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Abstract—In sketched clustering, the dataset is first sketched
down to a vector of modest size, from which the cluster centers
are subsequently extracted. The goal is to perform clustering
more efficiently than with methods that operate on the full
training data, such as k-means++. For the sketching methodology
recently proposed by Keriven, Gribonval, et al., which can be
interpreted as a random sampling of the empirical character-
istic function, we propose a cluster recovery algorithm based
on simplified hybrid generalized approximate message passing
(SHyGAMP). Numerical experiments suggest that our approach
is more efficient than the state-of-the-art sketched clustering
algorithms (in both computational and sample complexity) and
more efficient than k-means++ in certain regimes.

I. INTRODUCTION

Given a dataset X , [x1, . . . ,xT ] ∈ R
N×T comprising

T feature vectors of dimension N , the standard clustering

problem is to find K centroids C , [c1, . . . , cK ] ∈ R
N×K

that minimize the sum of squared errors (SSE)

SSE(X,C) ,

T∑

t=1

min
k

‖xt − ck‖
2
2. (1)

Finding the optimal C is an NP-hard problem [1]. Thus, many

heuristic approaches have been proposed, with one of the most

popular being the k-means algorithm [2], [3]. Because k-means

can get trapped in bad local minima, many robust variants

have been proposed. One of the best known is k-means++

[4], which uses a careful random initialization procedure to

yield solutions with SSE that are on average ≤ 8(lnK + 2)
times the minimal SSE. But even with k-means++, many

random re-initializations may be required to find a near-

optimal clustering. For each initialization, the computational

complexity of k-means++ scales as O(TKNI), with I the

number of iterations, which can be prohibitive for large T .

A. Sketched Clustering

In sketched clustering [5], [6], the dataset is first sketched

down to a vector y with M ≪ TN components, from which

the cluster centers are subsequently extracted. If the sketch

can be performed efficiently, then—since the cluster-extraction

complexity will be independent of T—there is a chance that

sketched clustering will be more efficient than direct clustering

methods like k-means++ when T is large.

∗E. Byrne and P. Schniter acknowledge support from NSF grant 1716388
and MIT Lincoln Labs.

The approach proposed in [5], [6] uses a sketch y ,

[y1, . . . , yM ]T of the form

ym =
1

T

T∑

t=1

exp(jwT
mxt) (2)

with randomly generated W , [w1, . . . ,wM ]T ∈ R
M×N .

Note that ym in (2) can be interpreted as a sample of the

empirical characteristic function, i.e.,

φx(wm) =

∫

RN

px(x) exp(jw
T
mx) dx (3)

under the empirical distribution px(x) =
1
T

∑T
t=1 δ(x − xt).

Note that sketching X as y via (2) costs O(TMN) operations,

but it is easily parallelized.

For the recovery of cluster centers from y, the state-of-

the-art algorithm is compressed learning orthogonal matching

pursuit with replacement (CL-OMPR) [5], [6]. It aims to solve

argmin
C,α

M∑

m=1

∣∣∣∣ym −
K∑

k=1

αk exp(jw
T
mck)

∣∣∣∣
2

(4)

using a greedy heuristic inspired by the orthogonal matching

pursuit algorithm [7] popular in compressed sensing. With

M ≈ 10KN , CL-OMPR often attains SSEs similar to those

attained with k-means++, despite the lack of a direct link

between the problem formulations (1) and (4). CL-OMPR’s

computational complexity is O(MNK2), however, which can

be impractical when K is large. Thus, we seek a sketched

clustering scheme whose complexity grows linearly in K.

B. Contributions

For the recovery of the cluster centers from a sketch y

of the form given in (2), we propose compressive learning

via approximate message passing (CL-AMP). As we will see,

CL-AMP has a computational complexity of O(MNK) and

performs favorably to CL-OMPR in terms of both runtime and

sample complexity M . Furthermore, we find that CL-AMP

performs favorably to k-means++ in certain operating regimes.

CL-AMP can be understood as an application of the simplified

hybrid generalized approximate message passing (SHyGAMP)

framework [8] to sketched clustering. Further details will be

provided in the sequel.

II. COMPRESSIVE LEARNING VIA AMP

A. High-Dimensional Inference Framework

CL-AMP formulates cluster recovery as a high-dimensional

inference problem rather than as an optimization problem like
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(4). In particular, it assumes a Gaussian mixture model (GMM)

xt ∼
K∑

k=1

αkN (ck,Rk). (5)

where the GMM means are the cluster centers ck and the

GMM weights αk and covariances Rk are unknown.

Defining gm , ‖wm‖ and w̃m , wm/gm, so ‖w̃m‖ = 1,

ym =
1

T

T∑

t=1

exp(jwT
mxt) ≈ E{exp(jwT

mxt)} (6)

=

K∑

k=1

αk exp
(
jgm w̃

T
mck︸ ︷︷ ︸

, zmk

−g2m w̃
T
mRkw̃m︸ ︷︷ ︸
, τmk

/2
)
, (7)

where (6) holds under large T and (7) follows from the facts

that wT
mxt ∼

∑
k αkN (gmzmk, g

2
mτmk) and that E{ejx} =

ejz−τ/2 when x ∼ N (z, τ). For w̃m uniform on the sphere,

τmk
p
→ E{τmk} = tr(Rk)/N , τk (8)

as N → ∞, as long as the peak-to-average eigenvalue ratio of

Rk remains bounded [9]. Thus, for zm , [zm1, . . . , zmK ]T,

py|z(ym|zm;α, τ ) = δ

(
ym−

K∑

k=1

αk exp
(
jgmzmk−

g2mτk
2

))

(9)

with hyperparameters τ , [τ1, . . . , τK ]T, α , [α1, . . . , αK ]T.

The cluster coordinates {cnk} are modeled as i.i.d. pc(c; ν),
where nominally pc(c; ν) = N (c; 0, ν) with large ν. Our main

objective is then to compute the conditional mean

Ĉ = E{C |y}, (10)

where the expectation is taken over

p(C|y) ∝
M∏

m=1

py|z(ym|wT
mC;α, τ )

K∏

k=1

N∏

n=1

pc(cnk; ν), (11)

while simultaneously learning the hyperparameters α, τ , ν.

Here and in the sequel, we format random variables in san-

serif font for clarity.

B. Approximate Message Passing

Exact computation of Ĉ in (10) is impractical due to the

form of py|z. One might consider approximate inference via the

sum-product algorithm (SPA), but even the SPA is intractable

due to the form of py|z. Given the presence of a large random

matrix W in the problem formulation, we instead proposed

to tackle approximate inference using approximate message

passing (AMP) [10]. In particular, we apply the simplified

hybrid generalized AMP (SHyGAMP) methodology from [8],

while simultaneously estimating α, τ , ν through expectation

maximization (EM). Some background on AMP methods will

now be provided to justify our approach.

The original AMP algorithm of Donoho, Maleki, and Mon-

tanari [10] was designed to estimate i.i.d. c under the standard

linear model (i.e., y = Wc + n with known W ∈ R
M×N

and additive white Gaussian noise n). The generalized AMP

(GAMP) algorithm of Rangan [11] extended AMP to the

generalized linear model (i.e., y ∼ p(y|z) for z = Wc and

separable p(y|z) =
∏M

m=1 p(ym|zm)). Both AMP and GAMP

give accurate approximations of the SPA under large i.i.d. sub-

Gaussian W , while maintaining a computational complexity

of only O(MN). Furthermore, both can be rigorously ana-

lyzed via the state-evolution framework, which shows that they

are Bayes-optimal in certain regimes [12].

A limitation of AMP [10] and GAMP [11] is that they

cover only problems with i.i.d. estimand c and separable

likelihood p(y|z) =
∏M

m=1 p(ym|zm). Thus, Hybrid GAMP

(HyGAMP) [13] was developed to tackle problems with a

structured prior and/or likelihood. HyGAMP could be applied

to (10)-(11), but it requires computing and inverting O(N+M)
covariance matrices of dimension K at each iteration. The

SHyGAMP algorithm [8] is a simplification of HyGAMP

that uses diagonal covariance matrices to drastically reduce

complexity. As described in [8], SHyGAMP can be readily

combined with the EM algorithm for hyperparameter learning.

C. SHyGAMP

The SHyGAMP algorithm is summarized in Algorithm 1

using the language of Section II-A, assuming W̃ has unit-

norm rows. There, with some abuse of notation, we use cT
n

to denote the nth row of C (where previously we used ck to

denote the kth column of C). We also use P̂ , [p̂1, . . . , p̂M ]T,

Ẑ , [ẑ1, . . . , ẑM ]T, R̂ , [r̂1, . . . , r̂N ]T, ⊘ for component-

wise division, and ⊙ for componentwise multiplication.

At each iteration, lines 10-11 of Algorithm 1 compute an

approximation of the posterior mean and variance of {cnk}
using the “pseudo-measurements” r̂n = cn + vn, where vn

is treated as a typical realization of v ∼ N (0,Qr). Thus, the

approximate posterior pdf used in lines 10-11 is

pc|r(cn|r̂n;Q
r) =

pc(cn)N (cn; r̂n,Q
r)∫

pc(c′n)N (c′n; r̂n,Q
r) dc′n

. (12)

Similarly, lines 4-5 approximate the posterior mean and

covariance of zm , C
T
wm, which uses the pseudo-prior

zm ∼ N (p̂m,Qp) and hence the approximate posterior pdf

pz|y,p(zm|ym, p̂m;Qp)

=
py|z(ym|zm)N (zm; p̂m,Qp)∫

py|z(ym|z′
m)N (z′

m; p̂m,Qp) dz′
m

. (13)

Essentially, the SHyGAMP algorithm breaks an NK-

dimensional inference problem into M+N K-dimensional in-

ference problems involving an independent-Gaussian pseudo-

prior or pseudo-likelihood, evaluated iteratively. The resulting

computational complexity is O(MNK).

D. From SHyGAMP to CL-AMP

The SHyGAMP algorithm can be applied to many different

problems via appropriate choice of py|z and pc. To apply

SHyGAMP to sketched-clustering, we choose py|z and pc as

described in Section II-A. The principal remaining challenge

is to evaluate lines 4-5 of Algorithm 1.
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Algorithm 1 SHyGAMP

Require: Measurements y, matrix W̃ with ‖W̃ ‖2
F

= M , pdfs pc|r and

pz|y,p from (12)-(13), initializations Ĉ = E{C}, qc
n = diag(cov{cn})

Ensure: Ŝ←0.

1: repeat

2: qp ← 1

N

∑N
n=1

qc
n

3: P̂ ← W̃ Ĉ − ŜDiag(qp)

4: qz
m ← diag

(
cov

{
zm

∣∣ ym,pm = p̂m; Diag(qp)
})

∀m

5: ẑm ← E
{

zm
∣∣ ym,pm = p̂m; Diag(qp)

}
∀m

6: qs ← 1⊘ qp −
(

1

M

∑M
m=1

qz
m

)
⊘ (qp ⊙ qp)

7: Ŝ ← (Ẑ − P̂ )Diag(qp)−1

8: qr ← N
M

1⊘ qs

9: R̂ ← Ĉ + W̃ Ŝ
T
Diag(qr)

10: qc
n ← diag

(
cov

{
cn

∣∣ rn = r̂n; Diag(qr)
})

∀n

11: ĉn ← E
{

cn

∣∣ rn = r̂n; Diag(qr)
}

∀n

12: until Terminated

1) Inference of zm: For lines 4-5 of Algorithm 1, we would

like to compute the mean and variance

ẑmk = C−1
m

∫

RK

zmkpy|z(ym|zm)N
(
zm; p̂m,Qp

)
dzm (14)

qz
mk =

∫
RK (zmk−ẑmk)

2py|z(ym|zm)N
(
zm; p̂m,Qp

)
dzm

Cm
,

(15)

where Cm =
∫
RK py|z(ym|zm)N

(
zm; p̂m,Qp

)
dzm. We pro-

pose approximations of ẑmk and qz
mk that are summarized be-

low; a full derivation has been omitted due to space limitations.

For the remainder of this section, we omit the subscripts m
and y|z to simplify the notation.

The main idea behind our approximation of ẑmk and qz
mk is

to define θk , gzk and then apply the Gaussian approximation

(whose accuracy grows with K)

p
( [

Re{y}
Im{y}

]∣∣∣θk
)
≈N

( [
Re{y}
Im{y}

]
;βk

[
cos(θk)
sin(θk)

]
+ µk,Σk

)
(16)

to (9), where

µk =
∑

l 6=k

αle
−g2(τk+[Qp]kk)/2

[
cos(gp̂l)
sin(gp̂l)

]
(17)

Σk =
1

2

∑

l 6=k

β2
l

(
1− e−g2[Qp]ll

)

×
(
I − e−g2[Qp]ll

[
cos(2gp̂l) sin(2gp̂l)
sin(2gp̂l) − cos(2gp̂l)

] )
(18)

βk = αk exp(−g2τk/2). (19)

Rewriting (16) as

p
(
β−1
k

[
Re{y}
Im{y}

] ∣∣∣θk
)

≈ N
( [

cos(θk)
sin(θk)

]
;β−1

k

[
Re{y}
Im{y}

]
− β−1

k µk, β
−2
k Σk

)
, (20)

the right side of (20) can be recognized as being proportional

to the generalized von Mises (GvM) density [14] over θk ∈
[0, 2π). Under this GvM approximation, we have [14] that

p(y|θk) ∝ exp
(
κk cos(θk − ζk) + κ̄k cos[2(θk − ζ̄k)]

)
(21)

for parameters κk, κ̄k > 0 and ζk, ζ̄k ∈ [0, 2π) defined from

y, µk, Σk, and βk. In particular,

κk cos(ζk) = −
1

1− ρ2k

(
ρkν̄k
σkσ̄k

−
νk
σ2
k

)
(22)

κk sin(ζk) = −
1

1− ρ2k

(
ρkνk
σkσ̄k

−
ν̄k
σ̄2
k

)
(23)

κ̄k cos(2ζ̄k) = −
1

4(1− ρ2k)

(
1

σ2
k

−
1

σ̄2
k

)
(24)

κ̄k sin(2ζ̄k) =
ρk

2(1− ρ2k)σkσ̄k
, (25)

where
[
νk

ν̄k

]
, β−1

k

( [
Re{y}
Im{y}

]
− µk

)
(26)

and
[

σ2

k ρkσkσ̄k

ρkσkσ̄k σ̄2

k

]
, β−2

k Σk. (27)

Given the SHyGAMP pseudo-prior zk ∼ N (p̂k, [Q
p]kk), the

posterior on θk takes the form

p(θk|y) ∝ N
(
θk; gp̂k, g

2[Qp]kk
)
p(y|θk) (28)

∝ exp

[
κk cos(θk − ζk) + κ̄k cos[2(θk − ζ̄k)]−

(θk − gp̂k)
2

2g2[Qp]kk

]
.

We then face the task of computing E{θk|y} and E{θ2k|y}
under (28). Several methods could be applied here, such as

numerical integration. The method employed for the experi-

ments in Section III is based on the Laplace approximation

[15]. For this, we compute θ̂k,MAP , argmaxθk ln p(θk|y)

using bisection and then approximate E{θk|y} ≈ θ̂k,MAP and

var{θk|y} ≈ − d2

dθk2 ln p(θk|y)
∣∣
θk=θ̂k,MAP

. Finally, we compute

ẑk = E{θk|y}/g and qz
k = var{θk|y}/g

2.

2) Inference of cn: For lines 10-11 of Algorithm 1, recall

that pc(cn) = N (cn;0, νI). Thus pc|r is Gaussian and

the posterior mean and covariance of cn can be computed

straightforwardly as

Qc
n =

(
ν−1I + [Qr]−1

)−1
, Qc (29)

ĉn = Qc[Qr]−1r̂n (30)

Above, [Qr]−1 is simplified by the fact that Qr is diagonal.

E. Hyperparameter Tuning

The likelihood model py|z in (9) depends on the unknown

hyperparameters α and τ . Similarly, the prior pc depends on

the unknown variance ν. We propose to estimate these hyper-

parameters using a combination of expectation maximization

(EM) and SHyGAMP, as suggested in [8] and detailed—for

the simpler case of GAMP—in [16]. Extrapolating [16] to the

SHyGAMP case, we estimate α and τ via

{α̂, τ̂} = argmax
α≥0,αT1=1,τ>0

M∑

m=1

∫

RK

N (zm; ẑm,Diag(qz
m))

× ln p(ym|zm;α, τ ) dzm (31)
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at each SHyGAMP iteration, immediately after line 5 in

Algorithm 1. For tractability, we approximate the Dirac delta

in (9) by a Gaussian pdf with small variance ǫ > 0, giving

ln p(ym|zm;α, τ ) ≈ −
1

ǫ

∣∣∣∣y −
K∑

k=1

αk exp
(
jgmzmk −

g2mτk
2

)∣∣∣∣
2

+ const. (32)

The resulting optimization problem (31) (which does not

depend on ǫ) can be straightforwardly solved using gradient

projection, since closed-form expressions for the objective and

its gradient exist.

III. NUMERICAL EXPERIMENTS

In this section, we present the results of two numerical

experiments used to test the performance of the CL-AMP,

CL-OMPR, and k-means++ algorithms. For k-means++, we

used the implementation provided by MATLAB and, for CL-

OMPR, we downloaded the MATLAB implementation from

[17] and enabled the “++” initialization method. CL-OMPR

and CL-AMP used the same sketch y, whose frequency

vectors W were drawn using the method described in [5].

For both experiments, the clusters were randomly drawn as

ck ∼ N (0N , 1.52K2/NIN ), after which the training (and test)

data were drawn from the GMM (5) with weights αk = 1
K ∀k

and covariances Rk = IN∀k. For CL-OMPR and CL-AMP,

the runtimes reported include the time of computing the sketch.

A. SSE Minimization

In the first experiment, we test each algorithm’s ability to

minimize SSE on the training data, i.e., to solve the problem

(1). For each pair of (K,N) ∈ {(5, 100), (10, 50), (10, 100)},

10 trials were performed, where in each trial, a training dataset

was randomly generated with T = 104 samples. For cluster

recovery, k-means++ was invoked on this training dataset with

1 replicate (i.e., 1 run from a random initialization), while CL-

AMP and CL-OMPR were invoked using a sketch of length

M . Several values of M , logarithmically spaced in the interval

[KN, 10KN ], were evaluated.

For each (K,N) pair under test, Figs. 1a, 1c, and 1e show

the median SSE of CL-AMP and CL-OMPR versus M/KN ,

with the error-bars showing the standard deviation. The median

SSE of k-means++ was superimposed on these figures as a

reference, although k-means++ has no dependence on M .

Likewise, Figs. 1b, 1d, and 1f show the corresponding median

runtime for CL-AMP and CL-OMPR vs M/KN , where again

the result for k-means++ was superimposed. Because a low

runtime is meaningless if the corresponding SSE is very high,

the runtime was not shown for CL-AMP or CL-OMPR when

its SSE was more than twice that of k-means++.

Figure 1 shows that CL-AMP achieved a low SSE with

fewer measurements M than CL-OMPR. In particular, CL-

AMP required M ≈ 3KN to minimize the SSE, while

CL-OMPR required M ≈ 10KN . Also, the minimum SSE

achieved by CL-AMP was in most cases lower than that of

k-means++ and CL-OMPR. As we will see in Fig. 2, the SSE
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Fig. 1: Median sum-squared error and runtime vs M/KN .

performance of k-means++ can be improved (at the expense

of runtime) by increasing the number of replicates. Figure 1

also shows that CL-AMP was an order of magnitude faster

than CL-OMPR for all (K,N,M) under test. Meanwhile, CL-

AMP was approximately one order-of-magnitude slower than

k-means++, although the SSE achieved by CL-AMP was often

lower. A direct SSE-vs-runtime comparison is given below.

B. Performance versus Runtime

The previous experiment demonstrated CL-AMP’s ability

to minimize SSE faster and with fewer measurements than

CL-OMPR. However, the comparison with k-means++ was

inconclusive: k-means++ was faster but achieved a worse

SSE in many cases. We now describe a different experiment

that aimed to evaluate clustering performance versus runtime.

For clustering performance, we consider both training SSE

and classification error on test data. For the latter, training

data is used for cluster recovery and the estimated clusters

are used for minimum-distance classification of test data. To

control the performance and computational complexity of k-

means++, we allowed multiple replicates as well as training-

data subsampling. Details are provided in the sequel.

We first drew K = 30 random centroids of dimension

N = 20 under the previously described GMM. Then we
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10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

BER

M
e

d
ia

n
C

la
s
s
ifi

c
a

ti
o

n
E

rr
o

r
R

a
te

Median Time [sec]

CL-AMP

CL-OMPR

k-means++ (512)

k-means++ (1024)

k-means++ (2048)

k-means++ (4096)

Fig. 3: Classification error rate vs runtime. Each k-means++

trace corresponds to a different number of replicates.

generated T = 104 random training samples from this GMM.

To recover clusters, CL-AMP and CL-OMPR were applied

with sketch length M , while k-means++ was applied with

random subsampling of the training set and multiple replicates.

We tested several sketch lengths M ∈ [KN, 100KN ], k-

means++ sampling rates ∈ [0.56, 1], and k-means++ replicates

∈ [512, 4096], all logarithmically spaced. Finally, the resulting

training-data SSE was evaluated using the full training dataset.

The quality of the estimated centroids was also evaluated by

computing the error-rate of minimum-distance classification

of a test dataset (of size Ttest = 5 × 106, drawn from the

same GMM as the training data). Here, we used the Hungarian

algorithm to assign labels to the estimated centroids.

Figure 2 shows median training SSE versus runtime over

10 trials for each algorithm under test, while Fig. 3 shows

the corresponding median test error rate versus runtime. In

each CL-AMP and CL-OMPR trace, the different datapoints

correspond to increasing values of sketch length M , while

in each k-means++ trace, the different datapoints correspond

to increasing sampling rates for a fixed number of replicates

(specified in the legend). Figure 3 shows the corresponding

classification error rate, computed on the test set, as well as

the Bayes (i.e., minimum possible) classification error rate.

Figures 2 and 3 tell a similar story: to achieve near-optimal

training-SSE or classification error-rate with this GMM, CL-

AMP (with properly adjusted M ) requires less runtime than

CL-OMPR or any variation of k-means++. Note that CL-AMP

is easily “tuned” by choosing M ≈ 5KN , while k-means++

is much more difficult to tune: it is not clear how to choose the

best combination of subsampling rate and number-of-replicates

to achieve both low SSE and low runtime. Note also that the

implementation of k-means++ is highly optimized while that

of CL-AMP is not, so further improvements may be possible

by optimizing the implementation of CL-AMP.
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