Sketched Clustering via Hybrid Approximate Message Passing

Evan Byrne,* Rémi Gribonval,’ and Philip Schniter,*
*Dept. of ECE, The Ohio State Univ., Columbus, OH, 43210, USA. (byrne.133@osu.edu, schniter.1 @osu.edu)
TUniv Rennes, Inria, CNRS, IRISA, France. (remi.gribonval @inria.fr)

Abstract—In sketched clustering, the dataset is first sketched
down to a vector of modest size, from which the cluster centers
are subsequently extracted. The goal is to perform clustering
more efficiently than with methods that operate on the full
training data, such as k-means++. For the sketching methodology
recently proposed by Keriven, Gribonval, et al., which can be
interpreted as a random sampling of the empirical character-
istic function, we propose a cluster recovery algorithm based
on simplified hybrid generalized approximate message passing
(SHyGAMP). Numerical experiments suggest that our approach
is more efficient than the state-of-the-art sketched clustering
algorithms (in both computational and sample complexity) and
more efficient than k-means++ in certain regimes.

I. INTRODUCTION

Given a dataset X = [z1,...,z7] € RV*T comprising
T feature vectors of dimension [NV, the standard clustering

problem is to find K centroids C £ [cy,...,cx] € RVXK
that minimize the sum of squared errors (SSE)
T
SSE(X,C) & kain x: — exl|2. (1)

t=1
Finding the optimal C' is an NP-hard problem [1]. Thus, many
heuristic approaches have been proposed, with one of the most
popular being the k-means algorithm [2], [3]. Because k-means
can get trapped in bad local minima, many robust variants
have been proposed. One of the best known is k-means++
[4], which uses a careful random initialization procedure to
yield solutions with SSE that are on average < 8(In K + 2)
times the minimal SSE. But even with k-means++, many
random re-initializations may be required to find a near-
optimal clustering. For each initialization, the computational
complexity of k-means++ scales as O(TKNI), with I the
number of iterations, which can be prohibitive for large 7T'.

A. Sketched Clustering

In sketched clustering [5], [6], the dataset is first sketched
down to a vector y with M < T'N components, from which
the cluster centers are subsequently extracted. If the sketch
can be performed efficiently, then—since the cluster-extraction
complexity will be independent of 7T—there is a chance that
sketched clustering will be more efficient than direct clustering
methods like k-means++ when 7" is large.

*E. Byrne and P. Schniter acknowledge support from NSF grant 1716388
and MIT Lincoln Labs.

978-1-5386-1823-3/17/$31.00 ©2017 IEEE

410

The approach proposed in [5], [6] uses a sketch y =
[y1,...,yn]" of the form

T
1 .
Ym = 7 ;_1 exp(jw,, ;))

with randomly generated W 2 [wy,..., wy|" € RM*N,

Note that y,, in (2) can be interpreted as a sample of the
empirical characteristic function, i.e.,

sx(wn) = [@ eiv]e)de O

under the empirical distribution py(z) = 7 23;1 0(x — xy).
Note that sketching X as y via (2) costs O(T'M N) operations,
but it is easily parallelized.

For the recovery of cluster centers from vy, the state-of-
the-art algorithm is compressed learning orthogonal matching
pursuit with replacement (CL-OMPR) [5], [6]. It aims to solve

M
arg min E
C.a m=1

using a greedy heuristic inspired by the orthogonal matching
pursuit algorithm [7] popular in compressed sensing. With
M =~ 10K N, CL-OMPR often attains SSEs similar to those
attained with k-means++, despite the lack of a direct link
between the problem formulations (1) and (4). CL-OMPR’s
computational complexity is O(M N K?), however, which can
be impractical when K is large. Thus, we seek a sketched
clustering scheme whose complexity grows linearly in K.

K

ym — Y arexp(jwy,cr)
k=1

2

“4)

B. Contributions

For the recovery of the cluster centers from a sketch y
of the form given in (2), we propose compressive learning
via approximate message passing (CL-AMP). As we will see,
CL-AMP has a computational complexity of O(M NK) and
performs favorably to CL-OMPR in terms of both runtime and
sample complexity M. Furthermore, we find that CL-AMP
performs favorably to k-means++ in certain operating regimes.
CL-AMP can be understood as an application of the simplified
hybrid generalized approximate message passing (SHyGAMP)
framework [8] to sketched clustering. Further details will be
provided in the sequel.

II. COMPRESSIVE LEARNING VIA AMP
A. High-Dimensional Inference Framework

CL-AMP formulates cluster recovery as a high-dimensional
inference problem rather than as an optimization problem like

Asilomar 2017

(4). In particular, it assumes a Gaussian mixture model (GMM)

K
x ~ Y apN(ck, Ry).)

k=1
where the GMM means are the cluster centers c¢; and the
GMM weights «y, and covariances Ry are unknown.

Defining g, S meH and w,, £ ’wm/gm, SO Hﬂ’mH =1,
1 T
Ym =5 ;eXP(JwLmt) ~ E{exp(jw),z¢)} ©)

K
. ~T ~T ~
= Z Qg €Xp (ng W, Ck _g’r2n w’mRkwm /2)7 (7)
k=1
N
= Tmk

A
= Zmk

where (6) holds under large 7" and (7) follows from the facts
that w! @, ~ 3", N (Gm2mk, 94, 7mi) and that E{el”} =
¢*~7/2 when x ~ N(z, 7). For w,, uniform on the sphere,

Tmk & E{T’mk} = tr(Rk)/N £ Tk (8)

as N — oo, as long as the peak-to-average eigenvalue ratio of

Ry, remains bounded [9]. Thus, for z,,, £ [zm1, ..., ZmK] >
. k
Pyjz(Ym|2m; 0, T) = S(ymfz Qv €Xp (ngzmw S))
k=1
&)
with hyperparameters 7 2 [r,...,7x|T, a £ [aq,. .., k]

The cluster coordinates {c, } are modeled as i.i.d. pc(c;v),
where nominally pg(c;) = N (c; 0, v) with large v. Our main
objective is then to compute the conditional mean

C =E{C|y}, (10)
where the expectation is taken over
M K N
p(Cly) < [] pye(mlwy, Cia,m) [T T pelenriv), (1)
m=1 k=1n=1

while simultaneously learning the hyperparameters o, 7, v.
Here and in the sequel, we format random variables in san-
serif font for clarity.

B. Approximate Message Passing

Exact computation of C in (10) is impractical due to the
form of py|;. One might consider approximate inference via the
sum-product algorithm (SPA), but even the SPA is intractable
due to the form of py|,. Given the presence of a large random
matrix W in the problem formulation, we instead proposed
to tackle approximate inference using approximate message
passing (AMP) [10]. In particular, we apply the simplified
hybrid generalized AMP (SHyGAMP) methodology from [8],
while simultaneously estimating «, 7, v through expectation
maximization (EM). Some background on AMP methods will
now be provided to justify our approach.

The original AMP algorithm of Donoho, Maleki, and Mon-
tanari [10] was designed to estimate i.i.d. ¢ under the standard
linear model (i.e., y = We + n with known W € RMxN

and additive white Gaussian noise n). The generalized AMP
(GAMP) algorithm of Rangan [11] extended AMP to the
generalized linear model (i.e., y ~ p(y|z) for z = We and
separable p(y|z) = [T, p(Ym|2m)). Both AMP and GAMP
give accurate approximations of the SPA under large i.i.d. sub-
Gaussian W, while maintaining a computational complexity
of only O(MN). Furthermore, both can be rigorously ana-
lyzed via the state-evolution framework, which shows that they
are Bayes-optimal in certain regimes [12].

A limitation of AMP [10] and GAMP [11] is that they
cover only problems with i.i.d. estimand ¢ and separable
likelihood p(y|z) = Hj\f:l P(Ym|zm). Thus, Hybrid GAMP
(HyGAMP) [13] was developed to tackle problems with a
structured prior and/or likelihood. HyGAMP could be applied
to (10)-(11), but it requires computing and inverting O(N + M)
covariance matrices of dimension K at each iteration. The
SHyGAMP algorithm [8] is a simplification of HyGAMP
that uses diagonal covariance matrices to drastically reduce
complexity. As described in [8], SHYyGAMP can be readily
combined with the EM algorithm for hyperparameter learning.

C. SHyGAMP

The SHyGAMP algorithm is summarized in Algorithm 1
using the language of Section II-A, assuming W has unit-
norm rows. There, with some abuse of notation, we use c,TL
to denote the nth row of C' (where previously we used ¢ to
denote the kth column of C). We also use P £ [p,, ... Pl
Z % z,...,2u)", R 2 [F1,...,7x]", @ for component-
wise division, and © for componentwise multiplication.

At each iteration, lines 10-11 of Algorithm 1 compute an
approximation of the posterior mean and variance of {Cy}
using the “pseudo-measurements” 7,, = ¢, + v,, where v,,
is treated as a typical realization of v ~ A'(0,Q"). Thus, the

approximate posterior pdf used in lines 10-11 is
~ r pc(Cn)N(Cn; T, Qr)

Cp|Tn; = — .

perlenltni Q) = (e N el 7. @) de

Similarly, lines 4-5 apprroximate the posterior mean and
£ w,,, which uses the pseudo-prior

(12)

covariance of z,, =
z,, ~ N(P,,, QP) and hence the approximate posterior pdf

Paly.p(Zm|Ym, P Q)
. Pyjz(Ym|2m)N (Zm; Prn Q")
B fpylz(y7rt|zin)-/\/(z;n§ﬁmvQp) dz;n.
Essentially, the SHyGAMP algorithm breaks an NK-
dimensional inference problem into M + N K-dimensional in-
ference problems involving an independent-Gaussian pseudo-

prior or pseudo-likelihood, evaluated iteratively. The resulting
computational complexity is O(MNK).

13)

D. From SHyGAMP to CL-AMP

The SHyGAMP algorithm can be applied to many different
problems via appropriate choice of py; and pc. To apply
SHYGAMP to sketched-clustering, we choose py|; and pe as
described in Section II-A. The principal remaining challenge
is to evaluate lines 4-5 of Algorithm 1.

411

Algorithm 1 SHyGAMP

Require: Measurements y, matrix W with ||ﬁ7\|§: = M, pdfs pc|y and
Pzly,p from (12)-(13), initializations C = BE{C}. ¢¢ = diag(cov{c,})

Ensure: S+ 0.

1: repeat

2 Pl 4
P+ WwWC- S Diag(qP)
q%, + diag (cov {zm } Ym, Py, = P Diag(qP)}) Vm
Zm < E {Zm |ym7 P = P Diag(qp)} vm
E—10q°— (LN 1 d2) 0@ ogP)
S « (Z — P)Diag(qP)~!
¢« log

= o AT

9: R+ C+ WS Diag(q")
10: g% < diag (cov {cy |rn =7,;Diag(q")}) Vn
11: 2, < E{c,|rn =7n;Diag(q")} Vn
12: until Terminated

1) Inference of Z,,: For lines 4-5 of Algorithm 1, we would
like to compute the mean and variance

Zmk = C,;l/K kapy\z(ym|zm)-/\[<zm§ﬁma Qp) dzp,, (14)
R

qz . f]RK (ka*Emk)pr\z(ymkm)N(zm;ﬁma Qp) dzp,
mk —)
Cm

5)

where Cy = [Dyjz(Ym|2m)N (Zm; Py QP) A2z, We pro-
pose approximations of Z,,,;; and ¢ ;. that are summarized be-
low; a full derivation has been omitted due to space limitations.
For the remainder of this section, we omit the subscripts m
and y|z to simplify the notation.

The main idea behind our approximation of z,,,;, and ¢ . is
to define), = gz, and then apply the Gaussian approximation
(whose accuracy grows with K)

p([t |oe) = ([ntid] e [sion)] + o) 0

to (9), where

— 02 (7. P 7
p = e O a7
1 .

Ek: 52@2(1_6 9°[Q]ll)

1#k

—g°%[QP cos(2gp1) sin(2gp;)

x (I— 9 1Q%lu Lin@%;) sin éﬁ%n” (18)

B = a exp(—g°71/2). (19)

Rewriting (16) as

p(5 [16] ov)

<N ([san] oot [mid] - o e scme) o
the right side of (20) can be recognized as being proportional

to the generalized von Mises (GvM) density [14] over 0 €
[0, 27). Under this GVM approximation, we have [14] that

p(y|0k) o< exp (ki cos(br —) + Ry cos[2(0k — Ci)]) (21)

for parameters ry,, K, > 0 and (i, (x € [0,27) defined from
Ys My, 2k, and Si. In particular,

1 PEVE Vk-)
K, COS = — — — (22)
R Cos(C) = —7 > <0'k0'k o2
) 1 PkVk Vk)
K sin =— — — — (23)
£ sin(Cr) 1—p: <0;€0k o7
_ 1 1 1
o cos(280) = ——— (-) 24)
A1-pp) \op 7}
. = Pk
Rrsin(2(,) = —o—, (25)
#IC) = 30 e
where
Vi — Re
e o o
and
Gi PkOKOL| A p—2
|:Pk0'k5'k oh] _ﬂk D @7)

Given the SHYGAMP pseudo-prior z;, ~ N (Dy, [QP]xr), the
posterior on 6}, takes the form

p(Okly) oc N'(0k; 9pk, 9°[QP1kr) p(yl0k) (28)
o2
o exp [Hk cos(0x — Cx) + R, cos[2(0r — ()] — %

We then face the task of computing E{0x|y} and E{6|y}
under (28). Several methods could be applied here, such as
numerical integration. The method employed for the experi-
ments in Section III is based on the Laplace approximation
[15]. For this, we compute 6 map £ arg maxg, Inp(6x|y)
using bisection and then approximate E{6;|y} ~ 5k7MAp and
var{f|y} ~ —% lnp(ﬁk\y)|0k:§k - Finally, we compute
Zk = BE{0kly}/g and qf, = var{0k|y}/g*.

2) Inference of €, For lines 10-11 of Algorithm 1, recall
that pe(c,) = N(cn;0,vI). Thus pg is Gaussian and
the posterior mean and covariance of €,, can be computed
straightforwardly as

Q= I+QT) T 2e° (29)
¢ =Q°[Q"'7, (30)
Above, [Q"]7! is simplified by the fact that Q" is diagonal.

E. Hyperparameter Tuning

The likelihood model py|, in (9) depends on the unknown
hyperparameters o and 7. Similarly, the prior pe depends on
the unknown variance v. We propose to estimate these hyper-
parameters using a combination of expectation maximization
(EM) and SHyGAMP, as suggested in [8] and detailed—for
the simpler case of GAMP—in [16]. Extrapolating [16] to the
SHyGAMP case, we estimate o and 7 via

M

{a,7} = argmax N (2m;Zm, Diag(q?,))

a>0,a"1=1,7>0 ,,_) /RE

X I p(yYm|2zm; o, 7) dzpy (31)

412

at each SHyGAMP iteration, immediately after line 5 in
Algorithm 1. For tractability, we approximate the Dirac delta
in (9) by a Gaussian pdf with small variance € > 0, giving

1 a g2 Tk 2
I (Yo | 2m; @, T) = —€’y — ; vk €xP (jgm Zmk — ";)
-+ const. (32)

The resulting optimization problem (31) (which does not
depend on €) can be straightforwardly solved using gradient
projection, since closed-form expressions for the objective and
its gradient exist.

III. NUMERICAL EXPERIMENTS

In this section, we present the results of two numerical
experiments used to test the performance of the CL-AMP,
CL-OMPR, and k-means++ algorithms. For k-means++, we
used the implementation provided by MATLAB and, for CL-
OMPR, we downloaded the MATLAB implementation from
[17] and enabled the “++” initialization method. CL-OMPR
and CL-AMP used the same sketch y, whose frequency
vectors W were drawn using the method described in [5].
For both experiments, the clusters were randomly drawn as
cr ~ N (0y,1.52K?/N I y), after which the training (and test)
data were drawn from the GMM (5) with weights o = %Vk
and covariances R, = I yVk. For CL-OMPR and CL-AMP,
the runtimes reported include the time of computing the sketch.

A. SSE Minimization

In the first experiment, we test each algorithm’s ability to
minimize SSE on the training data, i.e., to solve the problem
(1). For each pair of (K, N) € {(5,100), (10, 50), (10, 100)},
10 trials were performed, where in each trial, a training dataset
was randomly generated with 77 = 10* samples. For cluster
recovery, k-means++ was invoked on this training dataset with
1 replicate (i.e., 1 run from a random initialization), while CL-
AMP and CL-OMPR were invoked using a sketch of length
M. Several values of M, logarithmically spaced in the interval
[KN,10K N], were evaluated.

For each (K, N) pair under test, Figs. 1a, lc, and le show
the median SSE of CL-AMP and CL-OMPR versus M /KN,
with the error-bars showing the standard deviation. The median
SSE of k-means++ was superimposed on these figures as a
reference, although k-means++ has no dependence on M.
Likewise, Figs. 1b, 1d, and 1f show the corresponding median
runtime for CL-AMP and CL-OMPR vs M /K N, where again
the result for k-means++ was superimposed. Because a low
runtime is meaningless if the corresponding SSE is very high,
the runtime was not shown for CL-AMP or CL-OMPR when
its SSE was more than twice that of k-means++.

Figure 1 shows that CL-AMP achieved a low SSE with
fewer measurements M than CL-OMPR. In particular, CL-
AMP required M ~ 3KN to minimize the SSE, while
CL-OMPR required M ~ 10K N. Also, the minimum SSE
achieved by CL-AMP was in most cases lower than that of
k-means++ and CL-OMPR. As we will see in Fig. 2, the SSE

450 102

400

B

LUl ss0 3
@ o "

= E

ks =
3~ S w

=g £

S [& & 4
: 2

100 10 100 10’

M/ KN M/ KN
(@) K =5, N = 100 (b) K =5, N =100

Median SSE

10’

M/ KN
(d) K =10, N =50

M/ KN
(¢) K =10, N = 50

350

Median SSE

Median Time [sec]

100 10°
o

M/ KN
(e) K =10, N = 100

M /KN
() K =10, N = 100

Fig. 1: Median sum-squared error and runtime vs M /K N.

performance of k-means++ can be improved (at the expense
of runtime) by increasing the number of replicates. Figure 1
also shows that CL-AMP was an order of magnitude faster
than CL-OMPR for all (K, N, M) under test. Meanwhile, CL-
AMP was approximately one order-of-magnitude slower than
k-means++, although the SSE achieved by CL-AMP was often
lower. A direct SSE-vs-runtime comparison is given below.

B. Performance versus Runtime

The previous experiment demonstrated CL-AMP’s ability
to minimize SSE faster and with fewer measurements than
CL-OMPR. However, the comparison with k-means++ was
inconclusive: k-means++ was faster but achieved a worse
SSE in many cases. We now describe a different experiment
that aimed to evaluate clustering performance versus runtime.
For clustering performance, we consider both training SSE
and classification error on test data. For the latter, training
data is used for cluster recovery and the estimated clusters
are used for minimum-distance classification of test data. To
control the performance and computational complexity of k-
means++, we allowed multiple replicates as well as training-
data subsampling. Details are provided in the sequel.

We first drew K = 30 random centroids of dimension
N = 20 under the previously described GMM. Then we

413

26
N —X— CL-AMP
{ —<&— CL-OMPR
25 \ —4A— k-means++ (512) | 7
—<}— k-means++ (1024)
L —P— k-means++ (2048)
o) 24+ —— k-means++ (4096) | -
(%))
£
© 23+ —
—
=
C
8
ko) 22 8
()
=
21 q
20 t

10' 102 108 104
Median Time [sec]

Fig. 2: Training sum-squared error vs runtime. Each k-
means++ trace corresponds to a different number of replicates.

o —>— CL-AMP
© —<&— CL-OMPR
o —4A— k-means++ (512)
- —<— k-means++ (1024)
o 10—1 L —P— k-means++ (2048) | o
= —— k-means++ (4096)
L — — - BER
c
2
=
@ 1072 F 3
o
=
[}
17}
©
O 8t e
[
@
©
(0]
,,,,,,,,,, s o
= 104 | | .

0
Median Time [sec]

Fig. 3: Classification error rate vs runtime. Each k-means++
trace corresponds to a different number of replicates.

generated 7' = 10* random training samples from this GMM.
To recover clusters, CL-AMP and CL-OMPR were applied
with sketch length M, while k-means++ was applied with
random subsampling of the training set and multiple replicates.
We tested several sketch lengths M € [KN,100KN], k-
means++ sampling rates € [0.55, 1], and k-means++ replicates
€ [512,4096], all logarithmically spaced. Finally, the resulting
training-data SSE was evaluated using the full training dataset.

The quality of the estimated centroids was also evaluated by
computing the error-rate of minimum-distance classification
of a test dataset (of size Tiest = 5 x 10°, drawn from the
same GMM as the training data). Here, we used the Hungarian
algorithm to assign labels to the estimated centroids.

Figure 2 shows median training SSE versus runtime over
10 trials for each algorithm under test, while Fig. 3 shows
the corresponding median test error rate versus runtime. In

each CL-AMP and CL-OMPR trace, the different datapoints
correspond to increasing values of sketch length M, while
in each k-means++ trace, the different datapoints correspond
to increasing sampling rates for a fixed number of replicates
(specified in the legend). Figure 3 shows the corresponding
classification error rate, computed on the test set, as well as
the Bayes (i.e., minimum possible) classification error rate.

Figures 2 and 3 tell a similar story: to achieve near-optimal
training-SSE or classification error-rate with this GMM, CL-
AMP (with properly adjusted M) requires less runtime than
CL-OMPR or any variation of k-means++. Note that CL-AMP
is easily “tuned” by choosing M ~ 5K N, while k-means++
is much more difficult to tune: it is not clear how to choose the
best combination of subsampling rate and number-of-replicates
to achieve both low SSE and low runtime. Note also that the
implementation of k-means++ is highly optimized while that
of CL-AMP is not, so further improvements may be possible
by optimizing the implementation of CL-AMP.

REFERENCES

[1] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clustering
large graphs via the singular value decomposition,” Mach. Learn.,
vol. 56, no. 1-3, pp. 9-33, 2004.

[2] H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad.
Polon. Sci., vol. 4, no. 12, pp. 801-804, 1956.

[3] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, pp. 651-666, June 2010.

[4] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proc. ACM-SIAM Symp. Discrete Alg., pp. 1027-1035,
2007.

[5] N. Keriven, A. Bourrier, R. Gribonval, and P. Perez,
for large-scale learning of mixture models,” Jun 2016.
arXiv:1606.02838).

“Sketching
(found at

[6] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval, “Compres-
sive k-means,” Oct 2016. (found at arXiv:1610.08738).
[71 Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching

pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. Asilomar Conf. Signals Syst. Comput., (Pacific
Grove, CA), pp. 4044, 1993.

[8] E. M. Byrne and P. Schniter, “Sparse multinomial logistic regression via
approximate message passing,” IEEE Trans. Signal Process., vol. 64,
no. 21, pp. 5485-5498, 2016.

[91 M. Rudelson and R. Vershynin, “Hanson-Wright inequality and sub-
Gaussian concentration,” Electron. Commun. Probab., vol. 18, no. 82,
pp. 1-9, 2013.

[10] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing al-
gorithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106,
pp. 18914-18919, Nov. 2009.

[11] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inform. Thy.,
pp- 2168-2172, Aug. 2011. (full version at arXiv:1010.5141).

[12] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inform. Theory, vol. 57, pp. 764-785, Feb. 2011.

[13] S. Rangan, A. K. Fletcher, V. K. Goyal, E. Byrne, and P. Schniter,
“Hybrid approximate message passing,” IEEE Trans. Signal Process.,
vol. 65, no. 17, pp. 4577-4592, 2017.

[14] R. Gatto and S. R. Jammalamadaka, “The generalized von Mises
distribution,” Stat. Method., vol. 4, pp. 341-353, 2007.

[15] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2007.

[16] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture
approximate message passing,” IEEE Trans. Signal Process., vol. 61,
pp. 4658-4672, Oct. 2013.

[17] N. Keriven, N. Tremblay, and R. Gribonval, “SketchMLbox : a
Matlab toolbox for large-scale learning of mixture models,” 2016.
http://sketchml.gforge.inria.fr.

414

