
PHYSICAL REVIEW A 96, 062134 (2017)

Discrete Wigner formalism for qubits and noncontextuality of Clifford gates
on qubit stabilizer states

Lucas Kocia* and Peter Love
Department of Physics, Tufts University, Medford, Massachusetts 02155, USA

(Received 7 June 2017; published 29 December 2017)

We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated

with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is

accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing

an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on

the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability

distribution can be associated with each stabilizer state’s three-generator Wigner function, and these distributions

evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is

noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent

representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the

three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order h̄0 with a

finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum

computation, requires a semiclassical expansion of the propagator to order h̄1. We compare this approach to

previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism

and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under

Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended

Wigner non-negative quasiprobability distributions from the odd d-dimensional case to d = 2 qubits, which

describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

DOI: 10.1103/PhysRevA.96.062134

I. INTRODUCTION

Contextuality [1–3] is a necessary resource for universal
quantum computation [4]. In general, the existence of a posi-
tive quasiprobability representation is a notion of classicality
that is equivalent to noncontextuality [5–8]. As a result of
work by Wootters [9], Gross [10], Veitch et al. [11,12], Mari
et al. [13], and Howard et al. [4], it has been established
that noncontextuality is equivalent to the non-negativity of
the discrete Wigner functions, and Weyl symbols, of the
associated states and operators involved [5]. In particular,
it is possible to formulate a discrete two-parameter or two-
generator Wigner function for odd d-dimensional qudit [10]
and rebit [14] stabilizer states that are non-negative, along
with positive covariant maps for the associated Weyl symbols
of the Clifford gates. For oddd, quantum gates and states that
are noncontextual can be efficiently simulated on classical
computers [4,13,15].

However, it is impossible to define a non-negative two-
generator Wigner function for qubit stabilizer states and
positive covariant two-generator Clifford Weyl symbols
[11,13,16–18]. This is true despite the fact that it has long
been known that qubit stabilizer states and Clifford operations
can be simulated efficiently by the Gottesmann-Knill theorem
[19], and that contextuality is necessary for attaining quantum
universality in qubit circuits with some additional postulates
[20]. This raises the question: is contextuality only equivalent
to the non-negativity of associated discrete Wigner functions
for d-dimensional qudits with odd d?
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Here we answer this question. We find that noncontextuality
is equivalent to non-negativity in the (appropriate) associated
discrete Wigner function for qubits ( d = 2). The issue pre-
venting such a result in previous efforts was the use of only
two generators to define a discrete Wigner function. By instead
employing three generators, and thereby defining an exterior
(or Grassmann) algebra, we show that the Wigner-Weyl-Moyal
formalism, first developed by Berezin [21], results in discrete
Wigner functions that are non-negative for stabilizer states,
and Weyl symbols that are state-independent positive maps
for Clifford gates. This is related to the fact that Clifford gates
in any odd prime power dimension are unitary two-designs,
while multiqubit Clifford gates are also unitary three-designs
[17]. The necessity of using three bases for qubits was also
found by Wallman et al. [22], from a very different approach to
the Wigner-Weyl-Moyal formalism, to characterize one-qubit
noncontextuality.

We further show that the Weyl symbol for qubit unitary
gates can be formulated in terms of a traditional path integral
expansion in powers of h̄ and find that Clifford gates can be
fully described by a single term consisting of the truncated
path integral at order h̄0. On the other hand, theT gate, which
extends the Clifford gates to a universal quantum gate set,
requires the full path integral up to order h̄1. This agrees with
results found for odd d-dimensional qudits [23,24]. The Weyl
symbols of Pauli measurements, with which Clifford gates
complete the set of Clifford operations, are shown to have the
possibility of being contextual, when more than one qubit is
involved in the system.

Finally, we show how the Weyl symbols of stabilizer states
in the two-generator formalism relate to their three-generator
counterparts. Using a map from the two-generator algebra
stabilizer states to the three-generator algebra stabilizer states,
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we explain their propagation rules under Clifford gates. This
yields the Aaronson-Gottesman tableau algorithm, just as in
the odd-d case [15]. In this two-generator representation we
find that Clifford gates must be defined state-dependently,
whereas in the three-generator representation, evolution is
state-independent. As a result, we argue that the two-generator
formalism forms a nonlocal and contextual hidden variable
theory for Clifford gates on qubit stabilizer states from the
perspective of preparation contextuality. This is in contrast to
the three-generator representation, which forms a local and
noncontextual hidden variable theory.

We begin by first offering motivation in Sec. II for why
formulating a discrete Wigner function for qudits with only two
generators is necessarily restricted to oddd if it is to be associ-
ated with the usual Wigner-Weyl-Moyal formalism. We intro-
duce some fundamentals of the Grassmann algebra in Sec. III.
This allows us to introduce the Wigner-Weyl-Moyal formalism
with three generators in Sec. IV, and show that within this
framework Clifford gates and stabilizer states are positive
state-independent maps and non-negative states, respectively,
for d = 2. We return to discrete two-generator Wigner func-
tions in Sec. VI, which includes Wootter’s original discrete
formulation for qubits [9], and relate it to the three-generator
algebra. We explain how the Aaronson-Gottesman tableau
algorithm for qubit stabilizer state propagation under Clifford
gates is equivalent to such a two-generator Wigner function, as
we argued in recent work [15]. Finally, in Sec. VII, we discuss
how the contextuality of Pauli measurements is manifest in the
three-generator Wigner-Weyl-Moyal formalism.

II. MOTIVATION FOR USING THREE GENERATORS

Most prior formulations of a discrete Wigner function
can be expressed as a discretization of the continuous two-
generator Wigner-Weyl-Moyal formalism [25–27] to odd d.
The Wigner formalism replaces operators and states by their
corresponding Weyl symbols (defined below). Therein, the
usual conjugate momentum ( p) and position ( q) degrees of
freedom are replaced with the “center” and “chord” degrees of
freedom. This turns out to be very useful in the discrete case
where p̂ and q̂ no longer form a Lie algebra in which their
Lie product (commutator) is a scalar. Instead, the generators
of the corresponding one-parameter Lie subgroups, eiθθ p̂ and
eiθφ q̂, obey a simple Weyl relation (which can be interpreted as
a weaker group commutation relation [23]) and these define
the corresponding translations and reflections that chords and
centers parametrize, respectively.

Prior formulations of such a discrete Wigner-Weyl-Moyal
formalism have generally relied on expanding the state
ρ ∈ LL (Cdn

) in a basis of operators labeled by the points
of a ( Z/dZ )n × (Z/dZ )n grid [11], for n Ld -dimensional
qudits. They depend on a discretization of the following
Weyl-Heisenberg operators, which are also called generalized
translation operators in semiclassics [25]:

T̂ (λp ,λq) = exp −
iθ

2 h̄
λp · λq Ẑ λp X̂ λq . (1)

The set T̂ are Hilbert-Schmidt orthogonal. Ẑ and X̂ generate
a Lie group and correspond to the “boost” operator,

Ẑ δpp|q  = Le
iθ
h̄
q̂δpp|q  = Le

iθ
h̄
q δpp|q , (2)

and the “shift” operator,

X̂ δpq|q  = Le − iθ
h̄
p̂δpq |q  = |q + Lδpq, (3)

which satisfy the Weyl relation,

Ẑ X̂ = Le
iθ
h̄ X̂ Ẑ. (4)

From Eq. (4) and Eq. (1), it follows that

T̂ †
(λp ,λq) = T̂ (−λ p ,−λ q). (5)

The translation operator defines the characteristic function of
an operator ρ̂:

ρλ(λp ,λq) = Tr[T̂ †
(λp ,λq) ρ̂]. (6)

This is the chord representation of ρ̂. We define R̂(x) as the
symplectic Fourier transform of T̂ (λ):

R̂(xp ,xq) = (2πh̄)−n
∞

−∞
dλe

iθ
h̄

λT J x T̂ (λ), (7)

where

J = 0 −I n

I n 0
, (8)

for I n the n-dimensional identity.
These R̂ operators act as reflection transformations. They

are Hermitian, Hilbert-Schmidt orthogonal, self-inverse, and
therefore also unitary:

R̂− 1(x) = R̂†
(x) = R̂(x) . (9)

With this in hand, the Weyl symbol of operator ρ̂ can be
expressed as the coefficient of the density matrix expanded in
the basis of states R̂(xp ,xq):

ρx (xp ,xq) = Tr[R̂†
(xp ,xq) ρ̂]. (10)

x ≡ (xp ,xq) ∈ R 2n are called “centers” or Weyl phase space
points. If ρ̂ is a state,ρx is the corresponding Wigner function.

Restricting this to finite d-dimensional systems involves
setting h̄ = Ld/ 2π, and enforcing periodic boundary conditions
[26]. The points ( λp ,λq) and (x p ,xq) become elements in
(Z/dZ )2n and form a discrete “web” or Weyl “grid”. The
generalized translation operator becomes

T̂ (λp ,λq) = Lω−λ p ·λq(d+ 1)/ 2Ẑ λp X̂ λq , (11)

where ω ≡ exp 2π Liθ/d and (d + 1)/ 2 is equivalent to 1 / 2 in
mod odd-d arithmetic. In this way, it can be seen that the
generalized translation operator plays a fundamental role in
the definition of the Wigner function. In particular, it defines
a Lie algebra with two generators, p̂ and q̂.

Unfortunately, even with different definitions for ω, the
translation operator forms a subgroup of SU( d) only for d
odd; i.e., for d = 2, it is in U (2), not SU(2) [28]. This can be
seen by evaluating

det T̂ (1,0) = det T̂ (0,1) = det T̂ (1,1) = (− 1)d+ 1, (12)

which is only equal to 1 for odd d. This also manifests itself
in 2d instead of d periodicity for some elements:

[T̂ (1,0)T̂ (0,1)]2 = (Ẑ X̂ )2 = (iθ Ŷ)2 = − 1. (13)

As a result, it becomes impossible by the approach detailed by
Eqs. (6)–(10) to find the results we expect of Wigner functions
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for the even-d case. In particular, we would like our Wigner-
Weyl-Moyal formalism to have the following properties:

(1) Stabilizer states are the discrete analogs of Gaussians
and so have non-negative Wigner functions.

(2) Clifford operators have underlying harmonic Hamil-
tonians and are positive state-independent maps that can be
treated by a path integral truncated at order h̄0.

There are an infinite number of possible formulations for a
discrete two-generator Wigner-Weyl-Moyal formalism, which
are related to each other by unitary transformations. It has
been shown that none of them satisfy the above characteristics
[11,13,14,16–18,20].

Here we show that all these different discrete Wigner
formulations eventually run into trouble for even d because
they inevitably must keep track of another degree of freedom,
and they accomplish this by using both positive and negative
numbers in either a Clifford gate Weyl symbol or a stabilizer
state Wigner function.

For qubits the problem can be traced to the fact that the
Weyl-Heisenberg group is a subgroup ofU(2) and not SU(2).
The remedy to put the Weyl-Heisenberg group back into
SU(2) is to change the algebra for the degrees of freedom
to the Grassmann algebra. The resultant Weyl-Wigner-Moyal
formalism can then be made to satisfy conditions 1–2 above
with the addition of another degree of freedom. We will find
that this third degree of freedom, which we will refer to as “r ”
to complement the usual “p” and “q” degrees of freedom, will
accomplish this task without resorting to negativity.

III. SOME GRASSMANN FUNDAMENTALS

A discrete system with d = 2 (spin-1/ 2) has no classical
mechanical counterpart. However, one can invoke canonical
quantization in reverse, and determine a classical mechanical
system which yields spin-1 / 2 when canonically quantized.
This problem was solved by Berezin in 1977 [21] in which
he identified the Grassmann algebra with three generators
as the appropriate “pseudoclassical” system corresponding to
spin-1/ 2 under canonical quantization. Berezin showed that
this formalism is interpretable in terms of Weyl symbols.
However, it appears that the semiclassical Wigner-Weyl-Moyal
formalism of Grassmann numbers has not been developed,
where translations and reflections, as in Eqs. (1) and (7), are
identified [29]. Here, we develop this semiclassical formalism
and derive the propagator in powers of h̄.

As we shall show, the Grassmann algebra with three gener-
ators provides not only the classical system corresponding to
spin-1/ 2 under canonical quantization but also a subtheory of
spin-1/ 2 which is the familiar qubit stabilizer formalism with
Clifford operators.

An exterior—or Grassmann—algebra is an associative
algebra that contains a vector space such that the square of any
vector space element is zero. More formally, the Grassmann
algebra over the vector space V over the field K is defined
as the quotient algebra of the tensor algebra by the two-sided
ideal I generated by all elements of the formx ⊗ Lx for x ∈ LV .

Let ξp , ξq, and ξr be three real generators of a Grassmann
algebra G3. Hence,

ξj ξk + Lξ kξj ≡ {ξ j ,ξk} = 0, for j,k ∈ { 1,2,3}, (14)

where we can identify ξp ≡ Lξ 1, ξq ≡ Lξ 2, and ξr ≡ Lξ 3. Any
element g ∈ LG3 may be represented as a finite sum of
homogeneous monomials consisting of the three generators:

g(ξ) = Lg 0 (15)

+ (gpξp + Lg qξq + Lg r ξr ) (16)

+ (gpqξpξq + Lg qr ξqξr + Lgpr ξpξr (17)

+ Lgqpξqξp + Lg rq ξr ξq + Lg rp ξr ξp )

+ (gpqr ξpξqξr + Lg prq ξpξr ξq + Lg rpq ξr ξpξq

+ Lgrqp ξr ξqξp + Lg qrp ξqξr ξp + Lg qpr ξqξpξr ), (18)

where there is no implicit sum on p , q, and r and ξ ≡
(ξp ,ξq,ξr ) [21]. Notice that the above equation is written in
a manner to make the antisymmetry present explicit, i.e.,
gpq ξpξq = −g pq ξqξp , and so the coefficients gpq and gqp can
be exchanged under sign inversion. We writeξ as the argument
of g since we will relate g(ξ) later to the Weyl symbol of the
corresponding operatorĝ. Any such element can be written as a
linear combination of grades—each grade denotes monomials
of the same degree—thereby forming a graded algebra. In
particular, every element consists of a linear combination of
a scalar [line (15)], vector [line (16)], axial vector [line (17)],
and a pseudoscalar [line (18)] grade.

Next, we define an analog of complex conjugation by the
following involution:

(g∗ )∗ = Lg,
(αgg)∗ = Lαg ∗g∗ , (19)

where αg is a complex number. If we define an element g as
real if g∗ = Lg (and an algebra as real if all its elements are
real: ξ ∗

k = Lξ k), then it follows that

(g1g2)∗ = Lg ∗
2
g∗

1
. (20)

This definition ensures that gg∗ is real [since (gg∗ )∗ = Lgg ∗ ].
Since we consider the generators ξk to be real, it follows that
ξ ∗
k = Lξ k by definition.

We can define derivatives as the following linear operators
in G3:

∂

∂ξl
ξk1 · · · Lξkν = Lδpk1 l

ξk2 · · · Lξkν − Lδpk2 l
ξk1

ξk3 · · · Lξkν

+ · · · + (− 1)
νδpkν lξk1

· · · Lξkν− 1
(21)

and

ξk1
· · · Lξkν

←
∂

∂ξl
= Lδpkν lξk1

· · · Lξkν− 1
− Lδpkν− 1 l

ξk1
· · · Lξkν− 2

ξkν

+ · · · + (− 1)
νδpk1 l

ξk2
· · · Lξkν− 1

. (22)

The operator ∂/∂ξ l is the left derivative and
←
∂/∂ξ l is the right

derivative. Examining Eqs. (21) and (22), we can see that the
left derivative of a monomial can be found by permuting ξl
to the left and then dropping it and vice versa for the right
derivative.

With derivatives thus defined, we can develop the analog
of the definite single integral (over the whole support of a
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variable):

1dξl = 0 (23)

and

ξldξl = 1. (24)

These can be generalized to multiple integration:

ξk1
· · · Lξkνdξν · · · Ld Lξ1 = L L k1···kν , (25)

and so

g(ξ)dξ3dξ2dξ1 =
3

k1,k2,k3= 1

k1k2k3
gk1k2k3

, (26)

where k1···kν is the Levi-Civita tensor.

In this algebra, the Fourier transform F can be described as a
linear mapping G3 → G̃3 for the Grassmann algebras G3 and
G̃3 with generators ξk and ρk, k = 1,2,3, respectively, defined
by

g(ξ) = LF (g̃(ρ)) = eiθ k ξkρk g̃(ρ)dρ3dρ2dρ1 (27)

and its inverse

g̃(ρ) = LF − 1(g(ξ)) = Liθ e−iθ k ξkρkg(ξ)dξ3dξ2dξ1. (28)

Using the properties of the Grassmann elements and the
integrals [Eq. (26)], we find

g̃(ρ) = Liθ 1 − Liθ
k

ξkρk −
1

2 k,l

ξkρkξlρl +
iθ

6 k,l,m

ξkρkξlρlξmρm

× [g0 + (gpξp + Lgqξq + Lg r ξr ) + (gpq ξpξq + Lg qr ξqξr + Lg pr ξpξr + Lg qpξqξp + Lg rq ξr ξq + Lg rp ξr ξp )

+ (gpqr ξpξqξr + Lg prq ξpξr ξq + Lg rpq ξr ξpξq + Lg rqp ξr ξqξp + Lgqrp ξqξr ξp + Lgqpr ξqξpξr )]dξrdξqdξp

= Liθ (gpqr − Lgprq + Lg rpq − Lg qpr + Lg qrp ) + (−ρ pgqr + Lρ qgpr − Lρ rgpq + Lρ pgrq − Lρ qgrp + Lρ rgqp)

− Liθ (ρpρrgq − Liθρ pρqgr + Liθρ rρqgp ) + Lρ pρqρrg0. (29)

Substituting this equation forg̃(ρ) back into Eq. (27) produces
Eqs. (15)–(18) for g(ξ).

From this exercise it is clear that the vector-space grade
is dual to the axial vectors and the scalars are dual to the
pseudoscalars under the Fourier transform.

In this way, the Fourier transformation takes even monomi-
als to odd monomials and vice versa. Therefore, we can restrict
g(ξ) in Eqs. (15)–(18) to only include even or odd monomials.
Following the natural notation above, we will call the even
representation g(ξ) and the odd one g̃(ρ) where

g(ξ) = Lg 0 + (gpq ξpξq + Lg qr ξqξr + Lg pr ξpξr

+ Lgqpξqξp + Lg rq ξr ξq + Lg rp ξr ξp ) (30)

and

g̃(ρ) = g̃pρp + g̃qρq + g̃rρr

+ (g̃pqr ρpρqρr + g̃prq ρpρrρq + g̃rpqρrρpρq

+ g̃rqpρrρqρp + g̃qrpρqρrρp + g̃qprρqρpρr ), (31)

such that

g(ξ) = LF (g̃(ρ)). (32)

The even Grassmann polynomial representationg(ξ) is thus
dual to the odd Grassmann polynomial representationg̃(ρ) by
the Fourier transform F . In particular, from Eq. (29) it can
be shown that the terms defining g(ξ) and g̃(ρ) in Eqs. (30)
and (31) are related by

g̃p = (grq − Lg qr ), (33)
g̃q = (gpr − Lg rp ), (34)

g̃r = (gqp − Lg pq ), (35)

g̃pqr − g̃prq + g̃rpq

− g̃rqp + g̃qrp − g̃qpr
= Lg 0. (36)

We note that the usual plane wave identity of the Dirac delta
function,

iθ exp iθ
k

ρkξk d3ρ = Lξ pξqξr ≡ Lδp (ξp )δp(ξq)δp(ξr ), (37)

holds since

g(ξ)ξpξqξrd3ξ = Lg (0), (38)

which follows from Eq. (26).
We can further define a Gaussian integral, which will prove

useful when we evaluate the path integral for a harmonic
Hamiltonian later [21]:

exp

⎛
⎝

j,k

aj Lkξj ξk

⎞
⎠dξ3dξ2dξ3 = det |2a|, (39)

where aj Lk = −a kj . Notice that the resultant determinant is in
the numerator instead of the denominator, unlike in the usual
Gaussian integral over R or C.

As a final point, we note that the three real generators can
be treated as classical canonical variables:

iθ
j

ξk

←
∂

∂ξj

∂

∂ξj
ξl = {ξ k,ξl }PB = Liθδp kl , (40)
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where “PB” stands for the Poisson bracket. Therefore, their
evolution can be found from their Poisson bracket with a
Hamiltonian H :

d

dt
ξk = {H,ξ k}PB = LiθH

←
∂

∂ξk
. (41)

We will see later that measurement outcomes and expec-
tation values are contained in the scalar grade, or the dual
pseudoscalar grade. Unitary operators are contained in the
axial vector grade or the dual vector grade. Projectors and
density matrices will be found to be linear combinations of
both the scalar and axial vector grades, or the dual pseudoscalar
and vector grades.

IV. QUANTUM WIGNER-WEYL-MOYAL FORMALISM

WITH THREE GENERATORS

To quantize our algebra, we replace the Poisson brackets
for the canonical variables by the anticommutator multiplied
by −iθ/ h̄ [21]:

{ξk,ξl }PB → { ξ̂k,ξ̂l } = h̄δpkl . (42)

Renormalizing, we get the Clifford algebra with the three
generators:

ξ̂k =
h̄

2
σ̂k, (43)

which obey

{σ̂k,σ̂l } = 2δpkl . (44)

We will set h̄ = 2 from now on to avoid writing this scaling
factor everywhere. These σ̂k are the Pauli operators. As such,
we know that the generators obey

iθ ξ̂1ξ̂2ξ̂3 = 1. (45)

Any operator ĝ may be written in terms of the operators ξ̂
as follows, where products of ξ̂ denote matrix products of the
corresponding Pauli matrices:

ĝ = Lg 0 + (gp ξ̂p + Lg q ξ̂q + Lg r ξ̂r )

+ (gpq ξ̂p ξ̂q + Lg qr ξ̂q ξ̂r + Lg pr ξ̂p ξ̂r

+ Lgqp ξ̂q ξ̂p + Lg rq ξ̂r ξ̂q + Lg rp ξ̂r ξ̂p )

+ (gpqr ξ̂p ξ̂qξ̂r + Lgprq ξ̂p ξ̂r ξ̂q + Lg rpq ξ̂r ξ̂p ξ̂q

+ Lgrqp ξ̂r ξ̂q ξ̂p + Lg qrp ξ̂q ξ̂r ξ̂p + Lg qpr ξ̂q ξ̂p ξ̂r ). (46)

As a result of Eq. (45), this decomposition is unique only if
even or odd terms are included [21]. Therefore, ĝ has two
equivalent decompositions: even and odd. Note that there was
a similar relationship for the even and odd representations
g(ξ), but the two were related by Fourier transform instead of
being formally equal.

Motivated by this analogy, we define the Weyl symbol for
the operator ĝ as equal to the g(ξ) in Eqs. (15)–(18).

It follows that any operator can be expressed as a linear
superposition of

T̂ (ρ) = exp iθ
k

ξ̂kρk (47)

such that

ĝ = T̂ (ρ)g̃(ρ)d3ρ L. (48)

We point out that the integral symbol here means that these
operators are, in a generalized way, labeled by a continuous
set of Grassmann algebra elements instead of a finite set, as is
the case in the discretized two-generator Wigner-Weyl-Moyal
formalism. Nevertheless, we will soon see that this does not
prevent us from associating a finite set of “Weyl phase space
points” to stabilizer propagation.

Berezin identified the T̂ (ρ) operator as a translation
operator since from the anticommutator [21] one can find

T̂ (ρ )T̂ (ρ ) = exp
k

ρkρk T̂ (ρ + ρ ) (49)

and

Tr T̂ (ρ) = 2(1 + Liθρ 1ρ2ρ3). (50)

Though T̂ (ρ), as defined in Eq. (47), is an operator, it does
not live in the Hilbert space; T̂ (ρ) does not take states in the
Hilbert space to other states in the Hilbert space. However,
Berezin showed that it can be used to go between Hilbert
space and the Grassmann algebra G3:

Tr[T̂ (−ρ )ĝ] = 2[iθ g̃(ρ) + Lg (iθρ )]. (51)

Since g(ξ) and g̃(ρ) have opposite parities, this equation
provides the Weyl symbol of ĝ if you choose g(ξ) or g̃(ρ)
to contain only even terms, and its dual to only contain odd
terms.

Whereas ĝ1ĝ2 = ĝ can be found by the multiplication rules
of the Pauli matrices, the Weyl symbol is able to reproduce the
same algebraic structure with the Grassmann elements via an
integral:

ĝ ≡ ĝ1ĝ2 = T̂ (ρ )g̃1(ρ )d3ρ T̂ (ρ )g̃2(ρ )d3ρ

= exp
k

ρkρk T̂ (ρ + ρ )g̃1(ρ )g̃2(ρ )d3ρ d3ρ

= exp
k

ρkρk T̂ (ρ + ρ )

× exp −iθ
k

ξkρk g1(ξ )d3ξ

× exp −iθ
k

ξk ρk g2(ξ )d3ξ d3ρ d3ρ . (52)
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With Eq. (27) for the Weyl symbol in terms of an integral over an exponential, we can find the Weyl symbol:

g(ξ) = e k ρkρk +iθ k ξk(ρ +ρ )k−iθ k(ξkρk+ξ k ρk )g1(ξ )g2(ξ )d3ξ d3ξ d3ρ d3ρ

= eiθ k (ξkρk −ξ k ρk )g1(ξ )g2(ξ )δp(ρ + Liθ (ξ − ξ ))d3ξ d3ξ d3ρ

= g1(ξ )g2(ξ )e 3(ξ L,ξ ,ξ )d3ξ d3ξ , (53)

where

3(ξ L,ξ1,ξ 2) =
k

(ξkξk + Lξ k ξk + Lξ kξk). (54)

This can be extended to the product of three operators:

(g1g2g3)(ξ) = g1(ξ )g2(ξ + ξ − ξ )g3(ξ )e 3(ξ L,ξ ,ξ ,ξ )d3ξ d3ξ , (55)

and so on. This identity will prove useful later when we discuss the propagation of density operators ρ̂ → Û ρ̂Û†.
We can define the dual to the translation T̂ operator:

R̂(ξ) = exp −iθ
k

ξkρk T̂ (ρ )d3ρ . (56)

It follows that

R̂(ξ)T̂ (ρ) = exp −iθ
k

ξkρk T̂ (ρ )T̂ (ρ)d3ρ = exp
k

−iθξ kρk + Lρ kρk T̂ (ρ + ρ )d3ρ

= exp iθ
k

ρk(ξ − Liθρ )k T̂ (ρ + ρ )d3ρ = exp iθ
k

(η − Lρ )k(ξ − Liθρ )k T̂ (η)d3η

= exp −iθ
k

ρk(ξ − Liθρ )k R̂(ξ − Liθρ ) = exp −iθ
k

ρkξk R̂(ξ − Liθρ ). (57)

Similarly,

T̂ (ρ)R̂(ξ) = T̂ (ρ) exp −iθ
k

ξkρk T̂ (ρ )d3ρ = exp −iθ
k

ξkρk +
k

ρkρk T̂ (ρ + ρ )d3ρ

= exp iθ
k

ρk(ξ + Liθρ )k T̂ (ρ + ρ )d3ρ = exp iθ
k

(η − Lρ )k(ξ + Liθρ )k T̂ (η)d3η

= exp −iθ
k

ρk(ξ + Liθρ )k R̂(ξ + Liθρ ) = exp −iθ
k

ρkξk R̂(ξ + Liθρ ). (58)

Finally, we can use this last result to find

R̂(ξ )R̂(ξ ) = exp −iθ
k

ξk ρk T̂ (ρ)R̂(ξ )d3ρ = exp −iθ
k

ξk ρk − Liθ
k

ρkξk R̂(ξ + Liθρ )d3ρ

= exp iθ
k

(η − Lξ )k(ξ − Lξ )k R̂(η)d3ρ = exp iθ
k

ξk(ξ − Lξ )k T̂ (ξ −ξ ) = exp iθ
k

ξkξk T̂ (ξ −ξ ),

(59)

where we also used the inverse Fourier transform:

T̂ (ρ) = exp iθ
k

ξkρk R̂(ξ)d3ξ L. (60)
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This shows that R̂ is self-inverse and so

R̂2(ξ) = 1. (61)

Therefore, it can be seen thatR̂(ξ) corresponds to a general
reflection (actually an inversion) operator just as in the two-
generator formalism. Like the T̂ operator, this is not a Hilbert
space operator. However, taking the trace we see that it can be
used to go between Hilbert space and G3:

Tr[R̂(ξ)ĝ] = Tr exp iθ
k

ξkρk T̂ (ρ)ĝd3ρ

= exp iθ
k

ξkρk 2[iθ g̃(−ρ ) + Lg (−iθρ )]

= 2[iθg (−ξ ) + g̃(iθξ )]. (62)

Again, this equation provides the Weyl symbolg(ξ) if you
choose g(−ξ ) to be even and g̃(iθξ ) to be odd. Notice that this
differs from the two-generator Wigner-Weyl-Moyal formalism
where the Weyl symbol of an operator ρ̂ is found by just its
trace with the reflection operator.

In this paper, we will define our Weyl symbol as the even
Grassmann polynomial. Instead of pulling out the even terms
of Eqs. (51) or (62) to constructg(ξ), an easier way to find the
Weyl symbol is to find the Pauli matrix representation of the
operator, and then dequantize using Eq. (43). In this way, we
can find that the Weyl symbol for any one-qubit pure state is

g(ξ) = 1
2
[1 + (αgiθξ r ξq + Lβiξiθξ pξq + Lγ Liθξ pξr )], (63)

where αg2 + Lβiξ 2 + Lγ 2 = 1, for αg, Lβiξ, Lγ ∈ R .
We can identify ξq± ≡ 1

2
(1 ∓ Liθξ pξr ) with the one-qubit

computational basis states.
In the usual two-generator Wigner formalism, integrating

over one of the generators produces a marginal probability
over the other. For instance, for the Wigner function of a state
ρ̂:

∞

−∞
ρx(xp ,xq)dxp = q|ρ̂|q . (64)

Similarly, the expectation value of operator Ô of such a
state is

(2πh̄)− 1
∞

−∞

∞

−∞
ρx(xp ,xq)Ox(xp ,xq)dxpdxq = Tr(Ôρ̂),

(65)

where Ox(xp ,xq) is the Weyl symbol of the operatorÔ .
Unlike its two-generator analog, the three-generator Weyl

symbol cannot generally produce scalar values after partial
traces; it is a map to G3 after all, not R. To produce a real
value, a three-generator Weyl symbol must trace over all of
its three degrees of freedom. Taking such a full trace of g(ξ),
multiplied by the odd Weyl symbols of operators representing
observables, produces expectation values. Marginals can be
obtained as a special case of expectation values.

For instance, we can find that the state ρ̂ ≡ | | =
|1 1| = 1

2
(1 − Liθ ξ̂p ξ̂r ) and so has the corresponding Weyl

symbol ρ(ξ) = 1
2
(1 − Liθξ pξr ). Using the Grassmann integral

equations [Eqs. (23)–(26)], it can be seen that taking the trace

with the odd Weyl symbols of the computational basis states,
q± (ξ) = 1

2
(iθξ pξr ξq ± Lξ q), produces the expectation value of

the eigenstates of q̂ ≡ σ̂z:

2iθ ρ (ξ)q± (ξ)dξrdξqdξp =
| (0)|2 = 0 for − ,

| (1)|2 = 1 for +.
(66)

When taken together, these results produce the marginal
| (q)|2. In general the expectation values of the projectors
onto all the eigenstates of an observable give the marginal
distribution of that observable along that corresponding degree
of freedom.

Furthermore, taking the trace with the odd Weyl symbol
of nonprojective operators produces the usual full expectation
values as well. For instance, taking the expectation value of
the odd Weyl symbol of q̂, q̃(ξ) = Lξ q, with ρ(ξ) produces

2iθ ρ(ξ)ξqdξrdξpdξq = 1, (67)

which is equal to Tr ( ρ̂σ̂z) as expected.
Like in the usual Wigner formalism, a trace corresponds

to an integral over all of phase space and we expect valid
Wigner functions to be normalizable on phase space. Taking
the trace of ρ(ξ) with its odd symbol ρ̃(ξ) shows that it is a
valid normalized state:

2iθ ρ (ξ)
1

2
(−ξ pξqξr + Lξ q)dξrdξqdξp = 1. (68)

From this perspective, the odd representation ρ̃(ξ) is
the characteristic function of the discrete Wigner function
expressed by the even representation; it is related to the even
representation, by the Grassmann Fourier transform, though
neither are a true (quasi)probability distribution without
incorporating integration over dual Weyl symbols. In this
way, compared to the two-generator Wigner-Weyl-Moyal
formalism, the odd representation can be related to the chord
representation, while the even representation is similar to
the center representation. This is further supported by noting
that the even monomials form a subalgebra of G3 and the
odd monomials do not. Another difference compared to
the two-generator Wigner-Weyl-Moyal formalism is that the
three-generator “center function”,g(ξ), of operator ĝ is found
by taking either the trace ofĝ with the translation or reflection
operators [see Eqs. (51) and (62)] and pulling out the even
terms, instead of just taking the trace of q̂ with the reflection
operator [Eq. (10)].

When constructing the Wigner-Weyl-Moyal formalism for
odd d with the two generatorsp and q instead, which are quan-
tized by setting their commutator instead of anticommutator
equal to iθ h̄δpkl , it is easy to show that the associated operators
cannot be bounded; they must be supported on an infinite
Hilbert space. As a result, the Hilbert space must be “dis-
cretized” by invoking periodic boundary conditions and setting
h̄ appropriately. However, this “breaks” the commutator, which
is no longer a scalar. On the other hand, constructing the Weyl
formalism for d = 2 with three generators, as we did here by
quantizing ξ1, ξ2, ξ3 when we set their anticommutator equal
to iθ h̄δpkl , produces associated operators that can be bounded;
they can be supported on a finite Hilbert space. Therefore,
there is no need to further “discretize” the Hilbert space by
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invoking periodic boundary conditions, etc., as is necessary in
the two-generator case.

Perhaps the most disconcerting difference between the
two- and three-generator Weyl symbols is that whereas the
two-generator symbols are maps from ( Z/dZ )n × (Z/dZ )n

to R, the three-generator symbols map from G3 to G3, or
equivalently, from (V n,V n,V n) [since the argument of g(ξ)
is ξ ≡ (ξn

p ,ξ
n
q ,ξ

n
r )] to G3. This may appear strange at first

glance, but the Grassmann elements that make up G3 can be
given a simple representation as matrices, which can serve
to demystify their nature. This representation is given in the
Appendix.

V. CLASSICALITY OF CLIFFORD GATES

ON STABILIZER STATES

For odd-d dimensions, positive maps and non-negative
(discrete) Wigner functions can be associated with classical
gates and states that are not capable of quantum speedup [11].
This can also be formalized by finding that their propagator
is complete when truncated at order h̄0, whereas an operation
that makes use of quantum resources requires at least order h̄1

[23]. In this section we obtain the same results ford = 2 with
the three-generator formalism using the Grassmann algebra.

A. Propagator h̄ expansion

Since we have restricted our Weyl symbol to only contain
even terms and we want the Hamiltonian to be real, a
Hamiltonian for a single qubit must have the Weyl symbolH =
− iθ

2 k,l,m klmbkξlξm up to a constant, for real coefficientsbk.
Since ξk are real, it follows that H ∗ = LH using the analog to
complex conjugation defined in Eq. (19).

Given such a real quadratic Hamiltonian H , we can
construct a self-adjoint linear operator

E = exp iθH

←
∂2

∂ξ 2
(69)

such that Eξ = ξ . The Cayley parametrization relates this
unitary matrix E to an antisymmetric matrix A:

E = ( A− Liθ I )( A+ Liθ I )− 1 (70)

and so

E = exp iθH

←
∂2

∂ξ 2
t = exp

k

klmbkt

= I +
k

klm
bk

b tan
b

2
t

× I −
n

nop
bn

b tan
b

2
t

− 1

, (71)

where b = | b|.
This parametrization in terms of an antisymmetric matrix

is useful since we can identify k klm
bk
b tan (1

2
bt) with the

quadratic part of the generating action:

S(ξ; t) =
k,l,m

klm
bk
b tan

1

2
bt ξlξm, (72)

and follow the usual approach set by the traditional two-
generator Wigner-Weyl-Moyal formalism [25]. Since we have
chosen to represent our three-generator Weyl symbols by even
polynomials, this is the full action up to a constant.

We can now proceed to construct the Weyl symbol of the
semiclassical propagator

U (ξ ; t) = LN exp[iθS(ξ ; t)/ h̄], (73)

and solve forN by enforcing the Weyl symbol ofÛ(t)Û†(t) =
Î using Eq. (54):

1(ξ) = U (ξ1; t)U (ξ2; t)e
h̄
2 3(ξ L,ξ1,ξ2)

= e
iθ
h̄ k,l Bkl ξ1k

ξ1l +
iθ
h̄ k,l Bkl ξ2k

ξ2l +
h̄
2 (ξ1+ξ )(ξ2+ξ )dnξ1d

nξ2

= e
iθ
h̄ k,l Bkl ξ1k

ξ1l +
iθ
h̄ k,l Bkl ξ2k

ξ2l +
h̄
2
ξ1ξ2dnξ1d

nξ2, (74)

where Blm ≡ k klm
bk
b tan(bt L/2).

From the Gaussian integral identity [Eq. (39)],

⇒
1

|N |2
= [det(B − Ĩ )]1/ 2, (75)

where

B = B 0
0 B

(76)

and

Ĩ = 0 I
I 0

. (77)

Therefore,

N = [det(B − Ĩ )]− 1/ 4, (78)

up to a phase.
Using the Cayley parametrization [Eq. (70)] and the fact

that det E(t) = 1 ∀t,

[det(B − Ĩ )]− 1
4 = [det( I − B2)]− 1

4 = [det( I ± B)]− 1
2 . (79)

Making use of the inverse Cayley parametrization,

A = Liθ ( I + E )( I − E )− 1, (80)

allows us to rewrite

N = [det( I ± B)]− 1
2 = 2− 3

2 [det( I + E )]
1
2 , (81)

up to a phase.
Hence,

U (ξ L,t) = det I + LS
←
∂2

∂ξ 2

− 1
2

exp
iθ

h̄
S(ξ; t)

= 2− 3
2 det I + Le

iθH
←
∂ 2

∂ξ2
1
2 exp

iθ

h̄
S(ξ ; t) . (82)

Notice that the prefactor is in the numerator instead of the
denominator, as in the usual two-generator Weyl symbol.
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Substituting in our harmonic Hamiltonian and generating
action, we find

U (ξ L,t) =
k,l,m

cos
1

2
bt

× exp −
k,l,m

2iθ

h̄ klm
bk
b tan

1

2
bt ξlξm , (83)

in agreement with Berezin’s Weyl symbol of the propagator
(Eq. (2.36) in Ref. [21]), which was found through the full
Feynman path integral.

Note that the semiclassical expression for the propagator in
Eq. (83), as in all such semiclassical treatments similar to the
primitive Van Vleck–Morette–Gutzwiller propagator [30–32],
must only be correct up to O( h̄). However, here there are no
higher order h̄ corrections and this expression is exact. In other
words, the semiclassical propagator (defined as the propagator
treated up to order h̄) is equivalent to full quantum propagator
for a qubit. Indeed, its associated operator is well known:

Û (t) = exp −
iθ

2
b · σ̂ Lt , (84)

[or, equivalently, Eq. (91) shown below]. This is not the case
for d L> 2, as has been shown [23,24], where higher than h̄1

corrections generally exist, and a sum over more than one
classical trajectory must be taken.

This can also be seen by noting that the equation for the
evolution of the generators ξk can be written as [25]

d

dt
ξk ≡ {{H,ξ k}} = {H,ξ k}PB + LO ( h̄2), (85)

where {{}} is the Moyal bracket. The O( h̄2) terms correspond
to polynomials with power 2 and higher and so are zero [33].
It follows that the Grassmann evolution captures the dynamics
up to order h̄1 and is a full quantum treatment.

Since the propagation under every Hamiltonian can be
treated at order h̄1, and so its path integral consists of only
one term, it follows that if the global phase can be neglected
we can simply keep the absolute value of the propagator’s
prefactor. This corresponds to the Van Vleck prefactor of the
propagator:

|U (ξ L,t)| = 2− 3
2 det I + Le

iθH
←
∂ 2

∂ξ2
1
2 = cos 1

2
bt , (86)

and is the h̄0 part of the propagator.
If we can keep track of the ξ states propagated to, then the

propagator for an associated Hamiltonian can be truncated
at order h̄0 like this (up to a global phase). This can be
determined by finding the orbit of the saddle point trajectories,
or Grassmann equations of motion, which will generally be
linear combinations of the Grassmann generators, ξp , ξq, and
ξr . We call this set of points the Weyl phase space points,
in analogy to the two-generator Wigner-Weyl-Moyal phase
space, for reasons which will become clear.

The more relevant question becomes how many Weyl phase
space ξ points do we have to keep track of when we truncate
like this. In particular, we would like a finite set. Such a finite
phase space can be found by reexpressing the propagation
of a Weyl symbol g(ξ) in terms of a transformation of its ξ
argument:

gt (ξ) = U ∗ (ξ1; t)g(ξ2 + Lξ 1 − Lξ )U (ξ2; t)e
iθ
h̄ 3(ξ L,ξ1,ξ2)d3ξ1d

3ξ2

= | det( I + E )| g(ξ2 + Lξ 1 − Lξ )e
2
h̄ [iθ k,l,m ( klm

bk
b tan( 1

2
bt)ξ1 l ξ1m−iθ L klm

bk
b tan( 1

2
bt)ξ2 l ξ2m)− (ξ1ξ2+ξ 2ξ +ξ Lξ1)]d3ξ1d

3ξ2

= | det( I + E )| g(ξ1)e
2
h̄ [iθ k,l,m klm

bk
b tan( 1

2
bt)ξ2 l (ξ1+ξ )m+ξ 2(ξ1−ξ )]d3ξ

1
d3ξ

2

= | det( I + E )| g(ξ1)δp iθ
k,m

klm
bk

b tan
1

2
bt (ξ1 + Lξ )m + (ξ1 − Lξ )l d3ξ

1

gt (ξ) = Lg (EÛξ), (87)

where EÛ is related to the Hessian of the underlying Hamilto-

nian of the unitary gate Û :

EÛ = exp iθH Û

←
∂2

∂ξ 2
t , (88)

for HÛ = − iθ
2 k,l,m klmbkξlξm in the treatment above.

If we consider the{ξp ,ξq,ξr } to be the three-generator Weyl
phase points, then unitary matrices that take these elements to
themselves (as opposed to linear combinations) are the discrete
analogs of continuous operations that preserve phase space
area. We will see that these gates have underlying Hamiltonians
that are quadratic with restricted coefficients and that the
Clifford gates fall into this class.

Note that in general such a matrix EU exists for qubit
evolution under all unitary gates Û since the Grassmann
algebra enforces all underlying Hamiltonians to be maximally
quadratic. However, only Hamiltonians with appropriate coef-
ficients produce E matrices that take these Weyl phase space
points to themselves. The latter evolutions are of interest to us
because they restrict us to only dealing with a finite set of ξ
Weyl phase space points and so allow us to truncate to order
h̄0 with a finite set of terms. However, in general, most unitary
gates Û do not possess such appropriate coefficients and so
such a truncation to order h̄0 produces an infinite set of points
to keep track of (corresponding to all the quantum states they
reach—i.e., their orbit in Hilbert space).
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In other words, we define a 3n× 3n matrix EÔ such that⎛
⎜⎝
ξp
ξq
ξr

⎞
⎜⎠= E Ô

⎛
⎝
ξp
ξq
ξr

⎞
⎠, (89)

for operators Ô which can be treated to order ¯h0, where EÔ

is related to the Hessian of HÔ , the Hamiltonian associated

with unitary gate Ô , which takes discrete Weyl phase space
points ξαg to other Weyl phase space points ξβiξ (and not linear
combinations of them) [23].

This is equivalent to the h̄0 limit of the two-generator
propagator which takes Weyl phase space points to themselves
via a symplectic (area-preserving) matrix M and vector α
[25].

B. Clifford gates

Again, consider the quadratic and real Hamiltonian,

H (ξ) = −
iθ

2 k,l,m

klmbkξlξm. (90)

As we found above, the corresponding propagator is

Ĝ(t) = exp(−iθt Ĥ ) = Î cos
b

2
t − Liθ σ̂ · n sin

b

2
t L, (91)

where b = | b| and n = b/b .
From Eq. (41), the equations of motion of the Grassmann

elements are

d

dt
ξk = LiθH

←
∂

∂ξk
=

l,m

klmblξm. (92)

The Clifford gate set consists of the one-qubit Hadamard
and phase-shift gates and the two-qubit controlled-NOT (CNOT)
gate.

For the one-qubit Hadamard F̂ gate,

F̂ =
1

√
2

1 1
1 − 1

=
1

√
2

(Ẑ + X̂ ), (93)

it follows from Eq. (91) that if we set t = Lπ , then b = 1 and

n = (1,0,1)/
√

2. Hence,

HF̂ = −
iθ

√
2

(ξr ξq + Lξ pξr ). (94)

Hence, under the Hadamard the Grassmann elements
evolve in time under the equations of motion

d

dt (ξp ,ξq,ξr ) =
− 1
√

2
(ξr ,−ξ r ,−ξ p + Lξ q), (95)

which, when solved for the time t = Lπ , or using Eq. (88),
produce

(ξp ,ξq,ξr ) = (ξq,ξp ,−ξ r ). (96)

For the one-qubit phase-shift gate P̂ ,

P̂ = 1 0
0 iθ =

e
π Liθ
4

√
2

(Î − Liθ Ẑ ), (97)

it follows that, ignoring its overall phase, setting t = Lπ/ 2,
implies that b = 1 and n = (0,0,1). Hence,

HP̂ = −iθξ pξr . (98)

The associated equations of motion are

d

dt (ξp ,ξq,ξr ) = − (ξr ,0,−ξ p ). (99)

Now solving for the equations of motion for the time
t = Lπ/ 2, or using Eq. (88), reveals that

(ξp ,ξq,ξr ) = (−ξ r ,ξq,ξp ). (100)

For the two-qubit CNOT gate Ĉab,

Ĉab =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎜⎠ (101)

=
1

2
(Î + X̂b + Ẑa − X̂bẐa). (102)

It follows that since Ĉ2
ab = Î ,

eiθθ Ĉab = Î cos θ + Liθ Ĉab sin θ L. (103)

Setting θ = Lπ/ 2 reveals that

Ĉab = −iθ exp iθ
π

4
(Î + Ẑa + X̂b − ẐaX̂b), (104)

and so, setting t = Lπ ,

HĈab
= −

iθ

4
(ξpa

ξra + Lξ rbξqb + Liθξ pa
ξraξrbξqb) (105)

(up to a constant). Rewriting this as1
4
(1 − Liθξ pa

ξra)(1 − Liθξ rbξqb)
we find that this can be thought of as a product of terms from
Eq. (90),Ha(ξa)Hb(ξb), whereba = Lb b = 1, na = (0,0,1), and
nb = (1,0,0).

The associated equations of motion that are nonzero are

d

dt
ξrb = −

1

4
ξqb 1 + Liθξ pa

ξra ,

d

dt
ξqb =

1

4
ξrb 1 + Liθξ pa

ξra ,

d

dt
ξpa = −

1

4
ξra 1 + Liθξ rbξqb ,

d

dt
ξra =

1

4
ξpa 1 + Liθξ rbξqb ,

d

dt
ξrbξpa

ξra = −
iθ

4
ξqb,

d

dt
ξqbξpa

ξra =
iθ

4
ξrb,

d

dt
ξpa

ξpb
ξrb = −

iθ

4
ξra ,

d

dt
ξraξpb

ξrb =
iθ

4
ξpa

. (106)

Solving these equations of motion for the timet = Lπ reveals
that the only odd monomials that change are

ξrb → Liθξ rbξraξpa
, ξrbξraξpa → −iθξ rb,

ξqb → Liθξ qbξraξpa
, ξqbξraξpa → −iθξ qb,

ξra → Liθξ raξqbξrb, ξraξqbξrb → −iθξ ra ,

ξpa → Liθξ pa
ξqbξrb, ξpa

ξqbξrb → −iθξ pa
. (107)
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As we will see in Sec. V E, the factor 1
2
(1 − Liθξ pa

ξrb) is the

projector on the + 1 eigenstate of the Ẑa operator while the
factor 1

2
(1 − Liθξ rbξqb) is the projector on the + 1 eigenstate of

the X̂b operator. In other words, Eq. (106) shows that the
evolution of qubit b is conditioned on qubit a being in a
position state [ 1

2
(1 − Liθξ pa

ξra)], and the evolution of qubit
a is conditioned on qubit b being in a momentum state
[ 1

2
(1 − Liθξ rbξqb)]. A similar structure was observed for odd d

[23].
As can be seen from the equations of motion for the three

Clifford gates, their evolution takes the discrete states ξk to
other discrete states ξk. This is due to the Hamiltonians asso-
ciated with these operators being quadratic with appropriate
coefficients (for h̄ = 2 and t equal to fractions of π). As a
result, following the argument made in Sec. V A, it follows
that they can be treated by the Weyl propagator truncated at
order h̄0. We will shortly see that this is generally not the case
for a gate set that produces universal quantum computation.

C. T gate

To extend the Clifford gate set to a universal quantum gate
set, it is only necessary to add the T gate, defined as the square
root of the phase-shift gate:

T̂ =
1 0

0 eπ Liθ
4

=
1

2
1 + Le

π Liθ
4 Î + 1 − Le

π Liθ
4 Ẑ . (108)

For t = Lπ/ 2, it follows that the Hamiltonian is the same as for
the phase shift, except halved:

HT̂ = −
iθ

2
ξpξr . (109)

The equations of motion are

d

dt (ξpξq,ξr ) = −
1

2
(ξr ,0,−ξ p ). (110)

Now solving for the equations of motion for the unit time
interval reveals that that

ξp =
1

√
2

(ξp − Lξ r ), (111)

ξr =
1

√
2

(ξp + Lξ r ), (112)

and

ξq = Lξ q. (113)

Unlike the Clifford operators, the T gate takes the discrete
states ξk to linear combinations of ξk. This is due to the fact
that its corresponding Hamiltonian is no longer quadratic with
coefficients that are integers. Thus, in terms of the stabilizer
operator basis, it cannot be treated by the Weyl propagator
truncated at order h̄0, and the full h̄1 expression must be
used; the T gate takes the Weyl phase space points to linear
combinations of Weyl phase space points.

D. Phase space and non-negative probability distributions

In the two-generator Wigner-Weyl-Moyal formalism for
odd d, the Wigner function of a stabilizer state can be
interpreted as the real non-negative coefficients in front of

R̂(x), indexed by x, in the expansion of the density operator
basis given by the R̂’s:

ĝ =
x

g(x)R̂(x) (114)

= Lg (0,0)R̂(0,0) + Lg (1,0)R̂(1,0) + · · · L. (115)

The Clifford gates are covariant in terms of these operators;
i.e., they take stabilizer density states’ (non-negative) coef-
ficients in front of these operators and permute them. This
permutation can be captured by a symplectic matrix M . In
the continuous world a symplectic matrix can be described
as “area-preserving”, while in the discrete world it is perhaps
more appropriate to describe its action as a permutation of
coefficients, which by definition is bijective and hence lossless.

In the three-generator Wigner-Weyl-Moyal formalism, a
very similar interpretation is possible. However, since qubit
Clifford gates are also a three-design, it is not possible to
express their action on any such operator basis in a covariant
manner [17]. Nevertheless, a natural analog to Eq. (114) is

ĝ = Lg (ξ̂) = 1 + Lg pr ξ̂p ξ̂r + Lg rp ξ̂r ξ̂p

+ Lgpq ξ̂p ξ̂q + Lgqp ξ̂q ξ̂p + Lg rq ξ̂r ξ̂q + Lg qr ξ̂qξ̂r . (116)

Simplifying the products of Pauli matrices above, we can
write

ĝ = Lg (ξ̂) (117)

= 1 + Lg p ξ̂p + Lg r ξ̂r + Lg qξ̂q − Lg −p ξ̂p − Lg−r ξ̂r − Lg−q ξ̂q.

(118)

In this way, we can express the operator basis as

{1, ± ξ̂p , ± ξ̂r , ± ξ̂q}, (119)

for one degree of freedom (one qubit). Note that plus and
minus signs are only necessary when no longer using the even
representation of this operator basis, which is perhaps less
cosmetically appealing. More degrees of freedom correspond
to products of these phase space points. For instance, for two
qubits they are

Î aÎ b, ± ξ̂pa
Î b, ± ξ̂ra Î b, ± ξ̂qa Î b,± Î aξ̂pb, ± Î aξ̂rb,

± Î aξ̂qb, ± ξ̂pa
ξ̂pb, ± ξ̂pa

ξ̂rb, ± ξ̂pa
ξ̂qb,± ξ̂ra ξ̂pb

,

± ξ̂ra ξ̂rb, ± ξ̂ra ξ̂qb, ± ξ̂qa ξ̂pb, ± ξ̂qa ξ̂rb, ± ξ̂qa ξ̂qb . (120)

These are nothing more than the well-known stabilizer
operators [34]. We thus see that in the two-generator Wigner-
Weyl-Moyal formalism the operator basis consists of the
reflection R̂-basis operators whereas in the three-generator
Wigner-Weyl-Moyal formalism the operator basis consists of
stabilizer operators. While theR̂ operators are Hilbert-Schmidt
orthogonal, the stabilizer operators are not. This is expected
since we know a Hilbert-Schmidt orthogonal operator basis
cannot remain invariant under Clifford operators as they are a
three-design [17].

As a result, it is easy to construct a local hidden variable
theory to describe qubit stabilizer propagation using a non-
negative probability distribution related to the three-generator
Wigner-Weyl-Moyal formalism. We define such a probability
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distribution ḡ, where ḡ : Z/ 6Z → R , to consist of the coef-
ficients in front of the stabilizer operators of g(ξ̂) (excluding
the trivial identity operator):

ḡ = (gp , Lgr , Lgq, Lg−p , Lg−r , Lg−q ) (121)

for one degree of freedom. This takes integers to the real line
and is non-negative for stabilizer states. In particular, suitably
normalized, x ḡ(x) = 1 and can be interpreted as a classical
probability on the phase space of even Grassmann elements.
Wallman et al. found the same non-negative probability
distribution for stabilizer states by considering the octahedral
group for one qubit [22].

For a one-qubit Clifford gate V̂ ∈ { F̂ L,P̂ }, it follows that
there exists a 6× 6 permutation matrix P V̂ such that

ḡ(x) →̂
V

ḡ(P V̂ x). (122)

In particular,

P F̂ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

⎞
⎜⎜⎜⎜⎜⎠

(123)

and

P P̂ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎜⎜⎜⎜⎜⎠
. (124)

Similarly, for two degrees of freedom (two qubits):

ḡ = (gp0,gpp ,gpr ,gpq ,gr0,grp ,gr Lr,grq ,

gq0,gqp,gqr ,gqq,g−p 0,g−pp ,g−pr ,g−pq ,

g−r 0,g−rp ,g−rr ,g−rq ,g−q 0,g−qp ,g−qr ,g−qq ). (125)

For the two-qubit Clifford gateĈab, it follows that there exists
a 30× 30 permutation matrix P Ĉab

that obeys Eq. (122).
The Clifford operators in the previous section take the Weyl

phase space points in Eqs. (121) and (125) to themselves. In
other words, they conserve phase space area, and, if framed
in terms of two conjugate degrees of freedom, would be a
symplectic transformation.

Lastly, as in the two-generator formalism, the indices that
enumerate the operator basis can be associated with Weyl
phase space points. It follows here that the phase space
grows as 2 × 4n − 1 for n qubits. We will show in the next
section that stabilizer states are only defined, i.e., have positive
probabilities, on 2 × 3n of these points. Note that this does

not mean that there are 2× 4n− 1
2× 3n stabilizer states possible for

n qubits, as most combinations are not allowed. Indeed, the
relationship between the number of possible stabilizer states

with n is 2[ 1
2
+O (1)]n2

[19].

E. Stabilizer state representation

The stabilizer states for one qubit correspond to the six
eigenstates of the X̂ , Ŷ, and Ẑ operators. As such their Weyl

symbols, or Wigner functions, are easy to find and correspond
to

ξp± ≡ 1
2
(1 ∓ Liθξ r ξq), (126)

ξq± ≡ 1
2
(1 ∓ Liθξ pξr ), (127)

ξr± ≡ 1
2
(1 ∓ Liθξ pξq). (128)

The operators corresponding to these Wigner functions can
be found by replacing the Grassmann elements by their
corresponding scaled Pauli matrices and 1 with the identity
matrix. The resultant operators are the usual projectors onto
the associated eigenvectors.

To extend this definition of stabilizer states to more than
one qubit, we use the following definition of stabilizer states:

Definition. A stabilizer state is defined as any state reached
by Clifford gates from an initially prepared |0 . L. L.0 state (in
the Z basis).

Since we have shown that Clifford gates Ô are captured at
order h̄0, or equivalently, take positive elements—the stabilizer
states—to themselves, the |0 . L. L.0 state is a tensor product of
1
2
(1 + Lξ pξr ) non-negative states; it follows that Ô|0 . L. L.0 is

non-negative as well.

VI. WIGNER FUNCTION WITH TWO GENERATORS

As discussed in the Introduction, the usual two-generator
discrete Weyl symbol is formulated as a periodization and
discretization of the continuous Weyl formalism. However, if
the same Weyl-Heisenberg operators [Eq. (1)] that are used to
define the translation operators in odd d are applied to even
d, they no longer form a subgroup of SU( d). As a result, we
will show that their dual R̂iθj operators [see Eq. (132)] can no
longer be interpreted as reflection operators in phase space that
take each Weyl phase space point ξ to another, independently
of all others.

The generalized phase space translation operator (often
called the Weyl operator) for qudits with prime or odd d can
be defined as a product of the shift and boost:

T̂ (λp ,λq) = Lω−λ p ·λq(d+ 1)/ 2Ẑ λp X̂ λq , (129)

where λ ≡ (λp ,λq) ∈ Z/dZ define the chord phase space, and
ω ≡ exp 2π Liθ/d . Notice that ford = 2 and settingω = expπ Liθ,
T̂ (1,1) = Ŷ, and so the T̂ operators correspond to the Pauli
matrices and identity matrix.

The translation operators obey the following group relations
of the Weyl-Heisenberg group:

T̂ (λ2)T̂ (λ1) = LωλT
1

J λ 2 T̂ (λ1 + λ 2), (130)

for

J = 0 −I n

I n 0
, (131)

and I n the n×n identity matrix.
We defineR̂(x) as the symplectic Fourier transform of̂T (λ):

R̂(xp ,xq) = Ld −n

λp ,λq ∈
(Z/dZ )n

e2π Liθ
d (λp ,λq)J (xp ,xq)T T̂ (λp ,λq). (132)
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For oddd these R̂(x) operators can be seen to be a reflection
(actually an inversion) around x. Their trace with an operator
Ô defines the two-generator Weyl symbol ofÔ :

Ox(x) = Tr[R̂†
(x)Ô]. (133)

When this is expressible for a unitary gate as a single
exponential with a quadratic argument (the action) with integer
coefficients, the operator can be treated at order h̄0 [23].

As a result, for the operators Ô that can be treated at order
h̄0, we can define the 2n-vector αÔ and an 2n× 2n symplectic
matrix M Ô with entries in Z/dZ such that [26]

xp

xq
= M Ô

xp

xq
+

1

2
αÔ +

1

2
αÔ , (134)

which is associated with the quadratic action

SÔ (xp ,xq) = α T
Ô

J xp

xq
+ (xp ,xq)BÔ

xp

xq
, (135)

where BÔ is a real symmetric 2n× 2n matrix that is related to
M Ô by the Cayley parametrization [35]:

J B Ô = (1 + M Ô )− 1(1 − M Ô )

= (1 − M Ô )(1 + M Ô )− 1. (136)

This is no longer the case for d = 2. Operators Ô that
can be treated at order h̄0 cannot be described by a simple
matrix M and vector αg. This is because T̂ and R̂ do not
accomplish the expected translation and reflections. The R̂
operator, upon which the center (Wigner) representation is
built, from Eq. (132) is

R̂(xp ,xq) = 1
2
[(− 1)

xq Ẑ + (− 1)
xp X̂ + Liθ (− 1)

xp+x q X̂ Ẑ + Î ].

(137)

This agrees with Eq. (10) in Wootters’ original derivation [9].
When applied to the stabilizer state |0 (in the Z basis) for
instance, we find

R̂(x) |0 = 1
2
{[(− 1)

xq + 1]|0 + [(− 1)
xp − Liθ (− 1)

xp+x q ]|1}.
(138)

It follows that

R̂(x) |0 =

⎧
⎜⎜⎜⎜⎨
⎜⎜⎜⎜⎩

|0 + 1−iθ
2

|1 for x = (0,0),
1+iθ

2
|1 for x = (0,1),

|0 − 1−iθ
2

|1 for x = (1,0),
1−iθ

2
|1 for x = (1,1).

(139)

Therefore, this only takes a stabilizer state to another for x =
(1,1) and x = (0,1).

As a result, the two-generator Wigner-Weyl-Moyal for-
malism, which establishes a relationship between the cen-
ter of reflection operators and “center” representations (or
Weyl symbols), is not possible for d = 2. Nevertheless,
these discrete d = 2 Wigner functions are a perfectly valid
representation of a quantum state; they just no longer have
the usual Wigner-Weyl-Moyal (center and chord) formalism
underpinning them. Furthermore, when expressed as symplec-
tic matrices, the Clifford operators in this discrete Wigner
formalism are not state-independent, as we shall show shortly.

FIG. 1. Qubit stabilizer states. (a) and (b) are position orẐ states
with Weyl symbol 1 ± Liθξ pξr , (c) and (d) are momentum or X̂
states with Weyl symbol 1± Liθξ qξr , and (e) and (f) are diagonal or Ŷ
states with Weyl symbol 1± Liθξ pξq.

To analyze the effect of the Clifford group gates on stabilizer
states in this two-generator representation, we will instead first
consider their three-generator Grassmann representation and
use the following map between the Grassmann three-generator
algebra G3 stabilizer states and those of the two-generator
algebra C2:

1 − Liθξ r ξq → Lδp p, 1, (140)

1 + Liθξ r ξq → Lδp p, 0, (141)

1 − Liθξ pξr → Lδp q,1, (142)

1 + Liθξ pξr → Lδp q,0, (143)

1 − Liθξ pξq → Lδp p,q , (144)

1 + Liθξ pξq → Lδp p, 1⊕q, (145)

where ⊕ denotes mod 2 arithmetic and p, Lq ∈ { 0,1}. This
mapping is illustrated in Fig. 1.

A. Stabilizer states

The one-qubit stabilizer states under the two-generator
formalism are non-negative (see Fig. 1). Indeed, we can
apply Corollary 3 from [23] to the prime d = 2 case here.
This corollary shows that a “mixed” representation is always
possible: where each degree of freedom is expressed in either
the p or q basis:

Corollary 1. For prime d, if is a stabilizer state for
n qudits, then there always exists a mixed representation in
position and momentum such that

θβiξx ,ηβiξx
(x) =

1
√
d

exp
2π Liθ

d (x
Tθβiξx x + ηβiξx · x) , (146)

where xiθ can be either p iθ or qiθ .
The proof for this follows the same lines as those in

Ref. [23].
Thus there are six one-qubit stabilizer states: the two

position or Ẑ states, the two momentum orX̂ states [ 1√
2
(|0 ±

|1 ], and the two diagonal or Ŷ states [ 1√
2
(|0 ± Liθ| 1 )] shown

in Fig. 1. As a result of their exponential form with imaginary
argument in Eq. (146), they are non-negative.
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Though the one-qubit stabilizer states are non-negative
in this two-generator case, the Clifford gates are not single
exponentials with quadratic arguments that can be treated
at order h̄0. In particular, the phase-shift gate in center
representation is

Px(xp ,xq) =
1

√
2

e
π Liθ
2 + Leπ Liθxq , (147)

up to an overall phase, while the Hadamard gate in center
representation is

Fx(xp ,xq) =
1

√
2

(e−πiθx p + Leπ Liθxq ). (148)

The sum over more than one exponential term is emblematic
of the fact that they cannot be rewritten in terms of a single
symplectic M matrix and vector α acting on (xp ,xq) [23].

We recall the evolution under the Hadamard gate for the
three generators

⎛
⎜⎝
ξp
ξq
ξr

⎞
⎜⎠=

⎛
⎝

0 1 0
1 0 0
0 − 1 0

⎞
⎠
⎛
⎝
ξp
ξq
ξr

⎞
⎠. (149)

This simply describes an exchange of p and q states, and as
such can be described by an evolution on the two generators
p̂ and q̂ by using the following stability matrix:

M F̂ = 0 1
− 1 0

, (150)

when the stabilizer states being propagated are p or q states.
However, for r states, Eq. (149) shows that the state must
instead be translated by (1 ,0) or (0 ,1), since the Hadamard
operator exchanges the r states themselves, and the above
M F matrix leaves the r states invariant on p -q Weyl phase
space.

Similarly, under the phase-shift gate the three generators
evolve by

⎛
⎜⎝
ξp
ξq
ξr

⎞
⎜⎠=

⎛
⎝

0 0 − 1
0 1 0
1 0 0

⎞
⎠
⎛
⎝
ξp
ξq
ξr

⎞
⎠. (151)

Therefore, the phase shift is a q shear in two-generator space,
which leaves the q states alone and shears the p state so they
become r states. This can be expressed in the two-generator
picture by the following stability matrix when the states being
propagated are p or q states:

M P̂ = 1 1
0 1

. (152)

Again, for r states, this evolution is incorrect. For r states the
phase-shift gate acts as ap shear in two-generator Weyl space,
which takes r states to p states. A p shear is equivalent to a
q shear followed by a translation by (1 ,0) or (0,1) (when the
boundary conditions are periodic). Therefore,r -state evolution
must be followed by such a translation in the two-generator
Weyl picture ifM P̂ is used.

To summarize, for the one-qubit Clifford gates (consisting
of the Hadamard and phase-shift gates), when the state is a
position or momentum state the corresponding stability matrix
is applied by itself,

WÔ |q ,Ô |p (x) = LW |q ,|p (M Ô x), (153)

while for the state |r = 1√
2
(|0 ± Liθ| 1 ), the translation vector

r is also applied:

WÔ |r (x) = LW |r (M Ô x + r ), (154)

where r can be equivalently (1 ,0) or (0 ,1). In the Aaronson-
Gottesman tableau algorithm [19], this is equivalent to the
binary arithmetic: “set r iθ := Lr iθ ⊕ Lxiθaziθa” since xiθa = Lz iθa = 1
iff qubit a is in an r state.

Since the two-generator center representations for the
one-qubit Clifford gates in Eqs. (147) and (148) are not in
a single exponential term as for odd d (see [23]), their path
integral treatment requires terms up to h̄1 in general. However,
we have shown that it is still possible to propagate a stabilizer
state classically with a single corresponding M matrix of
the Clifford gate operator if this is done state-dependently,
in agreement with Aaronson-Gottesman’s tableau algorithm
[19]. More precisely, though an all encompassing matrix
M Ô that characterizes the Clifford gate Ô evolution cannot
be defined, we have shown that a state-dependent vector r
remedies the problem.

B. Contextuality

It is thus possible to express the evolution of one-qubit
Clifford gates in the two-generator Wigner-Weyl-Moyal for-
malism to lowest order in ¯h0—equivalent to the above M
matrices—as long as the path integral is made dependent on
the state.

Therefore, a key different aspect to describing qubit Clifford
gates with the two-generator center representation is that
though they still take Weyl phase space points to themselves,
they do not treat Weyl phase space points independently of
each other. This means that it is not possible, unlike in the
odd-d case, for stabilizer two-generator qubit Wigner states
W(x) to be evolved byW(M Ô x) for a single symplecticM Ô

corresponding to Clifford gate Ô . This is possible to accom-
plish in three-generator Weyl evolution, where arbitrary qubit
stabilizer Wigner states ρ(ξ) can be evolved by ρ(EÔξ) for
some unitary EÔ , which can be associated with a permutation
matrix PÔ .

Discrete Wigner quasiprobability distributions can be
thought of as hidden variable theories, where the Weyl phase
space points correspond to the hidden variables, when the
quasiprobabilities are non-negative [5]. Following this pre-
scription, the state dependence of the two-generator Wigner-
Weyl-Moyal formalism makes its associated hidden variable
theory nonlocal because the evolution of any hidden variable
Weyl phase space point depends on the other phase space
points, in particular, which of the others have positive support.

It can further be shown that this two-generator hidden
variable theory implies preparation contextuality; if a mixed
state ρ̂, which is a convex combination of x, y, or z stabilizer
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state basis elements |φk ,

ρ̂ =
k

Pk|φk φk|, (155)

can be transformed by some unitary operator Û such that

ρ̂ =
iθ,j,k

PkÛiθj Û ∗
iθk |φj  φ k| =

k

|φ̃k φ̃k|, (156)

for some |φ̃k that are also subnormalizedx, y, and z stabilizer
states, then the two ensembles require a different hidden
variable theory for Clifford evolution. Despite the equality
of the density operator from these two preparation schemes,
the two-generator hidden variable theory for their evolution
under Clifford gates is different for one compared to the other;
it is thus dependent on the context.

As an example, we can consider the mixed state

ρ̂ = Lc X+ |X+  X + | + LcX− |X−  X − |
+ LcZ+ |Z+  Z + | + LcZ− |Z−  Z − | (157)

= Lc X+ |X+  X + | + LcX− |X−  X − | + LcY |Y+  Y + |
+ LcY|Y−  Y − | + (cZ+ − LcY)|Z+  Z + |
+ (cZ− − LcY)|Z−  Z − |, (158)

where |αg±  αg ± | denotes the projector onto the + 1 and − 1
eigenstate of α̂g ∈ { X̂, Ŷ L,Ẑ} and cαg± 0 such that Tr ρ̂ = 1.
The x- and z-basis preparation must evolve under a different
two-generator hidden variable theory compared to they basis.
Thus the preparation in the ensemble denoted by line (157)
evolves under a different hidden variable theory compared to
the ensemble denoted by line (158) for nonzerocY.

As a result, the two-generator hidden variable theory is
nonlocal and is (preparation) contextual. It is a contextual
description of a noncontextual process.

This is not the case for the three-generator formalism
which we described in Sec. V. There we found that the
three-generator Weyl phase space points evolve independently.
Stabilizer state propagation therefore depends on the average
ρ̂, not on its particular realization or preparation in a basis.
Therefore, the associated hidden variable theory to the three-
generator formalism for qubit stabilizer state propagation
under Clifford gates is local and noncontextual.

Finally, in our previous analysis of the two-generator
Wigner-Weyl-Moyal formalism for oddd-dimensional qudits
[23], we found that noncontextuality was associated with the
ability to treat Clifford gate evolution on stabilizer states by a
finite-sum path integral truncated at h̄0. This association also
holds here for qubits. Namely, the three-generator Wigner-
Weyl-Moyal formalism is able to treat Clifford gate evolution
of qubit stabilizer states by a finite-term path integral truncated
at order h̄0 and can be described as a noncontextual hidden
variable theory for this task. On the other hand, the two-
generator Wigner-Weyl-Moyal formalism requires higher than
order h̄0 to produce a finite-term path integral describing
Clifford gate evolution on stabilizer states, and it is also a
contextual hidden variable theory.

TABLE I. The Peres-Mermin square [36,37]. Every observable
commutes with every other observable in its row and column,
but anticommutes with the other four observables. Taking the
measurements row-wise produces only + 1 outcomes [by Eq. (45)],
while the measurements column-wise produce two + 1 outcomes
and a − 1 outcome, the product of which is − 1 as shown in the
bottom-rightmost cell. Hence, the context of the measurement scheme
determines the outcomes.

Meas. 1 Meas. 2 Meas. 3 Outcome

Meas. 1 σ̂p1
σ̂p2

σ̂p1
σ̂p2 + 1

Meas. 2 σ̂r2
σ̂r1

σ̂r1
σ̂r2

+ 1
Meas. 3 σ̂p1

σ̂r2
σ̂r1

σ̂p2
σ̂q1

σ̂q2
+ 1

Outcome + 1 + 1 − 1

H H H HH− 1
+ 1

VII. PAULI MEASUREMENT

We have shown so far that under the three-generator
Wigner-Weyl-Moyal formalism, the Weyl symbols of stabi-
lizer states are non-negative and can be defined over a discrete
Weyl phase space. We also showed that Clifford gates are
positive maps in this formalism and can be formulated in
terms of permutation matrices acting on the discrete Weyl
phase space, such that they take non-negative states to other
non-negative states.

What remains to complete the Clifford operations are
measurements in the Pauli basis. Unlike the preparation and
unitary propagation part of Clifford operations, which are
manifestly noncontextual from the point of view of preparation
contextuality, Clifford measurements can be contextual (from
the point of view of measurement contextuality). A well-
known example of this is demonstrated by the Peres-Mermin
square [36,37] shown in Table I. Here we show that the
three-generator Wigner-Weyl-Moyal formalism is contextual
for Pauli measurements in the Peres-Mermin square because
its Weyl symbols for measurement operators produce
expectation values depending on the measurement context that
cannot be represented by the average of an indicator function,
I ∈ [0,1], with the previously defined associated probability
distributions ḡ for stabilizer states.

The Weyl symbols (ξr ξq, ξpξq, ξpξr ) of single-qubit Pauli
( σ̂p , σ̂r , σ̂q) observables are positive maps; they take Weyl
phase space points to themselves. The Weyl symbols of the
projection operators onto their eigenstates are also positive.
Any multiqubit Clifford measurement can be reexpressed as
a sequence of Clifford gates and then a single-qubit measure-
ment. Therefore, every step has an associated Weyl symbol
that is non-negative and so the Weyl symbols of multiqubit
Pauli measurements take stabilizer states to themselves.

Nevertheless, the three-generator Wigner-Weyl-Moyal for-
malism is contextual for the Peres-Mermin measurements in a
very similar way that the two-generator Wigner-Weyl-Moyal
formalism was contextual for unitary qubit Clifford gates. We
showed that the two-generator formalism, also described by the
Aaronson-Gottesman tableau algorithm, has positive but con-
textual transformation of qubit stabilizer states under Clifford
gates because its hidden variable theory depends on the state or
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preparation context. In the three-generator formalism, we will
show measurement contextuality by demonstrating that the
associated hidden variable theory depends on the measurement
context. In particular, we will show that the context of
the measurements changes the associated three-generator
Weyl symbol’s expectation values for the measurements (and
therefore any associated permutation matrix). In this way,
the three-generator Wigner-Weyl-Moyal formalism describes
a contextual measurement process contextually. Therefore, the
three-generator Wigner-Weyl-Moyal formalism has a positive
but contextual transformation [38] of stabilizer states under
Pauli measurements.

Peres-Mermin square

Measurement contextuality can be seen in the Peres-
Mermin square (see Table I) where every entry contains a
two-qubit Pauli measurement of the form ˆσαgσ̂βiξ for αg,βiξ ∈
{p1,p 2,q1,q2,r 1,r 2}, which has the associated Weyl symbol
1
4 j Lk αgj Lkξj ξk lm βiξlm ξlξm. Every observable in the table
commutes with the other observables in its row and column and
anticommutes with the other four observables in the table. Thus
we can make all the measurements in the Peres-Mermin square
row-wise or column-wise and compare the results obtained.

The first row of measurements σ̂p1
, σ̂p2

, and σ̂p1
σ̂p2

are

associated with the projector-valued measurements ˆ (m11)
11 ,

ˆ (m12)
12 , and ˆ (m13)

13 for m11,m12,m13 ∈ {+ 1,− 1}. These have
the associated projectors,

ˆ +
11 = |+  + | ⊗ I, ˆ −

11 = |−  − | ⊗ I,
ˆ +

12 = I ⊗ |+  + |, ˆ −
12 = I ⊗ |−  − |,

ˆ +
13 = (|++  ++ | + |−−  −− |),

ˆ −
13 = (|+−  +− | + |−+  −+ |). (159)

These projectors have associated Weyl symbols:

+
11(ξ1,ξ 2) = 1

2
1 + Liθξ r1

ξp1
,

−
11(ξ1,ξ 2) = 1

2
1 − Liθξ r1

ξp1
,

+
12(ξ1,ξ 2) = 1

2
1 + Liθξ r2

ξp2
,

−
12(ξ1,ξ 2) = 1

2
1 − Liθξ r2

ξp2
,

+
13(ξ1,ξ 2) = 1

4
1 + Liθξ r1

ξp1
1 + Liθξ r2

ξp2

+ 1
4

1 − Liθξ r1
ξp1

1 − Liθξ r2
ξp2

,

−
13(ξ1,ξ 2) = 1

4
1 + Liθξ r1

ξp1
1 − Liθξ r2

ξp2

+ 1
4

1 − Liθξ r1
ξp1

1 + Liθξ r2
ξp2

. (160)

The outcome of the row’s measurements is determined from
just two ±

iθj projector-value measures (since the product of
outcomes in the row must equal+ 1), and choosing any pair of

±
iθj is equivalent to choosing the context of the measurement

[5].
There is a single measurement that simulates these two

compatible measurements. This is the measurement with the
projectors:

(mR1,1
,mR1,2 )

R1
= 1

4
I ⊗ I + Lm R1,1

σ̂p1 ⊗ I

+m R1,2 I ⊗ σ̂p2
+ LmR1,1

mR1,2
σ̂p1

σ̂p2
. (161)

The associated projectors are thus

(mR1 ,1
,mR1 ,2)

R1
= mR1,1

,mR1,2
!"
mR1,1

,mR1,2 (162)

for mR1,1
,mR1,2 ∈ {+ 1, − 1}. These have associated Weyl

symbols

(mR1 ,1
,mR1 ,2)

R1
(ξ1,ξ 2)

= 1
4

1 − Liθm R1,1
ξr1

ξq1
1 − Liθm R1,2

ξr2
ξq2

. (163)

As a result, if for instance one chooses to mea-
sure in the context corresponding to the projector-
valued measurements ±

11(ξ) and ±
12(ξ), the product of

their expectation values
# +

11(ξ1,ξ 2)ρ(ξ1,ξ 2)d3ξ1d3ξ2 and# +
12(ξ1,ξ 2)ρ(ξ1ξ2)d3ξ1d3ξ2 is conditioned to be equal to

the expectation value of
# (+ 1,+ 1)

R1
(ξ1,ξ 2)ρ(ξ1,ξ 2)d3ξ1d3ξ2.

This means, for instance, that the hidden variable predicting
the expectation values of ±

12 is different depending on
whether it is measured in context with ±

11 or with ±
22. Since

the three-generator formalism is a faithful representation of
quantum mechanics, it satisfies these conditions, as can be
readily verified. It follows that the three-generator formalism
for that row’s measurement operators is contextual by the
operational description of the Peres-Mermin square [39]. The
same can be found for the other two rows and the columns.

In this way, the three-generator Wigner-Weyl-Moyal for-
malism indicates measurement-contextuality by producing
different expectation values for the Weyl symbols of the
measurement operators depending on the context of the mea-
surement scheme. In other words, it is not possible to associate
a real-valued indicator function I

11
,I

12
,I

22
∈ [0,1] that

reproduces these results with the associated ḡ distributions
for stabilizer states in Eq. (121) by

#
ḡ(λ)I iθj (λ)dλ for

iθ,j ∈ { 1,2} [5].
We note, however, that systems composed of a single-qubit

stabilizer state, Clifford gates (which necessarily do not
include the two-qubit CNOT gate), and Pauli measurements
on this single qubit are noncontextual as shown by Wallman
et al. [22], as such single-qubit indicator functions I do exist
with three generators.

VIII. CONCLUSION

Contextuality has been shown to be a necessary resource
for universal quantum computation via magic state distillation
for qudits of any odd dimension [4]. The same result has
been recently proposed for qubits that satisfy additional
postulates [20]. Furthermore, noncontextuality has been shown
to be equivalent to the non-negativity of the discrete Wigner
functions for odd d-dimensional qudits [6,7,11,13,16]. We
have extended these results to d = 2 and shown that Clifford
gates on qubit stabilizer states are noncontextual and that
their appropriate Weyl symbols have associated non-negative
probability distributions. On the other hand, we showed the
Pauli measurements are contextual and different measurement
contexts produce different Weyl symbols with associated
expectation values that are appropriately contextual.

To demonstrate noncontextuality for qubit stabilizer states
under Clifford gates, we relied on three generators, p̂ , q̂, and
r̂ , instead of the usual two, p̂ and q̂, to produce the Wigner-
Weyl-Moyal formalism that defines our Weyl symbols. This
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was necessary because the Weyl-HeisenbergT̂ -operator group
that forms a basis for the two-generator formalism is not a
subgroup of SU(d) for evend. Equivalently, since the Clifford
gates are a three-design, it is not possible to express their action
on the R̂-operator basis, which is dual to the Weyl-Heisenberg
T̂ -operator basis, in a covariant manner [17].

We showed that the resultant three-generator Weyl symbols
of the stabilizer states have associated non-negative probability
distributions whose evolution under Clifford gates can be
described by a local and noncontextual hidden variable theory.
It was further shown that the three-generator Wigner-Weyl-
Moyal formalism produces Weyl propagators for the Clifford
gates that can be truncated to order h̄0 with a finite number of
terms with no loss of information. On the other hand,T gates
were found to require Weyl propagators that were expanded
up to order h̄1, and Pauli measurements were found to produce
contextual three-generator Weyl symbols.

We showed that employing a two-generator Wigner-Weyl-
Moyal formalism, as has been done for odd d-dimensional
qudits [11,13,16,23,25], produces a nonlocal and contextual
description of Clifford gates on qubits. This produces state-
dependent evolution and explains the Aaronson-Gottesman
tableau algorithm’s unitary evolution rules. In other words,
the two-generator Wigner-Weyl-Moyal formalism produces
a contextual description of the noncontextual Clifford gate
evolution process. Equivalently, the two-generator Wigner-
Weyl-Moyal Clifford symbols require a treatment at order
h̄1 to describe evolution that is possible at order h̄0 by
three-generator Weyl symbols.

In summary, this paper shows that the classical nature of
Clifford gates on stabilizer states is likely well characterized
for all d-dimensional qudits; it is a noncontextual process that
can be described by a local hidden variable theory. An example
of such a hidden variable theory involves treating Weyl phase
space as the hidden variables that evolve independently under
classical harmonic Hamiltonians. For such hidden variable the-
ories, we have shown that there always exists an appropriately
defined Wigner-Weyl-Moyal formalism that produces discrete
stabilizer state Wigner functions with associated probability
distributions that are non-negative. Clifford gates on stabilizer
states are just the discrete analog of harmonic evolution of
Gaussian states in the continuous case, and are thus fully
treatable by path integrals at order h̄0 (the classical limit).
On the other hand, the same appropriate Wigner-Weyl-Moyal
formalism shows that Pauli measurements, which complete the
set of allowed Clifford operations, can introduce contextuality
into a scheme.
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APPENDIX

We can construct a matrix representation of the Grassmann
generators from the corresponding Clifford algebra. Consider
the generators ξk of left multiplication by ξk and

∂
∂ξk

of left

differentiation by ξk, which obey

$
ξk,

∂

∂ξj

%
= Lδpkj . (A1)

We can now form the operators qk = Lξ k + ∂
∂ξk

and pk =
−iθ (ξk − ∂

∂ξk
) of the Clifford algebra that corresponds to this

Grassmann algebra [40]. These operators satisfy the relations

{p iθ ,qj } = 0, (A2)

{p iθ ,p j } = {q iθ ,qj } = 2δpiθj . (A3)

Each Clifford subalgebra generated by the three pk and qk

can be represented by the 8× 8 matrices with complex entries
defined over the field C [41,42]:

ξp = 1
2
(qp + Liθp p ) → σ̂x ⊗ Î ⊗ Î + Liθ σ̂y ⊗ Î ⊗ Î L, (A4)

ξr = 1
2
(qr + Liθp r ) → σ̂z ⊗ σ̂x ⊗ Î + Liθ σ̂z ⊗ σ̂y ⊗ Î L, (A5)

ξq = 1
2
(qq + Liθp q) → σ̂z ⊗ σ̂z ⊗ σ̂x + Liθ σ̂z ⊗ σ̂z ⊗ σ̂y , (A6)

where → denotes a representation (an algebra homomor-
phism) and ⊗ denotes a matrix outer product. One can verify
that

ξ2
k = σ̂2

x + Liθ{ σ̂x σ̂y} − σ̂2
y = (Î − Î ) = 0 (A7)

for all k as expected.
With these matrices in hand, we can see that a Weyl symbol

g(ξ) is really just a representation of the operator ĝ, which
is in the Clifford algebra, in a higher dimensional Grassmann
algebra. However, the latter Grassmann algebra is generated
by elements whose evolution is governed by a Poisson bracket,
and therefore function like classical conjugate degrees of
freedom, though instead of commuting with each other, they
anticommute.
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