY-WEIGHTED FEATURES

In this section, we describe our proposed method, the Weight-
Median Sketch (WM-Sketch), along with a simple variant, the
Active-Set Weight-Median Sketch (AWM-Sketch), that empirically
improves on the basic WM-Sketch in both classification and recov-
ery accuracy.

5.1 Weight-Median Sketch

The main data structure in the WM-Sketch is identical to that used
in the Count-Sketch. The sketch is parameterized by size k, depth
s, and width k/s. We initialize the sketch with a size-k array set
to zero. For a given depth s, we view this array as being arranged
in s rows, each of width k/s (assume that k is a multiple of s). We
denote this array as z, and equivalently view it as a vector in Rk

The high-level idea is that each row of the sketch is a compressed
version of the model weight vector w € Rd, where each index
i € [d] is mapped to some assigned bucket j € [k/s]. Since k/s < d,
there will be many collisions between these weights; therefore, we
maintain s rows—each with different assignments of features to
buckets—in order to disambiguate weights.

Hashing Features to Buckets. In order to avoid explicitly storing
the mapping from features to buckets, which would require space
linear in d, we implement the mapping using hash functions as in
the Count-Sketch. For each row j € [s], we maintain a pair of hash
functions, h; : [d] — [k/s] and o} : [d] — { -1,+1}. Let the matrix
A € { 4,+1}%%d denote the Count-Sketch projection implicitly
represented by the hash functions h; and o}, and let R be a scaled
version of this projection, R = LSA. We use the projection R to
compress feature vectors and update the sketch.

Updates. We update the sketch by performing gradient descent
updates directly on the compressed classifier z. We compute gradi-

ents on a “compressed” version L, of the regularized loss L; defined
in Eq. 1:

R A
Lt(Z) = (ytZTRXt) + EHZ”%
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Algorithm 1: Weight-Median (WM) Sketch

Algorithm 2: Active-Set Weight-Median (AWM) Sketch

input: size k, depth s, loss function ¢, £2-regularization
parameter A, learning rate schedule 1,
initialization

z « s X k/s array of zeroes
Sample R, a Count-Sketch matrix scaled by %Fs
t<0
function Update(x, y)
T« 2z Rx > Prediction for x
2 — (1= Ant)z = neyVe (yr) Rx
te—t+1

function Query (i)
| return output of Count-Sketch retrieval on +/sz

This yields the following update to z:

Ay = =i Vie(z) = -y (ytVK(ytzTth)Rx, + Az) .

To build intuition, it is helpful to compare this update to the
Count-Sketch update rule [10]. In the frequent items setting, the
input x; is a one-hot encoding for the item seen in that time step.
The update to the Count-Sketch state zs is the following:

AS = Axy,

where A is defined identically as above. Ignoring the regularization
term, our update rule is simply the Count-Sketch update scaled
by the constant —n,y;s~1/2V£(y,; 2" Rx;). However, an important
detail to note is that the Count-Sketch update is independent of the
sketch state zs, whereas the WM-Sketch update does depend on
z. This cyclical dependency between the state and state updates is
the main challenge in our analysis of the WM-Sketch.

Queries. To obtain an estimate w; of the ith weight, we return the
median of the values { \/Eaj(i)zj’hj(,-) : j € [s]}. Save for the /s
factor, this is identical to the query procedure for the Count-Sketch.

We summarize the update and query procedures for the WM-
Sketch in Algorithm 1. In the next section, we show how the sketch
size k and depth s parameters can be chosen to satisfy an € approx-
imation guarantee with failure probability § over the randomness
in the sketch matrix.

Efficient Regularization. A naive implementation of ¢, regular-
ization on z that scales each entry in z by (1 —5;4) in each iteration
incurs an update cost of O(k + s - nnz(x)). This masks the com-
putational gains that can be realized when x is sparse. Here, we
use a standard trick [58]: we maintain a global scale parameter
a that scales the sketch values z. Initially, « = 1 and we update
a « (1 - nsA)a to implement weight decay over the entire fea-
ture vector. Our weight estimates are therefore additionally scaled
by a: w; = median { \/Eaaj(i)zj,hj(i) i je [s]}. This optimization
reduces the update cost from O(k + s - nnz(x)) to O(s - nnz(x)).

5.2 Active-Set Weight-Median Sketch

We now describe a simple, heuristic extension to the WM-Sketch
that significantly improves the recovery accuracy of the sketch in
practice. We refer to this variant as the Active-Set Weight-Median
Sketch (AWM-Sketch).
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initialization
S« {}
z « s X k/s array of zeroes

> Empty heap

Sample R, a Count-Sketch matrix scaled by \/LE
t<0

function Update(x, y)

Xs «— {x; : i € S}

Xym < {x;j 11 ¢ S}

7 Yies Slil - xi + 2’ Rxwm

> Features in heap
> Features in sketch
> Prediction for x

S — (1—Ans)S — nryVe(yr)xs > Heap update
z — (1—-Anp)z > Apply regularization
fori ¢ Sdo

> Either update i in sketch or move to heap
w « Query (i) — nsyx;VE(yr)
imin —arg minj(|s[j]|)
if W] > |S[imin]| then
Remove ipi, from S
Add i to S with weight w
Update ipi, in sketch with S[inin] — Query(imin)
else
| Update i in sketch with n,yx; VE(yr)
te—t+1

To efficiently track the top elements across sketch updates, we
can use a min-heap ordered by the absolute value of the esti-
mated weights. This technique is also used alongside heavy-hitters
sketches to identify the most frequent items in the stream [10]. In
the basic WM-Sketch, the heap merely functions as a mechanism
to passively maintain the heaviest weights. This baseline scheme
can be improved by noting that weights that are already stored in
the heap need not be tracked in the sketch; instead, the sketch can
be updated lazily only when the weight is evicted from the heap.
This heuristic has previously been used in the context of improving
count estimates derived from a Count-Min Sketch [56]. The intu-
ition here is the following: since we are already maintaining a heap
of heavy items, we can utilize this structure to reduce error in the
sketch as a result of collisions with heavy items.

The heap can be thought of as an “active set” of high-magnitude
weights, while the sketch estimates the contribution of the tail of the
weight vector. Since the weights in the heap are represented exactly,
this active set heuristic should intuitively yield better estimates of
the heavily-weighted features in the model.

As a general note, similar coarse-to-fine approximation schemes
have been proposed in other online learning settings. A similar
scheme for memory-constrained sparse linear regression was ana-
lyzed by Steinhardt and Duchi [64]. Their algorithm similarly uses
a Count-Sketch for approximating weights, but in a different setting
(K-sparse linear regression) and with a different update policy for
the active set.

6 THEORETICAL ANALYSIS

We derive bounds on the recovery error achieved by the WM-Sketch
for given settings of the size k and depth s. The main challenge in
our analysis is that the updates to the sketch depend on gradient
estimates which in turn depend on the state of the sketch. This
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reflexive dependence makes it difficult to straightforwardly trans-
plant the standard analysis for the Count-Sketch to our setting.
Instead, we turn to ideas drawn from norm-preserving random
projections and online convex optimization.

In this section, we begin with an analysis of recovery error in
the batch setting, where we are given access to afi xed dataset of
size T consisting of thefirst T examples observed in the stream
and are allowed multiple passes over the data. Subsequently, we
use this result to show guarantees in a restricted online case where
we are only allowed a single pass through the data, but with the
assumption that the order of the data is not chosen adversarially.

6.1 Batch Setting

First, we briefly outline the main ideas in our analysis. With high
probability, we can sample a random projection to dimension k <«
d that satisfies the JL norm preservation property (Definition 1).
We use this property to show that for anyfi xed dataset of size T,
optimizing a projected version of the objective yields a solution
that is close to the projection of the minimizer of the original, high-
dimensional objective. Since our specific construction of the JL
projection is also a Count-Sketch projection, we can make use of
existing error bounds for Count-Sketch estimates to bound the error
of our recovered weight estimates.

Let R € R¥*? denote the scaled Count-Sketch matrix defined in
Sec. 5.1. This is the hashing-based sparse JL projection proposed by
Kane and Nelson [35]. We consider the following pair of objectives
defined over the T observed examples—thefi rst defines the problem
in the original space and the second defines the corresponding
problem where the learner observes sketched examples (Rx;,y;):

T

Ewaw%J+ﬁm@

L(w) = T
1

t=

1w A
7 T 2
L) = - ;:15 (yez"Rx; ) + Izl

Suppose we optimized these objectives over w € R? and z € R¥
respectively to obtain solutions w, = argmin,, L(w) and z, =
arg min, L(z). How then does w. relate to z. given our choice of
sketching matrix R and regularization parameter A? Intuitively,
if we stored all the data observed up to time T and optimized z
over this dataset, we should hope that the optimal solution z, is
close to Rw,, the sketch of w,, in order to have any chance of
recovering the largest weights of w... We show that in this batch
setting, ||z« — Rw.||, is indeed small; we then use this property to
show element-wise error guarantees for the Count-Sketch recovery
process. We now state our result for the batch setting:

THEOREM1. Let the loss function € be ff-strongly smooth® (w.r.t.
Il - ll2) and max; ||x;|l1 = y. Forfi xed constants C1,Cy > 0, let:

k = (C1/e*) log*(d/8) max {1, 6%y* A},
s= (Cz/ez) logz(d/(S) max {l,/)’yz/l}.

3A function f : X — R is f-strongly smooth w.r.t. a norm || - || if f is everywhere
differentiable and if for all x, y we have:

FO) <56+ =07V 60 + By 1.
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Let w. be the minimizer of the original objective function L(w) and
West be the estimate of w.. returned by performing Count-Sketch
recovery on the minimizer z.. of the projected objective function L(z).
Then with probability 1 — & over the choice of R,

Wy = Westlloo < €llwallr.

We note that for standard loss functions such as the logistic loss
and the smoothed hinge loss, we have smoothness parameter f = 1.
Moreover, we can assume that input vectors are normalized so that
[Ixz1l1 = 1, and that typically A < 1. Given these parameter choices,
we can obtain simpler expressions for the sketch size k and sketch
depth s:

k=0 (74 2log*(d/9)),
s =0 (e log?(d/5)).

We defer the full proof of the theorem to Appendix A.1. We now
highlight some salient properties of this recovery result:

Sub-linear Dimensionality Dependence. Theorem 1 implies
that we can achieve error bounded by €||w||; with a sketch of size
only polylogarithmic in the feature dimension d—this implies that
memory-efficient learning and recovery is possible in the large-d
regime that we are interested in. Importantly, the sketch size k is
independent of the number of observed examples T—this is crucial
since our applications involve learning over data streams of possibly
unbounded length.

Update Time. Recall that the WM-Sketch can be updated in time
O(s - nnz(x)) for a given input vector x. Thus, the sketch supports
an update time of O(e 2171 log?(d/&) - nnz(x)) in each iteration.

{2-Regularization. k and s scale inversely with the strength of
o regularization: this is intuitive because additional regularization
will shrink both w, and z. towards zero. We observe this inverse re-
lationship between recovery error and £ regularization in practice
(see Figure 3).

Input Sparsity. The recovery error depends on the maximum {1 -
norm y of the data points x;, and the bound is most optimistic when
y is small. Across all of the applications we consider in Sections 7
and 8, the data points are sparse with small £1-norm, and hence the
bound is meaningful across a number of real-world settings.

Weight Sparsity. The per-parameter recovery error in Theorem 1
is bounded above by a multiple of the £;-norm of the optimal
weights w, for the uncompressed problem. This supports the in-
tuition that sparse solutions with small £1-norm should be more
easily recovered. In practice, we can augment the objective with
an additional ||w]|; (resp. ||z||1) term to induce sparsity; this corre-
sponds to elastic net-style composite £1/{; regularization on the
parameters of the model [79].

Comparison with Frequency Estimation. We can compare our
guarantees for weight estimation in linear classifiers with existing
guarantees for frequency estimation. The Count-Sketch requires
O(e 2 log(d/5)) space and ©(log(d/5)) update time to obtain fre-
quency estimates v¢g with error ||V — veslloo < €]|V]2, where v
is the true frequency vector (Lemma 1). The Count-Min Sketch
uses © (6_1 10g(d/6)) space and ©(log(d/d)) update time to ob-

tain frequency estimates vey with error ||V — vem|loo < €]lV]l1 [15].
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Thus, our analysis yields guarantees of a similar form to bounds
for frequency estimation in this more general framework, but with
somewhat worse polynomial dependence on 1/e and log(d/d), and
additional 1/€ dependence in the update time.

6.2 Online Setting

We now provide guarantees for WM-Sketch in the online setting.
We make two small modifications to WM-Sketch for the conve-
nience of analysis. First, we assume that the iterate z; is projected
onto a {3 ball of radius D at every step. Second, we also assume
that we perform thefi nal Count-Sketch recovery on the average
Z= % ZiT=1 z; of the weight vectors, instead of on the current iter-
ate z;. While using this averaged sketch is useful for the analysis,
maintaining a duplicate data structure in practice for the purpose
of accumulating the average would double the space cost of our
method. Therefore, in our implementation of the WM-Sketch, we
simply maintain the current iterate z;. As we show in the next
section this approach achieves good performance on real-world
datasets, in particular when combined with the active set heuristic.

Our guarantee holds in expectation over uniformly random per-
mutations of {(x1,y1),...,(xT,yr)}. In other words, we achieve
low recovery error on average over all orderings in which the T
data points could have been presented. We believe this condition
is necessary to avoid worst-case adversarial orderings of the data
points—since the WM-Sketch update at any time step depends on
the state of the sketch itself, adversarial orderings can potentially
lead to high error accumulation.

THEOREM2. Let the loss function € be [-strongly smooth (w.r.t.
Il - ll2), and have its derivative bounded by H. Assume ||x;|l, <
1,max; [|x¢ll1 = y, lIW«ll, < D2 and |[ws|l; < Dj. Let G be a
bound on the {5 norm of the gradient at any time step t, in our case
G < H(1 + €y) + AD. Forfi xed constants C1,C2,C3 > 0, let:

k = (C1/e*) log®(d/8) max {1, f2y*/A%},
s = (Ca/€?) log?(d/8) max {1, By?/A}.,
T > (C3/e*) log?(d/6) max{1, By /),

where { = (1/A2)(Dz/ ||lw«ll1)%(G + (1 + ey)H)?. Let w. be the
minimizer of the original objective function L(w) and wwm be the
estimate w. returned by the WM-Sketch algorithm with averaging
and projection on the {3 ball with radius D = (D2 + €D1). Then with
probability 1 — & over the choice of R,

Efllws — Wwmlleo] < €llwilly,

where the expectation is taken with respect to uniformly sampling a
permutation in which the samples are received.

Theorem 2 shows that in this restricted online setting, we achieve
a bound with the same scaling of the sketch parameters k and s
as the batch setting (Theorem 1). Again, we defer the full proof to
Appendix A.2.

Intuitively, it seems reasonable to expect that we would need an
“average case” ordering of the stream in order to obtain a similar
recovery guarantee to the batch setting. An adversarial, worst-case
ordering of the examples could be one where all the negatively-
labeled examples arefi rst presented, followed by all the positively-
labeled examples. In such a setting, it appears implausible that a
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Dataset # Examples # Features Space (MB)
Reuters RCV1 6.77 X 10>  4.72 x 104 0.4
Malicious URLs 2.40 x 10®  3.23 x 10° 25.8
KDD Cup Algebra 8.41 X 106  2.02 x 107 161.8
Senate/House Spend. ~ 4.08 x 107 5.14 x 10° 4.2
Packet Trace 1.86 x 107 1.26 x 10° 1.0
Newswire 2.06 X 10°  4.69 x 107 375.2

Table 1: Summary of benchmark datasets with the space cost
of representing full weight vectors and feature identifiers
using 32-bit values. Thefi rst set of three consists of standard
binary classification datasets used in Sec. 7; the second set
consists of datasets specific to the applications in Sec. 8.

single-pass online algorithm should be able to accurately estimate
the weights obtained by a batch algorithm that is allowed multiple
passes over the data.

7 EMPIRICAL EVALUATION

In this section, we evaluate the Weight-Median Sketch on three
standard binary classification datasets. Our goal here is to com-
pare the WM-Sketch and AWM-Sketch against alternative limited-
memory methods in terms of (1) recovery error in the estimated
top-K weights, (2) classification error rate, and (3) runtime perfor-
mance. In the next section, we explore specific applications of the
WM-Sketch in stream processing tasks.

7.1 Datasets and Experimental Setup

We evaluated our proposed sketches on several standard benchmark
datasets as well as in the context of specific streaming applications.
Table 1 lists summary statistics for these datasets.

Classification Datasets. We evaluate the recovery error on {-
regularized online logistic regression trained on three standard
binary classification datasets: Reuters RCV1 [43], malicious URL
identification [46], and the Algebra dataset from the KDD Cup 2010
large-scale data mining competition [63, 73]. We use the standard
training split for each dataset except for the RCV1 dataset, where we
use the larger “test” split as is common in experimental evaluations
using this dataset [25].

For each dataset, we make a single pass through the set of ex-
amples. Across all our experiments, we use an initial learning rate
no =0.1and A € {10_3,10_4,10_5,10_6}. We used the following
set of space constraints: 2KB, 4KB, 8KB, 16KB and 32KB. For each
setting of the space budget and for each method, we evaluate a
range of configurations compatible with that space constraint; for
example, for evaluating the WM-Sketch, this corresponds to vary-
ing the space allocated to the heap and the sketch, as well as trading
off between the sketch depth s and the width k/s. For each setting,
we run 10 independent trials with distinct random seeds; our plots
show medians and the range between the worst and best run.

Memory Cost Model. In our experiments, we control for memory
usage and configure each method to satisfy the given space con-
straints using the following cost model: we charge 4B of memory
utilization for each feature identifier, feature weight, and auxiliary
weight (e.g., random keys in Algorithm 4 or counts in the Space
Saving baseline) used. For example, a simple truncation instance



Research 8: Spatial Data & Streams

WM-Sketch AWM-Sketch
Budget (KB) |S| width depth |S|  width depth
2 128 128 2 128 256 1
4 256 256 2 256 512 1
8 128 128 14 512 1024 1
16 128 128 30 1024 2048 1
32 128 256 31 2048 4096 1

Table 2: Sketch configurations with minimal £, recovery er-
ror on RCV1 dataset (|S| denotes heap capacity).

(Algorithm 3 in the Appendix) with 128 entries uses 128 identifiers
and 128 weights, corresponding to a memory cost of 1024B.

7.2 Baseline Methods

Here, we describe the baseline algorithms that we use in our evalu-
ation.

Simple Truncation. Given a budget of K weights, a natural base-
line method is to simply truncate w after each update to the K
entries with highest absolute value, setting all other entries to zero.
The simple truncation baseline is similar to the truncated Percep-
tron algorithm proposed by Hoi et al. [32]. We give a pseudocode
description in Appendix B.

Probabilistic Truncation. A problem with the simple truncation
method is that it may end up “stuck” with a bad set of weights: a
“good” index that would have been included in the top-K set by the
unconstrained classifier may fail to be included in the feature set
under Algorithm 3 if its gradient updates are insufficiently large
relative to the smallest weight in the set; this results in the weight
being repeatedly zeroed-out in each iteration. To remedy this prob-
lem, we can instead adopt a randomized approach where indices
are accepted into the K-sparse set with probability proportional to
the magnitude of their weights. Therefore, even if some feature has
small but nonzero weight after an update, there is still a positive
probability that it is accepted into the feature set. This “probabilistic
truncation” algorithm is inspired by weighted reservoir sampling
[23]. We give the pseudocode in Appendix B.

Count-Min Frequent Features. The Count-Min sketch [15] is a
commonly-used method forfi nding frequent items in data streams.
This baseline uses a Count-Min sketch to identify the K most
frequently-occurring features; the weights for these frequent fea-
tures are maintained, while the remaining weights are set to 0.

Space Saving Frequent Features. This method is identical to the
previous approach except for the use of the Space Saving algorithm
[52] in place of the Count-Min sketch for frequent item estima-
tion. The Space Saving algorithm has previously been found to
outperform Count-Min in insertion-only settings such as ours [14].

Feature Hashing. In feature hashing, input vectors are mapped to
lower dimension by adding each input feature, multiplied by a ran-
dom sign, to a randomly-assigned index in the compressed vector
[60, 69]. This basic scheme is essentially equivalent to computing a
Count-Sketch of depth 1 on the input. As with the WM-Sketch, the
model weights are learned in this compressed space; however, due
to hash collisions, it is in general not possible to recover accurate
estimates of model weights from the compressed weight vector
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Figure 3: Relative {, error of top-K AWM-Sketch estimates
with varying regularization parameter A on RCV1 and URL
datasets under 8KB memory budget.

in feature hashing. While multiple hashing is suggested by Wein-
berger et al. [69], the proposed method does not support efficient
weight recovery.

7.3 Recovery Error Comparison

We measure the accuracy to which our methods are able to recover
the top-K weights in the model using the following relative £, error
metric:

K K K
RelErr(w™,ws) = [|[w — wall2 / |Wy — well2,

where wK is the K-sparse vector representing the top-K weights
returned by a given method, w is the weight vector obtained by the
uncompressed model, and wX is the K-sparse vector representing
the true top-K weights in w.. The relative error metric is there-
fore bounded below by 1 and quantifies the relative suboptimality
of the estimated top-K weights. The best configurations for the
WM- and AWM-Sketch on RCV1 are listed in Table 2; the optimal
configurations for the remaining datasets are similar.

We compare our methods across datasets (Fig. 4) and across
memory constraints on a single dataset (Fig. 5). For clarity, we
omit the Count-Min Frequent Features baseline since we found
that the Space Saving baseline achieved consistently better per-
formance. We found that the AWM-Sketch consistently achieved
lower recovery error than alternative methods on our benchmark
datasets. The Space Saving baseline is competitive on RCV1 but
underperforms the simple Probabilistic Truncation baseline on URL:
this demonstrates that tracking frequent features can be effective if
frequently-occurring features are also highly discriminative, but
this property does not hold across all datasets. Standard feature
hashing achieves poor recovery error since colliding features can-
not be disambiguated.

In Fig. 3, we compare recovery error on RCV1 across different
settings of A. Higher {2-regularization results in less recovery error
since both the true weights and the sketched weights are closer
to 0; however, A settings that are too high can result in increased
classification error.

7.4 Classification Error Rate

We evaluated the classification performance of our models by mea-
suring their online error rate [5]: for each observed pair (x;,y;), we
record whether the prediction j; (made without observing y;) is
correct before updating the model. The error rate is defined as the
cumulative number of mistakes made divided by the number of iter-
ations. Our results here are summarized in Fig. 6. For each dataset,
we used the value of A that achieved the lowest error rate across
all our memory-limited methods. For each method and budget, we
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Figure 4: Relative ¢, error of estimated top-K weights vs. true top-K weights for (2-regularized logistic regression under 8KB
memory budget. Shaded area indicates range of errors observed over 10 trials. The AWM-Sketch achieves lower recovery error
across all three datasets.
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Figure 5: Relative > error of estimated top-K weights on RCV1 dataset under different memory budgets (A = 107°). Shaded
area indicates range of errors observed over 10 trials. The recovery quality of the AWM-Sketch quickly improves with more
allocated space.
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Truncation, PTrun = Probabilistic Truncation, SS = Space Saving Frequent, Hash = Feature Hashing, LR = Logistic Regression
without memory constraints). The AWM-Sketch consistently achieves better classification accuracy than methods that track

frequent features.

chose the configuration that achieved the lowest error rate. For the
WM-Sketch, this corresponded to a width of 27 or 28 with depth scal-
ing proportionally with the memory budget; for the AWM-Sketch,
the configuration that uniformly performed best allocated half the
space to the active set and the remainder to a depth-1 sketch.

We found that across all tested memory constraints, the AWM-
Sketch consistently achieved lower error rate than heavy-hitter-
based methods. Surprisingly, the AWM-Sketch outperformed fea-
ture hashing by a small but consistent margin: 0.5-3.7% on RCV1,
0.1-0.4% on URL, and 0.2-0.5% on KDDA, with larger gains seen at
smaller memory budgets. This suggests that the AWM-Sketch ben-
efits from the precise representation of the largest, most-influential
weights in the model, and that these gains are sufficient to off-
set the increased collision rate due to the smaller hash table. The
Space Saving baseline exhibited inconsistent performance across
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the three datasets, demonstrating that tracking the most frequent
features is an unreliable heuristic: features that occur frequently
are not necessarily the most predictive. We note that higher values
of the regularization parameter A correspond to greater penaliza-
tion of rarely-occurring features; therefore, we would expect the
Space Saving baseline to better approximate the performance of
the unconstrained classifier as A increases.

7.5 Runtime Performance

We evaluated runtime performance relative to a memory uncon-
strained logistic regression model using the same configurations
as those chosen to minimize {3 recovery error (Table 2). In all our
timing experiments, we ran our implementations of the baseline
methods, the WM-Sketch, and the AWM-Sketch on Intel Xeon
E5-2690 v4 processor with 35MB cache using a single core. The
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Figure 7: Normalized runtime of each method vs. memory-
unconstrained logistic regression on RCV1 using configura-
tions that minimize recovery error (see Table 2). The right
panel is a zoomed-in view of the left panel.

memory-unconstrained logistic regression weights were stored us-
ing a 32-bitfl oating point array of size equal to the dimensionality
of the feature space, with the highest-weighted features tracked
using a heap of size K = 128; reads and writes to the weight vector
therefore required single array accesses. The remaining methods
tracked heavy weights alongside 32-bit feature identifiers using a
heap sized according to the corresponding configuration.

In our experiments, the fastest method was feature hashing, with
about a 2x overhead over the baseline. This overhead was due to the
additional hashing step needed for each read and write to a feature
index. The AWM-Sketch incurred an additional 2x overhead over
feature hashing due to more frequent heap maintenance operations.

8 APPLICATIONS

We now show that a variety of tasks in stream processing can be
framed as memory-constrained classification. The unifying theme
between these applications is that classification is a useful abstrac-
tion whenever the use case calls for discriminating between streams
or between subpopulations of a stream. These distinct classes can
be identified by partitioning a single stream into quantiles (Sec. 8.1),
comparing separate streams (Sec. 8.2), or even by generating syn-
thetic examples to be distinguished from real samples (Sec. 8.3).

8.1 Streaming Explanation

In data analysis workflows, it is often necessary to identify charac-
teristic attributes that are particularly indicative of a given subset
of data [51]. For example, in order to diagnose the cause of anoma-
lous readings in a sensor network, it is helpful to identify common
features of the outlier points such as geographical location or time
of day. This use case has motivated the development of methods for
finding common properties of outliers found in aggregation queries
[70] and in data streams [3].

This task can be framed as a classification problem: assign pos-
itive labels to the outliers and negative labels to the inliers, then
train a classifier to discriminate between the two classes. The iden-
tification of characteristic attributes is then reduced to the problem
of identifying heavily-weighted features in the trained model. In
order to identify indicative conjunctions of attributes, we can sim-
ply augment the feature space to include arbitrary combinations of
singleton features.

The relative risk or risk ratiory = p(y =1|x=1)/p(y=1|x =
0) is a statistical measure of the relative occurrence of the positive
label y = 1 when the feature x is active versus when it is inactive.
In the context of stream processing, the relative risk has been used
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Figure 8: Distribution of relative risks among top-2048 fea-
tures retrieved by each method. Top Row: Heavy-Hitters.
Bottom Row: Classifier-based methods.
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Figure 9: Correlation between top-2048 feature weights and
relative risk. Left: Memory-unconstrained logistic regres-
sion (Pearson correlation 0.95). Right: AWM-Sketch (Pear-
son correlation 0.91).

to quantify the degree to which a particular attribute or attribute
combination is indicative of a data point being an outlier relative
to the overall population [3]. Here, we are interested in compar-
ing our classifier-based approach to identifying high-risk features
against the approach used in MacroBase [3], an existing system for
explaining outliers over streams, that identifies candidate attributes
using a variant of the Space Saving heavy-hitters algorithm.

Experimental Setup. We used a publicly-available dataset of
itemized disbursements by candidates in U.S. House and Senate
races from 2010-2016.# The outlier points were set to be the set
of disbursements in the top-20% by dollar amount. For each row
of the data, we generated a sequence of 1-sparse feature vectors®
corresponding to the observed attributes. We set a space budget of
32KB for the AWM-Sketch.

Results. Our results are summarized in Figs. 8 and 9. The former
empirically demonstrates that the heuristic offi Itering features on
the basis of frequency can be suboptimal for afi xed memory budget.
This is due to features that are frequent in both the inlier and outlier
classes: it is wasteful to maintain counts for these items since they
have low relative risk. In Fig. 8, the top row shows the distribu-
tion of relative risks among the most frequent items within the

positive class (left) and across both classes (right). In contrast, our
4FEC candidate disbursements data:
CandidateDisbursement.do

>We can also generate a single feature vector per row (with sparsity greater than 1),
but the learned weights would then correlate more weakly with the relative risk. This
is due to the effect of correlations between features.

http://classic.fec.gov/data/
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Figure 10: Recall of IP addresses with relative occurrence ra-
tio above the given threshold with 32KB of space. LR denotes
recall by full memory-unconstrained logistic regressor. CMx8
denotes Count-Min baseline with 8X memory usage.

classifier-based approaches use the allocated space more efficiently
by identifying features at the extremes of the relative risk scale.

In Fig. 9, we show that the learned classifier weights are strongly
correlated with the relative risk values estimated from true counts.
Indeed, logistic regression weights can be interpreted in terms of
log odds ratios, a related quantity to relative risk. These results
show that the AWM-Sketch is a superiorfi lter compared to heavy
hitters approaches for identifying high-risk features.

8.2 Network Monitoring

IP network monitoring is one of the primary application domains
for sketches and other small-space summary methods [4, 68, 74].
Here, we focus on the problem offi nding packet-level features
(for instance, source/destination IP addresses and prefixes, port
numbers, network protocols, and header or payload characteristics)
that differ significantly in relative frequency between a pair of
network links.

This problem of identifying significant relative differences—also
known as relative deltoids—was studied by Cormode and Muthukr-
ishnan [16]. Concretely, the problem is to estimate—for each item
i—ratios ¢(i) = n1(i)/n2(i) (where ni,nz denote occurrence counts
in each stream) and to identify those items i for which this ratio,
or its reciprocal, is large. Here, we are interested in identifying dif-
ferences between traffic streams that are observed concurrently; in
contrast, the empirical evaluation in [16] focused on comparisons
between different time periods.

Experimental Setup. We used a subset of an anonymized, publicly-
available passive traffic trace dataset recorded at a peering link for a

large ISP [66]. The positive class was the stream of outbound source

IP addresses and the negative class was the stream of inbound desti-
nation IP addresses. We compared against several baseline methods,

including ratio estimation using a pair of Count-Min sketches (as

in [16]). For each method we retrieved the top-2048 features (i.e.,

IP addresses in this case) and computed the recall against the set of

features above the given ratio threshold, where the reference ratios

were computed using exact counts.

Results. We found that the AWM-Sketch performed comparably
to the memory-unconstrained logistic regression baseline on this
benchmark. We significantly outperformed the paired Count-Min
baseline by a factor of over 4x in recall while using the same mem-
ory budget, as well as a paired CM baseline that was allocated 8x
the memory budget. These results indicate that linear classifiers
can be used effectively to identify relative deltoids over pairs of
data streams.

767

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Pair PMI Est. Pair PMI
prime minister  6.339  7.609 , the 0.044
los angeles 7.197 7.047 the,  -0.082
http / 6.734 7.001 the of 0.611
human rights  6.079 6.721 the . 0.057

Table 3: Left: Top recovered pairs with PMI computed from
true counts and PMI estimated from model weights (2'° bins,
1.4MB total memory). Right: Most common pairs in corpus.
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Figure 11: Median frequencies and exact PMIs of retrieved
pairs with AWM-Sketch estimation. Lower 1 and higher bin
counts favor less frequent pairs.

8.3 Streaming Pointwise Mutual Information

Pointwise mutual information (PMI), a measure of the statistical
correlation between a pair of events, is defined as:

p(x.y)
Px)p(y)”
Intuitively, positive values of the PMI indicate events that are posi-
tively correlated, negative values indicate events that are negatively
correlated, and a PMI of 0 indicates uncorrelated events.

In natural language processing, PMI is a frequently-used mea-
sure of word association [65]. Traditionally, the PMI is estimated
using empirical counts of unigrams and bigrams obtained from a
text corpus. The key problem with this approach is that the number
of bigrams in standard natural language corpora can grow very
large; for example, we found ~47M unique co-occurring pairs of
tokens in a small subset of a standard newswire corpus. This combi-
natorial growth in the feature dimension is further amplified when
considering higher-order generalizations of PML

More generally, streaming PMI estimation can be used to detect
pairs of events whose occurrences are strongly correlated. For ex-
ample, we can consider a streaming log monitoring use case where
correlated events are potentially indicative of cascading failures
or trigger events resulting in exceptional behavior in the system.
Therefore, we expect that the techniques developed here should be
useful beyond standard NLP applications.

PMI(x,y) = log

Sparse Online PMI Estimation. Streaming PMI estimation using
approximate counting has previously been studied [22]; however,
this approach has the drawback that memory usage still scales
linearly with the number of observed bigrams. Here, we explore
streaming PMI estimation from a different perspective: we pose a
binary classification problem over the space of bigrams with the
property that the model weights asymptotically converge to an
estimate of the PMIL®

OThis classification formulation is used in the popular word2vec skip-gram method

for learning word embeddings [53]; the connection to PMI approximation wasfirst
observed by Levy et al. [42].
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The classification problem is set up as follows: in each itera-
tion t, with probability 0.5 sample a bigram (u,v) from the bi-
gram distribution p(u,v) and set y; = +1; with probability 0.5
sample (u,v) from the unigram product distribution p(u)p(v) and
set y; = —1. The input x; is the 1-sparse vector where the index
corresponding to (u,v) is set to 1. We train a logistic regression
model to discriminate between the true and synthetic samples. If
A = 0, the model asymptotically converges to the distribution
ply =11 wo) = f(wuo) = pu,0)/ (p(u,v) + p(u)p(v)) for
all pairs (u,v), where f is the logistic function. It follows that
wyo = log(p(u,v)/p(u)p(v)), which is exactly the PMI of (u,v).
If A > 0, we obtain an estimate that is biased, but with reduced
variance in the estimates for rare bigrams.

Experimental Setup. We train on a subset of a standard newswire
corpus [11]; the subset contains 77.7M tokens, 605K unique uni-
grams and 47M unique bigrams over a sliding window of size 6. In
our implementation, we approximate sampling from the unigram
distribution by sampling from a reservoir sample of tokens [34, 48].
We estimated weights using the AWM-Sketch with heap size 1024
and depth 1; the reservoir size wasfi xed at 4000. We make a sin-
gle pass through the dataset and generate 5 negative samples for
every true sample. Strings werefi rst hashed to 32-bit values using
MurmurHash3;’ these identifiers were hashed again to obtain sketch
bucket indices.

Results. For width settings up to 2!°, our implementation’s total
memory usage was at most 1.4MB. In this regime, memory usage
was dominated by the storage of strings in the heap and the un-
igram reservoir. For comparison, the standard approach to PMI
estimation requires 188MB of space to store exact 32-bit counts for
all bigrams, excluding the space required for storing strings or the
token indices corresponding to each count. In Table 3, we show sam-
ple pairs retrieved by our method; the PMI values estimated from
exact counts are well-estimated by the classifier weights. In Fig. 11,
we show that at small widths, the high collision rate results in the
retrieval of noisy, low-PMI pairs; as the width increases, we retrieve
higher-PMI pairs which typically occur with lower frequency. Fur-
ther, regularization helps discard low-frequency pairs but can result
in the model missing out on high-PMI but less-frequent pairs.

9 DISCUSSION

Active Set vs. Multiple Hashing. In the basic WM-Sketch, multi-
ple hashing is needed in order to disambiguate features that collide
in a heavy bucket; we should expect that features with truly high
weight should correspond to large values in the majority of buckets
that they hash to. The active set approach uses a different mech-
anism for disambiguation. Suppose that all the features that hash
to a heavy bucket are added to the active set; we should expect
that the weights for those features that were erroneously added
will eventually decay (due to £2-regularization) to the point that
they are evicted from the active set. Simultaneously, the truly high-
weight features are retained in the active set. The AWM-Sketch can
therefore be interpreted as a variant of feature hashing where the
highest-weighted features are not hashed.

"https://github.com/aappleby/smhasher/wiki/MurmurHash3
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The Cost of Interpretability. A surprisingfi nding in our evalu-
ation on standard binary classification datasets was that the AWM-
Sketch consistently improved on the classification accuracy of fea-
ture hashing. We hypothesize that the observed gains are due to
reduced collisions with heavily-weighted features. Notably, we are
able to improve model interpretability by identifying important
features without sacrificing any classification accuracy.

Per-Feature Learning Rates. In previous work on online learn-
ing applications, practitioners have found that the per-feature learn-
ing rates can significantly improve classification performance [50].
An open question is whether variable learning rate across features
is worth the associated memory cost in the streaming setting.

Multiclass Classification. The WM-Sketch be extended to the
multiclass setting using the following simple extension. Given M
output classes, maintain M copies of the WM-Sketch. In order to
predict the output, we evaluate the output on each copy and return
the maximum. For large M, for instance in language modeling
applications, this procedure can be computationally expensive since
update time scales linearly with M. In this regime, we can apply
noise contrastive estimation [28]—a standard reduction to binary
classification—to learn the model parameters.

10 CONCLUSIONS

In this paper, we introduced the Weight-Median Sketch for the
problem of identifying heavily-weighted features in linear clas-
sifiers over streaming data. We showed theoretical guarantees
for our method, drawing on techniques from online learning and
norm-preserving random projections. In our empirical evaluation,
we showed that the active set extension to the basic WM-Sketch
achieves superior weight recovery and competitive classification
error compared to baseline methods across several standard binary
classification benchmarks. Finally, we explored promising applica-
tions of our methods by framing existing stream processing tasks as
classification problems. We believe this machine learning perspec-
tive on sketch-based stream processing may prove to be a fruitful
direction for future research in advanced streaming analytics.
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A PROOFS

A.1 Proof of Theorem 1

We will use the duals of L(w) and L(z) to show that z, is close
to Rwy, following the analysis of Zhang et al. [77] and Yang et al.
[72]. Define x; = y;x;, i.e. the ith data point x; times its label. Let
X € R¥T be the matrix of data points such that the ith column is
%;. Let G = XT X be the Gram matrix corresponding to the original
data points. Forming the Lagrangian and minimizing with respect to
the primal variables gives us the following dual objective function
in terms of the dual variable a € RT,

* T
Zf () + — Z}LTZ Ga,

where ¢*(a;) is the Fenchel conjugate of £(z;). Note that if o is

the mlmmlzer of J(«), then the minimizer w, of L(w) is given by
X Uy

We 51m11arly define G = XTRTRX as the Gram matrix corre-

sponding to the projected data points. We can write down the dual

L(a) of the projected primal objective function f(w) in terms of

the dual variable & as follows:

Jia) = Zf*

As before, if &, is the minimizer of J(&), then the minimizer z, of
L(z) is given by W, = ——RXa*

We willfi rst express the distance between z, and Rw, in terms
of the distance between the dual variables. We can write:

J(a) =

Wi =

+ —aTGa

|z — Rw.ll3 = —— [IRXd: — RX oI5

AZTZ

— (@ — ) TG — ()

1
~ et %)-
Hence, our goal will be to upper bound (& —a«)T G(é — ). Define
A= ﬁ(G - G)atx. We will show that (&« — @) T G(dx — ) can be
upper bounded in terms of A as follows.

LEMMAZ2.

1
77

Due to space constraints, we omit the proof of Lemma 2 here,
deferring it to the full version of the paper. The proof relies on the
convexity and strong-smoothness of the loss function €.

We now bound ||Al|e. The result relies on the JL property of the
projection matrix R (recall Definition 1). If R is a JL matrix with
error € and failure probability §/d?, then it is straightforward to
verify that with failure probability &, for all coordinate basis vectors
{e1,. .. ,ed},

2p

(d - @) TG — @) < S IIAIE

[Reill; =1+e€, ¥i, [(Rej,Re;j)< €, Vi#j. (3)
Using this projection, we show the following bound on ||A||eo:
LEmMA3. IfR satisfies condition 3, then:
lAlleo < 2yeliwell1.

where y = max; ||x;1.
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Proor. Wefi rst rewrite A as follows,

1 - N
—XTRTR - DXas

1 T The oTv
A= —=X"R'RX -X"X)as =
a7 o = 37

=XT(1-R"TRw.,
using the relation that w, = —%f( as. Therefore,
Al < max [x! (I - RTR)w.| = max |x! wy — (Rx;)T (Rw,)|.

L 1
We now claim that if condition 3 is satisfied, then for any two
vectors vi and vo,

vive = Rv)T (Rv2)| < 2e Ivilly IIvall; - )
The proof follows from simple algebra, and is omitted from this
version for lack of space. Using this relation, it follows that,

1Alleo < max x{ w. — (Rx;) (Rw=)| < 2ey[|wllr.
m}

We will now combine Lemma 2 and 3. By Eq. 2 and Lemma 2,
2p
x
If R is a JL matrix with error € and failure probability §/d?, then by
Lemma 3, with failure probability J,

llz« — Rw.|ly < 4ye \/?IIW*IIL ®)

By Kane and Nelson [35], the random projection matrix R satisfies
the JL property with error 8 and failure probability &’ /d? for k >
Clog(d/5")/6%, where C s afi xed constant. Using Eq. 5, with failure

probability &,
Iz~ Rwall < 470wl ©

Recall that +/sR is a Count-Sketch matrix with width C;/6 and
depth s = Czlog(d/6”)/0, where C; and C; arefi xed constants.
Let wpoj be the projection of w, with the Count-Sketch matrix
R, hence Wproj = VSRW.. Let zproj = /sz.. By Eq. 6, with failure
probability §”,

2 2
llz« — Rwull; < == l1AllG-

16By201og(d/5")

“Zproj _Wproj”Z < 1 Wl

Let w¢s be the Count-Sketch estimate of w.. derived from wpyo;,
and west be the Count-Sketch estimate of w. derived from zpy;.
Recall that the Count-Sketch estimate of a vector is the median of
the estimates of all the locations to which the vector hashes. As the
difference between the median of any two vectors is at most the
{o-norm of their difference,

lWest = Weslloo < ||Zproj - Wproj”m .
Therefore with failure probability &,
IWest = Weslleo < ||Zpr0j - Wproj”00 < ||Zproj - Wproj”2

16By20log(d/5")
=N @

We now use Lemma 1 to bound the error for Count-Sketch recovery.
Using Lemma 1 for the matrix v/sR, with failure probability &,

Iwillz.

W = Weslloo < VOIIW.lly.
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Now using the triangle inequality and Eq. 7, with failure probability
25’ (due to a union bound),

Wy = Westlloo < [[Wi — Westlloo + [[West — Weslloo

16By20log(d/S’
< Volw. | + \/ﬁyfg(/)nw*nl

< (\/§+ w)”w*nll

Therefore choosing 6 = min{l,)n/(léﬁy2 10g(d/5’))}62/4, with fail-
ure probability 25,

Wi — Westlloo < €llWellz.
Choosing 8’ = §/2, we have that forfi xed constants C1,Cs,

k = (C1/€*)log®(d/8) max(1, f2y*/A%),
s = (Cz/€%) log?(d/8) max{1, By?/A},

[[Wy — Westllo < €[lWs|l1, with probability 1 — 6.

A.2 Proof of Theorem 2

Let f;(z) be the loss function corresponding to the data point chosen
in the tth time step:

£1) = € (3" Re) + el ®)
Let z; be the weight vector at the tth time step for online updates
on the projected problem. Let z = % ZlT:l ;i be the average of the
weight vectors for all the T time steps. We claim that z is close
to z., the optimizer of L(z), using Corollary 1 of Shamir [59]. In
order to apply the result wefi rst need to define a few parameters of
the function L(z). Note that L(z) is A-strongly convex (since L(z) —
%lIzII% is convex). Moreover, since the derivative of ¢ is bounded
above by H, ¢ is H-Lipschitz. We assume [|[Rx;||, < B, ||z«|ls < D
and max; ||V f;(w)||, < G. We will bound B, D and G in the end. We
now apply Corollary 1 of Shamir [59], with the notation adapted
for our setting.

Lemma4. [59] Consider any loss function L(z) = Z?:l fi(2),
where f;(z) is defined in Eq. 8. For any H-Lipchitz {;, ||Rx;||, < B,
lztll, < D, and somefi xed constant C, over the randomness in the
order in which the samples are received:

B[

S

L. . C(Ry/ VT + BDH)
L(ze) - L(zy)| < = L2 T2
Rt -te] s T

where R is the regret of online gradient descent with respect to the
batch optimizer z., defined as Rt = Zthl [fi (Z) — fr(z+)]

By standard regret bounds on online gradient descent (see Zinke-
vich [78]), Rt < GD VT. Therefore,

CD(G + BH)

T
E[%Zﬁ(zt)—ﬁ(z*)] s ==
=1
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Note that by Jensen’s inequality,

T
B[] < B[ 7 ) Far)]
t=1
CD(G + BH)

= E[I:(Z) - ﬁ(z*)] < N

. )

We will now bound the expected distance between z and z. using Eq.

9 and the strong convexity of L(w). As L(w) is A-strongly convex
and VL(z.) = 0, we can write:

L(z) + A/2) Nz - 2% < L(2)
= |z - zll} < (A/2)[L(2) - L(z.)]

— E[HZ - z*||§] < (2/2) [E[i(z)] ~ i),

Using Eq. 9 and then Jensen’s inequality,

2CD(G + BH)
ANT

Let Zproj = \/sz. Let zwm be the Count-Sketch estimate of w.,

derived from Zpyoj. Recall from the proof of Theorem 1 that zp5 =

2l 2.l < (10)

/sz and wegt is the Count-Sketch estimate of w derived from Zproj-

As in the proof of Theorem 1, we note that the difference between
the medians of any two vectors is at most the £ norm of the
difference of the vectors, and hence we can write,

IWest = Zwmlloo < Hlproj - 2pr0j||oo < ||Zpr0j - iproj“Z
= Vsllz. — zll;.
Therefore, using Eq. 10,
. 2CD(G + BH)

S
E[llWest — Zwmlloo] < 1 w T

Wi = Zwmlloo < [[Wx = Westlloo + [West — Zwmlloo

(11)

By the triangle inequality,

— B[ lw. - zwmnm] < E[ lws - westnm] + E[ [West — zwmnm].

By Theorem 1, forfi xed constants Cy,Cy and
k = (C1/e*) log®(d/6) max{1, B2y*/ 22},
s = (C2/€?) log?(d/8) max{1, By*/A},
Wy — Westlloo < €|lW |1 with probability 1—§. Therefore, forfi xed

constants C; and C;, and probability 1 -6,

€
E| w. —zmeW] < S well

\/4c§(GD + BDH)? log?(d/5) max{1,LR?/A)
* AZelT

Therefore, for

T > (C}/(e*A%))(D/ IIw111)*(G + BH)? log®(d/8) max{1,LR?/A},

€

E[nw* —zwmnm] <$

We will now bound B, D and G, starting with B. Note that Ris a JL
matrix which satisfies condition 3 with € = 0. Using Eq. 4 and the
fact that ||x;||, < 1,

IRxill < AJ1+6y2 = B<1+ Viy <1+ey,

€
wally + 5 wellz < € llwelly -
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where for the last bound we use the setting of
6 = min{1,1/(4By* log(d/5"))}e* /4
from the proof of Theorem 1. We next bound ||z||,. Using Eq. 4,

Bl Iwelly
BIAlwly

||z« — Rwy|ly < 2RO
= |lz«llz < [IRwy |l + 2RO

By Eq. 4, [|Rw.|l; <
Therefore,

2
Iwll2 + 0 lwsll? < fwally + VOlIwall;.

lz:lly < Wellz + VO Iwelly + 2RO \/ /A 1wl

= Iwalz + (VB +2R0 \[B/2) 1w. Iy

For our choice of 6,
llz<llz < [lWxllz + € |lW«lly = D < Dz +€Dy.

This implies that the (D/ ||w.||;) term in our bound for T can be
upper bounded by 2D3/ [[w«||1, yielding the bound on T stated in
Theorem 2. Finally, we need to upper bound G = max; ||V f; (w)||,.
We do this as follows:

Vfi(z) = U (yez] Rxe)Axe + Az
= |IVfi@)|l, < I (yez] Rx)I|IRxlly + Alze |l
<H(1+ey)+AD.

B BASELINE ALGORITHMS

Here we give pseudocode for the simple truncation and probabilistic
truncation baselines evaluated in our experiments.

Algorithm 3: Simple Truncation

input: loss function ¢, budget K, £2-regularization
parameter A, learning rate schedule 7;
initialization
| S« 1{} »Emptyheap
function Update(x, y)
T Yies Sl xi
S — (1 - Ant)S —nryx; VE(yr)
Truncate S to top-K entries by magnitude
te—t+1

> Make prediction

Algorithm 4: Probabilistic Truncation

initialization
So « {} > Empty heap
W« {} > Reservoir weights

function Update(x, y)
T & Djes, Stli] - xi
St+1 — (1= Ant)Sr — nryxVE(yr)
fori € S;+1 do
if i ¢ S; then
r~U(©,1)
Wil « r1/1Selill
else
‘ W[i] « W[i]!Se [/ Senlill > Update weight
Truncate S;41 to top-K entries by reservoir weight
te—t+1

> Make prediction

> New reservoir weight




