FairSquare: Probabilistic Verification of Program Fairness

AWS ALBARGHOUTHI, University of Wisconsin—-Madison, USA
LORIS D’ANTON [, University of Wisconsin-Madison, USA
SAMUEL DREWS, University of Wisconsin-Madison, USA
ADITYA V. NORI, Microsoft Research, UK

With the range and sensitivity of algorithmic decisions expanding at a break-neck speed, it is imperative that
we aggressively investigate fairness and bias in decision-making programs. First, we show that a number of
recently proposed formal definitions of fairness can be encoded as probabilistic program properties. Second,
with the goal of enabling rigorous reasoning about fairness, we design a novel technique for verifying
probabilistic properties that admits a wide class of decision-making programs. Third, we present FairSquare,
the first verification tool for automatically certifying that a program meets a given fairness property. We
evaluate FairSquare on a range of decision-making programs. Our evaluation demonstrates FairSquare’s
ability to verify fairness for a range of different programs, which we show are out-of-reach for state-of-the-art
program analysis techniques.
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1 INTRODUCTION

A number of very interesting applications of program analysis have been explored in the proba-
bilistic setting: reasoning about cyber-physical systems [Sankaranarayanan et al. 2013], proving
differential privacy of complex algorithms [Barthe et al. 2014], reasoning about approximate pro-
grams and hardware [Carbin et al. 2013], synthesizing control programs [Chaudhuri et al. 2014],
amongst many others. In this paper, we turn our attention to the problem of verifying fairness of
decision-making programs.

Program Bias As software permeates our personal lives, corporate world, and bureaucracy, more
and more of our critical decisions are being delegated to opaque algorithms. Software has thus
become a powerful arbitrator of a range of significant decisions with far-reaching societal impact—
hiring [Kobie 2016; Miller 2015], welfare allocation [Eubanks 2015], prison sentencing [Angwin
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et al. 2016], policing [Berg 2014; Perry 2013], amongst many others. With the range and sensitivity
of algorithmic decisions expanding by the day, the problem of understanding the nature of program
bias is a pressing one: Indeed, the notion of algorithmic fairness has recently captured the attention
of a broad spectrum of experts, within computer science and without [Ajunwa et al. 2016; Angwin
et al. 2016; Barocas and Selbst 2014; Calders and Verwer 2010; Datta et al. 2015; Dwork et al. 2012;
Feldman et al. 2015; Sweeney 2013; Tutt 2016; Valentino-Devries et al. 2012; Zemel et al. 2013].

Fairness and justice have always been ripe topics for philosophical debate [Rawls 2009], and, of
course, there are no established rigorous definitions. Nonetheless, the rise of automated decision-
making has prompted the introduction of a number of formal definitions of fairness, and their
utility within different contexts is being actively studied and contested [Dwork et al. 2012; Feldman
et al. 2015; Friedler et al. 2016; Hardt et al. 2016; Kleinberg et al. 2017; Ruggieri 2014]. Notable
formulations of fairness include individual fairness, which dictates that similar inputs must result
in similar outputs; and group fairness, which dictates that a particular subset of inputs must have a
similar aggregate output to the whole. In this paper, we view such notions of fairness as probabilistic
specifications of decision-making programs.

Fairness as a Probabilistic Specification We think of decision-making algorithms as probabilis-
tic programs, in the sense that they are invoked on inputs drawn from a probability distribution,
e.g., representing the demographics of some population. Fairness properties are then formalized as
probabilistic specifications to which the decision-making program needs to adhere.

Consider a hiring program P that takes as input a vector of arguments v representing a job
applicant’s record and returns a Boolean value indicating whether the applicant is hired. One of
the arguments v in the vector v states whether the person is a member of a protected minority
or not, and similarly v, in v states whether the person is qualified or not for the job. Our goal
may be to prove a group fairness property that is augmented with a notion of qualification—that
the algorithm is just as likely to hire a qualified minority applicant as it is for other qualified
non-minority applicants. Formally, we state this probabilistic condition as follows:

P[P(v) = true | vs = true A vg = true]
P[P(v) = true | vs = false A vg = true]

>1—-¢€

Here, € is a small constant. In other words, the probability of hiring a person v, conditioned on
them being a qualified minority applicant, is very close to (or greater than) the probability of hiring
a person conditioned on them being a qualified non-minority applicant. We note that, while most
recent concerns of fairness have focused on automation of bureaucratic processes, e.g., employment
and loan applications, our view of the problem is broad. For instance, fairness properties can be
extended to actions and decisions of autonomous agents, like robots and self-driving cars, that
interact with us and affect our environment.

Automated Fairness Verification We envision a future in which those who employ algorithmic
decision-making in sensitive domains are required to prove fairness of their processes. Towards
this vision, our goal in this paper is to develop an automated technique that can prove fairness
properties of programs, like the one shown above, as well as others. With that in mind, we have
two key criteria: First, we require a technique that can construct a proof of fairness or unfairness of
a given program with respect to a specified fairness property. Second, we need to ensure that our
technique can handle real-world classes of decision-making programs.

Since our aim is to construct proofs of fairness or unfairness, we focus our development on
exact probabilistic verification techniques, in contrast with approximate techniques that may
provide probabilistic guarantees. We first attempted to reason about fairness using a range of
recent probabilistic static analysis techniques that provide exact guarantees [Gehr et al. 2016;
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Sankaranarayanan et al. 2013], but we observed that these existing techniques are unable to handle
the programs and properties we consider. We therefore set out to design a new technique that is
suited for our domain of verifying fairness of decision-making programs.

We first observe that many decision-making programs—e.g., machine-learned classifiers—can be
encoded logically as formulas in real arithmetic. Since our goal is to verify a probabilistic property
of programs, we propose an automated technique that reduces our probabilistic verification problem
to that of computing the weighted volume of the logical encoding of a program in real arithmetic
(i.e., computing the probability of picking an assignment that satisfies the formula). To enable
automatic construction of proofs, we propose a novel symbolic-volume-computation algorithm that
exploits the power of sMmT solvers to compute the weighted volume of formulas in real arithmetic.
We show that our algorithm monotonically converges to the exact probabilities in the limit, thus
resulting in a sound and complete fairness verification procedure. To our knowledge, this is the first
probabilistic-inference algorithm for arithmetic sMT theories with this expressivity and guarantees.

FairSquare We implement our algorithm in a new tool called FairSquare. We evaluate FairSquare
on a number of decision-making programs generated by a range of machine-learning algorithms
from real-world data. Our evaluation demonstrates FairSquare’s ability to prove/disprove fairness
properties for a range of decision-making programs. Furthermore, our evaluation highlights the
importance of our algorithmic contributions and design decisions in the fairness context: for
example, we demonstrate how state-of-the-art, general-purpose probabilistic program analysis
tools are unable to handle the majority of our benchmarks.

Contributions This paper makes a number of conceptual, algorithmic, and practical contributions:

o We frame fairness properties of programs as correctness properties in the context of program
verification. Specifically, we show that a number of formal definitions of fairness can be cast
as probabilistic specifications of decision-making programs. (Sec. 3)

e Motivated by the structure of decision-making programs, we address the problem of automat-
ing fairness verification by reducing it to a set of weighted-volume-computation problems.
We present a novel weighted-volume-computation algorithm, for formulas over real closed
fields, that utilizes an sMT solver as a black box, and we prove that it converges to the exact
volume in the limit. (Sec. 4)

e We implement our technique in a new tool called FairSquare and use it to verify a class
of fairness properties for a broad spectrum of decision-making programs generated from
real-world datasets. Our evaluation demonstrates the power of our technique in the domain
of fairness verification and its ability to outperform state-of-the-art probabilistic program
analyses. (Sec. 6)

2 OVERVIEW AND ILLUSTRATION

Our problem setting is as follows: First, we are given a decision-making program Pge.. Second, we
have a probabilistic precondition defining a probability distribution over inputs of Pyec. We define the
probability distribution operationally as a probabilistic program Py, which we call the population
model. Intuitively, the population model provides a probabilistic picture of the population from
which the inputs of Pyec are drawn. Third, we are given a quantitative postcondition @ps: that
correlates the probabilities of various program outcomes. This postcondition can encode various
fairness properties. Intuitively, our goal is to prove the following triple:

{‘U ~ PPOP} r < Pgec(v) {(Ppost}

In this section, we consider a specific fairness property. We will discuss in Sec. 3 how several
formulations of fairness can be captured by our framework.
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(a)

The population model defines a joint prob-
ability distribution on attributes of mem-
bers of a population: (i) the rank of the
college a person attended (colRank), (ii) the
years of work experience they have (yExp),
and (ifi) their ethnicity (ethnicity). Note
that colRank is influenced by a persons’s
ethnicity.

The decision-making program takes an
applicant’s record and decides whether
to hire them. A person is hired if they
are from a top-5 college (colRank <= 5)
or have lots of experience compared to
their college rank (expRank > -5). Note
that this program does not access an
applicant’s ethnicity.

4

N O U~ W N

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

define popModel()
ethnicity ~ gauss(0,10)
colRank ~ gauss(25,10)
yExp ~ gauss(10,5)
if (ethnicity > 10)
colRank < colRank + 5
return colRank, yExp

define dec(colRank, yExp)
expRank <— yExp - colRank
if (colRank <= 5)
hire < true
elif (expRank > -5)
hire < true
else
hire < false
return hire

(b) Formula ¢ in R? (c) Underapproximation of ¢
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Fig. 1. Simple illustrative example
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A Simple Verification Problem Consider the two programs in Figure 1(a). The program popModel
is a probabilistic program describing a simple model of the population. Here, a member of the
population has three attributes, all of which are real-valued: (i) ethnicity; (ii) colRank, the ranking
of the college the person attended (lower is better); and (iii) yExp, the years of work experience a
person has. We consider a person to be a member of a protected group if ethnicity > 10; we call
this the sensitive condition. The population model can be viewed as a generative model of records of
individuals—the more likely a combination is to occur in the population, the more likely it will
be generated. For instance, the years of experience an individual has (line 4) follows a Gaussian
(normal) distribution with mean 10 and standard deviation 5. Observe that our model specifies that
members of a protected minority will probably attend a lower-ranked college, as encoded in lines
5-6.

The program dec is a decision-making program that takes a job applicant’s college ranking and
years of experience and decides whether they get hired. The program implements a simple decision
tree, perhaps one generated by a machine-learning algorithm or written by a person. A person is
hired if they attended a top-5 college (colRank <= 5) or have lots of experience compared to their
college’s ranking (expRank > -5). Observe that dec does not access an applicant’s ethnicity.

Our goal is to establish whether the hiring algorithm dec discriminates against members of the

protected minority. Concretely, we attempt to prove the following property:
Plhire | min]
PP[hire | =min]

where min is shorthand for the sensitive condition ethnicity > 10, and € is a small parameter

set to 0.1 for purposes of illustration. Despite the potential shortcomings of this group-fairness

property [Dwork et al. 2012], its simple formulation serves well as an illustration of our technique.
We can rewrite the above statement to eliminate conditional probabilities as follows:

P[hire A min]/IP[min]
P[hire A =min]/IP[-min]

>1—¢€ (1)

Therefore, to prove the above statement, we need to compute a value for each of the probability
terms: IP[hire Amin], P[min], and IP[hire A —=min]. (Note that IP[-min] = 1 —IP[min].) Observe that,
to prove or disprove inequality 1, all we need are sufficiently precise bounds on probabilities—not
their exact values.

For the purposes of illustration, we shall focus our description on computing IP[hire A —min].

Probabilistic Verification Conditions To compute the probability P[hire A =min], we need to
reason about the composition of the two programs, dec o popModel. That is, we want to compute the
probability that (i) popModel generates a non-minority applicant, and (ii) dec hires that applicant.
To do so, we begin by encoding both programs as formulas in the linear-real-arithmetic theory of
first-order logic. The process is analogous to that of standard verification-condition generation for
loop-free program fragments.

First, we encode popModel as follows:

@pop = (ethnicity > 10 = colRank; = colRank + 5) A (ethnicity < 10 = colRank; = colRank)

where subscripts are used to encode multiple occurrences of the same variable (i.e., ssa form). Note
that assignments drawn from probability distributions do not appear in the encoding—we shall
address them later.

Second, we encode dec as follows (after simplification):

@dec = expRank = yExp' — colRank’ A (hire &= (colRank' < 5V expRank > —5))

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.



80:6 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

where variables with the superscript i are the input arguments to dec. Now, to encode the com-
position dec o popModel, we simply conjoin the two formulas—¢,,, and @q4..—and add equalities
between returns of popModel and arguments of dec.

P = @pop N Pdec N yExpi = yExp A colRank' = colRank;

Our goal is to compute the probability that a non-minority applicant gets hired. Formally, we are
asking, what is the probability that the following formula is satisfied?

@ = 3V,. pp A hire A ethnicity < 10

V4 is the set of variables that are not probabilistically assigned to—that is, all variables other than the
three variables V,, = {ethnicity, colRank, yExp}. Intuitively, by projecting out all non-probabilistic
variables with existential quantifiers, we get a formula ¢ whose models are the set of all probabilistic
samplings that lead to a non-minority applicant being generated and hired.

Weighted Volume Computation To compute the probability that ¢ is satisfied, we begin by
noting that ¢ is, geometrically, a region in R3, because it has three free, real-valued variables, V.
The region ¢ is partially illustrated in Figure 1(b). Informally, the probability of satisfying ¢ is the
probability of drawing values for the variables in V), that end up falling in the region described by
¢. Therefore, the probability of satisfying ¢ is its volume in R?, weighted by the probability density
of each of the three variables. Formally:

P[hire A =min] = /pepypc dv,
®

where, e.g., p. is the probability density function of the distribution gauss (0, 10) —the distribution

from which the value of ethnicity is drawn in line 2 of popModel. Specifically, p. is a function of
1 _ ethnici[yz

e 200
10vV2mr

The primary challenge here is that the region of integration is specified by an arbitrary smt
formula over an arithmetic theory. So, how do we compute a numerical value for this integral? We
make two interdependent observations: (i) if the formula represents a hyperrectangular region
in R"—i.e., a box—then integration is typically simple, due to the constant upper/lower bounds
of all dimensions; (ii) we can symbolically decompose an smT formula into an (infinite) set of
hyperrectangles.

Specifically, given our formula ¢, we construct a new formula, &,, where each model m I= &,
corresponds to a hyperrectangle that underapproximates ¢. Therefore, by systematically finding
disjoint hyperrectangles inside of ¢ and computing their weighted volume, we iteratively improve
a lower bound on the exact weighted volume of ¢. Figure 1(c) shows a possible underapproximation
of ¢ composed of four hyperrectangles. The hyperrectangles form a ladder shape that underap-
proximates the slanted face of ¢. We can analogously compute an upper bound on the weighted
volume of ¢: we simply find a lower bound for —¢ and apply the fact that IP[p] = 1 — P[-¢]. Sec. 4
formalizes this technique and proves its convergence for decidable arithmetic theories.

ethnicity, namely, p.(ethnicity) =

Proofs of Group Fairness We demonstrated how our technique reduces the problem of computing
probabilities to weighted volume computation. Figure 1(d) illustrates a run of our tool, FairSquare,
on this example. FairSquare iteratively improves lower and upper bounds for the probabilities in the
ratio, and, therefore, the ratio itself. Observe how the upper bound (red) of the ratio is decreasing
and its lower bound (blue) is increasing. This example is not group fair for € = 0.1, because the
upper bound goes below 0.9.
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Recall that applicants of a protected minority tend to attend lower-ranked colleges, as defined
by popModel. Looking at dec, we can point out that the cause for unfairness is the importance of
college ranking for hiring. Let us attempt to fix this by modifying line 2 of dec to

expRank «— 5*yExp - colRank

In other words, we have made the algorithm value job experience far more than college ranking.
The run of FairSquare on the modified dec is shown in Figure 1(e), where the lower bound on the
ratio exceeds 0.9, thus proving our group fairness property.

3 A FRAMEWORK FOR VERIFYING FAIRNESS PROPERTIES

In this section, we formally define our program model, show how a number of fairness properties
can be modeled as probabilistic properties, and present a general framework for specifying and
verifying such properties.

3.1 Program Model and Semantics

Programs A program P is a sequence of statements S:

S=V«E assignment statement
| V ~ Dist probabilistic assignment
| if B then S else S conditional
| S;S sequence of statements

where V is the set of real-valued variables that can appear in P, e € E is an arithmetic expression over
variables in V, and b € B is a Boolean expression over variables in V. A probabilistic assignment
is made by sampling from a probability distribution p € Dist. A probability distribution can be,
for example, a Gaussian distribution, denoted by gauss(y, o), where y, o € R are the mean and
standard deviation of the Gaussian. Without loss of generality, we shall restrict distributions to
be univariate. We will also assume distributions have only constant parameters, e.g., mean and
standard deviation of a Laplacian or Gaussian—that is, we assume independence of probabilistic
assignments.’ Given a probabilistic assignment x ~ p, we shall treat p(x) as a probability density
function (pDF) of the distribution from which the value assigned to x is drawn. For instance, if the

LY

distribution p is gauss(0,1), then p(x) = \/%e
T
We use v; to denote a vector of input variables of P, and v, to denote a vector of output variables
of P; these variables appear in V and denote the arguments and returns of P. We say that a program
is closed if it has no inputs, i.e., v; is empty. We shall refer to the following subsets of V.

e V, C Vis the set of probabilistic variables: those that get assigned to in probabilistic assign-
ments.

o Vg = V' \ 'V, is the set of deterministic variables: those that do not appear in probabilistic
assignments.

This simple language can be used to describe typical machine-learning classifiers such as de-
cision trees, support vector machines, Bayesian networks, neural networks, as well as loop-free
probabilistic programs (loops with constant bounds can be unrolled). As demonstrated in Sec. 2,
the same language is used to define population models programmatically.

Operational Semantics The operational semantics of our program model is standard, following
those introduced by Kozen [1981] and used by other recent papers on the topic [Chistikov et al.

!Gaussian distributions with non-constant parameters can be handled through properties of Gaussians. E.g., y ~ gauss(x, o),
where x € V and o € R, can be transformed into an equivalent sequence of assignments y ~ gauss(0, 0);y < y + x.
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2015; Sampson et al. 2014; Sankaranarayanan et al. 2013]. We refer the reader to these texts for an
account of the semantics.

3.2 Fairness as a Probabilistic Program Property

We now formalize probabilistic pre- and postconditions and use them to define the probabilistic ver-
ification problem. We then show how many fairness definitions can be expressed in our verification
framework.

Probabilistic Verification Problems A verification problem is a triple (Pyop, Pgecs @post ), Where

® Pyop, called the population model, is a closed program over variables VP°? and output variables
0"

e Py, called the decision-making program, is an open program over variables V9¢; its input

arguments are v?ec, with |v‘l.’“| = |v8°|; and its output variables are ©%¢. (We assume that
VPoP nydec = ()

® @post is a probabilistic postcondition, which is a Boolean expression over probabilities of

program outcomes. Specifically, ¢yos+ is defined as follows:

®post € BExp := PExp > ¢ | BExp A BExp | =BExp
PExp = P[¢] | ¢ | PExp {+, —, +, X} PExp

where ¢ € R and ¢ is a linear arithmetic formula over input and output variables of Pyec; e.g.,
®post might be of the form

Plx>0]>05AP[ly+z>7]-P[t>5]>0

The goal of verification is to prove that @,os+ is true for the program Pgec © Ppop, i.€., the composition
of the two programs where we first run Pp,, to generate an input for Pyec. Since Pyqp is closed,
Pgec © Pyop is also closed. To avoid division-by-zero problems, we assume that divisors never have
value zero. We will use the following definition when stating the meta-properties of our algorithm:
we say that the postcondition is robust iff, for any subformula of the form PExp > c, the value of
the expression PExp is not exactly c.

Fairness Properties We now show how prominent fairness definitions from the literature can be
encoded as probabilistic postconditions. At a high-level, all proposed fairness definitions aim to
ensure fair decision making, and while some focus on fairness at the granularity of groups, others
focus on fairness at the individual level.

We first consider group fairness formulations. Feldman et al. [2015] introduced the following
definition, inspired by Equality of Employment Opportunity Commission’s recommendation in the
US [EEOC 2014]:

P[r = true | min(v) = true]

P[r = true | min(v) = false]
Assuming Pge. returns a Boolean value r—indicating whether an applicant v is hired—this group
fairness property states that the selection rate from a protected minority group, min(v) = true, is
as good as the selection rate from the rest of the population. One can thus view this verification
problem as proving a probabilistic property involving two sets of program traces: one set where
the input min(v) is true, and another where it is false. Alternatively, the above definition could
be strengthened by conjoining that the reciprocal of the ratio is also at least 1 — €, thus ensuring
that the selection rate of the two groups is nearly the same (demographic parity). Further, we could
additionally condition on qualified individuals, e.g., if the job has some minimum qualification, we
do not want to characterize group fairness for arbitrary applicants, but only within the qualified

— €
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subpopulation. Various comparable notions of group fairness have been proposed and used in the
literature, e.g., [Datta et al. 2016; Feldman et al. 2015; Zemel et al. 2013].

While the above definition is concerned with fairness at the level of subsets of the domain of
the decision-making program, individual fairness [Dwork et al. 2012] is concerned with similar
outcomes for similar elements of the domain. In our hiring example, one potential formulation is
as follows:

Plri=r|lvi~v]>1-c¢

In other words, for any two similar individuals (denoted v; ~ v;), we want them to receive similar
outcomes (r; = ry) with a high probability. This is a hyperproperty—as it considers two copies of
Pyec—and can be encoded through self-composition [Barthe et al. 2004]. This property is close in
nature to differential privacy [Dwork 2006] and robustness [Bastani et al. 2016; Chaudhuri et al.
2011].

Of course, various definitions of fairness have their merits, shortcomings, and application domains,
and there is an ongoing discussion on this subject [Ajunwa et al. 2016; Dwork et al. 2012; Feldman
et al. 2015; Friedler et al. 2016; Hardt et al. 2016]. Our contribution is not to add to this debate, but
to cast fairness as a quantitative property of programs, and therefore enable automated reasoning
about fairness of decision-making programs.

3.3 Probabilistic Inference through Volume Computation

Now that we have defined our program model and the properties we are interested in verifying, we
switch attention to constructing probabilistic verification conditions.

Following Chistikov et al. [2015], we reduce the problem of computing the probability that the
program terminates in a state satisfying ¢ to weighted volume computation (wvc) over formulas
describing regions in R". In what follows, we begin by formalizing the wvc problem.

Volume of a Formula We will use £ to denote first-order formulas in linear real arithmetic and
the strictly richer real closed fields—Boolean combinations of polynomial inequalities. Given a
formula ¢ € £, a model m of ¢, denoted by m |= ¢, is a point in R", where n is the number of free
variables of ¢. Thus, we view ¢ as a region in R”, i.e., ¢ € R". We use X, = {x1,...,x,} to denote
the free variables of ¢.

The (unweighted) volume of a formula ¢ is f(ﬂ 1dX,, where dX,, is short for dx;dx; . . . dx,. For

example, if ¢ is in R?, then /(p 1dX, is the area of ¢.

Weighted Volume of a Formula We now define the weighted volume of a formula. We assume we
are given a pair (¢, D), where ¢ € L and D = {py,...,pn} is a set of probability density functions
such that each variable x; € X, is associated with a density function p;(x;) of the probability

distribution of its values. The weighted volume of ¢ with respect to D, denoted by voL(¢, D), is
defined as follows:

[ 11w ax,

¢ xiEXq,

Example 3.1. Consider the formula ¢ = x; + x; > 0, and let D = {p;, p»}, where p; and p, are
the pDF of the Gaussian distribution with mean 0 and standard deviation 1. Then,

voL(p, D) = / >OP1(X1)P2(XZ) dxidx; = 0.5
X1+Xx2 2

Intuitively, if we are to randomly draw two values for x; and x, from the Gaussian distribution, we
will land in the region x; + x, > 0 with probability 0.5. |
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(x=T[e],0)>x e (true, {p;}) > x; ~ p;

(@1, D1) > S (p2,Dq) > Sz
<(p1 AN (pz,Dl U D2> > S]SZ

VC-SEQ

(@1,D1) > S (p2,Dq) > Sy
(ite([b]), 91, 92), D1 U Dy) > if b then S; else S,
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Fig. 2. Probabilistic verification condition generation. Above, ite(a, b,c) = (a = b) A (ma = c).

Probabilistic Verification Conditions Recall that our goal is to compute the probability of some
predicate ¢ at the end of a program execution, denoted P[¢]. We now show how to encode this
problem as weighted volume computation. First, we encode program executions as a formula ¢p.
The process is similar to standard verification condition generation (as used by verification [Barnett
and Leino 2005] and bounded model checking tools [Clarke et al. 2004]), with the difference that
probabilistic assignments populate a set D of probability density functions.

Figure 2 inductively defines the construction of a probabilistic verification condition for a program
P, denoted by a function pvc(P), which returns a pair (¢pp, D). Without loss of generality, to simplify
our exposition, we assume programs are in static single assignment (ssA) form [Cytron et al. 1991].
Given a Boolean expression b, the denotation [b] is the same expression interpreted as an £ formula.
The same applies to arithmetic expressions e. For example, [x + y > 0] £ x +y > 0. Intuitively,
the construction generates (i) a formula ¢p that encodes program executions, treating probabilistic
assignments as non-deterministic, and (ii) a set D of the pprs of distributions in probabilistic
assignments (rule vc-PAsN).

Now, suppose we are given a closed program P and a Boolean formula ¢ over its output variables.
Then,

P[¢] = voL(IV,. ¢p A @, D)

That is, we project out all non-probabilistic variables V; from ¢p A ¢ and compute the weighted
volume with respect to the densities p; € D. Intuitively, each model m of 3V;. pp A ¢ corresponds
to a sequence of values drawn in probabilistic assignments in an execution of P. We note that our
construction is closely related to that of Chistikov et al. [2015], to which we refer the reader for a
measure-theoretic formalization.

Example 3.2. Consider the following closed program P:

X ~ gauss(0,2);
y ~ gauss(-1,1);

Z — X +Yy

where z is the return variable. Using the encoding in Figure 2, we compute the pair (¢p, D) > P,
where pp 2 z=x+yand D = {p,, Py}, where py and p, are the pDFs of the two distributions from
which values of x and y are drawn.

Suppose that we would like to compute the probability that z is positive when the program
terminates: IP[z > 0]. Then, we can compute the following weighted volume: voL(3z. pp Az > 0, D),
which is ~ 0.327. [
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1: function VERIFY(Pyop, Pgec, Ppost)
2 (@pops Dpop) < PVC(Pyop)
3 <(Pdec, Ddec> — PVC(Pdec)
4: <§0Pa D> — <§0pop A Qdec N v?ec = Uzop’ Dpop ) Ddec>
5: Va < VP uviee
6 m«— 0

7 for each expression P[¢] in ¢pest do

8 m «— m[P[p] — vor(IV,. ¢p A ¢, D)]
9 return m |= @post

Fig. 3. Abstract verification algorithm

Verification Algorithm We now describe an idealized verification algorithm that assumes the
existence of an oracle voL for measuring probability expressions appearing in the postcondition
(we formally define these quantities in Sec. 3.3). The algorithm vERIFY, shown in Figure 3, takes a
verification problem and returns whether the probabilistic postcondition holds.

VERIFY begins by encoding the composition of the two programs, Pgec © Pyop, as the pair (¢p, D)
and adds the constraint v?ec = o) to connect the outputs of Pyop to the inputs of Pyec (recall the
example from Sec. 2 for an illustration). For each term of the form P[¢] appearing in ¢yst, the
algorithm computes its numerical value and maintains it in a map m. If m satisfies the @ st —i.e.,

by replacing all terms IP[¢] with their values in m—then the postcondition holds.

4 SYMBOLIC PROBABILISTIC INFERENCE

We now turn our attention to our probabilistic inference algorithm, which reduces the problem to
computing the weighted volume of a formula. Recall that we are given (i) a formula ¢ over real
arithmetic constraints, encoding the semantics of a program, and (ii) a set D defining the PDFs of
the distributions of free variables of ¢. Our goal is to evaluate the integral f¢ [Txex, pi(xi) dX,.

We begin by describing limitations of existing approaches.

Existing Techniques In general, there is no systematic technique for computing an exact value
for such an integral. Moreover, even simpler linear versions of the volume computation problem, not
involving probability distributions, are #P-hard [Dyer and Frieze 1988]. Existing techniques suffer
from one or more of the following: they (i) restrict ¢ to a conjunction of linear inequalities [De Lo-
era et al. 2012; Sankaranarayanan et al. 2013], (ii) restrict integrands to polynomials or uniform
distributions [Belle et al. 2015a,b; Chistikov et al. 2015; De Loera et al. 2012], (iii) compute approx-
imate solutions with probabilistic guarantees [Belle et al. 2015b; Chistikov et al. 2015; Vempala
2005], (iv) restrict ¢ to bounded regions of R" [Chistikov et al. 2015], or (v) have no convergence
guarantees, e.g., computer algebra tools that find closed-form solutions, like Mathematica and
ps1 [Gehr et al. 2016]. (See Sec. 7 for details.)

Symbolic Weighted Volume Computation Our approach is novel in its generality and its
algorithmic core. The following are the high-level properties of our algorithm:

(1) It is guaranteed to converge to the exact value of the weighted volume in the limit. This
allows us to produce a sound and complete procedure for verifying fairness properties.
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HDECOMP
vol — 0 ¥ «0d,

mi=¥
vol < vol + voL(H™,D) ¥ « ¥ A block(H™)

HSAMPLE

where block(H™) = \/ uy < H(x) V I, > Hj'(x)

x€Xyp

Fig. 4. symvoL: weighted volume computation algorithm

(2) It imposes no restrictions on PDFs, only that we can evaluate the cumulative distribution
functions (cDFs) associated with the pDFs in D.? This provides us with flexibility in defining
population models.

(3) It accepts formulas in the decidable yet rich theory of real closed fields: Boolean combinations
of polynomial inequalities. This provides a rich language for encoding many decision-making
programs, as we demonstrate in Sec. 6.

At the algorithmic level, our approach makes the following contributions:

(1) It exploits the power of sMT solvers and uses them as a black box, allowing it to directly
benefit from future advances in solver technology.

(2) It employs the idea of dividing the space into rectangular regions that are easy to integrate
over. While this idea has been employed in various guises in verification [Asarin et al. 2000;
Bournez et al. 1999; Li et al. 2014; Sankaranarayanan et al. 2013], we utilize it in a new
symbolic way to enable volume computation over smT formulas.

(3) It introduces a novel technique for approximately encoding PDFs as formulas and using them
to guide the sMT solver towards making large leaps to the exact solution. This technique is
crucial when dealing with decision-making programs comprised of halfspaces, as we show
experimentally in Sec. 6.

4.1 Weighted Volume Computation Algorithm

To compute the integral over the region ¢, we exploit the observation that if ¢ is a hyperrectangular
region, i.e., an n-dimensional rectangle in R”, then we can evaluate the integral, because each
dimension has constant lower and upper bounds. For instance, consider the following formula
representing a rectangle in R*:

Pp=0<x <100A4<x, <10

100 10
The following holds: / P1(x)p2(x2) dxidxy = ( / p1(x1) dxl) ( / pa(x2) dxg)
@ 0 4

= (F1(10) — F1(4))(F2(100) — F;(0))

2The cumulative distribution function of a real-valued random variable X is the function f : R — R, such that f(x) =
P[X < x]. In practice, evaluating a cCDF means either computing the value of the function exactly or approximating its
value to specified high degree of precision; see Sec. 5.
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where F; = f_ xoo pi(t) dt is the cDF of p;(x;). That is, we independently compute the integral
along each dimension of the rectangle and take the product. This holds since all variables are
independently sampled.

Our algorithm is primarily composed of two steps: First, the hyperrectangular decomposition phase
represents the formula ¢ as a set of hyperrectangles. Note that this set is likely to be infinite. Thus,
we present a technique for defining all hyperrectangles that lie in ¢ symbolically as a formula 67,
where each model of &7, corresponds to a hyperrectangle that lies inside the region ¢. Second, after
characterizing the set G0, of all hyperrectangles in ¢, we can iteratively sample hyperrectangles in ¢,
which can be done using an off-the-shelf smT solver to find models of GZ,,. For each hyperrectangle
we sample, we compute its weighted volume and add it to our current solution. Therefore, the
current solution maintained by the algorithm is the weighted volume of an underapproximation of
p—that is, a lower bound on the exact weighted volume of ¢.

Hyperrectangular Decomposition We begin by defining hyperrectangles as special formulas.

Definition 4.1 (Hyperrectangles and their weighted volume). A formula H € L is a hyperrectangle
if it can be written in the form A, cx, cx < x < ¢}, where cy,c; € R are the lower and upper
bounds of dimension x. We use H;(x) and H,(x) to denote the lower and upper bounds of x in H.

The weighted volume of H, given a set D, is as follows:
Hu(xi)

voL(H, D) = ]_[ / pi(x;) dx;i n

x; €EXH Hl(xi)

Ideally, we would take a formula ¢ and rewrite it as a disjunction of hyperrectangles \/ H, but
this disjunction is most likely infinite. To see why, consider the simple formula representing a
triangular polytope in Figure 5(a). Here, there is no finite number of rectangles whose union is the
full region in R? enclosed by the triangle.

While the number of hyperrectangles enclosed in ¢ is infinite, we can characterize them sym-
bolically using universal quantifiers, as shown by Li et al. [2014]. Specifically, we define the
hyperrectangular decomposition of ¢ as follows:

Definition 4.2 (Hyperrectangular decomposition). Given ¢, its hyperrectangular decomposition &,

@q’E(A lx<ux)/\VX(p.((/\ lxsxgux)ﬁw)

is:

x€Xyp x€X,
where I, u, are fresh free variables introduced for each x € X, and YX,, is short for Vxi, ..., x,,
for x; € X,.
Given a model m |= 63, we say that H™ is the hyperrectangle induced by m, as defined below:
H" = [\ m(ly) <x < m(uy) .
x€Xy

Intuitively, G, characterizes every possible hyperrectangle that is subsumed by ¢. The idea is
that the hyperrectangle H™ induced by each model m of G7,, is subsumed by ¢, that is, H" = ¢.
The following example illustrates this process.

Example 4.3. Consider the formula ¢ = x > y Ay > 0, illustrated in Figure 5(c) as a gray,
unbounded polygon. The formula G7,, after eliminating the universal quantifier, is:

Le <ux Ny <uy ANy Z 0N 1 2> uy

Figure 5(c) shows two models m;,m; |= 07, and their graphical representation as rectangles
H™ , H™2 in R%. Observe that both rectangles are subsumed by ¢. |
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Fig. 5. (a) R? view of hyperrectangular decomposition. (b) Hyperrectangle sampling, where density is
concentrated in the top-left corner. (c) Illustration of models of GZ,,.

The following theorem states the soundness and completeness of hyperrectangular decomposi-
tion: models of @, characterize all hyperrectangles in ¢ and no others.

THEOREM 4.4 (CORRECTNESS OF D). Let ¢ € L.

e Soundness: Let m |=03,. Then, H" = ¢ is valid.
e Completeness: Let H be a hyperrectangle such that H = ¢. Then, the following is satisfiable:

@, A /\ L = Hi(x) A ux = Hy(x)

x€Xy

Hyperrectangle Sampling Our symbolic weighted volume computation algorithm, symvor, is
shown in Figure 4 as two transition rules. Given a pair (¢, D), the algorithm maintains a state
consisting of two variables: (i) vol, the current lower bound of the weighted volume, and (ii) ¥, a
constraint that encodes the remaining rectangles in the hyperrectangular decomposition of ¢.

The algorithm is presented as guarded rules. Initially, using the rule HDECoMP, vol is set to 0 and
¥ is set to GF,. The algorithm then proceeds by iteratively applying the rule HsAMPLE. Informally,
the rule HsAMPLE is used to find arbitrary hyperrectangles in ¢ and compute their weighted volume.
Specifically, HsaMPLE finds a model m of ¥, computes the weighted volume of the hyperrectangle
H™ induced by m, and adds the result to vol.

To maintain soundness, HSAMPLE ensures that it never samples two overlapping hyperrectangles,
as otherwise we would overapproximate the volume. To do so, every time a hyperrectangle H™ is
sampled, we conjoin an additional constraint to ¥—denoted block(H™) and defined in Figure 4—that
ensures that for all models m’ |= ¥, H m" does not overlap with H™, i.e, H m’ A H™ is unsatisfiable.
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Informally, the block(H™) constraint specifies that any newly sampled hyperrectangle should be to
the left or right of H™ for at least one of the dimensions.

The following theorem states the correctness of block: it removes all hyperrectangles that overlap
with H™ (soundness), and it does not overconstrain ¥ by removing hyperrectangles that do not
overlap with H™ (completeness).

THEOREM 4.5 (CORRECTNESS OF block). Given ¢, let ¥ = &0, and let mi,m; |= V.

e Soundness: If H™ A H™: is satisfiable, then my [ ¥ A block(H™").
e Completeness: If H™ A H™: is unsatisfiable, then my |= ¥ A block(H™").

Lower and Upper Bounds The following theorem states the soundness of symvoL: it maintains
a lower bound on the exact weighted volume.

THEOREM 4.6 (SOUNDNESS OF SYMVOL). The following is an invariant of symvoi(¢, D): vol <
voL(¢, D).

Proor. At any point in the execution, vol = 25:1 /H [1pi(x;) dX,, where [ is the number of
applications of HSAMPLE and H; is the hyperrectangle sampled at step i. By definition, \/ H; = ¢.
Since PDFs are positive functions, vol < voL(¢, D). [ ]

It follows from the above theorem that we can use sYmvoL to compute an upper bound on the exact
volume. Specifically, because we are integrating over pDFs, we know that vor(¢, D)+voLr(—¢, D) = 1.
Therefore, by using symvoL to compute the weighted volume of —¢, we get an upper bound on the
exact volume of ¢.

COROLLARY 4.7 (UPPER BOUNDS). The following is an invariant of symvorL(—¢,D): 1 — vol >
voL(¢, D)

ProOF. By definition of pDFs and integration,

/Rn]_[p,-(xi)dx =/¢]_[p,-(xi)dx(,,+[¢ﬂp,-(xi)dx¢

for any ¢ € R”™. From Theorem 4.6, it follows that at any point in the execution of symMvoL(—¢, D),
we have 1 — vol > voL(¢, D). [ |

4.2 Density-Directed Sampling

While the symvor algorithm is sound, it provides no progress guarantees. Consider, for example, that
the algorithm might diverge by sampling hyperrectangles in ¢ that appear in very low probability
density regions, as illustrated in Figure 5(b) on a triangular polytope in R?.

Ideally, the rule HsAMPLE would always find a model m yielding the hyperrectangle H™ with the
largest weighted volume. Finding such a model amounts to solving the optimization problem:

H' (x;)
arg max l_[ / pilx;) dx;
mEY  ex, JH )

From a practical perspective, there are no known tools or techniques for finding models of first-
order formulas that maximize such complex objective functions—with integrals over probability
density functions.

However, we make the key observation that if p(x) is a step function—i.e., piecewise constant—then
we can symbolically encode f p(x) dx in linear arithmetic. As such, we propose to (i) approximate
each density function p(x) with a step function step(x), (ii) encode the integrals f step(x) dx as
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Fig. 6. Three ADFs (gray) of a Gaussian PDF (red) with mean 0 and a SD 3: (a) fine-grained; (b) coarse; (c)
uniform.

linear arithmetic formulas, and (iii) direct sampling towards hyperrectangles that maximize these
integrals, thus finding hyperrectangles of large volume.

Approximate Density Functions We begin by defining approximate density functions (ADFs).

Definition 4.8 (Approximate density functions). An approximate density function step(x) is of the
form:

ci, x€lap,b)for1<i<n
step(x) = .
0, otherwise
where ¢;, a;,b; € R, ¢; > 0, and all [a;, b;) are disjoint. [ ]

We now show how to encode a formula step¢(x) over the free variables 6y, Ly, U5, where for

any model m |= step?(x), the value m(8y) is the area under step(x) between m(l,) and m(uy), i.e.:
m(8y) = m"(’;u)x ) step(x) dx. Intuitively, the value of this integral is the sum of the areas of each bar
in step(x), restricted to [m(ly), m(uy)].

Definition 4.9 (Encoding area under an ADF). Given an ADF step(x), we define step?(x) as follows:
n

step¢(x) =0y = Z Ci - |[ai7 bi) N [lxa ux]' u

i=1
The finite sum in step?(x) computes the size of the intersection of [, u,] with each interval
[ai, b;) in step(x), and multiplies the intersection with c;, the value of the step in that interval. Note
that the constraint step?(x) is directly expressible in linear arithmetic, since
|[al" bl) N [lx’ ux]| = max(min(bia ux) - max(ai’ lx)7 0)

The following theorem states the correctness of the ADF encoding:

THEOREM 4.10 (CORRECTNESS OF step?). Fix an ADF step(x).

m(ux)
m(Ly)

e Completeness: For any constants a, b, c € R such thatc = /a b step(x) dx, the following formula
is satisfiable: 6y = c ANly =aAuy =bA step¢(x).

e Soundness: For any model m |= step?, the following is true: m(8y) = step(x) dx.

ADF-Directed Volume Computation We now present the algorithm apr-symvor (Figure 7),
an extension of our volume computation algorithm symvoL that uses ADFs to steer the sampling
process. The ADFs are only used for guiding the rule HsAMPLE towards dense hyperrectangles,
and thus do not affect soundness of the volume computation. For example, Figure 6 shows three
approximations of a Gaussian; all three are valid approximations. In Sec. 6, we discuss the impact
of different ADFs on performance.
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HDECOMP -
vol =0 Y@, [be1 lb<_,1*lbDECAY

mEYA [\ 36y, step? (xi) A 8x, = Ib

xiEX¢

vol « vol + voL(H™, D) Y «— ¥ A block(H™)

HSAMPLE

Fig. 7. ADF-symvoL: ADF-directed volume computation

Formally, we create a set of ADFs A = {step,,...,step,}, where, for each variable x; € X,

we associate the ADF step;(x;). The rule HSAMPLE now encodes step?(xi) and attempts to find a
hyperrectangle such that for each dimension x, J, is greater than some lower bound /b, which is
initialized to 1. Of course, we need to reduce the value [b as we run out of hyperrectangles of a
given volume. Therefore, the rule DECAY is used to shrink Ib using a fixed decay rate A € (0,1) and
can be applied when HsaMPLE fails to find a sufficiently large hyperrectangle.

Example 4.11. Suppose we want to find the weighted volume of a single-variable formula
p=0<x<1
where x is uniformly distributed over the interval [0, 1]. Its hyperrectangular decomposition is
@y =l <ur AVx. (I <x<upe >0<x < 1)
or equivalently, if we eliminate the quantifier,
@y =L <ux AOS L S1A0<u, <1

It’s clear that an arbitrary model of G2, can be any single interval I C [0, 1], and since x is uniformly
distributed over [0, 1], the weighted volume of I is exactly its size. Thus, we would like the models
to be large intervals; to do so, we employ a constraint based on the ADF of x.

Since x is uniformly distributed, we can use its actual distribution as its ADF. We then have that

step?(x) = 8 = 1 [[0,1) N [L, ux]| = 6 = max(min(1, uy) — max(0, 1), 0)

Here, 8, represents the weighted volume contribution of the variable x (which happens to be
the only variable in ¢), and so if we obtain a model not of &, but instead of the formula &, A
36, (step?(x) A 85 > Ib), explicitly written as

Le <ux NO< Iy S1A0< uy < 1A 3. (8¢ = max(min(1, uy) — max(0, Iy), 0) A 8y > lb)

then the weighted volume of the worst model approximately increases as a function of Ib. In fact,
when [b = 1, the only model is the whole unit interval (where I, = 0 and u, = 1), which contains
all of the probability mass of x. u

Note that, ideally, we would look for a model m such that [, X, Oy is maximized, thus, finding
the hyperrectangle with the largest weighted volume with respect to the Aprs. However, this
constraint is non-linear. To lower the complexity of the problem to that of linear arithmetic, we set
a decaying lower bound and attempt to find a model where each Jy is greater than the lower bound.
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4.3 Convergence of Algorithm

We now discuss the convergence properties of ADF-sYMvoL. Suppose we are given a formula ¢, a
set D, and a set A. Let R € R" be the region where all the ADFs in A are non-zero. We will show
that ADF-symvoL monotonically converges, in the limit, to the exact weighted volume restricted to
R; that is, ADF-symvoOL converges to

[ 11wt ax,
@NR

x,—qu,

The fascinating part here is that we do not impose any restrictions on the ADFs: they do not have
to have any correspondence with the pDFs they approximate; they need only be step functions. Of
course, in practice, the quality of the approximation dictates the rate of convergence, but we delay
this discussion to Sec. 6.

The following theorem states convergence of ADF-sYMvoOL; it assumes that HSAMPLE is applied
iteratively and DECAY is only applied when HSAMPLE cannot find a model.

THEOREM 4.12 (MONOTONE CONVERGENCE TO R). Assume ADF-sYMVOL is run on (¢, D) and a set
of ADFs A that are non-zero for R C R". Let vol; be the value of vol after i applications of HSAMPLE.
Then,

lim vol; = / 1—[ pi(xi) dX, and Vj =k = 1.vol; > voly
1—00
qDﬁR x;€X
Proor. The algorithm constructs two series in parallel: the actual volume computation series ), v;
and the approximated series )’ a;, where each v; and a; correspond to the actual and approximate
volume of the i’th sampled hyperrectangle (note that the latter is not explicitly maintained in the
algorithm). Each series corresponds to a sequence of partial sums: Let

i i

s . > _ .

o= Y ai = )4
J=1 J=1

It is maintained that

Vi. vl-z < EVolgny =/ np(x) dX,
Rne

Vi.a> < AVol = / l_[ step(x) dX,
RnNe

Since v> and a7 are non-decreasing sequences bounded from above, they converge to some limit;
call the limits v” and a”, respectively. It does not matter what the value of a* is, but we would like
to ensure that v* is actually equal to EVolgn,. Since the a; determine which hyperrectangles we
sample, the potential concern is that they negatively affect the limit v*; we will prove below that
this is not possible.

Suppose, for the sake of obtaining a contradiction, that our sequence of samples to construct {v>}
and {a”} results in the limit v> being strictly less than the actual weighted volume EVolgn,. Then
there is some subregion R’ C R that is completely disjoint from the infinite set of hyperrectangles
we sample and has non-zero weighted volume. In particular, there must exist some hyperrectangle
H C R’ contained in this unsampled region that also has non-zero weighted volume.

In the limit, a> approaches a>: by the definition of a limit, for all € > 0, there exists N such that
foralln > N,a*—a2 < e.Let§ = fH [T step(x) dX,,: at some point when we have fixed a threshold
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T < & and have run out of samples in R \ R’ with a, > 7 (guaranteed when a* — a> < 7 by letting
€ = 1) we would have sampled H C R’. This property ensures that the limit v* = EVolgn,. [ |

Note that the above theorem directly gives us a way to approach the exact volume. Specifically,
by performing runs of ADF-sYMVOL on subsets in an infinite partition of R"” induced by the ADFs,
we can ensure that the sum over the ADF-sYMVOL processes approaches the exact volume. For all i,
let A; be a set of ADFs corresponding to an ADF-sYMVOL process P;, where R; € R" is the non-zero
region of A;. We require an infinite set of P; to partition R": (i) for all i # j, R; N R; = 0, and
(ii) Uj=; Ri = R™. The following theorem formalizes the argument:

THEOREM 4.13 (MONOTONE CONVERGENCE). Let Py, P, . .. be ADF-SYMVOL processes that partition
R"™. Assume an execution where each P; executes infinitely often and each P; performs HSAMPLE
infinitely often, and let vol,, be the total computed volume across all P; after n successful calls to
HSAMPLE. Then,

lim vol, = vor(e, D) and Vj =k > 1.volj > volj

n—oo

Proor. We require that ADF-symvoL calls HsSAMPLE on each P; (and its A; defined over R;)
infinitely often: we can refer to H,, as the nth hyperrectangle obtained by HsAMPLE in the serialized
execution. Clearly ./, _, voL(H,,, D) is a non-decreasing series. It is bounded above by its supremum,
which is exactly voL(¢, D) since each individual P; converges to the weighted volume restricted to
R;. This completes the proof, since the limit of any non-decreasing sequence bounded above by its
supremum is identically its supremum. |

Completeness in Verification Given that we have established monotone convergence of ADF-sYMVOL,
we can use it to construct a verification procedure that is complete whenever the postcondition is
robust (as defined in Sec. 3). Given a robust postcondition ¢pest, for any subformula IP[¢] > c in the
postcondition we have that IP[¢] # c. Using this property, we can use ADF-sYMVOL to iteratively
improve a lower and an upper bound for IP[¢], one of which will prove or disprove the subformula
Pl¢] > c.

5 IMPLEMENTATION

We implemented our algorithms in a new tool called FairSquare, which employs Z3 [De Moura
and Bjerner 2008] for smT solving and Redlog’ for quantifier elimination. FairSquare accepts as
input the population model and the decision-making program in a Python-like syntax, where the
definitions of predicates in the probability events are provided as program annotations.

FairSquare computes upper and lower bounds for each probability in the postcondition using
weighted volume computation. A round of sampling involves (i) obtaining a sample (hyperrectangle)
for each of the quantities, (ii) computing these samples’ weighted volumes, (iii) updating the bounds
on each quantity and (iv) checking if the bounds are precise enough to determine the validity of
the postcondition, i.e., to prove fairness or unfairness. Rounds of sampling are performed until a
proof is found or a timeout is reached.

Sample Maximization A key optimization implemented in FairSquare is the maximization of
hyperrectangles obtained during sampling. We use Z3’s optimization capability to maximize and
minimize the finite bounds of all hyperrectangles, while still satisfying the formula ¥ (in Figures 4
and 7). This process is performed greedily by extending a hyperrectangle in one dimension at a
time to find a maximal hyperrectangle. If a dimension extends to infinity, then we drop that bound,
thus resulting in an unbounded hyperrectangle.

Shttp://www.redlog.eu/
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Numerical Precision All of the arithmetic performed by FairSquare is over arbitrary precision
rationals, and therefore we do not encounter any loss of precision. The only place where floating
point numbers appear is when we evaluate cDFs with scipy. We truncate (underapproximate) the
result and convert it to a rational number. Truncating the results ensures that our implementation
is sound—that at any point in our volume computation, the current volume is a lower bound—at
the cost of a small possibility of incompleteness.

6 EVALUATION

In this section, we evaluate the effectiveness and performance of FairSquare. Specifically, we
investigate the following questions:*

Q1 Can FairSquare verify fairness properties of real machine-learned programs? (Sec. 6.2)

Q2 Do ADFs and sample maximization improve the performance of FairSquare? (Sec. 6.3)

Q3 Can FairSquare verify fairness properties other probabilistic analysis tools cannot? (Sec. 6.4)
Q4 Can FairSquare verify the benchmarks solved by other probabilistic analysis tools? (Sec. 6.4)

6.1 Benchmarks

Fairness Postconditions In our experiments, we consider a group fairness postcondition aug-
mented with a notion of qualification. We ultimately obtained our benchmarks by datamining a
popular income dataset’ used in related research on algorithmic fairness [Calders and Verwer 2010;
Feldman et al. 2015; Zemel et al. 2013]; accordingly, our postconditions are defined in terms of that
dataset’s features. Specifically, they are of the form:

P[high income | female A qual(v)]

P[high income | male A qual(v)] >1-e
Suppose, for example, machine-learned models inferred from the dataset would be used to determine
the salary of an employee: high (> $50,000) or low. We consider qual(v) in two different scenarios—
first, the case when qual is tautologically true, and second, when individuals are qualified if they
are at least 18 years of age. In short, we would like to verify whether salary decisions are fair to
qualified female employees. Throughout, we fix € = 0.15.

Decision-Making Programs We obtained our set of decision-making programs by training a
variety of machine-learning models on the income dataset to classify high vs low income. Using the
Weka machine learning suite [Hall et al. 2009], we learned 11 different decision-making programs
(see, e.g., Bishop [2006] for background), which are listed in Figure 8: (i) four decision trees, named
DT,, where n is the number of conditionals in the program, and the number of variables and the
depth of the tree each varies from 2 to 3; (ii) four support vector machines with linear kernels,
named SvM,, where n is the number of variables in the linear separator; (iii) three neural networks
using rectified linear units [Nair and Hinton 2010], named NN,, ,,,, where n is the number of input
variables, and m is the number of nodes in the single hidden layer.

As we will show in the next section, some of these programs do not satisfy the fairness property
we consider. We introduced modifications of DT;6 and svmy, called pT{, and svmy, that implement
rudimentary forms of affirmative action for female applicants. For pT{, there is a 15% chance it
will flip a decision to give the low salary; for svm{, the linear separator is moved to increase the
likelihood of hiring.

4 All experiments are performed on an Intel Core i7 4.00GHz CPU with 16 GB of RAM.
Shttps://archive.ics.uci.edu/ml/datasets/Adult/
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Decision Population Model
Acc Independent Bayes Net 1 Bayes Net 2
Program
Res  # Vol QE Res # Vol QE  Res # Vol QE
DT4 0.79 v 10 1.3 0.5 X 12 2.2 0.9 X 18 6.6 2.2
DT14 0.71 v 20 4.2 1.4 v 38 52.3 114 73 130.9 33.6
DT16 0.79 v 21 7.7 2.0 X 22 15.3 6.3 X 22 38.2 14.3
DT‘{’6 0.76 v 18 5.1 3.0 v 34 32.0 8.2 v 40 91.0 19.4
DT44 0.82 v 55 63.5 9.8 X 113 1789 943 X 406  484.0 2224
SVM3 0.79 v 10 2.6 0.6 X 10 3.7 1.7 X 10 10.8 6.2
SVMy4 0.79 v 10 2.7 0.8 X 18 13.3 3.1 X 14 33.7 20.1
SVMZ( 0.78 v 10 3.0 0.8 v 22 15.7 3.2 v 14 33.4 63.2
SVM5 0.79 v 10 8.5 1.3 X 10 12.2 6.3 TOq - - TO
svMg 079 353 634 To 24 503 434 TO 128 TOg4 - - To
NN2 | 0.65 v 78 21.6 0.8 v 466  456.1 34 v 154 1329 7.2
NN2, 2 0.67 v 62 27.8 2.0 v 238 236.5 7.2 v 174 2335 18.2
NN3p 074 k7 442 To 100 524 34 TO 559 TOg - - TO

Fig. 8. Results of FairSquare applied to 39 fairness verification problems. Res: v for fair; X for unfair. Vol: time
(s) of the sampling procedure; #: number of smT calls. If sampling timed out (900s), Res denotes the latest
bounds on the fairness ratio. QE: time (s) of the quantifier elimination procedure used prior to sampling;
if QE times out (900s), no sampling is performed, denoted by Tog for Res. Acc: training set accuracy of the
programs.

Population Models For our population models, we used three different probabilistic programs
that were inferred from the same dataset: (i) a set of independently distributed variables (Ind), (ii) a
Bayesian network using a simple graph structure (BN1), and (iii) the same Bayesian network, but
with an integrity constraint in the form of an inequality between two of the variables (BN2). Note
that the first model is sometimes a trivial case: since there is there is no dependence between
variables, a program will be fair if it does not access an individual’s sex; this simplicity serves well
as a baseline for our evaluation. The Bayesian models permit correlations between the variables,
allowing for more subtle sources of fairness or unfairness. The benchmarks we use are derived
from each combination of population models with decision-making programs.

6.2 Effectiveness of FairSquare

Figure 8 shows the results of applying FairSquare to 39 fairness verification problems, as described
earlier. Only the instances using the tautologically true notion of qualification are shown, since the
qualitative results are quite similar to the non-trivial qualification. FairSquare was able to solve 32
of the 39 problems within a timeout period of 900 seconds each, proving 21 fair and 11 unfair.

Consider the results for pT4: FairSquare proved it fair with respect to the independent population
model after 0.5 seconds of an initial quantifier elimination procedure and 1.3 seconds of the actual
volume computation algorithm, which required 10 smT queries. The more sophisticated Bayesian
network models took longer for sampling, but due to the correlations between variables, were
proved unfair.

In contrast, consider the results for pT44 under the Bayes Net 1 population model: FairSquare was
unable to conclude fairness or unfairness after 900 seconds of volume computation (denoted by ToO
in the Vol column). The lower and upper bounds of the fairness ratio it had computed at that time
are listed in the Res column: in this case, the value of the fairness ratio is within [0.70, 0.88], which

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.



80:22 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

DTi¢ SVM4

4.0 4.0
° 35 —— DT16 nomax 5-step 35 —— SVM4 nomax 5-step
TEi 3.0 DT16 nomax uniform 3.0 SVM4 nomax uniform
s —— DT16 nomax none —— SVM4 nomax none
-
28 25 25
=
= ]
B2 20 (a) 2.0 (b)
2%
] - -
= g 1.5 1.5
w
2
Q
g 1.0 1.0
&

0.5 0.5 /_'

0.0 0.0

0 5 10 15 20 25 30 0 5 10 15 20 25 30
DT16 SVMy

1.0 | 1.0

3.5 = DT16 max 5-step 3.5 —— SVM4 max 5-step
% 50 DT16 max uniform 40 SVM4 max uniform
] - —— DT16 max none —— SVM4 max none
E
=8 25 2.5
e
s g q
SoE 20 (©) 2.0 ()
£ .5
g3
2 8
Q
=i
B
&

0.5 / 0.5 /

Fig. 9. Fairness ratio vs. rounds of sampling for bT16 and svMm4 (Ind pop model) differing on ADFs and sample
maximization. In (c) two runs end at the exact value. Outside the visible range are: (a)(b) upper and lower
bounds of uniform and none; (d) upper bounds of none.

is not precise enough for the € = 0.15 requirement (but would be precise enough for € outside of
[0.12, 0.30]).

In general, all conclusive results using the independent population model were proved to be
fair, as expected, but many are unfair with respect to the clusters and Bayes net models because
of the correlations those population models capture. This difference illustrates the sensitivity of
fairness to the population model; in particular, none of the decision trees syntactically access sex,
yet several are unfair.

Figure 8 shows that the affirmative action modifications in pT{ and svm{ are sufficient to make
the programs fair with respect to every population model without substantially impacting the
training set accuracy.

In summary, the answer to Q1 is that FairSquare is powerful enough to reason about group
fairness for many non-trivial machine-learned programs.

6.3 Effect of Parameters

The experiments in Figure 8 were all performed using sample maximization (as described in Sec. 5);
additionally, to guide volume computation, all Gaussian distributions with mean p and variance
o? use ADFs (see Sec. 4.2) with 5 equal-width steps spanning (u — 302, u + 30*)—analogous to
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in DT max Oo DT nomax

’ I B svMg max |:| [J svm4 nomax

0.15
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Fig. 10. Effect of optimizations on FairSquare for bT14 and svmg (Ind pop model). (a) and (b) show the average
weighted volume per sample (averaged across all probabilities). (c) and (d) show the average time (s) per
round of sampling.

Figure 6(a). In this section, we explore the effects of the approximate density functions and of the
sample maximization optimizations. These results are captured in Figures 9 and 10.

There are three instances of ADFs in Figure 9 used to guide the sampling to high-probability re-
gions: (i) none indicates that no ADF is used, i.e., we used symvoL instead of ADF-sYMvVOL; (ii) uniform
indicates that each gauss(u, 0'%) is approximated by a uniform function spanning (i — 302, u + 302)
(similar to Figure 6(c)); and (iii) 5-step indicates that each Gaussian is approximated by a step
function of 5 equal-width regions spanning that same domain (similar to Figure 6(a)). Another
variable, max or nomax, denotes whether the sample maximization optimization is enabled.

Each combination of these techniques is run on two of our benchmarks: DT and svmy under
the independent population model. Figure 9(a) and (b) show how convergence to the fairness ratio
is improved by the choice of ADFs when sample maximization is not employed: in particular, the
runs using uniform and none are not even visible, as the bounds never fall within [0.01, 4.0]. Plots
(c) and (d) show that when sample maximization is employed, the choice between the uniform and
5-step ADFs is not as substantial on these benchmarks, although (i) the better approximation gets
better bounds faster, and (ii) using none results in substantially worse bounds.

Figure 10 plot (a) and (b) show that employing ADFs and using sample maximization each increases
the average weighted volume per sample, allowing volume computation to be done with fewer
samples. Plots (c) and (d) illustrate the trade-off: the average time per sampling round tends to be
greater for more complex optimizations.

We present these results for two particular problems and observe the same results across our suite.
In summary, the answer to Q2 is that ADFs and sample maximization improve the perfor-
mance of FairSquare, and FairSquare requires both of these features to verify most benchmarks.

6.4 Comparison to Other Tools

We ran our benchmarks on the two other recent probabilistic program analysis tools that accept
the same class of problems and provide exact guarantees on probabilities. First, we compare to the
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Fig. 11. Comparison of the number of benchmarks that FairSquare, psi [Gehr et al. 2016], and vc [Sankara-
narayanan et al. 2013] were able to solve.

tool of Sankaranarayanan et al. [2013] (vc),” which is algorithmically similar to our tool: it finds
bounds for probabilities on individual paths by approximating convex polytopes with bounding
and inscribed hyperrectangles. Second, we compare to ps1 [Gehr et al. 2016],” which symbolically
computes representations of the posterior distributions of variables.

Figure 11 shows the number of benchmarks solved per category per tool. Tools were deemed to
have failed on a benchmark when they timed out after a 900s period or returned an inconclusive
solution (in the case of psI). For instance, in the case of the population model BN1, FairSquare
solved 11 benchmarks, while ps1 and vc only solved 3 (the decision trees). For BN2, neither ps1 nor
vc was able to complete any benchmark.

The figure illustrates some qualitative properties of the applicability of the tools. In general, most
of the decision trees are solvable because they partition the decision space with inequalities between
a single variable and a constant. However, inequalities involving multiple variables can result in
(i) the lack of closed form posterior cDFs, as reflected in the output of ps1, and (ii) angled boundaries
in the decision space that are hard to approximate with hyperrectangles; these inequalities occur
in the svms, neural networks, and the BN2 population model. Consequently, vc fails to produce
good bounds in these cases. Similarly, ps1 fails because the integrals do not have closed forms or
cannot be constructed within the timeout period.

In summary, the answer to Q3 is that FairSquare can verify fairness properties that other
tools cannot and therefore extends the class of problems that can be solved by state-of-the-art
probabilistic analysis tools.

We now discuss the results of applying the weighted volume computation algorithm of FairSquare
to the benchmarks from vc. (We omit a comparison to the benchmarks from psi, since the output
of pst is a posterior distribution—which can be used to compute probabilities, but not vice-versa.)
We first focus on vc’s three loop-free benchmark programs, which have thousands of paths; vc
computes various probabilities within two hours for each program. In FairSquare, however, the
quantifier elimination procedure employed before beginning sampling does not terminate within
two hours.

Second, we consider two of vC’s programs, cart and invPend, which have loops explicitly bounded
by constants and could be encoded in our framework using loop unrolling. The programs’ loops have

6 Acquired directly from the authors.
7 Artifact available from http://psisolver.org/.
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maximum depths of 5 and 10 iterations, respectively, (and the loop bodies contain if statements and
probabilistic assignments). The fully unrolled versions of these programs are very large and cause
FairSquare’s quantifier elimination to timeout; to better understand the limitations of FairSquare, we
tried unrolling the programs up to 4 and 7 iterations, respectively, which were the largest unrollings
for which the quantifier elimination procedure would terminate within two hours. However, we
found that the program paths corresponding to these fewer number of loop iterations have zero
probability mass, so FairSquare was not able to compute non-trivial bounds for any probabilities.

In summary, the answer to Q4 is that FairSquare currently cannot solve the verification
benchmarks solved by the tool vc.

Quantifier elimination is difficult on programs with this many paths. vc is well-designed for
these tasks because it performs weighted volume computation only on the most important paths.
Specifically, vc heuristically picks a program path x through simulation, with the assumption that
traversed paths will likely have a larger probability mass for the event of interest. vc then computes
the probability of executing 7 and a given property being true at the end. By iteratively choosing
more and more paths through the program, it improves the computed bounds. Our approach
considers the full set of paths symbolically by encoding them as a formula. As described above,
this methodology works well for decision-making programs. Our evaluation indicates that our
two techniques can complement each other, providing an important direction for future work.
Specifically, we plan to investigate a lazily-evaluated quantifier elimination procedure, where we
heuristically sample disjuncts (i.e., program paths), so that FairSquare can scale to benchmarks
used by vc—where explicit quantifier elimination is prohibitively expensive.

7 DISCUSSION AND RELATED WORK

Algorithmic Fairness Our work is inspired by recent concern in the fairness of modern decision-
making programs [Barocas and Selbst 2014; Zarsky 2014]. A number of recent works have explored
algorithmic fairness [Calders and Verwer 2010; Datta et al. 2016, 2015; Dwork et al. 2012; Feldman
et al. 2015; Hardt et al. 2016; Pedreshi et al. 2008; Zemel et al. 2013]. Most works are interested
in fairness from a machine learning perspective: how does one learn a fair classifier from data?
For example, Zemel et al. [2013] and Feldman et al. [2015] aim to transform training data so as
to erase correlations between the sensitive attributes of individuals and the rest of their features.
Within this context, classification utility is important. Hardt et al. [2016] recently proposed a new
fairness definition—equality of opportunity—that improves on demographic parity in terms of
classification utility. Discrimination in black-box systems has been studied through the lens of
statistical analysis [Datta et al. 2016, 2015; Sweeney 2013]. Notably, Datta et al. [2015] created an
automated tool that analyzes online advertising: it operates dynamically by surveying the ads
produced by Google.

In this paper, we viewed fairness through the lens of program specification and verification. We
are given a decision-making program—perhaps written by an expert or automatically generated
from data—and we would like to prove that it satisfies some fairness criterion with respect to a
probabilistic model of the population. We envision that in the future, for instance, governing bodies
might issue population models, and those employing automated decision-making have to certify
fairness of their procedures with respect to those models. Along those lines, in the US, two recent
White House reports [WH 2014, 2016] warn that “Powerful algorithms ... raise the potential of
encoding discrimination in automated decisions,” and recommend that federal agencies “should take
extra care to ensure the efficacy and fairness of those systems, based on evidence-based verification
and validation.”
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Probabilistic Abstract Interpretation We refer the reader to Gordon et al. [2014] for a thorough
survey on probabilistic program analysis. A number of works tackled analysis of probabilistic
programs from an abstract interpretation perspective [Claret et al. 2013; Mardziel et al. 2011;
Monniaux 2000, 2001a,b]. The comparison between our solution through volume computation and
abstract interpretation is perhaps analogous to sMT solving and software model checking versus
abstract interpretation. For example, techniques proposed by Monniaux [2000] sacrifice precision
of the analysis (through joins, abstraction, etc.) for the benefit of efficiency. Our approach, on the
other hand, is aimed at eventually producing a proof, or iteratively improving probability bounds
while guaranteeing convergence.

Sampling-Based Inference In probabilistic verification, some techniques perform probabilistic
inference by compiling programs or program paths to Bayesian networks [Koller and Friedman
2009] and applying hypothesis testing [Sampson et al. 2014]. The verification technique proposed
by Sampson et al. [2014] applies to properties of the form P[¢] > c. The approach relies on
concentration inequalities to determine a number of samples (executions) that would provide a
result within an € additive error with 1 — § probability. In the case of properties where we have
a ratio over two probabilities—like the ones considered here—we cannot a priori determine the
number of samples required to achieve (¢, §) guarantees.

Probabilistic programming languages often rely on sampling to approximate the posterior
distribution of a program. The Church [Goodman et al. 2008] programming language, for instance,
employs the Metropolis—Hastings algorithm [Chib and Greenberg 1995], a Markov Chain Monte
Carlo (mcMmc) technique. In McMc techniques, there is usually no guarantee on how different the
Markov chain is from the actual distribution at any point in execution, although the Markov chain
is guaranteed to converge in the limit.

Volume Computation The computation of weighted volume is known to be hard—even for a
convex polytope, volume computation is #P-hard [Khachiyan 1993]. Two general approaches exist:
approximate and exact solutions. Note that in general, any approximate technique at best can prove
facts with high probability.

Our volume computation algorithm is inspired by (i) the formula decomposition procedure of Li
et al. [2014], where quantifier elimination is used to underapproximate an LRA constraint as a
Boolean combination of monadic predicates; and (ii) the technique for bounding the weighted
volume of a polyhedron introduced by Sankaranarayanan et al. [2013], which is the closest volume
computation work to ours. (The general technique of approximating complex regions with unions
of orthogonal polyhedra is well-studied in the hybrid systems literature [Bournez et al. 1999].)

A number of factors differentiate our work from that of Sankaranarayanan et al. [2013], which we
compared with experimentally in Sec. 6. First, our approach is more general, in that it can operate
on Boolean formulas over linear and polynomial inequalities, as opposed to just conjunctions of
linear inequalities. Second, our approach employs ADFs to guide the sampling of hyperrectangles
with large volume, which, as we have demonstrated experimentally, is a crucial feature of our
approach. Third, we provide theoretical convergence guarantees.

LattE is a tool that performs exact integration of polynomial functions over polytopes [De Loera
et al. 2012]. Belle et al. [2016, 2015a] compute the volume of a linear real arithmetic (LrA) formula
by, effectively, decomposing it into DNF—a set of polytopes—and using LattE to compute the volume
of each polyhedron with respect to piece-wise polynomial densities. Our volume computation
algorithm is more general in that it (i) handles formulas over real closed fields, which subsumes LRA,
and (ii) handles probability distributions for which we can evaluate the cpr. Our implementation
also supports polynomial approximations of the ADFs. Polynomial approximations provide better
samples, but since the polynomials introduce non-linear constraints, the actual smT calls become
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dramatically slower due to the lack of scalable solvers for non-linear arithmetic. This includes
Z3’s non-linear solver [Jovanovi¢ and de Moura 2013], which implements a variant of cylindrical
algebraic decomposition (cAp) [Basu et al. 2006], a technique for solving non-linear constraints
implemented in tools such as Mathematica and Maple. Although Z3 was shown to be faster than
all other non-linear solvers [Jovanovic¢ and de Moura 2013], it still does not scale to formulas of
size we consider, making polynomial approximations currently ineffective in practice. The same
applies to Redlog, which we used for quantifier elimination, and other state-of-the-art tools such
as QEPCAD [Brown 2003]; they implement cAaD and are comparable to Z3’s non-linear solver in
performance [Jovanovi¢ and de Moura 2013].

Chistikov et al. [2015] present a framework for approximate counting with probabilistic guaran-
tees in sMT theories, which they specialize for bounded LRA. In contrast, our technique (i) handles
unbounded formulas in LrA as well as real closed fields, (ii) handles arbitrary distributions, and
(iii) provides converging lower-bound guarantees. It is important to note that there is a also a rich
body of work investigating randomized polynomial algorithms for approximating the volume of a
polytope, beginning with the seminal work of Dyer et al. [1991] (see Vempala [2005] for a survey).

Probabilistic Verification with Model Counting A number of works have also addressed
probabilistic analysis through symbolic execution [Filieri et al. 2013; Geldenhuys et al. 2012; Sampson
et al. 2014; Sankaranarayanan et al. 2013]. Filieri et al. [2013] and Geldenhuys et al. [2012] attempt
to find the probability a safety invariant is preserved. Both methods reduce to a weighted model
counting approach and are thus effectively restricted to variables over finite domains. Note that
our technique is more general than a model counting approach, as we can handle discrete cases
with a proper encoding of the variables into a continuous domain without loss of precision.

8 CONCLUSION

We formalized notions of fairness as probabilistic postconditions of decision-making programs.
We presented a novel probabilistic verification technique that is well-suited in its expressiveness,
performance, and guarantees to the fairness verification problem. We implemented our proposed
ideas and applied them to a range of decision-making programs. Our results highlight the power of
our approach and the importance of our design decisions.

An important direction for future research is investigating how to repair an unfair program.
In recent work [Albarghouthi et al. 2017], we began investigating this problem for a simple class
of loop-free programs and properties. Another interesting problem is pinpointing parts of the
program that lead to unfairness—in other words, explaining why the program is unfair. In traditional
verification, a counterexample is a clear artifact that falsifies a postcondition. In the probabilistic
setting, however, there is no single execution trace that explains why a postcondition does not
hold. Exploring debugging in the probabilistic setting is an interesting problem for future work.
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