
Sketching Linear Classifiers over Data Streams

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant
Stanford University

ABSTRACT

We introduce a new sub-linear space sketch—the Weight-Median

Sketch—for learning compressed linear classi�ers over data streams

while supporting the e�cient recovery of large-magnitude weights

in the model. This enables memory-limited execution of several

statistical analyses over streams, including online feature selec-

tion, streaming data explanation, relative deltoid detection, and

streaming estimation of pointwise mutual information. Unlike re-

lated sketches that capture the most frequently-occurring features

(or items) in a data stream, the Weight-Median Sketch captures

the features that are most discriminative of one stream (or class)

compared to another. The Weight-Median Sketch adopts the core

data structure used in the Count-Sketch, but, instead of sketching

counts, it captures sketched gradient updates to the model param-

eters. We provide a theoretical analysis that establishes recovery

guarantees for batch and online learning, and demonstrate empiri-

cal improvements in memory-accuracy trade-o�s over alternative

memory-budgeted methods, including count-based sketches and

feature hashing.

ACM Reference Format:

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant. 2018. Sketching

Linear Classi�ers over Data Streams. In SIGMOD’18: 2018 International

Conference on Management of Data, June 10–15, 2018, Houston, TX, USA.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3183713.3196930

1 INTRODUCTION

With the rapid growth of streaming data volumes, memory-e�cient

sketches are an increasingly important tool in analytics tasks such

as� nding frequent items [10, 15, 41, 52], estimating quantiles [26,

45], and approximating the number of distinct items [24]. Sketching

algorithms trade o� between space utilization and approximation

accuracy, and are therefore well suited to settings where mem-

ory is scarce or where highly-accurate estimation is not essential.

For example, sketches are used in measuring tra�c statistics on

resource-constrained network switch hardware [74] and in pro-

cessing approximate aggregate queries in sensor networks [12].

Moreover, even in commodity server environments where memory

is more plentiful, sketches are useful as a lightweight means to per-

form approximate analyses like identifying frequent search queries

or URLs within a broader stream processing pipeline [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196930

(xt ,�t) rL̂t
“foo” 2.5

“bar” -1.9

“baz” 1.8

streaming

data

gradient

estimates

sketched

classi�er

estimates of

largest weights

update

query

Figure 1: Overview of our approach, where online updates

are applied to a sketched (i.e., compressed) classi�er from

which estimates of the largest weights can be retrieved.

Machine learning is applicable in many of the same resource-

constrained deployment scenarios as existing sketching algorithms.

With the widespread adoption of mobile devices, wearable elec-

tronics, and smart home appliances, there is increasing interest in

memory-constrained learning, where statistical models on these

devices are updated on-the-�y in response to locally-observed data

[36, 44, 49, 62]. These online updates allow ML-enabled systems

to adapt to individual users or local environments. For example,

language models on mobile devices can be personalized in order to

improve the accuracy of speech recognition systems [49], mobile

facial recognition systems can be updated based on user supervi-

sion [36], packet� lters on network routers can be incrementally

improved [18, 67], and human activity classi�ers can be tailored to

individual motion patterns for more accurate classi�cation [44, 75].

Online learning in memory-constrained environments is partic-

ularly challenging in high-dimensional feature spaces. For example,

consider a spam classi�er on text data that is continually updated

as new messages are observed and labeled as spam or not spam.

The memory cost of retaining n-gram features grows rapidly as

new token combinations are observed in the stream. In an experi-

ment involving an ⇠80M token newswire dataset [11], we recorded

⇠47M unique word pairs that co-occur within 5-word spans of text.

Disregarding the space required to store strings, maintaining inte-

ger vocabulary indexes and 32-bit� oating point weights for each

of these features would require approximately 560MB of memory.

Thus, the memory footprint of classi�ers over high-dimensional

streaming data can quickly exceed the memory constraints of many

deployment environments. Moreover, it is not su�cient to simply

apply existing sketches for identifying frequently-occurring fea-

tures, since the features that occur most often are not necessarily

the most discriminative.

In this work, we develop a new sketching algorithm that targets

ML applications in these memory-constrained settings. Building

on prior work on sketching for identifying frequent items, we

introduce theWeight-Median Sketch (WM-Sketch) for learning com-

pressed linear classi�ers over data streams. Figure 1 illustrates the

high-level approach: we� rst allocate a� xed region of memory as

the sketch data structure, and as new examples are observed in the

stream, the weights stored in this structure are updated via gradi-

ent descent on a given loss function. In contrast to previous work

that employs the “hashing trick” to reduce the memory footprint

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

757

of a classi�er [60, 69], the WM-Sketch supports the approximate

recovery of the most heavily-weighted features in the classi�er:

at any time, we can e�ciently return a list of the top-K features

along with estimates of their weights in an uncompressed classi�er

trained over the same sequence of examples.

The ability to retrieve heavily-weighted features from the WM-

Sketch confers several bene�ts. First, the sketch provides a classi�er

with low memory footprint that retains a degree of model inter-

pretability. This is often practically important as understanding

which features are most in�uential in making predictions is rele-

vant to feature selection [76], model debugging, issues of fairness

in ML systems [13], and human perceptions of model trustworthi-

ness [55]. Second, the ability to retrieve heavily-weighted features

enables the execution of a range of analytics workloads that can

be formulated as classi�cation problems over streaming data. In

this paper, we demonstrate the e�ectiveness of the WM-Sketch

in three such applications: (i) streaming data explanation [3, 51],

(ii) detecting large relative di�erences between data streams (i.e.,

detecting relative deltoids) [16] and (iii) streaming identi�cation of

highly-correlated pairs of features via pointwise mutual informa-

tion [22]. The WM-Sketch is able to perform these analyses while

using far less memory than uncompressed classi�ers.

The key intuition behind theWM-Sketch is that by randomly pro-

jecting the gradient updates to a linear classi�er, we can incremen-

tally maintain a compressed version of the true, high-dimensional

model. By choosing this random projection appropriately, we can

support e�cient approximate recovery of the model weights. In par-

ticular, the WM-Sketch maintains a Count-Sketch projection [10]

of the weight vector of the linear classi�er. However, unlike Heavy

Hitters sketches that simply increment or decrement counters, the

WM-Sketch updates its state using online gradient descent [29].

Since these updates themselves depend on the current weight es-

timates, a careful analysis is needed to ensure that the estimated

weights do not diverge from the true (uncompressed) model param-

eters over the course of multiple online updates.

We analyze the WM-Sketch both theoretically and empirically.

Theoretically, we provide guarantees on the approximation error

of these weight estimates, showing that it is possible to accurately

recover large-magnitude weights using space sub-linear in the fea-

ture dimension. We describe an optimized variant, the Active-Set

Weight-Median Sketch (AWM-Sketch) that outperforms alterna-

tive memory-constrained algorithms in experiments on benchmark

datasets. For example, on the standard Reuters RCV1 binary classi-

�cation benchmark, the AWM-Sketch recovers the most heavily-

weighted features in the model with 4⇥ better approximation error

than a frequent-features baseline using the Space Saving algorithm

[52] and 10⇥ better than a naïve weight truncation baseline, while

using the same amount of memory. Moreover, we demonstrate that

the additional interpretability of the AWM-Sketch does not come at

the cost of reduced classi�cation accuracy: empirically, the AWM-

Sketch in fact improves on the classi�cation accuracy of feature

hashing, which does not support weight recovery.

To summarize, we make the following contributions in this work:

• We introduce the Weight-Median Sketch, a new sketch for

learning linear classi�ers over data streams that supports

approximate retrieval of the most heavily-weighted features.

• We provide a theoretical analysis that provides guarantees

on the accuracy of the WM-Sketch estimates. In particular,

we show that for feature dimension d and with success prob-

ability 1� � , we can learn a compressed model of dimension

O
⇣

��4 log3 (d/�)
⌘

that supports approximate recovery of the

optimal weight vector w⇤, where the absolute error of each
weight is bounded above by � kw⇤k1.
• We empirically demonstrate that the optimized AWM-Sketch

outperforms several alternativemethods in terms ofmemory-

accuracy trade-o�s across a range of real-world datasets.1

The full version of this paper with extended proofs of our theoretical

results is available at https://arxiv.org/abs/1711.02305.

2 RELATED WORK

Heavy Hitters in Data Streams. Given a sequence of items, the

heavy hitters problem is to return the set of all items whose fre-

quency exceeds a speci�ed fraction of the total number of items.

Algorithms for� nding frequent items include counter-based ap-

proaches [20, 37, 47, 52], quantile algorithms [26, 61], and sketch-

based methods [10, 15]. Mirylenka et al. [54] develop streaming

algorithms for�nding conditional heavy hitters, i.e. items that are

frequent in the context of a separate “parent” item. Our proposed

sketch builds on the Count-Sketch [10], which was originally in-

troduced for identifying frequent items. In Sec. 4, we show how

frequency estimation can in fact be related to the problem of esti-

mating classi�er weights.

CharacterizingChanges inData Streams. Cormode andMuthukr-

ishnan [16] propose a Count-Min-based algorithm for identifying

items whose frequencies change signi�cantly, while Schweller et al.

[57] propose the use of reversible hashes to avoid storing key infor-

mation. In order to explain anomalous tra�c� ows, Brauckho� et al.

[7] use histogram-based detectors and association rules to detect

large absolute di�erences. In our network monitoring application

(Sec. 8), we focus instead on detecting large relative di�erences, a

problem which has previously been found to be challenging [16].

Resource-Constrained and On-Device Learning. In contrast

to federated learning, where the goal is to learn a global model

on distributed data [38] or to enforce global regularization on a

collection of local models [62], our focus is on memory-constrained

learning on a single device without communication over a network.

Gupta et al. [27] and Kumar et al. [39] perform inference with

small-space classi�ers on IoT devices, whereas we focus on online

learning. Unlike budget kernel methods that aim the reduce the

number of stored examplars [17, 19], our methods instead reduce

the dimensionality of feature vectors. Our work also di�ers from

model compression or distillation [2, 8, 31], which aims to imitate a

large, expensive model using a smaller one with lower memory and

computation costs—in our setting, the full uncompressed model is

never instantiated and the compressed model is learned directly.

Sparsity-Inducing Regularization. `1-regularization is a stan-

dard technique for encouraging parameter sparsity in online learn-

ing [21, 40, 71]. In practice, it is di�cult to a priori select an `1-

regularization strength in order to satisfy a given sparsity budget.

1Our implementations of the WM-Sketch, AWM-Sketch and the baselines evaluated
in our experiments are available at https://github.com/stanford-futuredata/wmsketch.

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

758

It may not be possible to precisely represent each entry2 of the vec-

tor w⇤ within a memory budget that is much less than the cost

of representing a general vector in Rd . In particular, w⇤ may be

a dense vector. Thus, it may not be possible to represent w⇤ in a

memory-constrained setting, and in practical applications this is

particularly problematic when the dimension d is large.

For a� xed memory budget B, our goal is to obtain a summary

z that uses space at most B from which we are able to estimate

the value of each entry of the optimal classi�er w⇤. We formalize

this problem as the Weight Estimation Problem, which we make

precise in the following section. In addition to supporting weight

estimation, a secondary goal is to be able to use the summary z to

perform classi�cation on data points x via some inference function

f , i.e. �̂ = f (z,x). We would like to classify data points using the

summary without too much additional error compared to w⇤.

4.1 The Weight Estimation Problem

In this section, we formalize the problem of estimating the weights

of the optimal classi�er w⇤ from a compact summary. To facilitate

the presentation of this problem and to build intuition, we highlight

the connection between our goal of weight estimation and previous

work on the approximate recovery of frequency estimates from

compressed count vectors. To this end, we formalize a general

problem setup that subsumes both the approximate recovery of

frequencies and the approximate recovery of weights in linear

classi�ers as special cases.

The �-approximate frequency estimation problem can be de�ned

as follows:

De�nition 2. [14] (�-Approximate Frequency Estimation) Given

a sequence of T items, each drawn from the set [d], let �i denote

the count of the number of times item i is seen over the stream.

The �-approximate frequency estimation problem is to return, for

any i 2 [d], a value �̂i such that |�̂i ��i |  �T .

The frequency estimation problem commonly appears in the

context of� nding heavy hitters—i.e., items whose frequencies ex-

ceed a given threshold �T . Given an algorithm that solves the

�-approximate frequency estimation problem, we can then� nd all

heavy hitters (possibly with false positives) by returning all items

with estimated frequency above (� � �)T .
We now de�ne an analogous setup for online convex optimiza-

tion problems that formalizes our goal of weight recovery from

summarized classi�ers:

De�nition 3. ((� ,p)-Approximate Weight Estimation for Convex

Functions) Given a sequence of T convex functions Lt : X ! R
over a convex domain X ✓ Rd , let w⇤ B argminw

PT
t=1 Lt (w).

The (� ,p)-approximate weight estimation problem is to return, for

any i 2 [d], a value ŵi such that |ŵi � (w⇤)i |  � kw⇤kp .

Note that frequency estimation (De�nition 2) can be viewed as a

special case of this problem. Set Lt (w) = �wT xt , where (xt)i = 1

if item i is observed at time t and 0 otherwise (assume that only

one item is observed at each t), de�ne x1:T B
PT
t=1 xt , and let

X = {w : kwk2  kx1:T k2}. Then w⇤ = x1:T , and we note that

2For example, storing each nonzero entry as a single-precision� oating point number.

kw⇤k1 = T . Thus, the frequency estimation problem is an instance

of the (� ,1)-approximate weight estimation problem.

Weight Estimation for Linear Classi�ers. We now specialize

to the case of online learning for linear classi�ers. De�ne the losses

Lt as:

Lt (w) = `
⇣

�tw
T xt
⌘

+

�

2
kwk22 , (1)

where ` is a convex, di�erentiable function, (xt ,�t) is the exam-

ple observed at time t , and � > 0 controls the strength of `2-

regularization. The choice of ` de�nes the linear classi�cationmodel

to be used. For example, the logistic loss `(�) = log(1 + exp(��))
de�nes logistic regression, and smoothed versions of the hinge loss

`(�) = max{0,1 � � } de�ne close relatives of linear support vector
machines.

To summarize, for each time step, we wish to maintain a compact

summary zt that allows us to estimate each weight in the optimal

classi�er w⇤ over all the examples seen so far in the stream. In the

following sections, we describe a method for maintaining such a

summary and provide theoretical guarantees on the accuracy of

the recovered weights.

5 FINDING HEAVILY-WEIGHTED FEATURES

In this section, we describe our proposed method, the Weight-

Median Sketch (WM-Sketch), along with a simple variant, the

Active-Set Weight-Median Sketch (AWM-Sketch), that empirically

improves on the basic WM-Sketch in both classi�cation and recov-

ery accuracy.

5.1 Weight-Median Sketch

The main data structure in the WM-Sketch is identical to that used

in the Count-Sketch. The sketch is parameterized by size k , depth

s , and width k/s . We initialize the sketch with a size-k array set

to zero. For a given depth s , we view this array as being arranged

in s rows, each of width k/s (assume that k is a multiple of s). We

denote this array as z, and equivalently view it as a vector in Rk .

The high-level idea is that each row of the sketch is a compressed

version of the model weight vector w 2 Rd , where each index

i 2 [d] is mapped to some assigned bucket j 2 [k/s]. Since k/s ⌧ d ,

there will be many collisions between these weights; therefore, we

maintain s rows—each with di�erent assignments of features to

buckets—in order to disambiguate weights.

Hashing Features to Buckets. In order to avoid explicitly storing

the mapping from features to buckets, which would require space

linear in d , we implement the mapping using hash functions as in

the Count-Sketch. For each row j 2 [s], we maintain a pair of hash

functions, hj : [d]! [k/s] and �j : [d]! { �1,+1}. Let the matrix

A 2 { �1,+1}k⇥d denote the Count-Sketch projection implicitly

represented by the hash functions hj and �j , and let R be a scaled

version of this projection, R = 1p
s
A. We use the projection R to

compress feature vectors and update the sketch.

Updates. We update the sketch by performing gradient descent

updates directly on the compressed classi�er z. We compute gradi-

ents on a “compressed” version L̂t of the regularized loss Lt de�ned

in Eq. 1:

L̂t (z) = `
⇣

�t z
T Rxt

⌘

+

�

2
kzk22 .

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

760

Algorithm 1:Weight-Median (WM) Sketch

input: size k , depth s , loss function `, `2-regularization
parameter �, learning rate schedule �t

initialization
z s ⇥ k/s array of zeroes

Sample R, a Count-Sketch matrix scaled by 1p
s

t 0
function Update(x, �)

� zT Rx . Prediction for x
z (1 � ��t)z � �t�r` (��) Rx
t t + 1

function Query(i)
return output of Count-Sketch retrieval on

p
sz

This yields the following update to z:

∆̂t B ��trL̂t (z) = ��t
⇣

�tr`(�t zT Rxt)Rxt + �z
⌘

.

To build intuition, it is helpful to compare this update to the

Count-Sketch update rule [10]. In the frequent items setting, the

input xt is a one-hot encoding for the item seen in that time step.

The update to the Count-Sketch state zcs is the following:

∆̃
cs
t = Axt ,

where A is de�ned identically as above. Ignoring the regularization

term, our update rule is simply the Count-Sketch update scaled

by the constant ��t�t s�1/2r`(�t zT Rxt). However, an important

detail to note is that the Count-Sketch update is independent of the

sketch state zcs, whereas the WM-Sketch update does depend on

z. This cyclical dependency between the state and state updates is

the main challenge in our analysis of the WM-Sketch.

Queries. To obtain an estimate ŵi of the ith weight, we return the

median of the values {
p
s�j (i)zj,hj (i) : j 2 [s]}. Save for the

p
s

factor, this is identical to the query procedure for the Count-Sketch.

We summarize the update and query procedures for the WM-

Sketch in Algorithm 1. In the next section, we show how the sketch

size k and depth s parameters can be chosen to satisfy an � approx-

imation guarantee with failure probability � over the randomness

in the sketch matrix.

E�cient Regularization. A naïve implementation of `2 regular-

ization on z that scales each entry in z by (1��t�) in each iteration

incurs an update cost of O (k + s · nnz(x)). This masks the com-

putational gains that can be realized when x is sparse. Here, we

use a standard trick [58]: we maintain a global scale parameter

� that scales the sketch values z. Initially, � = 1 and we update

� (1 � �t�)� to implement weight decay over the entire fea-

ture vector. Our weight estimates are therefore additionally scaled

by � : ŵi = median
(p

s��j (i)zj,hj (i) : j 2 [s]
)
. This optimization

reduces the update cost from O (k + s · nnz(x)) to O (s · nnz(x)).

5.2 Active-Set Weight-Median Sketch

We now describe a simple, heuristic extension to the WM-Sketch

that signi�cantly improves the recovery accuracy of the sketch in

practice. We refer to this variant as the Active-Set Weight-Median

Sketch (AWM-Sketch).

Algorithm 2: Active-Set Weight-Median (AWM) Sketch

initialization
S {} . Empty heap
z s ⇥ k/s array of zeroes

Sample R, a Count-Sketch matrix scaled by 1p
s

t 0
function Update(x, �)

xs {xi : i 2 S } . Features in heap
xwm {xi : i < S } . Features in sketch

�
P

i 2S S[i] · xi + z
T Rxwm . Prediction for x

S (1 � ��t)S � �t�r`(��)xs . Heap update
z (1 � ��t)z . Apply regularization
for i < S do
. Either update i in sketch or move to heap
w̃ Query(i) � �t�xir`(��)
imin argminj (|S[j]|)

if |w̃ | > |S[imin]| then
Remove imin from S

Add i to S with weight w̃
Update imin in sketch with S[imin] � Query(imin)

else
Update i in sketch with �t�xir`(��)

t t + 1

To e�ciently track the top elements across sketch updates, we

can use a min-heap ordered by the absolute value of the esti-

mated weights. This technique is also used alongside heavy-hitters

sketches to identify the most frequent items in the stream [10]. In

the basic WM-Sketch, the heap merely functions as a mechanism

to passively maintain the heaviest weights. This baseline scheme

can be improved by noting that weights that are already stored in

the heap need not be tracked in the sketch; instead, the sketch can

be updated lazily only when the weight is evicted from the heap.

This heuristic has previously been used in the context of improving

count estimates derived from a Count-Min Sketch [56]. The intu-

ition here is the following: since we are already maintaining a heap

of heavy items, we can utilize this structure to reduce error in the

sketch as a result of collisions with heavy items.

The heap can be thought of as an “active set” of high-magnitude

weights, while the sketch estimates the contribution of the tail of the

weight vector. Since the weights in the heap are represented exactly,

this active set heuristic should intuitively yield better estimates of

the heavily-weighted features in the model.

As a general note, similar coarse-to-�ne approximation schemes

have been proposed in other online learning settings. A similar

scheme for memory-constrained sparse linear regression was ana-

lyzed by Steinhardt and Duchi [64]. Their algorithm similarly uses

a Count-Sketch for approximating weights, but in a di�erent setting

(K-sparse linear regression) and with a di�erent update policy for

the active set.

6 THEORETICAL ANALYSIS

We derive bounds on the recovery error achieved by theWM-Sketch

for given settings of the size k and depth s . The main challenge in

our analysis is that the updates to the sketch depend on gradient

estimates which in turn depend on the state of the sketch. This

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

761

re�exive dependence makes it di�cult to straightforwardly trans-

plant the standard analysis for the Count-Sketch to our setting.

Instead, we turn to ideas drawn from norm-preserving random

projections and online convex optimization.

In this section, we begin with an analysis of recovery error in

the batch setting, where we are given access to a� xed dataset of

size T consisting of the�rst T examples observed in the stream

and are allowed multiple passes over the data. Subsequently, we

use this result to show guarantees in a restricted online case where

we are only allowed a single pass through the data, but with the

assumption that the order of the data is not chosen adversarially.

6.1 Batch Setting

First, we brie�y outline the main ideas in our analysis. With high

probability, we can sample a random projection to dimension k ⌧
d that satis�es the JL norm preservation property (De�nition 1).

We use this property to show that for any� xed dataset of size T ,

optimizing a projected version of the objective yields a solution

that is close to the projection of the minimizer of the original, high-

dimensional objective. Since our speci�c construction of the JL

projection is also a Count-Sketch projection, we can make use of

existing error bounds for Count-Sketch estimates to bound the error

of our recovered weight estimates.

Let R 2 Rk⇥d denote the scaled Count-Sketch matrix de�ned in

Sec. 5.1. This is the hashing-based sparse JL projection proposed by

Kane and Nelson [35]. We consider the following pair of objectives

de�ned over theT observed examples—the� rst de�nes the problem

in the original space and the second de�nes the corresponding

problem where the learner observes sketched examples (Rxt ,�t):

L(w) =
1

T

T
X

t=1

`

⇣

�tw
T xt
⌘

+

�

2
kwk22 ,

L̂(z) =
1

T

T
X

t=1

`

⇣

�t z
T Rxt

⌘

+

�

2
kzk22 .

Suppose we optimized these objectives over w 2 Rd and z 2 Rk
respectively to obtain solutions w⇤ = argminw L(w) and z⇤ =
argminz L̂(z). How then does w⇤ relate to z⇤ given our choice of

sketching matrix R and regularization parameter �? Intuitively,

if we stored all the data observed up to time T and optimized z

over this dataset, we should hope that the optimal solution z⇤ is
close to Rw⇤, the sketch of w⇤, in order to have any chance of

recovering the largest weights of w⇤. We show that in this batch

setting, kz⇤ � Rw⇤k2 is indeed small; we then use this property to

show element-wise error guarantees for the Count-Sketch recovery

process. We now state our result for the batch setting:

T������1. Let the loss function ` be �-strongly smooth3 (w.r.t.

k · k2) and maxt kxt k1 = � . For� xed constants C1,C2 > 0, let:

k =
⇣

C1/�
4
⌘

log3 (d/�)max
(
1,�2� 4/�2

)
,

s =
⇣

C2/�
2
⌘

log2 (d/�)max
(
1,�� 2/�

)
.

3A function f : X ! R is � -strongly smooth w.r.t. a norm k · k if f is everywhere
di�erentiable and if for all x, y we have:

f (y)  f (x) + (y � x)T rf (x) +
�

2
ky � xk2 .

Let w⇤ be the minimizer of the original objective function L(w) and

west be the estimate of w⇤ returned by performing Count-Sketch

recovery on the minimizer z⇤ of the projected objective function L̂(z).
Then with probability 1 � � over the choice of R,

kw⇤ �westk1  � kw⇤k1.

We note that for standard loss functions such as the logistic loss

and the smoothed hinge loss, we have smoothness parameter � = 1.

Moreover, we can assume that input vectors are normalized so that

kxt k1 = 1, and that typically � < 1. Given these parameter choices,

we can obtain simpler expressions for the sketch size k and sketch

depth s:

k = O
⇣

��4��2 log3 (d/�)
⌘

,

s = O
⇣

��2��1 log2 (d/�)
⌘

.

We defer the full proof of the theorem to Appendix A.1. We now

highlight some salient properties of this recovery result:

Sub-linear Dimensionality Dependence. Theorem 1 implies

that we can achieve error bounded by � kw⇤k1 with a sketch of size

only polylogarithmic in the feature dimension d—this implies that

memory-e�cient learning and recovery is possible in the large-d

regime that we are interested in. Importantly, the sketch size k is

independent of the number of observed examples T—this is crucial

since our applications involve learning over data streams of possibly

unbounded length.

Update Time. Recall that the WM-Sketch can be updated in time

O (s · nnz(x)) for a given input vector x. Thus, the sketch supports

an update time of O (��2��1 log2 (d/�) · nnz(x)) in each iteration.

`2-Regularization. k and s scale inversely with the strength of

`2 regularization: this is intuitive because additional regularization

will shrink bothw⇤ and z⇤ towards zero. We observe this inverse re-

lationship between recovery error and `2 regularization in practice

(see Figure 3).

Input Sparsity. The recovery error depends on the maximum `1-

norm� of the data points xt , and the bound is most optimistic when

� is small. Across all of the applications we consider in Sections 7

and 8, the data points are sparse with small `1-norm, and hence the

bound is meaningful across a number of real-world settings.

Weight Sparsity. The per-parameter recovery error in Theorem 1

is bounded above by a multiple of the `1-norm of the optimal

weights w⇤ for the uncompressed problem. This supports the in-

tuition that sparse solutions with small `1-norm should be more

easily recovered. In practice, we can augment the objective with

an additional kwk1 (resp. kzk1) term to induce sparsity; this corre-

sponds to elastic net-style composite `1/`2 regularization on the

parameters of the model [79].

Comparison with Frequency Estimation. We can compare our

guarantees for weight estimation in linear classi�ers with existing

guarantees for frequency estimation. The Count-Sketch requires

Θ(��2 log(d/�)) space and Θ(log(d/�)) update time to obtain fre-

quency estimates vcs with error kv � vcsk1  � kvk2, where v

is the true frequency vector (Lemma 1). The Count-Min Sketch

uses Θ
⇣

��1 log(d/�)
⌘

space and Θ(log(d/�)) update time to ob-

tain frequency estimates vcm with error kv � vcmk1  � kvk1 [15].

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

762

Thus, our analysis yields guarantees of a similar form to bounds

for frequency estimation in this more general framework, but with

somewhat worse polynomial dependence on 1/� and log(d/�), and

additional 1/� dependence in the update time.

6.2 Online Setting

We now provide guarantees for WM-Sketch in the online setting.

We make two small modi�cations to WM-Sketch for the conve-

nience of analysis. First, we assume that the iterate zt is projected

onto a `2 ball of radius D at every step. Second, we also assume

that we perform the� nal Count-Sketch recovery on the average

z̄ = 1
T

PT
i=1 zt of the weight vectors, instead of on the current iter-

ate zt . While using this averaged sketch is useful for the analysis,

maintaining a duplicate data structure in practice for the purpose

of accumulating the average would double the space cost of our

method. Therefore, in our implementation of the WM-Sketch, we

simply maintain the current iterate zt . As we show in the next

section this approach achieves good performance on real-world

datasets, in particular when combined with the active set heuristic.

Our guarantee holds in expectation over uniformly random per-

mutations of {(x1,�1), . . . , (xT ,�T)}. In other words, we achieve

low recovery error on average over all orderings in which the T

data points could have been presented. We believe this condition

is necessary to avoid worst-case adversarial orderings of the data

points—since the WM-Sketch update at any time step depends on

the state of the sketch itself, adversarial orderings can potentially

lead to high error accumulation.

T������2. Let the loss function ` be �-strongly smooth (w.r.t.

k · k2), and have its derivative bounded by H . Assume kxt k2 
1,maxt kxt k1 = � , kw⇤k2  D2 and kw⇤k1  D1. Let G be a

bound on the `2 norm of the gradient at any time step t , in our case

G  H (1 + ��) + �D. For� xed constants C1,C2,C3 > 0, let:

k =
⇣

C1/�
4
⌘

log3 (d/�)max
(
1,�2� 4/�2

)
,

s =
⇣

C2/�
2
⌘

log2 (d/�)max
(
1,�� 2/�

)
,

T � (C3/�
4)� log2 (d/�)max{1,�� 2/�},

where � = (1/�2) (D2/ kw⇤k1)2 (G + (1 + ��)H)2. Let w⇤ be the

minimizer of the original objective function L(w) and wwm be the

estimate w⇤ returned by the WM-Sketch algorithm with averaging

and projection on the `2 ball with radius D = (D2 + �D1). Then with

probability 1 � � over the choice of R,

E[kw⇤ �wwmk1]  � kw⇤k1,
where the expectation is taken with respect to uniformly sampling a

permutation in which the samples are received.

Theorem 2 shows that in this restricted online setting, we achieve

a bound with the same scaling of the sketch parameters k and s

as the batch setting (Theorem 1). Again, we defer the full proof to

Appendix A.2.

Intuitively, it seems reasonable to expect that we would need an

“average case” ordering of the stream in order to obtain a similar

recovery guarantee to the batch setting. An adversarial, worst-case

ordering of the examples could be one where all the negatively-

labeled examples are� rst presented, followed by all the positively-

labeled examples. In such a setting, it appears implausible that a

Dataset # Examples # Features Space (MB)

Reuters RCV1 6.77 ⇥ 105 4.72 ⇥ 104 0.4

Malicious URLs 2.40 ⇥ 106 3.23 ⇥ 106 25.8

KDD Cup Algebra 8.41 ⇥ 106 2.02 ⇥ 107 161.8

Senate/House Spend. 4.08 ⇥ 107 5.14 ⇥ 105 4.2

Packet Trace 1.86 ⇥ 107 1.26 ⇥ 105 1.0

Newswire 2.06 ⇥ 109 4.69 ⇥ 107 375.2

Table 1: Summary of benchmark datasets with the space cost

of representing full weight vectors and feature identi�ers

using 32-bit values. The� rst set of three consists of standard

binary classi�cation datasets used in Sec. 7; the second set

consists of datasets speci�c to the applications in Sec. 8.

single-pass online algorithm should be able to accurately estimate

the weights obtained by a batch algorithm that is allowed multiple

passes over the data.

7 EMPIRICAL EVALUATION

In this section, we evaluate the Weight-Median Sketch on three

standard binary classi�cation datasets. Our goal here is to com-

pare the WM-Sketch and AWM-Sketch against alternative limited-

memory methods in terms of (1) recovery error in the estimated

top-K weights, (2) classi�cation error rate, and (3) runtime perfor-

mance. In the next section, we explore speci�c applications of the

WM-Sketch in stream processing tasks.

7.1 Datasets and Experimental Setup

We evaluated our proposed sketches on several standard benchmark

datasets as well as in the context of speci�c streaming applications.

Table 1 lists summary statistics for these datasets.

Classi�cation Datasets. We evaluate the recovery error on `2-

regularized online logistic regression trained on three standard

binary classi�cation datasets: Reuters RCV1 [43], malicious URL

identi�cation [46], and the Algebra dataset from the KDDCup 2010

large-scale data mining competition [63, 73]. We use the standard

training split for each dataset except for the RCV1 dataset, where we

use the larger “test” split as is common in experimental evaluations

using this dataset [25].

For each dataset, we make a single pass through the set of ex-

amples. Across all our experiments, we use an initial learning rate

�0 = 0.1 and � 2 {10�3,10�4,10�5,10�6}. We used the following

set of space constraints: 2KB, 4KB, 8KB, 16KB and 32KB. For each

setting of the space budget and for each method, we evaluate a

range of con�gurations compatible with that space constraint; for

example, for evaluating the WM-Sketch, this corresponds to vary-

ing the space allocated to the heap and the sketch, as well as trading

o� between the sketch depth s and the width k/s . For each setting,

we run 10 independent trials with distinct random seeds; our plots

show medians and the range between the worst and best run.

Memory CostModel. In our experiments, we control for memory

usage and con�gure each method to satisfy the given space con-

straints using the following cost model: we charge 4B of memory

utilization for each feature identi�er, feature weight, and auxiliary

weight (e.g., random keys in Algorithm 4 or counts in the Space

Saving baseline) used. For example, a simple truncation instance

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

763

The classi�cation problem is set up as follows: in each itera-

tion t , with probability 0.5 sample a bigram (u,�) from the bi-

gram distribution p (u,�) and set �t = +1; with probability 0.5

sample (u,�) from the unigram product distribution p (u)p (�) and

set �t = �1. The input xt is the 1-sparse vector where the index
corresponding to (u,�) is set to 1. We train a logistic regression

model to discriminate between the true and synthetic samples. If

� = 0, the model asymptotically converges to the distribution

p̂ (� = 1 | (u,�)) = f (wu�) = p (u,�)/ (p (u,�) + p (u)p (�)) for

all pairs (u,�), where f is the logistic function. It follows that

wu� = log(p (u,�)/p (u)p (�)), which is exactly the PMI of (u,�).

If � > 0, we obtain an estimate that is biased, but with reduced

variance in the estimates for rare bigrams.

Experimental Setup. We train on a subset of a standard newswire

corpus [11]; the subset contains 77.7M tokens, 605K unique uni-

grams and 47M unique bigrams over a sliding window of size 6. In

our implementation, we approximate sampling from the unigram

distribution by sampling from a reservoir sample of tokens [34, 48].

We estimated weights using the AWM-Sketch with heap size 1024

and depth 1; the reservoir size was� xed at 4000. We make a sin-

gle pass through the dataset and generate 5 negative samples for

every true sample. Strings were� rst hashed to 32-bit values using

MurmurHash3;7 these identi�ers were hashed again to obtain sketch

bucket indices.

Results. For width settings up to 216, our implementation’s total

memory usage was at most 1.4MB. In this regime, memory usage

was dominated by the storage of strings in the heap and the un-

igram reservoir. For comparison, the standard approach to PMI

estimation requires 188MB of space to store exact 32-bit counts for

all bigrams, excluding the space required for storing strings or the

token indices corresponding to each count. In Table 3, we show sam-

ple pairs retrieved by our method; the PMI values estimated from

exact counts are well-estimated by the classi�er weights. In Fig. 11,

we show that at small widths, the high collision rate results in the

retrieval of noisy, low-PMI pairs; as the width increases, we retrieve

higher-PMI pairs which typically occur with lower frequency. Fur-

ther, regularization helps discard low-frequency pairs but can result

in the model missing out on high-PMI but less-frequent pairs.

9 DISCUSSION

Active Set vs. Multiple Hashing. In the basic WM-Sketch, multi-

ple hashing is needed in order to disambiguate features that collide

in a heavy bucket; we should expect that features with truly high

weight should correspond to large values in the majority of buckets

that they hash to. The active set approach uses a di�erent mech-

anism for disambiguation. Suppose that all the features that hash

to a heavy bucket are added to the active set; we should expect

that the weights for those features that were erroneously added

will eventually decay (due to `2-regularization) to the point that

they are evicted from the active set. Simultaneously, the truly high-

weight features are retained in the active set. The AWM-Sketch can

therefore be interpreted as a variant of feature hashing where the

highest-weighted features are not hashed.

7https://github.com/aappleby/smhasher/wiki/MurmurHash3

The Cost of Interpretability. A surprising� nding in our evalu-

ation on standard binary classi�cation datasets was that the AWM-

Sketch consistently improved on the classi�cation accuracy of fea-

ture hashing. We hypothesize that the observed gains are due to

reduced collisions with heavily-weighted features. Notably, we are

able to improve model interpretability by identifying important

features without sacri�cing any classi�cation accuracy.

Per-Feature Learning Rates. In previous work on online learn-

ing applications, practitioners have found that the per-feature learn-

ing rates can signi�cantly improve classi�cation performance [50].

An open question is whether variable learning rate across features

is worth the associated memory cost in the streaming setting.

Multiclass Classi�cation. The WM-Sketch be extended to the

multiclass setting using the following simple extension. GivenM

output classes, maintainM copies of the WM-Sketch. In order to

predict the output, we evaluate the output on each copy and return

the maximum. For large M , for instance in language modeling

applications, this procedure can be computationally expensive since

update time scales linearly with M . In this regime, we can apply

noise contrastive estimation [28]—a standard reduction to binary

classi�cation—to learn the model parameters.

10 CONCLUSIONS

In this paper, we introduced the Weight-Median Sketch for the

problem of identifying heavily-weighted features in linear clas-

si�ers over streaming data. We showed theoretical guarantees

for our method, drawing on techniques from online learning and

norm-preserving random projections. In our empirical evaluation,

we showed that the active set extension to the basic WM-Sketch

achieves superior weight recovery and competitive classi�cation

error compared to baseline methods across several standard binary

classi�cation benchmarks. Finally, we explored promising applica-

tions of our methods by framing existing stream processing tasks as

classi�cation problems. We believe this machine learning perspec-

tive on sketch-based stream processing may prove to be a fruitful

direction for future research in advanced streaming analytics.

ACKNOWLEDGMENTS

We thank Daniel Kang, Sahaana Suri, Pratiksha Thaker, and the

anonymous reviewers for their feedback on earlier drafts of this

work. This research was supported in part by a�liate members

and other supporters of the Stanford DAWN project—Google, Intel,

Microsoft, Teradata, and VMware—as well as industrial gifts and

support from Toyota Research Institute, Juniper Networks, Keysight

Technologies, Hitachi, Facebook, Northrop Grumman, and NetApp.

The authors were also supported by DARPA under No. FA8750-

17-2-0095 (D3M), ONR Award N00014-17-1-2562, NSF Award CCF-

1704417, and a Sloan Research Fellowship.

REFERENCES
[1] Dimitris Achlioptas. 2003. Database-friendly random projections: Johnson-

Lindenstrauss with binary coins. Journal of computer and System Sciences 66, 4
(2003), 671–687.

[2] Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?. In
Advances in neural information processing systems. 2654–2662.

[3] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. ACM, 541–556.

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

768

[4] Nagender Bandi, Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.
2007. Fast data stream algorithms using associative memories. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data. ACM,
247–256.

[5] Avrim Blum, Adam Kalai, and John Langford. 1999. Beating the hold-out: Bounds
for k-fold and progressive cross-validation. In Proceedings of the twelfth annual
conference on Computational learning theory. ACM, 203–208.

[6] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. 2014. Summingbird: A
framework for integrating batch and onlinemapreduce computations. Proceedings
of the VLDB Endowment 7, 13 (2014), 1441–1451.

[7] Daniela Brauckho�, Xenofontas Dimitropoulos, Arno Wagner, and Kavè Salama-
tian. 2012. Anomaly extraction in backbone networks using association rules.
IEEE/ACM Transactions on Networking (TON) 20, 6 (2012), 1788–1799.

[8] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model
compression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 535–541.

[9] Robert Calderbank, Sina Jafarpour, and Robert Schapire. [n. d.]. Compressed
Learning: Universal Sparse Dimensionality Reduction and Learning in the Mea-
surement Domain. ([n. d.]).

[10] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. Automata, languages and programming (2002), 784–784.

[11] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. 2013. One billion word benchmark for measuring
progress in statistical language modeling. arXiv preprint arXiv:1312.3005 (2013).

[12] Je�rey Considine, Feifei Li, George Kollios, and John Byers. 2004. Approximate ag-
gregation techniques for sensor databases. In Data Engineering, 2004. Proceedings.
20th International Conference on. IEEE, 449–460.

[13] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq.
2017. Algorithmic decision making and the cost of fairness. arXiv preprint
arXiv:1701.08230 (2017).

[14] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding frequent items in
data streams. Proceedings of the VLDB Endowment 1, 2 (2008), 1530–1541.

[15] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[16] Graham Cormode and S Muthukrishnan. 2005. What’s new: Finding signi�cant
di�erences in network data streams. IEEE/ACM Transactions on Networking (TON)
13, 6 (2005), 1219–1232.

[17] Koby Crammer, Jaz Kandola, and Yoram Singer. 2004. Online classi�cation on a
budget. In Advances in neural information processing systems. 225–232.

[18] Alberto Dainotti, Antonio Pescape, and Kimberly C Cla�y. 2012. Issues and
future directions in tra�c classi�cation. IEEE network 26, 1 (2012).

[19] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. 2006. The Forgetron: A
kernel-based perceptron on a� xed budget. In Advances in neural information
processing systems. 259–266.

[20] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Frequency
estimation of internet packet streams with limited space. In European Symposium
on Algorithms. Springer, 348–360.

[21] John Duchi and Yoram Singer. 2009. E�cient online and batch learning using
forward backward splitting. Journal of Machine Learning Research 10, Dec (2009),
2899–2934.

[22] Benjamin V Durme and Ashwin Lall. 2009. Streaming pointwise mutual informa-
tion. In Advances in Neural Information Processing Systems. 1892–1900.

[23] Pavlos S Efraimidis and Paul G Spirakis. 2006. Weighted random sampling with
a reservoir. Inform. Process. Lett. 97, 5 (2006), 181–185.

[24] Philippe Flajolet. 1985. Approximate counting: a detailed analysis. BIT Numerical
Mathematics 25, 1 (1985), 113–134.

[25] Daniel Golovin, D Sculley, Brendan McMahan, and Michael Young. 2013. Large-
scale learning with less ram via randomization. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13). 325–333.

[26] Michael Greenwald and Sanjeev Khanna. 2001. Space-e�cient online computa-
tion of quantile summaries. In ACM SIGMOD Record, Vol. 30. ACM, 58–66.

[27] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhar-
gavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik
Varma, and Prateek Jain. 2017. ProtoNN: Compressed and Accurate kNN for
Resource-scarce Devices. In International Conference on Machine Learning. 1331–
1340.

[28] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Arti�cial Intelligence and Statistics.
297–304.

[29] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations
and Trends® in Optimization 2, 3-4 (2016), 157–325.

[30] Elad Hazan, Amit Agarwal, and Satyen Kale. 2007. Logarithmic regret algorithms
for online convex optimization. Machine Learning 69, 2 (2007), 169–192.

[31] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[32] Steven CH Hoi, Jialei Wang, Peilin Zhao, and Rong Jin. 2012. Online feature
selection formining big data. In Proceedings of the 1st international workshop on big
data, streams and heterogeneous source mining: Algorithms, systems, programming
models and applications. ACM, 93–100.

[33] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary mathematics 26, 189-206 (1984), 1.

[34] Nobuhiro Kaji and Hayato Kobayashi. 2017. Incremental skip-gram model with
negative sampling. arXiv preprint arXiv:1704.03956 (2017).

[35] Daniel M Kane and Jelani Nelson. 2014. Sparser Johnson-Lindenstrauss trans-
forms. Journal of the ACM (JACM) 61, 1 (2014), 4.

[36] Ashish Kapoor, Simon Baker, Sumit Basu, and Eric Horvitz. 2012. Memory
constrained face recognition. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2539–2546.

[37] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. 2003. A simple
algorithm for� nding frequent elements in streams and bags. ACM Transactions
on Database Systems (TODS) 28, 1 (2003), 51–55.

[38] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. 2015. Federated op-
timization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575 (2015).

[39] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-e�cient Ma-
chine Learning in 2 KB RAM for the Internet of Things. In International Conference
on Machine Learning. 1935–1944.

[40] John Langford, Lihong Li, and Tong Zhang. 2009. Sparse online learning via
truncated gradient. Journal of Machine Learning Research 10, Mar (2009), 777–801.

[41] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup. 2016.
Heavy hitters via cluster-preserving clustering. In Foundations of Computer Sci-
ence (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 61–70.

[42] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems. 2177–2185.

[43] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. RCV1: A new
benchmark collection for text categorization research. Journal of machine learning
research 5, Apr (2004), 361–397.

[44] Brent Longsta�, Sasank Reddy, and Deborah Estrin. 2010. Improving activ-
ity classi�cation for health applications on mobile devices using active and
semi-supervised learning. In International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth). IEEE.

[45] Ge Luo, LuWang, Ke Yi, and Graham Cormode. 2016. Quantiles over data streams:
experimental comparisons, new analyses, and further improvements. The VLDB
Journal 25, 4 (2016), 449–472.

[46] JustinMa, Lawrence K Saul, Stefan Savage, and Geo�reyMVoelker. 2009. Identify-
ing suspicious URLs: an application of large-scale online learning. In Proceedings
of the 26th annual international conference on machine learning. ACM, 681–688.

[47] Gurmeet SinghManku and RajeevMotwani. 2002. Approximate frequency counts
over data streams. In Proceedings of the 28th international conference on Very Large
Data Bases. VLDB Endowment, 346–357.

[48] Chandler May, Kevin Duh, Benjamin Van Durme, and Ashwin Lall. 2017.
Streaming Word Embeddings with the Space-Saving Algorithm. arXiv preprint
arXiv:1704.07463 (2017).

[49] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kan-
ishka Rao, David Rybach, Ouais Alsharif, Haşim Sak, Alexander Gruenstein,
Françoise Beaufays, et al. 2016. Personalized speech recognition on mobile de-
vices. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE, 5955–5959.

[50] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1222–1230.

[51] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and explanations
in databases. In VLDB.

[52] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. E�cient compu-
tation of frequent and top-k elements in data streams. In International Conference
on Database Theory. Springer, 398–412.

[53] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[54] Katsiaryna Mirylenka, Graham Cormode, Themis Palpanas, and Divesh Srivas-
tava. 2015. Conditional heavy hitters: detecting interesting correlations in data
streams. The VLDB Journal 24, 3 (2015), 395–414.

[55] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i
trust you?: Explaining the predictions of any classi�er. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1135–1144.

[56] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster
and more accurate stream processing. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 1449–1463.

[57] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. 2004. Reversible
sketches for e�cient and accurate change detection over network data streams.

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

769

In Proceedings of the 4th ACM SIGCOMM conference on Internet measurement.
ACM, 207–212.

[58] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 2011. Pe-
gasos: Primal estimated sub-gradient solver for svm. Mathematical programming
127, 1 (2011), 3–30.

[59] Ohad Shamir. 2016. Without-Replacement Sampling for Stochastic Gra-
dient Methods. In Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett (Eds.). Curran Associates, Inc., 46–54. http://papers.nips.cc/paper/
6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf

[60] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander L Strehl,
Alex J Smola, and SVN Vishwanathan. 2009. Hash kernels. In International
Conference on Arti�cial Intelligence and Statistics. 496–503.

[61] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.
In Proceedings of the 2nd international conference on Embedded networked sensor
systems. ACM, 239–249.

[62] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated Multi-Task Learning. In Advances in Neural Information Processing
Systems. 4427–4437.

[63] J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, and K.R.
Koedinger. 2010. Algebra I 2008-2009. Challenge data set from KDD
Cup 2010 Educational Data Mining Challenge. (2010). Find it at
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[64] Jacob Steinhardt and John Duchi. 2015. Minimax rates for memory-bounded
sparse linear regression. In Conference on Learning Theory. 1564–1587.

[65] Peter D Turney and Patrick Pantel. 2010. From frequency to meaning: Vector
space models of semantics. Journal of arti�cial intelligence research 37 (2010),
141–188.

[66] CAIDA UCSD. 2008. The CAIDA UCSD Anonymized
Passive OC48 Internet Traces Dataset. (2008).
http://www.caida.org/data/passive/passive_oc48_dataset.xml.

[67] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2010. E�Cuts:
optimizing packet classi�cation for memory and throughput. In ACM SIGCOMM
Computer Communication Review, Vol. 40. ACM, 207–218.

[68] Shoba Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. 2005.
New streaming algorithms for fast detection of superspreaders. Department of
Electrical and Computing Engineering (2005), 6.

[69] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th Annual International Conference on Machine Learning. ACM, 1113–
1120.

[70] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away outliers in
aggregate queries. Proceedings of the VLDB Endowment 6, 8 (2013), 553–564.

[71] Lin Xiao. 2010. Dual averaging methods for regularized stochastic learning
and online optimization. Journal of Machine Learning Research 11, Oct (2010),
2543–2596.

[72] Tianbao Yang, Lijun Zhang, Rong Jin, and Shenghuo Zhu. 2015. Theory of dual-
sparse regularized randomized reduction. In International Conference on Machine
Learning. 305–314.

[73] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G McKenzie,
Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei,
et al. 2010. Feature engineering and classi�er ensemble for KDD cup 2010. In
KDD Cup.

[74] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software De�ned Tra�c Measure-
ment with OpenSketch.. In NSDI, Vol. 13. 29–42.

[75] Tong Yu, Yong Zhuang, Ole J Mengshoel, and Osman Yagan. 2016. Hybridizing
personal and impersonal machine learning models for activity recognition on
mobile devices.

[76] Ce Zhang, Arun Kumar, and Christopher Ré. 2016. Materialization optimizations
for feature selection workloads. ACM Transactions on Database Systems (TODS)
41, 1 (2016), 2.

[77] Lijun Zhang, MehrdadMahdavi, Rong Jin, Tianbao Yang, and Shenghuo Zhu. 2014.
Random projections for classi�cation: A recovery approach. IEEE Transactions
on Information Theory 60, 11 (2014), 7300–7316.

[78] Martin Zinkevich. 2003. Online convex programming and generalized in�ni-
tesimal gradient ascent. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03). 928–936.

[79] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67, 2 (2005), 301–320.

A PROOFS

A.1 Proof of Theorem 1

We will use the duals of L(w) and L̂(z) to show that z⇤ is close
to Rw⇤, following the analysis of Zhang et al. [77] and Yang et al.

[72]. De�ne x̃i = �ixi , i.e. the ith data point xi times its label. Let

X̃ 2 Rd⇥T be the matrix of data points such that the ith column is

x̃i . LetG = X̃T X̃ be the Gram matrix corresponding to the original

data points. Forming the Lagrangian andminimizing with respect to

the primal variables gives us the following dual objective function

in terms of the dual variable � 2 RT ,

� (�) =
1

T

X

i

`
⇤ (�i) +

1

2�T 2
�TG� ,

where `⇤ (�i) is the Fenchel conjugate of `(zi). Note that if �⇤ is
the minimizer of � (�), then the minimizer w⇤ of L(w) is given by

w⇤ = � 1
�T

X̃�⇤.

We similarly de�ne G = X̃T RT RX̃ as the Gram matrix corre-

sponding to the projected data points. We can write down the dual

L̂(�) of the projected primal objective function �̂ (w) in terms of

the dual variable �̂ as follows:

�̂ (�̂) =
1

T

X

i

`
⇤ (�̂i) +

1

2�T 2
�̂T Ĝ�̂ .

As before, if �̂⇤ is the minimizer of �̂ (�̂), then the minimizer z⇤ of
L̂(z) is given by ŵ⇤ = � 1

�T
RX̃ �̂⇤.

We will� rst express the distance between z⇤ and Rw⇤ in terms

of the distance between the dual variables. We can write:

kz⇤ � Rw⇤k22 =
1

�2T 2
kRX̃ �̂⇤ � RX̃�⇤k22

=

1

�2T 2
(�̂⇤ � �⇤)T Ĝ (�̂⇤ � �⇤). (2)

Hence, our goal will be to upper bound (�̂⇤��⇤)T Ĝ (�̂⇤��⇤). De�ne
∆ =

1
�T

(Ĝ �G)�⇤. We will show that (�̂⇤ � �⇤)T Ĝ (�̂⇤ � �⇤) can be

upper bounded in terms of ∆ as follows.

L����2.

1

�2T 2
(�̂⇤ � �⇤)T Ĝ (�̂⇤ � �⇤) 

2�

�
k∆k21

Due to space constraints, we omit the proof of Lemma 2 here,

deferring it to the full version of the paper. The proof relies on the

convexity and strong-smoothness of the loss function `.

We now bound k∆k1. The result relies on the JL property of the

projection matrix R (recall De�nition 1). If R is a JL matrix with

error � and failure probability �/d2, then it is straightforward to

verify that with failure probability � , for all coordinate basis vectors

{e1, . . . ,ed },

kRei k2 = 1 ± � , 8 i, |hRei ,Rej i| � , 8 i , j . (3)

Using this projection, we show the following bound on k∆k1:

L����3. If R satis�es condition 3, then:

k∆k1  2�� kw⇤k1,

where � = maxi kxi k1.

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

770

P����. We� rst rewrite ∆ as follows,

∆ =
1

�T
(X̃T RT RX̃ � X̃T X̃)�⇤ =

1

�T
X̃T (RT R � I)X̃�⇤

= X̃T (I � RT R)w⇤,

using the relation that w⇤ = � 1
�T

X̃�⇤. Therefore,

k∆k1  max
i
|xTi (I � R

T R)w⇤ | = max
i
|xTi w⇤ � (Rxi)

T (Rw⇤) |.

We now claim that if condition 3 is satis�ed, then for any two

vectors v1 and v2,

|vT1 v2 � (Rv1)
T (Rv2) |  2� kv1k1 kv2k1 . (4)

The proof follows from simple algebra, and is omitted from this

version for lack of space. Using this relation, it follows that,

k∆k1  max
i
|xTi w⇤ � (Rxi)

T (Rw⇤) |  2�� kw⇤k1.

⇤

We will now combine Lemma 2 and 3. By Eq. 2 and Lemma 2,

kz⇤ � Rw⇤k22 
2�

�
k∆k21.

If R is a JL matrix with error � and failure probability �/d2, then by

Lemma 3, with failure probability � ,

kz⇤ � Rw⇤k2  4��

r

�

�
kw⇤k1. (5)

By Kane and Nelson [35], the random projection matrix R satis�es

the JL property with error � and failure probability � 0/d2 for k �
C log(d/� 0)/�2, whereC is a� xed constant. Using Eq. 5, with failure

probability � 0,

kz⇤ � Rw⇤k2  4��

r

�

�
kw⇤k1. (6)

Recall that
p
sR is a Count-Sketch matrix with width C1/� and

depth s = C2 log(d/�
0)/� , where C1 and C2 are� xed constants.

Let wproj be the projection of w⇤ with the Count-Sketch matrix

R̃, hence wproj =
p
sRw⇤. Let zproj =

p
sz⇤. By Eq. 6, with failure

probability � 0,

���zproj �wproj
���2 

r

16�� 2� log(d/� 0)

�
kw⇤k1.

Let wcs be the Count-Sketch estimate of w⇤ derived from wproj,

and west be the Count-Sketch estimate of w⇤ derived from zproj.

Recall that the Count-Sketch estimate of a vector is the median of

the estimates of all the locations to which the vector hashes. As the

di�erence between the median of any two vectors is at most the

`1-norm of their di�erence,

kwest �wcsk1 
���zproj �wproj

���1 .
Therefore with failure probability � 0,

kwest �wcsk1 
���zproj �wproj

���1  ���zproj �wproj
���2


r

16�� 2� log(d/� 0)

�
kw⇤k1. (7)

We now use Lemma 1 to bound the error for Count-Sketch recovery.

Using Lemma 1 for the matrix
p
sR, with failure probability � 0,

kw⇤ �wcsk1 
p
� kw⇤k2.

Now using the triangle inequality and Eq. 7, with failure probability

2� 0 (due to a union bound),

kw⇤ �westk1  kw⇤ �westk1 + kwest �wcsk1


p
� kw⇤k2 +

r

16�� 2� log(d/� 0)

�
kw⇤k1

 *,
p
� +

r

16�� 2� log(d/� 0)

�
+- kw⇤k1.

Therefore choosing � = min{1,�/(16�� 2 log(d/� 0))}�2/4, with fail-

ure probability 2� 0,

kw⇤ �westk1  � kw⇤k1.

Choosing � 0 = �/2, we have that for� xed constants C1,C2,

k = (C1/�
4) log3 (d/�)max{1,�2� 4/�2},

s = (C2/�
2) log2 (d/�)max{1,�� 2/�},

kw⇤ �westk1  � kw⇤k1, with probability 1 � � .

A.2 Proof of Theorem 2

Let ft (z) be the loss function corresponding to the data point chosen

in the t th time step:

ft (z) = `
⇣

�t z
T Rxt

⌘

+

�

2
kzk22 . (8)

Let zt be the weight vector at the tth time step for online updates

on the projected problem. Let z̄ = 1
T

PT
i=1 ẑi be the average of the

weight vectors for all the T time steps. We claim that z̄ is close

to z⇤, the optimizer of L̂(z), using Corollary 1 of Shamir [59]. In

order to apply the result we� rst need to de�ne a few parameters of

the function L̂(z). Note that L̂(z) is �-strongly convex (since L̂(z) �
�
2 kzk

2
2 is convex). Moreover, since the derivative of ` is bounded

above by H , ` is H -Lipschitz. We assume kRxi k2  B, kz⇤k2  D

andmaxt ��rft (w)��2  G . We will bound B,D andG in the end. We

now apply Corollary 1 of Shamir [59], with the notation adapted

for our setting.

L����4. [59] Consider any loss function L̂(z) =
PT
i=1 ft (z),

where ft (z) is de�ned in Eq. 8. For any H -Lipchitz `i , kRxi k2  B,

kzt k2  D, and some� xed constant C , over the randomness in the

order in which the samples are received:

E


1

T

T
X

t=1

L̂(zt) � L̂(z⇤)
�


C (RT /
p
T + BDH)
p
T

,

where RT is the regret of online gradient descent with respect to the

batch optimizer z⇤, de�ned as RT =
PT
t=1[ft (ẑ) � ft (z⇤)].

By standard regret bounds on online gradient descent (see Zinke-

vich [78]), RT  GD
p
T . Therefore,

E


1

T

T
X

t=1

L̂(zt) � L̂(z⇤)
�


CD (G + BH)
p
T

.

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

771

Note that by Jensen’s inequality,

E[L̂(z)]  E

1

T

T
X

t=1

L̂(zt)
�

=) E

L̂(z̄) � L̂(z⇤)

�


CD (G + BH)
p
T

. (9)

Wewill now bound the expected distance between z̄ and z⇤ using Eq.
9 and the strong convexity of L̂(w). As L̂(w) is �-strongly convex

and rL̂(z⇤) = 0, we can write:

L̂(z⇤) + (�/2)kz̄ � z⇤k22  L̂(z̄)

=) kz̄ � z⇤k22  (�/2)[L̂(z̄) � L̂(z⇤)]

=) E

kz̄ � z⇤k22

�
 (2/�)


E[L̂(z̄)] � L̂(z⇤)

�
.

Using Eq. 9 and then Jensen’s inequality,

E


kz̄ � z⇤k2

�


2CD (G + BH)

�
p
T

. (10)

Let z̄proj =
p
s z̄. Let zwm be the Count-Sketch estimate of w⇤

derived from z̄proj. Recall from the proof of Theorem 1 that zproj =p
sz andwest is the Count-Sketch estimate ofw⇤ derived from zproj.

As in the proof of Theorem 1, we note that the di�erence between

the medians of any two vectors is at most the `1 norm of the

di�erence of the vectors, and hence we can write,

kwest � zwmk1 
���zproj � z̄proj���1  ���zproj � z̄proj���2
=

p
skz⇤ � z̄k2.

Therefore, using Eq. 10,

E[kwest � zwmk1] 
2CD (G + BH)

�

r

s

T
. (11)

By the triangle inequality,

kw⇤ � zwmk1  kw⇤ �westk1 + kwest � zwmk1

=) E

kw⇤ � zwmk1

�
 E


kw⇤ �westk1

�
+ E


kwest � zwmk1

�
.

By Theorem 1, for� xed constants C1,C2 and

k = (C1/�
4) log3 (d/�)max{1,�2� 4/�2},

s = (C2/�
2) log2 (d/�)max{1,�� 2/�},

kw⇤ �westk1  � kw⇤k1 with probability 1�� . Therefore, for� xed

constants C 01 and C
0
2 and probability 1 � � ,

E


kw⇤ � zwmk1

�
 �

2
kw⇤k1

+

s

4C 02 (GD + BDH)2 log2 (d/�)max{1,LR2/�}

�2�2T
.

Therefore, for

T � (C 03/(�
4�2)) (D/ kw⇤k1)2 (G + BH)2 log2 (d/�)max{1,LR2/�},

E


kw⇤ � zwmk1

�


�

2
kw⇤k1 +

�

2
kw⇤k2  � kw⇤k1 .

We will now bound B,D and G, starting with B. Note that R is a JL

matrix which satis�es condition 3 with � = � . Using Eq. 4 and the

fact that kxi k2  1,

kRxi k2 
q

1 + �� 2 =) B  1 +
p
��  1 + �� ,

where for the last bound we use the setting of

� = min{1,�/(4�� 2 log(d/� 0))}�2/4

from the proof of Theorem 1. We next bound kz⇤k2. Using Eq. 4,

kz⇤ � Rw⇤k2  2R�

q

�/� kw⇤k1

=) kz⇤k2  kRw⇤k2 + 2R�
q

�/� kw⇤k1 .

By Eq. 4, kRw⇤k2 
q

kw⇤k22 + � kw⇤k
2
1  kw⇤k2 +

p
� kw⇤k1.

Therefore,

kz⇤k2  kw⇤k2 +
p
� kw⇤k1 + 2R�

q

�/� kw⇤k1

= kw⇤k2 +
✓p

� + 2R�

q

�/�

◆

kw⇤k1 .

For our choice of � ,

kz⇤k2  kw⇤k2 + � kw⇤k1 =) D  D2 + �D1.

This implies that the (D/ kw⇤k1) term in our bound for T can be

upper bounded by 2D2/ kw⇤k1, yielding the bound on T stated in

Theorem 2. Finally, we need to upper bound G = maxt ��rft (w)��2.
We do this as follows:

rft (z) = `0(�t zTt Rxt)Axt + �zt
=) ��rft (z)��2  |`0(�t zTt Rx) |kRx k2 + �kzt k2

 H (1 + ��) + �D.

B BASELINE ALGORITHMS

Here we give pseudocode for the simple truncation and probabilistic

truncation baselines evaluated in our experiments.

Algorithm 3: Simple Truncation

input: loss function `, budget K , `2-regularization
parameter �, learning rate schedule �t

initialization
S {} . Empty heap

function Update(x, �)
�

P

i 2S S[i] · xi . Make prediction
S (1 � ��t)S � �t�xir`(��)
Truncate S to top-K entries by magnitude
t t + 1

Algorithm 4: Probabilistic Truncation

initialization
S0 {} . Empty heap
W {} . Reservoir weights

function Update(x, �)
�

P

i 2St St [i] · xi . Make prediction
St+1 (1 � ��t)St � �t�xr`(��)
for i 2 St+1 do

if i < St then
r ⇠ U (0,1)

W [i] r1/ |St+1[i] | . New reservoir weight
else

W [i] W [i] |St [i]/St+1[i] | . Update weight
Truncate St+1 to top-K entries by reservoir weight
t t + 1

Research 8: Spatial Data & Streams SIGMOD’18, June 10-15, 2018, Houston, TX, USA

772

