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Abstract We analyze the bifurcation diagrams of spatially localized stationary patterns
that exhibit a long spatially periodic interior plateau (referred to as localized rolls). In a
wide variety of contexts, these bifurcation diagrams consist of isolas or of intertwined s-
shaped curves that are commonly referred to as snaking branches. These diagrams have been
rigorously analyzed by connecting the existence curves of localized rolls with the bifurcation
structure of fronts that connect the rolls to the trivial state. Previous work assumed that the
stable and unstable manifolds of rolls were orientable. Here, we extend these results to the
nonorientable case and also discuss topological barriers that prevent snaking, thus allowing
only isolas to occur. The results are applied to the Swift–Hohenberg system for which we
show that nonorientable roll patterns cannot snake.

Keywords Localized patterns · Snaking · Orientability

1 Introduction

Awide variety of physical systems support stationary spatially localized patterns, or localized
rolls, that exhibit a bifurcation structure known as snaking (see, for instance, [3,4,9,11]). In
one spatial dimension, such solutions have a region of finite length, say 2L , in the interior of
the domain where they are essentially spatially periodic, and then decay to the background
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Fig. 1 Shown are the graph of a localized pattern with a roll plateau of length 2L as a function of space x (left
panel) and schematic depictions of bifurcation diagrams that exhibit snaking (center panel) and disconnected
closed curves (or isolas) (right panel): in the rightmost two panels, the solid and dashed curves correspond to
the separate branches of symmetric pulses that have, respectively, a minimum and a maximum at their center,
while the dotted curves correspond to disconnected branches of asymmetric pulses. Note that, throughout the
paper, we will not indicate PDE stability in our bifurcation diagrams

back

back front

front

Fig. 2 The left panel shows the graphs of a back and a front as functions of space x . The interpretation of
these patterns as heteroclinic orbits connecting the rest state to a periodic orbit is shown in the right panel.
These heteroclinic solutions can be glued together to form a homoclinic orbit to the rest state that spends much
of its trajectory near the periodic orbit, thus corresponding to a localized roll patterns

rest state exponentially fast outside of that region: Fig. 1 shows an example of a symmetric
localized pattern. The snaking bifurcation diagram is typically characterized by a pair of
curves that wind back and forth as they extend vertically upward when they are plotted
as a function of a bifurcation parameter, say μ, against some measure of the size of the
pattern, which is typically the L2 norm but can be intuitively thought of as L . These curves
are often accompanied by horizontal branches that correspond to accompanying asymmetric
localizedpatterns of corresponding length (seeFig. 1).Due to the ubiquity of this phenomenon
in seemingly disparate physical models, a significant effort was made to explain snaking
bifurcationsmathematically. This work builds upon that effort, and in particular on the results
in [2]. There, the authors were able to analyze snaking by viewing the localized patterns as
being composed of fronts and backs that connect the rolls to the trivial state (see Fig. 2) and
using assumptions about the structure of certain stable and unstable manifolds associated
with the fronts and backs to deduce the existence of snaking. The main goal of this paper
is to conduct a similar analysis in the case where those stable and unstable manifolds are
nonorientable and to determine to what extent snaking is still possible in this case.

A concrete system that exhibits snaking is the Swift–Hohenberg equation

Ut = −(1 + ∂2x )
2U − μU + νU 2 −U 3, x ∈ R, (1.1)

where ν > 0 is kept fixed and μ > 0 serves as the bifurcation parameter. The condition
μ > 0 ensures that the background stateU = 0 is stable. Stationary solutions of (1.1) satisfy
an equation of the form
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Fig. 3 Shown are the periodic orbit γ (x, μ) and its two-dimensional unstable manifold within the three-
dimensional zero level set of the energy. The three panels indicate the cases where, from left to right, the
unstable manifold is orientable without twist (thus homeomorphic to a cylinder), nonorientable with a half
twist (hence homeomorphic to a Möbius band), and orientable with a full twist (again homeomorphic to a
cylinder). Note that, in contrast to the case without twist, the boundary of the rightmost unstable manifold
forms a nontrivial knot with the periodic orbit

ux = f (u, μ), u = (U,Ux ,Uxx ,Uxxx ) ∈ R
4, (1.2)

which has the conserved quantity

H(u, μ) = u2u4 − 1

2
u23 + u22 + (1 + μ)

2
u21 − ν

3
u31 + 1

4
u41.

The presence of the conserved quantity allows us to restrict attention to the three-dimensional
zero level set of H . System (1.2) is also reversible and possesses a family of periodic orbits
denoted by γ (x, μ) that are contained in the zero level set of H . The fronts and back in Fig. 2
can be viewed as heteroclinic connections between u = 0 and the periodic orbits γ (x, μ),
and the localized patterns are homoclinic orbits that connect u = 0 to itself and spend some
amount of time (determined by L) near the periodic orbits; see Fig. 2.We note that our results
will apply to any system of the form (1.2) in R

4, not just to that associated with stationary
solutions of (1.1), as long as it satisfies the hypotheses in Sects. 2 and 3. We note that other
works have considered the effects of removing some of the assumptions such as reversibility
or the existence of conserved quantities [6–8,10].

A key assumption of [2] was that the nontrivial Floquet multipliers of the periodic orbits
γ are positive, which implies that the two-dimensional stable and unstable manifolds of γ

are orientable, and therefore topological cylinders; see Fig. 3. In this case, depending on how
the two-dimensional unstable manifold of the periodic orbits γ intersect the two-dimensional
stablemanifold of the rest state u = 0within the three-dimensional zero level set of the energy
H , the resulting bifurcation diagram of localized rolls either exhibits snaking or consists of
infinitely many disconnected closed curves (from now on referred to as isolas) as indicated
in Fig. 1. We remark that the difference between snaking and isolas is visible only through
the structure of the bifurcation diagram [and, specifically, boundedness and connectedness of
branches in the (μ, L)-plane]: in particular, numerical continuation methods can distinguish
between these cases, but direct simulations are, in general, not capable of differentiating
between them.

In this paper, we consider the case where the unstable manifolds of the periodic orbits
are nonorientable, thus topologically taking the form of Möbius bands. We also consider
more general twisting, e.g. an orientable surface with full twist; see Fig. 3 for an illustration.
Due to the fact that the phase space is not R3, but rather a three-dimensional submanifold of
R
4 given by the zero level set H−1(0) of the conserved quantity H , this general notion of

twisting must be defined relative to the topology of H−1(0). We will show that the geometric
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structure of a certain set � that captures the existences of fronts and backs between the origin
and the roll patterns determines whether the bifurcation branches of symmetric localized
rolls consist of isolas or of snaking branches. We will also show that the topological structure
of the zero level set of the conserved quantity can impose topological barriers for snaking:
more specifically, twisting as described above can cause linking of unstable manifolds with
the underlying periodic orbit and prevent snaking by restricting the possibilities for the
geometric configuration of the set �. In particular, we will show that rolls with nonorientable
or, more generally, twisted unstable manifolds cannot lead to snaking branches in the Swift–
Hohenberg equation. We note that the nonorientable case was considered previously in a
related scenario in [6], but it was assumed there that the set � that captures how the strong
unstable fibers of the periodic orbit intersect the stable manifold of the homogeneous rest
state could be represented as a graph: we will show in this work that this hypothesis on � is
not compatible with the nonorientability assumption.

The rest of the paper is organized as follows. In Sect. 2, we collect the hypotheses and
results from [2] for systems with orientable manifolds. In Sect. 3, we extend the framework
from [2] to nonorientable manifolds and use the extended framework in Sect. 4 to provide
conditions that lead to the existence of snaking and isolas of symmetric pulses as well as
branches of asymmetric pulses. In Sect. 5, we then introduce a topological requirement that
is necessary for the snaking conditions of Sect. 4 to hold. We show in Sect. 6 that this
requirement is not satisfied for periodic orbits with twisted Floquet bundles in the Swift–
Hohenberg equation and demonstrate numerically that indeed only isolas occur in this case.
We conclude with a discussion in Sect. 7.

2 Setup for Positive Floquet Multipliers

In this section, we summarize the hypotheses and results from [2] for the orientable case that
will be used in later sections. Consider the ordinary differential equation

ux = f (u, μ), u ∈ R
4, μ ∈ R, (2.1)

where f is some smooth function. Since we are interested in reversible systems, assume the
following hypothesis.

Hypothesis 1 There exists a linear map R : R4 → R
4 with R2 = 1 and dim Fix R = 2,

where Fix R is the set of fixed points of R, so that f (Ru, μ) = −R f (u, μ) for all (u, μ).

It follows readily from Hypothesis 1 that the function ũ(x) = Ru(−x) satisfies (2.1)
whenever u(x) does. We say a solution u(x) is symmetric whenever u(x) = Ru(−x) or,
equivalently, whenever u(0) ∈ Fix R. Next, we assume that the origin is a hyperbolic equi-
librium for all values of μ.

Hypothesis 2 The origin u = 0 is a hyperbolic equilibrium of (2.1). Furthermore, fu(0, μ)

has two eigenvalues with strictly negative real part and two eigenvalues with strictly positive
real part.

Note that the assumption on the spectrum is generic as Hypothesis 1 implies that
the spectrum of fu(0, μ) is invariant under multiplication by −1. To see this, note that
R f (u, μ) = − f (Ru, μ) implies R fu(u, μ) = − fu(Ru, μ)R. Multiplying by R−1 from
the right, we arrive at
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R fu(u, μ)R−1 = − fu(Ru, μ) or, equivalently, − R fu(Ru, μ)R−1 = fu(u, μ) for all u ∈ R
4

(2.2)

and substituting u = 0 into the first equation proves our claim. Our next assumption deals
with the existence of a conserved quantity that is invariant under the reverser R.

Hypothesis 3 There is a smooth function H : R4 ×R → R with H(Ru, μ) = H(u, μ) and
〈Hu(u, μ), f (u, μ)〉 = 0 for all (u, μ). We normalize H so that H(0, μ) = 0 for all μ.

We next assume that, for each μ in an appropriate interval, (2.1) has a symmetric periodic
orbit in the zero energy level set H−1(0). The term “periodic orbit” will be used for solutions
with nonzero minimal period.

Hypothesis 4 We assume that there is a closed interval J ⊂ R with nonempty interior J̊ so
that (2.1) has, for each μ ∈ J , a periodic orbit γ (x, μ) with nonzero minimal period �(μ)

which satisfies the following:

(i) The family γ (x, μ) depends smoothly on μ ∈ J ;
(ii) γ (x, μ) is symmetric: γ (0, μ) ∈ FixR for all μ ∈ J ;
(iii) γ (x, μ) has zero energy: for eachμ ∈ J , H(γ (x, μ), μ) = 0 and Hu(γ (x, μ), μ) �= 0

for one, and hence all, x.
(iv) γ (x, μ) is hyperbolic (so has precisely two Floquet multipliers at one, and no others

on the unit circle).

Rescaling time appropriately, we can assumewithout loss of generality that all theminimal
periods �(μ) are equal to 2π so that we can parametrize the periodic orbits by their phase
ϕ ∈ S1 := [0, 2π]/∼. Next, consider the variational equation

vx = fu(γ (x, μ), μ)v (2.3)

about γ (x, μ). Reversibility implies the following proposition.

Proposition 2.1 If v(x) satisfies (2.3), so does ṽ(x) = Rv(−x). In particular, whenever
(2.3) has a solution of the form v(x) = eαx p(x) for some α ∈ C and some nonzero 2π-
periodic function p(x), then ṽ(x) = e−αx p̃(x) with p̃(x) := Rp(−x) also satisfies (2.3): in
particular, if α is a Floquet exponent, so is −α.

Proof Let v(x) be a solution to (2.3) and define ṽ(x) := Rv(−x). We then have

ṽx (x) = −Rvx (−x)
(2.3)= −R fu(γ (−x, μ), μ)v(−x) = −R fu(Rγ (x, μ), μ)R−1Rv(−x)

(2.2)= fu(γ (x, μ), μ)ṽ(x),

and we conclude that ṽ(x) also satisfies (2.3). The remaining claim follows immediately. 	

The preceding proposition implies that, whenever α ∈ C is a Floquet exponent of γ (x, μ),

then so is −α. Our next hypothesis assumes that the nontrivial Floquet multipliers of the
periodic orbits γ (x, μ) are positive or, equivalently, that the nontrivial Floquet exponents are
real (and negatives of each other by Proposition 2.1).

Hypothesis 5 γ (x, μ) has two positive nontrivial Floquet multipliers e±2πα(μ) with α(μ) >

0 for all μ ∈ J .
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Fig. 4 Shown is a schematic of the geometry and the gluing construction near a periodic orbit with ori-
entable stable and unstable manifolds without twists within the three-dimensional energy level set. Also
shown are backs and fronts that correspond to intersections of Wu(0, μ) with Ws (γ (x, μ), μ) and Ws (0, μ)

with Wu(γ (x, μ), μ), respectively, and a zoom-in of the section 
out . Note that the sections 
in and 
out
actually traverse all the way around the cylinders, but this is not drawn for clarity

Consider the variational equation (2.3) about γ (x, μ). Due to Hypothesis 5, it has two
nontrivial solutions vs and vu of the form

vs(x) = e−α(μ)x ps(x, μ), vu(x) = eα(μ)x pu(x, μ), α(μ) > 0, (2.4)

where ps(x, μ) and pu(x, μ) are real valued and 2π -periodic in x . Proposition 2.1 implies
that we can set pu(x, μ) := Rps(−x, μ) for all x and μ ∈ J . In particular, the local
stable and unstable manifoldsWs(γ (x, μ), μ) andWu(γ (x, μ), μ) of the periodic orbits are
diffeomorphic to an annulus as illustrated in Fig. 4, and we will therefore refer to this case
as the orientable case.

In [2], Fenichel coordinates were used locally to straighten out the strong stable and
unstable fibers of γ , which results in a coordinate system of the form

v̂ = (v̂c, v̂s, v̂u) ∈ V := S1 × I × I, I = [−δ, δ]
near the periodic orbits. In these coordinates, v̂c corresponds to the phase along the periodic
orbit, and the sets {v̂u = 0} and {v̂s = 0} correspond to the stable and unstable manifolds
of the periodic orbit, respectively. Furthermore, the strong unstable fiber Wuu(γ (ϕ, μ), μ)

of the point γ (ϕ, μ) on the periodic orbit corresponds to the set {v̂ : v̂c = ϕ, v̂s = 0} and
analogously for the strong stable fibers. In these coordinates, we can then define the sections

out and 
in by


in = S1 × {v̂ : v̂s = δ} × I, 
out = S1 × I × {v̂ : v̂u = δ}.
As indicated in Fig. 4, generically, Ws(0, μ) will intersect 
out in a one-dimensional curve,
and intersections of Ws(0, μ) with Wu(γ (x, μ), μ) correspond to front solutions. These
intersections are encoded in the set

� := {(ϕ, μ) ∈ S1 × J : Ws(0, μ) ∩ Wuu(γ (ϕ, μ), μ) ∩ 
out �= ∅}
that keeps track of the specific unstable fibers in which the fronts lie. In [2], it was shown that
the global structure of the bifurcation diagrams of localized patterns can be deduced entirely
from the structure of the set �. In particular, under some mild nondegeneracy conditions,
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it was shown that snaking of symmetric pulses will occur whenever � can be represented
as a graph μ = z(ϕ) for ϕ ∈ S1: note that this requires that, for each fixed phase ϕ, there
is a parameter value μ for which the strong unstable finger of γ (ϕ, μ) intersects the stable
manifold of the origin. In Sect. 5, we will show that the set� cannot be represented as a graph
when the stable and unstable manifolds of γ are nonorientable or, more generally, twisted.

When � cannot be represented as a graph over S1, other bifurcation diagrams can arise.
In particular, it was shown in [2] that the bifurcation diagram can consist of a sequence of
disconnected closed curves, or isolas, comprised of symmetric localized patterns that spend
arbitrarily long times near the periodic orbit γ . We show in Sect. 4 that this behavior can also
occur regardless of twisting.

3 Setup for Negative Floquet Multipliers

We now consider the case of negative Floquet multipliers. We assume that Hypotheses 1–4
that we stated in Sect. 2 and that were used in [2] are met, but replace Hypothesis 5 with the
following assumption:

Hypothesis 6 The periodic orbits γ (x, μ) have two nontrivial negative Floquet multipliers
e±2π(α(μ)+i/2) = − e±2πα(μ) with α(μ) > 0 for each μ ∈ J .

Note that Proposition 2.1 implies that Floquet exponents come in pairs, related bymultipli-
cation by−1. The primary outcome of Hypothesis 6 is that the stable and unstable manifolds
of γ (x, μ) are topologically Möbius bands. To see this, we first state the following lemma.

Lemma 3.1 Assume that Hypotheses 1–4 and 6 are met. The variational equation

vx = fu(γ (x, μ), μ)v (3.1)

then has two nontrivial solutions vs(x) and vs(x) of the form

vs(x) = e−α(μ)x ps(x, μ), vu(x) = eα(μ)x pu(x, μ) = eα(μ)xRps(−x, μ), α(μ) > 0,
(3.2)

where ps(x, μ) and pu(x, μ) are real valued, 4π -periodic in x, and satisfy

ps(x + 2π,μ) = −ps(x, μ), pu(x + 2π,μ) = −pu(x, μ) (3.3)

for all x and μ ∈ J .

Proof Using Floquet theory, Hypothesis 6 implies that the variational equation (3.1) has
a nontrivial solution of the form v(x) = e−(α(μ)+i/2)x p(x, μ), where α(μ) > 0 and the
complex-valued function p(x, μ) satisfies p(x + 2π,μ) = p(x, μ) for all x . We set

ps(x, μ) := Re
(
e−ix/2 p(x, μ)

)

so that ps(x + 2π,μ) = −ps(x, μ) and ps(x + 4π,μ) = ps(x, μ) for all x , and conclude
that the function

vs(x) := Re v(x) = e−α(μ)x ps(x, μ)

satisfies (3.1)–(3.3). It remains to show that vs(x) does not vanish identically: if it did, we
repeat the arguments above for Im v(x), which can then not vanish identically as we assumed
that v(x) is not the zero solution. Finally, Proposition 2.1 implies that vu(x) := Rvs(−x)
satisfies (3.1)–(3.3). 	
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Wu(γ, μ)

Ws(γ, μ)

γ(·, μ)
v̂cps

pu

x = 0 x = 2π x = 4π

Fig. 5 Shown is an illustration of the stable and unstable manifolds of the periodic orbit γ in the nonorientable
case: the vectors in black represent ps (x, μ) and pu(x, μ), and it is indicated how they change direction after
2π time units. Considering the phase in the interval [0, 4π ] allows us to match the vector directions and
visualize the stable and unstable manifolds of the periodic orbit as two Möbius bands glued together

Wu(γ, μ)

Ws(0, μ)

γ(·, μ)
Σout

0

Ws(0, μ)Wu(γ, μ)

4π

Fig. 6 Shown is a three-dimensional schematic of the gluing construction for systems with negative Floquet
multipliers, where, for clarity, only Wu(γ (x, μ), μ), the section 
out , and a heteroclinic orbit corresponding
to an intersection ofWs (0, μ) withWu(γ (x, μ), μ) are shown. The setup is nearly identical to the orientable
case, except that the phase coordinate ϕ ∈ [0, 4π ] traverses γ twice

Visually, we can see that (3.3) implies that the stable and unstablemanifolds of the periodic
orbit are Möbius bands as illustrated in Figs. 5 and 6. When following a solution along the
periodic orbit, the trajectory will be on the other side of the manifold after 2π time units due
to the half-twist. This is reflected in the rotation of the vectors pu and ps as they move along
the periodic orbit. In the following lemma, we will set up Fenichel coordinates near γ (x, μ)

by gluing together two copies of the stable and unstable manifolds and consider the local
coordinate describing the phase along γ to be 4π -periodic: see Fig. 5.

Lemma 3.2 Assume that Hypotheses 1–4 and 6 are met. There exists a δ > 0, a smooth
reversible change of coordinates near γ (·, μ), and smooth real-valued functions hc, hsj , and

huj for j = 1, 2 with the following properties. Let I = [− δ, δ] and S
1 := [0, 4π]/∼, then

(2.1) restricted to the zero energy level set is of the form
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v̂cx = 1 + hc(v̂, μ)v̂s v̂u

v̂sx = −[α(μ) + hs1(v̂, μ)v̂s + hs2(v̂, μ)v̂u]v̂s
v̂ux = [α(μ) + hu1(v̂, μ)v̂s + hu2(v̂, μ)v̂u]v̂u

(3.4)

for all μ ∈ J and v̂ = (v̂c, v̂s, v̂u) ∈ V := S
1 × I × I/∼, where the equivalence relation ∼

in V is defined by

(v̂c, v̂s, v̂u) ∼ (v̂c + 2π,−v̂s,−v̂u).

Furthermore, (3.4) is reversible with the reverser R acting on v̂ as

Rv̂ = R(v̂c, v̂s, v̂u) = (− v̂c, v̂u, v̂s). (3.5)

Proof The proof is analogous to the construction of Fenichel coordinates in [2, Lemma 2.1]
via a transformation of the form

(v̂c, v̂s, v̂u) ∈ S
1 × I × I 
−→ γ (v̂c, μ) + v̂s ps(v̂c, μ) + v̂u pu(v̂c, μ) + h.o.t.

except that we have v̂c ∈ S
1. The nonorientability of the Floquet bundles is reflected in the

fact that

γ (v̂c, μ) + v̂s ps(v̂c, μ) + v̂u pu(v̂c, μ) = γ (v̂c + 2π,μ) − v̂s ps(v̂c + 2π,μ)

− v̂u pu(v̂c + 2π,μ).

Thus, under the above mapping, the points (v̂c, v̂s, v̂u) and (v̂c + 2π,−v̂s,−v̂u) would be
sent to the same point in the neighborhood of the periodic orbit, and the equivalence relation
in the definition of V reflects this symmetry. The action of the reverser on these coordinates
can be checked using the relations Rγ (x) = γ (−x) and pu(x, μ) = Rps(−x, μ). 	


The equivalence relation on V implies that we can restrict our forthcoming analysis to
v̂s > 0 and v̂u > 0. As explained in Sect. 2, the sets {v̂ : v̂s = 0} and {v̂ : v̂c = ϕ, v̂s = 0}
correspond, respectively, to the unstable manifold of γ (·, μ) and the strong unstable fibers
Wuu(γ (ϕ, μ), μ), and analogously for the stable manifold and the strong stable fibers. The
variables v̂c parametrize a double cover of the periodic orbit γ (x, μ). The sections 
in and

out are defined via


in = S
1 × {v̂s = δ} × I, 
out = S

1 × I × {v̂u = δ}.
Our goal is to track solutions that enter a neighborhood of the periodic orbit near a back that
lies in the intersection of the unstable manifold Wu(0, μ) of the equilibrium and a strong
stable fiber Wss(γ (ϕ, μ), μ) of the periodic orbit and leave the neighborhood near a front
that lies in the intersection of a strong unstable fiberWuu(γ (ϕ, μ), μ) and the stablemanifold
Ws(0, μ); see Fig. 6. To capture the locations of backs and fronts, we define the set � via

� := {(ϕ, μ) ∈ S
1 × J : Ws(0, μ) ∩ Wuu(γ (ϕ, μ), μ) ∩ 
out �= ∅}. (3.6)

Note that, compared to the orientable setup, the only change is that we use S1 = [0, 4π]/∼
instead of S1 = [0, 2π ]/ ∼. The following lemma shows how solutions that pass near the
periodic orbit can be tracked.

Lemma 3.3 There exist positive constants L0 and η such that, for all L > L0 and ϕ ∈ S
1,

there exists a unique solution v̂(x) of (3.4) that is defined for x ∈ [−L , L] such that

v̂(−L) ∈ 
in, v̂(L) ∈ 
out, v̂c(0) = ϕ, v̂(x) ∈ V ∀x ∈ [−L , L].
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In addition, we have

v̂(−L) =
(
ϕ − L + O(e−ηL), δ, δe−2α(μ)L (1 + O(e−ηL))

)

v̂(L) =
(
ϕ + L + O(e−ηL), δe−2α(μ)L (1 + O(e−ηL)), δ

)

v̂(0) =
(
ϕ, δe−α(μ)L (1 + O(e−ηL)), δe−α(μ)L (1 + O(e−ηL))

)
.

(3.7)

The solution v̂(x) is smooth in (ϕ, μ, L), and the error estimates in (3.7) are differentiable.
Moreover

v̂(x,−ϕ) = Rv̂(−x, ϕ) (3.8)

for all ϕ and x. In particular, the solution v̂(x, ϕ) is R-reversible, with v̂(0) ∈ FixR, if and
only if ϕ ∈ {0, 2π}.
Proof The proofs for existence and uniqueness of solutions as well as for obtaining (3.7)
and (3.8) proceed as in [2, Lemma 3.1]. Finally, (3.8) implies that v̂(0) ∈ FixR if and only
if ϕ = −ϕ. Using that −ϕ = 4π − ϕ, we find that ϕ = −ϕ if and only if ϕ ∈ {0, 2π} as
claimed. 	


4 Snaking and Isolas for Nonorientable Floquet Bundles

In this section, we construct branches of symmetric and asymmetric pulses: our arguments
will not depend on whether these branches are isolas or connected snaking branches. Since
the case of orientable Floquet bundles has already been considered in [2], we restrict our
analysis to the nonorientable case when the stable and unstable manifolds are topological
Möbius bands.

We impose the following structural definition on the set � that describes heteroclinic
connections between the origin and the periodic orbits:

Hypothesis 7 There exists some smooth function G : S
1 × I × J → R such that

G(ϕ, v̂s, μ) = 0 if, and only if, (ϕ, v̂s) ∈ Ws(0, μ) ∩ 
out. In particular,

� := {(ϕ, μ) ∈ S
1 × J : Wuu(γ (ϕ, μ), μ) ∩ Ws(0, μ) ∩ 
out �= ∅}

= {(ϕ, μ) ∈ S
1 × J : G(ϕ, 0, μ) = 0},

and we assume that � ⊂ S
1 × J̊ and that

∇(ϕ,μ)G(ϕ, 0, μ) �= 0 ∀(ϕ, μ) ∈ �. (4.1)

Throughout the remainder of this paper, we refer to one-dimensional manifolds that are
diffeomorphic to circles as loops. In other words, loops are closed smooth curves that do not
have self-intersections.

With this notation, the preceding hypothesis implies that � is the union of finitely many
disjoint loops that do not intersect S1 × ∂ J . We pick one such loop and parametrize it by
(ϕ(s), μ(s)) with s ∈ [0, 1], where we consider ϕ(s) in the cover R of S1. Since we have
ϕ(0) = ϕ(1) mod 4π , and we trace out a loop, we have either (i) ϕ(0) = ϕ(1) or (ii)
ϕ(0) = ϕ(1) ± 4π : we refer to the loop as a 0-loop in case (i) and a 1-loop in case (ii).
Figure 7 shows examples of sets � that are 1-loops and 0-loops.

We now denote by �lift ⊂ R× J̊ the preimage of � under the natural covering projection
from R× J̊ to S1 × J̊ . Any 0-loop in � will be lifted to an infinite number of disjoint copies
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Fig. 7 Panels (1) and (2) show example sets � that are 1-loops and 0-loops, respectively. Panel (3) shows the
set �lift = �+ (0, 4πZ) (dotted) resulting from the 0-loop shown in panel (2), with the vertical axis variable ϕ

replaced by L . Panels (4) and (5) show �lift (dotted) together with the isolas �0
sym (solid) and �2π

sym (dashed),

respectively, that correspond to symmetric pulses; see Lemma 4.1. Panel (6) shows the sets �0
sym (solid) and

�2π
sym (dashed), whose union constitutes the full bifurcation diagram of symmetric pulses

of the 0-loop, while a 1-loop will be lifted to an unbounded connected curve in �lift . Below,
we will show that the bifurcation curves of symmetric pulses will be close to �lift so that we
have snaking if � is a 1-loop, while the bifurcation diagram consists of isolas if � contains
only 0-loops; see Fig. 7 for an illustration.

4.1 Symmetric 1-Pulses

In this section, we will construct symmetric solutions v̂(x) that are reversible homoclinic
orbits to the equilibrium u = 0 and spend time 2L � 1 near the periodic orbit γ (·, μ). Here,
by definition, a symmetric 1-pulse v̂(x) satisfies

v̂(x) ∈ V for x ∈ [−L , L]
v̂(L) ∈ Ws(0, μ) ∩ 
out

v̂(0) ∈ Fix(R)

(4.2)

for sufficiently large L � 1.

Lemma 4.1 Assume that Hypotheses 1–4 and 6–7 are met. There exist an η > 0 and sub-
manifolds �

ϕ0
sym ⊂ R × J for ϕ0 = 0, 2π such that the following is true:

1. There is a symmetric 1-pulse of length 2L if, and only if, (L , μ) ∈ �
ϕ0
sym for ϕ0 = 0 or

ϕ0 = 2π .
2. Fix ϕ0 = 0, 2π , then the manifolds �lift − (ϕ0, 0) and �

ϕ0
sym are, for each fixed k ≥ 2,

O(e−ηL)-close to each other in the Ck-sense near any point (L , μ) ∈ �
ϕ0
sym.

The lemma implies that the bifurcation diagram of symmetric pulses is close to the set
�lift shifted by ϕ0 upwards with ϕ0 ∈ {0, 2π}; see Fig. 8. In particular, we obtain snaking if
� is a 1-loop; if � consists of 0-loops, the bifurcation diagram consists of isolas.

Proof Lemma 3.3 implies that (4.2) is met if, and only if,

v̂(L) = (
v̂c(L , ϕ0, μ), v̂s(L , ϕ0, μ), δ

) ∈ Ws(0, μ)

for ϕ0 ∈ {0, 2π}, and Hypothesis 7 implies that this condition is equivalent to

G(v̂c(L , ϕ0, μ), v̂s(L , ϕ0, μ), μ) = 0 (4.3)
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Fig. 8 Shown are sample bifurcation diagrams consisting of isolas in the orientable (left) and nonorientable
(right) case: solid and dashed curves correspond to the branches �0

sym and �
ϕ0
sym, respectively, of symmetric

pulses with ϕ0 = π in the orientable and ϕ0 = 2π in the nonorientable case, while dotted curves correspond
to branches of asymmetric pulses

for any sufficiently large L � 1. Using again Lemma 3.3, we see that (4.3) becomes

G(L + ϕ0 + O(e−ηL),O(e−ηL), μ) = 0. (4.4)

For each 0-loop in �, we parametrize the loop by 4π -periodic functions (L(s), μ(s)) with
0 ≤ s ≤ 4π so that

�lift = {(L(s) + 4πk, μ(s)) : 0 ≤ s ≤ 4π, k ∈ N}.
If � is a 1-loop, we can parametrize �lift by a curve (L(s), μ(s)) with s ≥ 0, where (L(s +
4π), μ(s + 4π)) = (L(s) + 4π,μ(s)) for all s. Next, let

n(s) := 1

|∇(ϕ,μ)G(L(s), 0, μ(s))|∇(ϕ,μ)G(L(s), 0, μ(s))

and note that n(s) is well defined and normal to �lift for all s by Hypothesis 7. We now set

(L , μ) = (L(s) − ϕ0 + n1(s)a, μ(s) + n2(s)a)

and note that there is an open interval I so that (s, a) ∈ R × I parametrize a uniform
neighborhood of �lift in R × J . Let

F(s, a) := G
(
L + ϕ0 + O

(
e−ηL

)
,O

(
e−ηL

)
, μ

)
= G(L(s) + n1(s)a, 0, μ(s)

+ n2(s)a) + O
(
e−ηL(s)

)

and we have

F(s, a) = O
(
|a| + e−ηL(s)

)
, Fa(s, a) = 1 + O

(
|a| + e−ηL(s)

)
.

In particular, we can solve F(s, a) = 0 uniquely for a for all sufficiently large s. The
remaining claims now follow easily. 	

4.2 Asymmetric 1-Pulses

Next, we focus on asymmetric (that is, not symmetric) 1-pulses, which, by definition, satisfy

v̂(x) ∈ V for x ∈ [−L , L]
v̂(−L) ∈ Wu(0, μ) ∩ 
in

v̂(L) ∈ Ws(0, μ) ∩ 
out

(4.5)
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Fig. 9 Shown are two curve segments inside a sample set � = {(μ, ϕ) : G(ϕ, 0, μ) = 0}. The upper segment
violates Hypothesis 8(i) at the filled circle with label (i) at which Gϕ(ϕ0, 0, μ0) = Gϕϕ(ϕ0, 0, μ0) = 0: �

is not locally a nondegenerate parabola near the point (ϕ0, μ0) that corresponds to the vertical tangent. The
lower segment violates Hypothesis 8(ii) at the two filled circles with label (ii) at which two vertical tangents
arise at the same value of μ so that Gϕ(ϕ j , 0, μ1) = 0 for j = 1, 2

for sufficiently large L � 1. Throughout the remainder of this section, we assume that
Hypotheses 1–4 and 6–7 are met. In addition, we assume the following nondegeneracy
condition and refer to Fig. 9 for a geometric interpretation:

Hypothesis 8 If (ϕ, μ) ∈ � with Gϕ(ϕ, 0, μ) = 0, then (i) Gϕϕ(ϕ, 0, μ) �= 0 and (ii)
Gϕ(ϕ̃, 0, μ) �= 0 for all (ϕ̃, μ) ∈ � with ϕ̃ �= ϕ.

Lemma 3.3 and Hypothesis 7 imply that

v̂(L) ∈ 
out ∩ Ws(0, μ) ⇐⇒ G(v̂c(L , ϕ, μ), v̂s(L , ϕ, μ), μ) = 0.

Applying the reverser to v̂(−L), and explicitly indicating the dependence of v̂(x, ϕ, μ) on
the variables (ϕ, μ), we conclude from Lemma 3.3 that v̂(−L , ϕ, μ) ∈ 
in ∩ Wu(0, μ) if,
and only if,

v̂(L ,−ϕ,μ)

(
3.8

)

= Rv̂(−L , ϕ, μ) ∈ 
out ∩ Ws(0, μ).

Thus, we see that 1-pulses that spend time 2L in V are in 1:1 correspondence with solutions
(L , ϕ, μ) of the system

G(L , ϕ, μ) :=
(

G(v̂c(L , ϕ, μ), v̂s(L , ϕ, μ), μ)

G(v̂c(L ,−ϕ,μ), v̂s(L ,−ϕ,μ), μ)

)
= 0.

Denoting by κ the map given by κ(u, v) = (v, u), we see that

G(L ,−ϕ,μ) = κG(L , ϕ, μ), ∀(L , ϕ, μ)

so that G is Z2-equivariant with respect to this action: in particular, since ϕ = −ϕ in
S
1 = [0, 4π]/∼ precisely when ϕ ∈ {0, 2π}, we recover the symmetric 1-pulses constructed

in Lemma 4.1 as solutions in the fixed-point space of this action. Next, setting

L = � + 4πn = � + 4π

ε
, � ∈ S

1, ε ∈ A := {0} ∪
{
1

n
; n ∈ N

}
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and using the expansions given in Lemma 3.3, we obtain

G(L , ϕ, μ) =
(
G(L + ϕ + O(e−ηL),O(e−ηL), μ)

G(L − ϕ + O(e−ηL),O(e−ηL), μ)

)
=

(
G(� + ϕ, 0, μ)

G(� − ϕ, 0, μ)

)
+ O(e−η/ε).

(4.6)
Wewill now set ε = 0 and construct asymmetric 1-pulses for the ε = 0 case: our construction
involves only the implicit function theorem and therefore extends immediately to the case
0 < ε � 1. due to the error estimates in (4.6). For simplicity, and with a slight abuse of
notation, wewriteG(ϕ, μ) := G(ϕ, 0, μ) from nowon, thus omitting the second component,
which is zero.

We therefore need to find (�, ϕ, μ) ∈ Q := S
1 × S

1 × J for which

G(L , ϕ, μ) =
(
G(� + ϕ,μ)

G(� − ϕ,μ)

)
= 0,

which we write equivalently as

G̃(�, ϕ, μ) :=
(
G1(�, ϕ, μ)

G2(�, ϕ, μ)

)
:=

(
G(� + ϕ,μ) + G(� − ϕ,μ)

G(� + ϕ,μ) − G(� − ϕ,μ)

)
= 0 (4.7)

and note that this system is Z2-symmetric under the action ϕ → −ϕ and (G1,G2) 
→
(G1,−G2). We begin by investigating pitchfork bifurcations from symmetric pulses.

Lemma 4.2 Assume that Hypotheses 1–4 and 6–8 are met. Assume that (�0, μ0) ∈ � (so
that G(�0, μ0) = 0) with Gϕ(�0, μ0) = 0, then precisely two branches of asymmetric 1-
pulses (related by x → −x symmetry) bifurcate from the symmetric 1-pulse corresponding
to (�0, μ0) in a pitchfork bifurcation.

Proof Since G(�0, μ0) = 0, we have G̃(�0, 0, μ0) = 0, Furthermore, since Gϕ(�0, μ0) = 0,
we find that

DG̃(�0, 0, μ0) =
(
2Gϕ(�0, μ0) 0 2Gμ(�0, μ0)

0 2Gϕ(�0, μ0) 0

)
=

(
0 0 2Gμ(�0, μ0)

0 0 0

)
.

Hypothesis 7 implies that Gμ(�0, μ0) �= 0, and we can therefore solve G1(�, ϕ, μ) = 0 near
(�0, 0, μ0) uniquely for μ = μ∗(�, ϕ) as a function of (�, ϕ). Writing (�, μ) = (�0, μ0) +
(�̃, μ̃) and using the Z2-symmetry that guarantees that G2 is odd in ϕ, we can expand the
function G2(�, ϕ, μ) and find that

G2(�, ϕ, μ∗(�, ϕ)) = 2Gϕϕ(�0, μ0)�̃ϕ + O(ϕ3),

where Gϕϕ(�0, μ0) �= 0 by Hypothesis 8(i). Dividing by ϕ, we can therefore solve
G2(�, ϕ, μ∗(�, ϕ)) = 0 near (�0, 0, μ0) uniquely for � as a function of ϕ. This proves
the claim. 	


Next, let

�s := {(�, ϕ, μ) ∈ Q : ϕ = 0,G(�, μ) = 0}
�bif

s := {(�, ϕ, μ) ∈ Q : ϕ = 0, G(�, μ) = 0, Gϕ(�, μ) = 0, }
�a := {(�, ϕ, μ) ∈ Q : ϕ �= 0, G(� + ϕ,μ) = 0, G(� − ϕ,μ) = 0}

to be the sets corresponding to symmetric 1-pulses, symmetric 1-pulses at pitchfork bifur-
cation points, and asymmetric 1-pulses. The following lemma characterizes the set �a of
asymmetric 1-pulses.
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Fig. 10 We illustrate the
curvature in the μ-direction at the
points in � that correspond to
pitchfork bifurcations

μ

μ > 0

μ < 0

Lemma 4.3 Assume that Hypotheses 1–4 and 6–8 are met. We have �̄a = �a ∪ �bif
s , and

�̄a consists of a finite union of smooth isolas (sets that are diffeomorphic to circles) and
smooth curves with boundaries in �bif

s .

Proof We already proved in Lemma 4.2 that precisely two branches of asymmetric 1-pulses
emanate as smooth curves from each point in the discrete set �bif

s .
Next, take any (�, ϕ, μ) ∈ �a with ϕ /∈ {0, 2π}. In particular, G(�, ϕ, μ) = 0 and the

associated Jacobian is given by

DG(�, ϕ, μ) =
(
Gϕ(� + ϕ,μ) Gϕ(� + ϕ,μ) Gμ(� + ϕ,μ)

Gϕ(� − ϕ,μ) −Gϕ(� − ϕ,μ) Gμ(� − ϕ,μ)

)
. (4.8)

It follows readily from Hypothesis 7 that the Jacobian has rank strictly less than two if and
only if Gϕ(� ± ϕ,μ) = 0. However, for ϕ /∈ {0, 2π} and (� ± ϕ,μ) ∈ �, this is ruled out
by Hypothesis 8. Hence, the Jacobian has full rank, and the solution set of G(�, ϕ, μ) = 0 is
given locally by a smooth curve.

Since Q is compact and zero is a regular value of G(�, ϕ, μ) when we restrict it to a
complement of a small neighborhood of �s, this implies that�a is the union of smooth isolas
and of branches that begin and end in �bif

s as claimed. 	

Finally, we show that branches of asymmetric 1-pulses that emerge at pitchfork bifurca-

tions begin and end at points in � of opposite curvature in μ. Take any element (ϕ0, μ0) ∈ �

for whichGϕ(ϕ0, μ0) = 0. Since thenGμ(ϕ0, μ0) �= 0 by Hypothesis 7, we can parametrize
� locally near (ϕ0, μ0) as μ = μ∗(ϕ) so that G(ϕ, μ∗(ϕ)) ≡ 0. Taking derivatives, we find
that

signμ′′(ϕ0) = −sign
(
Gμ(ϕ0, μ0)Gϕϕ(ϕ0, μ0)

)
, (4.9)

where the right-hand side is not zero due to Hypothesis 8. Note also that these signs are
independent of the specific parametrization. See Fig. 10 for an illustration.

Lemma 4.4 Assume that Hypotheses 1–4 and 6–8 are met. The branches of asymmetric
1-pulses described in Lemma 4.2 begin and end at points in �bif

s at which μ′′ has opposite
sign.

Proof Pick a branch of asymmetric 1-pulses that begins and ends at pitchfork bifurcation
points and parametrize the branch (�, ϕ, μ)(s) by s ∈ [0, 1] so that (�, ϕ, μ)′(s) never
vanishes. It follows from the analysis in Lemma 4.2 that (�, μ)′(s) = 0 and ϕ′(s) �= 0
for s = 0, 1. Noting that the rows of the Jacobian in (4.8) are linearly independent and
that the vector (�, ϕ, μ)′(s) lies in the null space of this Jacobian, we conclude that scalar
product of (�, ϕ, μ)′(s) with the cross product of the two rows of the Jacobian in (4.8) has
constant nonzero sign. Expanding the cross product of the two rows at s = 0, 1 we see
that this scalar product is given by Gμ(�(0), μ(0))Gϕϕ(�(0), μ(0))ϕ′(0)2 at s = 0 and by
−Gμ(�(1), μ(1))Gϕϕ(�(1), μ(1))ϕ′(1)2 at s = 1. This implies that the signs of GμGϕϕ at
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the start and end points of the branch must be opposites of each other, and inspecting (4.9)
completes the proof. 	


5 Topological Barriers to Snaking

In the previous section, we proved that the structure of the set

� = {(ϕ, μ) ∈ P × J : Ws(0, μ) ∩ Wuu(γ (ϕ, μ), μ) ∩ 
out �= ∅},
P :=

{ [0, 2π ]/∼ orientable manifolds
[0, 4π ]/∼ nonorientable manifolds

determines whether the bifurcation diagram of symmetric pulses consists of an unbounded
snaking branch or of the union of isolas. Specifically, if Hypothesis 7 is met, then snaking
occurs if � is a 1-loop in P × J . In this section, we discuss topological barriers that prevent
� from being a 1-loop and that therefore preclude snaking to occur.

5.1 Motivation

Webeginwith outlining our initial intuition andmotivation for topological barriers to snaking.
Consider a generic differential equation in R

3 (we imagine that this system represents the
differential equation inside the level set H−1(0) of the conserved quantity H ) and neglect
dependence on parameters in the following arguments. Assume that this system has a hyper-
bolic periodic orbit γ and suppose furthermore that the invariant manifold Wu(γ ) of the
periodic orbit γ is a Möbius band. In this case, the section 
out is a cylinder with one full
twist: Indeed, the boundary of the Möbius band Wu(γ ) is a loop w that winds twice around
the meridian circle given by the periodic orbit γ (see also Fig. 11). The section
out intersects
Wu(γ ) along the entire loopw and makes a half twist each time it traverses the periodic orbit
once, thus ending up with one full twist since w traverses γ twice.

To obtain snaking in the nonorientable case, we need that the intersection of the stable
manifold Ws(0) of the equilibrium with the section 
out forms a loop g along γ : in contrast
to the orientable case, the loop g now winds twice around γ as it traverses 
out along the
boundary loop w. The key is now that the loops g and γ link, where linking is defined as
follows: The fundamental group of R3 \ γ is given by Z, and each loop g in R3 that does not
intersect γ can therefore be mapped to a unique integer in Z via its equivalence class in the
fundamental group R

3 \ γ . This integer is the linking number of the pair (γ, g). Figure 11
shows that the linking number of (γ, g) is not zero. On the other hand, since g ⊂ Ws(0), we
can deform g inside R3 \ γ to a small neighborhood of the origin, thus unlinking the loops
γ and g. This is impossible as the linking number is a homotopy invariant for homotopies
in R3 \ γ . Therefore, linking of loops can create the topological barrier to snaking. We note
that by similar arguments, one expects that additional twists in the Floquet bundles of γ (see,
e.g. Fig. 1) generate similar topological barriers due to linking in R3.

However, the above notion of linking rests on the fact that the fundamental group ofR3 \γ

is Z. We need to consider the case where E = H−1(0), and this set is a three-dimensional
manifold (if we remove critical points of H ) whose topology can be arbitrarily complex.
In particular, it is not clear how linking arguments can be used in this context, or whether
there is an intrinsic notion of twisting within H−1(0). For this reason, we therefore focus on
arguments involving the fundamental group.
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Fig. 11 From left to right: the boundary curve of a Möbius band (black) and its central circle (green) can be
deformed to a pair of circles that have linking number one [1] (Color figure online)

5.2 Barriers in Reversible, Conservative Systems

We focus on reversible, conservative systems in R
4 that satisfy Hypotheses 1–4. Instead of

using linking, we will utilize homotopies of loops. We will make the following assumptions
on the conserved quantity H : R4 × J → R.

Hypothesis 9 We assume that H : R4 × J → R satisfies the following assumptions:

1. Hu(u, μ) = 0 if, and only if, f (u, μ) = 0.
2. If Hu(u, μ) = 0, then the Hessian Huu(u, μ) is invertible.
3. There is a bounded set K ⊂ R

4 such that Hu(u, μ) �= 0 for all (u, μ) /∈ K × J .

We say that (u, μ) is a critical point of H if Hu(u, μ) = 0. The preceding hypothesis
implies that the set of critical points is diffeomorphic to the cross product of a finite set with
J and in 1 : 1 correspondence with the set of equilibria. Furthermore, each critical point is
nondegenerate, and we can therefore use the Morse lemma to characterize the level sets of
H near each equilibrium for each fixed μ. We now define

C := {(u, μ) ∈ R
4 × J : Hu(u, μ) = 0}, Cμ := C ∩ (R4 × {μ}) ⊂ R

4,

E := H−1(0) \Uδ(C) ⊂ R
4 × J, Eμ := E ∩ (R4 × {μ}) ⊂ R

4,

where 0 < δ � 1 is so small that the Morse lemma applies in the δ-neighborhood of each
equilibrium in C. Note that E is a four-dimensional manifold with boundary given by ∂Uδ(C)

and, similarly, each sliceEμ is a three-dimensionalmanifoldwith boundary given by ∂Uδ(Cμ).
Finally, let wμ be the loop that corresponds to the intersection Wu(γ (·, μ), μ) ∩ 
out of the
local unstablemanifold of the periodic orbit γ (·, μ)with the boundary of the tubular Fenichel
neighborhood.

Theorem 5.1 Assume that Hypotheses 1–4, 7, and 9 are met. If wμ cannot be deformed
continuously to a curve in ∂Uδ(0) inside Eμ \ {γ (·, μ)} for some μ ∈ J̊ , then � cannot be a
1-loop and snaking is precluded in this situation.

Proof Hypothesis 9 implies that themanifoldsEμ withμ ∈ J are diffeomorphic to each other.
We fix some μ0 ∈ J̊ and denote by Tμ the Fenichel tubular neighborhoods Tμ introduced in
Sects. 2 and 3. These coordinates provide an isotopy of

⋃

μ∈J

Tμ × {μ} ⊂ E

with Tμ0 × J that maps each periodic orbit γ (·, μ) onto γ (·, μ0). We can then use the isotopy
extension theorem [5, Theorem 1.4 in Chapter 8] to extend this isotopy to an isotopy of E to
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Eμ0 × J : we remark that the openness assumption needed in the isotopy extension theorem
is automatically met as the tubular Fenichel neighborhoods Tμ do not intersect ∂Eμ. We can
therefore work in the framework where E = Eμ0 × J and γ (·, μ) = γ (·, μ0) for all μ ∈ J .

We now argue by contraposition: we assume that � is a 1-loop and need to show thatwμ0

can be deformed to a curve in ∂Uδ(0) in Eμ0 \ {γ (·, μ0)}.
We identify � ⊂ P × J with the one-dimensional manifold

g := {(u, μ) ∈ E = Eμ0 × J : u ∈ Ws(0, μ) ∩ Wuu(γ (ϕ, μ), μ) ∩ 
out for some (ϕ, μ) ∈ �}.
Note that g ⊂ Eμ0 \ {γ (·, μ0)} × J and, using Fenichel coordinates, we can deform the loop
wμ0 into the loop g in (Eμ0 \ {γ (·, μ0)}) × J . Let �t (u, μ) be the flow of the differential
equation u̇ = f (u, μ) in the coordinates E = Eμ0 × J given by the isotopy and note
that the set {γ (·, μ0)} is invariant under �t (·, μ) for each μ. We define the differentiable
function h(t, θ) := �t (uθ , μθ ), where t ≥ 0 and θ ∈ S1. Note that h(0, θ) parametrizes the
projection of g onto Eμ0 and that h(t, θ) ∈ Eμ0 \ {γ (·, μ0)} for all (t, θ). Furthermore, since
(uθ , μθ ) ∈ Ws(0, μθ ) for all θ ∈ S1, we see that h(t, θ) → 0 as t → ∞ uniformly in θ .
Possibly after introducing a newμ-dependent norm, we can assume thatWs

loc(0, μ)∩∂Uδ(0)
is transverse to the flow for all μ ∈ J so that Ws

loc(0, μ) ∩Uδ(0) is forward invariant for all
μ. In particular, for each θ ∈ S1, there is a unique Tθ > 0 such that h(Tθ , θ) ∈ ∂Uδ(0), and
Tθ is continuous in θ . Redefining h as the continuous function

h(t, θ) := �min(t,Tθ )(uθ , μθ )

and setting T := maxθ Tθ shows that h(T, θ) ∈ ∂Uδ(0) for each θ . The composition of the
homotopy from wμ0 to the projection of g into Eμ0 combined with the homotopy h(t, θ)

of the the projection of g into Eμ0 into ∂Uδ(0) provides the desired homotopy of wμ0 into
∂Uδ(0): note that we avoid {γ (·, μ0)} through both homotopies as needed. This completes
the proof of the theorem. 	

Remark 5.2 To connect our theorem to the discussion in Sect. 5.1, assume that E = R

3

and that γ (·) is a hyperbolic periodic orbit in E with nonorientable invariant manifolds. It
follows, in particular, thatWu

loc(γ (·))∩Uδ(γ (·)) is a loop that cannot be contracted to a point
in E \ {γ (·)}, and we conclude from Theorem 5.1 that � cannot be a 1-loop. We remark that
this scenario was considered in [6], where it was assumed that � is a 1-loop: our results show
that this case cannot occur.

6 Application to the Swift–Hohenberg Equation

In this section, we apply our results to the Swift–Hohenberg equation, and we present
numerical computations that illustrate our results. Specifically, we identify a regime in the
Swift–Hohenberg equation in which there are both orientable and nonorientable periodic
orbits. We also show that the nonorientable periodic orbits cannot lead to snaking branches
but only to isolas: this finding is again corroborated using numerical computations.

We consider the steady-state equation

− (1 + ∂2x )
2U − μU +U 2 −U 3 = 0, x ∈ R, (6.1)

associated with the Swift–Hohenberg equation, where we have set ν = 2. Bifurcating from
the rest stateU = 0 at μ = 0 is a family of stationary periodic orbits with zero energy shown
in Fig. 12. The nontrivial Floquet multipliers of these solutions are shown in the insets: they
lie on the unit circle at onset, then become real and negative, then switch back to the unit
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Fig. 12 Shown is the family of periodic orbits with zero energy emerging fromμ = 0 in the Swift–Hohenberg
equation (1.1) with nontrivial Floquet multipliers indicated in the insets. Note that, for a range of values of
μ, there exist both orientable (positive Floquet multipliers) and nonorientable (negative Floquet multipliers)
periodic orbits. At the value of μ = 0.35, the profiles of the periodic orbits are shown: the orientable and
nonorientable orbits are shown in solid and dashed blue, respectively (Color figure online)

circle before finally becoming real and positive after crossing the fold. In particular, for a
range of values of the parameter μ, there exist two periodic orbits with zero energy, one with
positive Floquet multipliers, and one with negative Floquet multipliers.

Recall that (6.1) has the conserved quantity

H(u, μ) = u21 + u1u3 − 1

2
u22 + (1 + μ)

2
u20 − 2

3
u30 + 1

4
u40,

u = (u0, u1, u2, u3) = (U,Ux ,Uxx ,Uxxx ).

For a fixed small δ > 0, we set

Eμ := {u ∈ R
4 : |u| ≥ δ, H(u, μ) = 0}.

We then have the following result on the structure of the zero-energy level sets Eμ of H .

Lemma 6.1 For each μ ≥ 0, the set Eμ is diffeomorphic to S1 × S1 × [δ,∞) with funda-
mental group π1(Eμ) = Z × Z.

Proof Weneed to characterize the set of u ∈ R
4 forwhich H(u, μ) = 0.Using the expression

for H , we obtain

0 = u21 + u1u3 − 1

2
u22 + (1 + μ)

2
u20 − 2

3
u30 + 1

4
u40 =

(
u1 + 1

2
u3

)2

− 1

4
u23 − 1

2
u22

+ (1 + μ)

2
u20 − 2

3
u30 + 1

4
u40. (6.2)

Setting

ũ0 := u0

√
(1 + μ)

2
− 2

3
u0 + 1

4
u20, ũ1 := u1 + 1

2
u3, ũ2 := 1√

2
u2, ũ3 = 1

2
u3, (6.3)

123



J Dyn Diff Equat

where we note that the function u0 
→ ũ0 is a diffeomorphism for μ ≥ 0, we see that the
equation describing Eμ becomes

ũ20 + ũ21 = ũ22 + ũ23.

Thus, (ũ0, ũ1) and (ũ2, ũ3) live on circles of the same radius r ≥ δ, which proves the claim.
	


Next, we calculate the element in the fundamental group of Eμ associatedwith the periodic
orbits found in Fig. 12.

Lemma 6.2 Assume that γ (·, s) is a continuous family of periodic orbits of (6.1) for μ =
μ(s) ≥ 0 with s > 0 so that (i) H(γ (·, s), μ(s)) = 0, (ii) γ (·, s) → 0 and μ(s) → 0 as
s → 0, and (iii) the Floquet multipliers of γ (·, s) at one has multiplicity two for all s > 0.
Then the element [γ (·, s)] corresponding to the periodic orbits in the fundamental group
π1(Eμ(s)) ∼= Z × Z of Eμ(s) is given by (−1,−1) using the coordinates (6.3).

Proof The periodic orbits that bifurcate from u = 0 when μ = 0 and lie in the zero energy
level set are of the form

u = ε(cos x,− sin x,− cos x, sin x) + O(ε2)

for 0 < ε � 1. Using the coordinates (6.3), we find that

ũ = ε

(
1√
2
cos x,

−1

2
sin x,

−1√
2
cos x,

1

2
sin x

)
+ O(ε2)

and we see that both (ũ0, ũ1) and (ũ2, ũ3) traverse a circle clockwise precisely once as x
varies through one period. This proves the claim for 0 < μ � 1. Our assumption on the
multiplicity of the trivial Floquetmultiplier at one allows us to continue the branch of periodic
orbits in a locally unique way as fixed points of appropriate Poincare maps. This, together
with the fact that the topological type of Eμ does not change by Lemma 6.1, completes the
proof. 	


Next, we use Theorem 5.1 to show that symmetric pulses that connect to the nonorientable
periodic orbits shown in Fig. 12 cannot snake.

Proposition 6.3 If, in addition to the hypotheses made in Lemma 6.2, the nontrivial Floquet
multipliers of γ (·, s) are negative for some s > 0, then the loop w := Wu

loc(γ (·, s), μ(s)) ∩
Uδ(γ (·, s)) cannot be deformed to a curve in Uδ(0) inside Eμ(s) \ {γ (·, s)}. In particular,
Theorem 5.1 precludes snaking involving these periodic orbits.

Proof Consider the manifold M := Eμ \ (Uδ(0) ∪ Uδ(γ )). As illustrated in Fig. 13, M
deformation retracts onto (S1 ∨ S1) × S1 and the fundamental group π1(M) is therefore
given by π1(M) = (Z ∗ Z) × Z and each element in π1(M) can be written as (w, n),
where w is an arbitrary word in the loops a and b that surround γ and 0, respectively, and
n ∈ Z measures the winding number in the z-direction; see Fig. 13 for these definitions. In
particular, any curve that lies completely in ∂Uδ(0) ⊂ M is represented by (bm1 , n1) where
m1, n1 ∈ Z. If γ is nonorientable, then the loop w ∈ ∂Uδ(γ ) ⊂ M that corresponds to the
intersection of the local unstable manifold Wu

loc(γ ) with ∂Uδ(γ ) corresponds to an element
of the form (am2 , n2) in π1(M), where m2 �= 0 is odd as w links with γ in Uδ(γ ) since the
unstable manifold is nonorientable. In particular, w cannot be deformed inM to an element
in ∂Uδ(0). This proves the result. 	
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0
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b (S1 S1) × S1

Fig. 13 Shown are the location of the periodic orbit γ in Eμ (left panel) and the generators a, b, z of the
deformation retract (S1 ∨ S1) × S1 ofM that form a basis of the fundamental group π1(M)
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Fig. 14 Snaking of orientable localized rolls in the Swift–Hohenberg equation

Remark 6.4 From the proof of Proposition 6.3, we see that there is in fact a barrier to snaking
whenever m2 �= 0 in the element (am2 , n2) of π1(M) corresponding to the intersection of
the local unstable manifold Wu

loc(γ ) with the boundary ∂Uδ(γ ) of a tubular neighborhood
of the periodic orbit γ . The integer m2 can be thought of as measuring the degree to which
Wu

loc(γ ) twists relative to the ambient manifoldM while traversing γ , and hence in the case
of Swift-Hohenberg, we think ofWu

loc(γ ) as being twisted wheneverm2 �= 0. Proposition 6.3
demonstrates that this is always the case when Wu

loc(γ ) is nonorientable.

Finally, we report on numerical computations of the bifurcation diagrams of stationary
localized patterns associated with the orientable and nonorientable periodic orbits shown in
Fig. 12. First, we consider the orientable periodic orbits associated with the upper branch
of the curve of periodic solutions and, using auto, find snaking branches of symmetric
solutions: the resulting bifurcation diagram is shown in Fig. 14. Note that the solutions near
μ = 0.35 exhibit a plateau of roll patterns whose amplitude matches that of the orientable
periodic orbit shown in the inset of Fig. 12 for μ = 0.35.

Next, we computed the localized solutions associated with the nonorientable periodic
orbits associated with the lower branch in Fig. 12. The results are shown in Fig. 15: localized
symmetric solutions exist for arbitrary length, but these are now found to form a family of
disjoint isolas rather than a connected snaking branch, in line with the statements proved in
Proposition 6.3. A comparison of the amplitude of the roll patterns for μ = 0.35 with that of
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Fig. 15 Isolas of nonorientable localized rolls in the Swift–Hohenberg equation

the periodic orbits shown in Fig. 12 confirms that the roll pattern matches the nonorientable
periodic orbit.

7 Discussion

In this paper,we analyzed localized roll solutions in four-dimensional conservative, reversible
dynamical systems that admit periodic orbits whose stable and unstable manifolds may be
orientable or nonorientable, thus extending previouswork [2] inwhich the orientable casewas
considered. The orientability of these manifolds is related to the sign of the nontrivial Floquet
multipliers associated with the periodic orbit, and the structure of the set � of intersections
between the unstable manifold of the periodic orbits and the stable manifold of the rest
state are proved to be key to understanding the global structure of the associated bifurcation
diagrams.

Generically, the set � is a one-dimensional curve that lives on a cylinder. We developed
topological criteria that result in different bifurcation diagrams: informally, in order to have
snaking of symmetric pulses, � should take the form of a nontrivial loop on this cylinder,
whilst, in order to see isolas of symmetric pulses, � should take the form of a null-homotopic
loop. We made these arguments precise and proved the existence of isolas and snaking under
these conditions in Sect. 4 and also constructed branches of asymmetric pulses, proceeding
in a similar manner as in previous work [2]. We emphasize that these arguments extend in a
straightforward way to higher-dimensional systems.

As already mentioned, in order for snaking to occur, � needs to correspond to a loop
g that can be deformed to the loop w that corresponds to the intersection of the unstable
manifold of the periodic orbit with the boundary of a fixed neighborhood of the periodic
orbit. Since g lives in the stable manifold of the homogeneous rest state, it can be deformed
to a loop that lies entirely near the origin without passing through the periodic orbit. Thus,
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the same needs to be true for the loopw, which results in a topological condition forw that is
necessary for snaking.We applied these results to the Swift–Hohenberg equation and showed
that nonorientable unstable manifolds of roll patterns that arise from bifurcations from the
rest state cannot satisfy this topological condition, thus precluding snaking. We also note that
more general twisting which violates this topological condition can be defined relative to the
fundamental group of the phase space in Swift–Hohenberg, regardless of orientability. Our
numerical computations of bifurcation diagrams for rolls with orientable and nonorientable
unstable manifolds corroborated these findings as they showed that bifurcation diagrams of
localized patterns associated with an orientable periodic orbit exhibit snaking, while those
associated with a nonorientable periodic orbit break up into a sequence of isolas.

We note that the topological barrier we elucidated here is also present in three-dimensional
non-conservative systems such as the one considered in [6], and we expect that snaking is
impossible in such a system when the nontrivial Floquet multipliers of the periodic orbit are
negative.

Our topological argument regarding the nonexistence of snaking relies heavily on the
structure of the fundamental group of the energy level set minus the periodic orbit. One
advantage of using the fundamental group instead of the linking argument that we mentioned
in Sect. 5.1 is that linking of loops is traditionally defined in three-dimensional Euclidean
space, while the fundamental group is defined regardless of the dimension or topology of
the underlying manifold. It is not clear to us though whether there are topological barriers
in higher dimensions or whether snaking can happen regardless of the orientability of the
unstable manifolds.

The reason why nonorientability is an obstruction for snaking in the Swift–Hohenberg
equation is that the periodic orbit can be deformed to the neighborhood of the origin as the
periodic orbits bifurcates from the origin. It would be interesting to see whether there are
examples where the periodic orbit forms a loop that cannot be deformed to a neighborhood
of the homogeneous rest state: in this case, snaking could not occur if the invariant manifolds
of the periodic orbit are orientable, while nonorientability may make them deformable to the
origin.
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