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Abstract—Parallel computing algorithms benefit from in-
creases in concurrency when the hardware capacity is being
under utilized. For likelihood-based molecular evolution in-
ferences this can be due to small problem sizes, or because
hardware capacity has increased beyond dataset sizes. A central
concept in this domain is a bifurcating tree, which represents
evolutionary relationships. The topology of the tree being
evaluated directly affects the degree of parallelism that can be
exploited by likelihood-based algorithms. For time-reversible
evolutionary models we can reroot an unbalanced tree in order
to make it more symmetric, without affecting the likelihood.
Based on the reduction in number of concurrent operation sets,
we define a best-case theoretical expectations, based on tree size
and topology, for speedup due to rerooting which approaches
2-fold as the number of tip nodes increases for pectinate trees,
and much higher values for some random topologies as the
number of tip nodes increases. Empirical results using the
NVIDIA CUDA implementation of the BEAGLE library confirm
the merit of this approach. For pectinate trees we observe
speedups of up to 1.93-fold due to rerooting and even larger
speedups for random trees for the core likelihood-evaluation
function in BEAGLE.

Keywords-Bayes methods; Biology computing; Evolution (bi-
ology); Phylogeny; Maximum likelihood estimation; Multicore
processing; Parallel programming

I. INTRODUCTION

The process of adapting existing computational methods
to parallel architectures benefits from a broad perspective
on concurrency, the simultaneous execution of indepen-
dent operations. Opportunities exist for increased parallel
performance where the number of concurrent operations
is less than the capacity of the available device(s) (e.g.,
achieved occupancy is less than theoretical occupancy for a
CUDA device). More forward-thinking perspectives include
developing and employing methods to increase concurrency
even when capacity of present devices is exceeded (e.g., oc-
cupancy is at theoretical limits or at levels practically achiev-
able) such that concurrency, and hence performance, will
increase via strong scaling for future devices with increased
capacity. Such perspectives are particularly beneficial in
the context of mixed problems sizes, where performance
improvements from increased concurrency may immediately
be realized for smaller problems sizes, which is the case

for computing of phylogenetic likelihoods in evolutionary
biology (Section II). Furthermore, advancing computational
technology characterized by increasing device capacity and
improving memory performance may shift the demarcation
between compute- and memory-bound properties for specific
problems, and thus provide further potential for realizing
performance gains via concurrent computation.
Initial work on the BEAGLE library for high-performance

statistical phylogenetic inference [1] focused on fine-grained
parallelism where each character (i.e., sequence position) in
a partial likelihood array can be computed autonomously,
and subsequently combined to obtain the likelihood of the
tree. In practice, the decomposition of the characters may
be to the individual level, or groups of characters, with the
decision often made with consideration of the processing
and memory transfer characteristics of the hardware be-
ing employed (e.g., number of cores available, or threads
efficiently supported). Because the largest proportion of
computation in statistical phylogenetics is concentrated at
the level of sequence position via the likelihood calculation
(Section II-A), parallelism at this level is a logical focus in
pursuit of improved performance.
More recently we have broadened our efforts to include

medium-grained parallelism, by seeking higher-level inde-
pendence where concurrent computation opportunities afford
further application of the fine-grained parallelism capa-
bilities of the BEAGLE library. We identified independent
likelihood estimates in analyses of partitioned datasets and
in proposed trees [2], and configured concurrent computation
of these likelihoods via CUDA and OpenCL frameworks [3].
In the work presented here we extend this medium-grained
parallelism to additional opportunities for concurrent com-
putation of independent partial likelihoods arrays in the
statistical phylogenetic setting, and characterize the potential
for increased performance.
The paper continues by providing some domain science

context (Section II), brief description of the BEAGLE library
(Section III), review of independent likelihood estimates in
analyses of partitioned datasets and in proposed trees (Sec-
tion IV), and describe in detail additional opportunities for
concurrent computation of independent partial likelihoods
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Figure 1. Likelihood subtree to which the core likelihood calculation
applies. Solid lines depict focus subtree branches, dotted lines contextual
branches.

arrays for rerooted trees (Section V).

II. EVOLUTIONARY BIOLOGY, THE DOMAIN SCIENCE

A major component of evolutionary biology research
involves inference of relationships of species, genes, or alle-
les. In the phylogenetics or gene genealogical setting these
entities are often referred to more generically as operational
taxonomic units (OTUs). Research in evolutionary biology
can generally be divided in either of two broad categories:

1) macroevolution, which involves the processes of speci-
ation and extinction where OTUs are typically species
or genes representing species; and

2) microevolution, which involves the processes affecting
changes in the genetic structure of populations where
OTUs are alleles of genes or other genetic data.

Phylogenetics, in the broad sense, is the study of evolu-
tionary relationships. Typically, modern phylogenetic anal-
yses involve obtaining DNA sequence data from a set of
organisms, and using model-based methods to infer a binary
tree. This tree represents the evolutionary history of the
organisms going back to their most recent common ancestor
and is, in essence, a subset of the overall tree of life.

Population genetics includes research objectives of esti-
mation of size, growth rate, migration, and other parameters
characterizing populations. Modern population genetics is
based on coalescent theory [4]–[6], which represents a
retrospective approach in that its conceptual framework is a
binary tree, a gene genealogy, representing the relationships
of alleles going back in time. Gene lineages sequentially
unite — coalesce — ultimately to a common ancestor. Well-
developed mathematical theory provides expectations for the
timing of these coalescent events, which can be used to
estimate population genetic parameters.

These evolutionary categories converge in that trees rep-
resenting ancestor-descendent relationships are central to
the conceptual and analytical framework for both macro-
and microevolution, which are embodied by phylogenetics
and population genetics respectively. Consequently they also
share a computational bottleneck, the calculation of the
likelihood values.

A. Likelihood Function

Statistical phylogenetics comprises maximum likelihood
estimation and Bayesian analysis, and is established as the
most effect methods for inferring both phylogenetic trees
and gene genealogies. Heuristic algorithms are employed
to search through the space of possibilities to find a puta-
tively optimal solution (maximum likelihood) or character-
ize posterior probability distributions (Bayesian analysis).
Computation in statistical phylogenetics is dominated by
calculation of the likelihood of trees [7]. For example, pro-
filing GARLI [8], a leading phylogenetic inference program,
demonstrates that for DNA models, computing likelihood
calculations requires in excess of 94% of the overall run
time. More complex models, such as those based on amino-
acid or codon models, are often even more computationally
intensive. Hence the focus on decreasing the time required
for calculation of the likelihood function as a means to
increase the performance of statistical inference-based phy-
logenetic and population genetic analyses.

A subtree comprising a parent node, z, two child nodes, x
and y, and connecting branches of length, tℓ and tm (Fig. 1)
is the focus of the core partial likelihood calculation. The
calculation is iterated for all such such subtrees within the
larger tree required for the analysis. The partial likelihood
function is as follows [7]:

L(i)
k (z) =

(

∑

x

Pr(x|z, tℓ)L
(i)
ℓ (x)

)

×

(

∑

y

Pr(y|z, tm)L(i)
m (y)

) (1)

This calculation is repeated for each character i in the data
(i.e., sequence site pattern), for each state z that a character
can assume, and for each internal node in the proposed tree.
The computational complexity of the likelihood calculation
for a given tree is O(p × s2 × n), where p is the number
of patterns in the sequence (typically on the order of 102 to
106), s is the number of states each character in the sequence
can assume (typically 4 for a nucleotide model, 20 for an
amino-acid model, or 61 for a codon model), and n is the
number of OTUs (e.g., species, alleles). Additionally the tree
search space is very large; the number of unrooted topologies
possible for n OTUs is given by the double factorial function
(2n − 5)!! [9]. Thus, to explore even a fraction of the
total search space, a very large number of topologies are
evaluated, and hence a very great number of likelihood
calculations have to be performed. This leads to analyses
that can take days, weeks or even months to run. Further
compounding the issue, rapid advances in the collection of
DNA sequence data have made the limitation for biological
understanding of these data an increasingly computational
problem.
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Figure 2. Upper: Example tree of eight OTUs (labeled a–h) with post-order
traversal and subtree calculations in series corresponding to node numbers,
with n− 1 = 7 subtree calculations. Lower: Same tree with reverse level-
order, or breadth-first, traversal. Concurrent subtree calculations possible
for independent nodes designated with corresponding node numbers and
enclosed by dotted lines, with ⌈log2 n⌉ = 3 sets.

III. THE BEAGLE LIBRARY AND APPLICATION

PROGRAMMING INTERFACE

The BEAGLE library and application programming inter-
face (API) [1] is a parallel computing platform for high-
performance calculation of phylogenetic likelihoods. BEA-
GLE comprises a collection of efficient implementations
using a shared code design employing CUDA and OpenCL
frameworks [3], and hardware-specific optimizations to ex-
ploit a wide-range of hardware parallelism including CPU

and Xeon Phi, vectorization intrinsics (e.g., SSE, AVX),
and GPUs. BEAGLE also defines a uniform API that fa-
cilitates its integration with host (calling) programs. It is
the first and most widely adopted library for phylogenetic
likelihood calculation, having been integrated into popular
phylogenetics software including BEAST [10], MrBayes [11],
and PhyML [12]. Consequently BEAGLE has been used
extensively for phylogenetic analyses.

IV. INDEPENDENT PARTIAL LIKELIHOOD OPERATIONS

Much of our previous effort on parallelization of the
phylogenetic likelihood function (Eq. II-A) has focused on
fine-grained concurrency by developing efficient algorithms
with atomization at the levels of positions and states, es-
sentially computing p × s (sequence patterns × character
states) as a 2-dimensional grid. Recently we have further
increased concurrency by exploiting the fact that many
analyses involve data subsets, so called partitioned analyses,
for which phylogenetic partial likelihoods can be calculated

independently. Similarly, we exploit the fact that many
subtrees (Fig. 1) are autonomous in that their associated
partial likelihoods can be calculated independently within
the larger tree of which they are constituent parts. We
describe each of these medium-grained concurrency exploits
briefly in the following two subsections.

A. Pattern Partition Concurrency

A popular approach to phylogenetic analyses is to par-
tition sequence data into subsets, often based on genes or
codon positions, and allowing independent model parameters
for each of these different subsets. The resulting model
flexibility improves overall model fit, and has proven to
be an effective means of obtaining improved results. The
independence of these data subsets provides an opportunity
for increased parallelization, as likelihood calculations for
each subset can be computed concurrently.

We have implemented pattern partition concurrency in two
approaches. The first is as a set of streams in CUDA or queues
in OpenCL, and the second through a multi-operation kernel.
For the later implementation we modified our earlier partial
likelihood kernel in CUDA to compute multiple likelihood
arrays in a single execution launch, and use pointer arith-
metic to allow different input and output arrays for different
execution blocks. Further details regarding pattern partition
concurrency and the resulting performance improvements
are provided elsewhere [2].

B. Independent Subtree Concurrency

The number of subtrees requiring calculation for any
full tree is n − 1, again, where n is the number of OTUs
(e.g., species, alleles), which is the number of tips (leaves)
on the tree. Most current phylogenetic algorithms typically
use a post-order traversal when calculating tree likelihood,
calculating each of the n − 1 subtrees in series (Fig. 2,
upper). But, again, many of these subtrees are autonomous
and likelihoods for each can be calculated concurrently.
However, to realize any potential concurrency related to
autonomous subtrees present in a given tree, operations need
to be sent to BEAGLE following a reverse level-order, or
breadth-first, traversal of the tree being evaluated. In the case
of a fully balanced tree the number of autonomous subtrees
is maximized, and reverse level-order traversal can be done
in sets of concurrent operations corresponding to the number
of levels in the tree, ⌈log2 n⌉ (Fig. 2, lower). This subtree
concurrency can be conceptualized as a 3-dimensional grid,
p×s×subtrees, and implemented as a single kernel launch,
or alternatively as a set of streams in CUDA or queues in
OpenCL [2]. The performance improvements resulting from
computing subtrees concurrently is substantial [2].
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Figure 3. Upper: Example pectinate tree of eight OTUs (labeled a–h)
with traversal and subtree calculations in series corresponding to node
numbers, with n − 1 = 7 subtree calculations. Lower: Rerooted version
of same tree to maximize opportunities for concurrent subtree calculations
designated and with corresponding node numbers enclosed by dotted lines,
with ⌈n/2⌉ = 4 sets.

V. REROOTED TREES AND INDEPENDENT PARTIAL

LIKELIHOOD OPERATIONS

A. Pectinate Trees

In the case of a fully pectinate tree no subtrees are
autonomous, or so it might initially appear (Fig. 3, top).
Note that for time-reversible evolutionary models, which are
the most common employed, the likelihood of the tree is
independent of the location of the root [7]. We can use this
property to our advantage by rerooting the tree to enable
additional concurrent operations.

For pectinate trees evaluated with a time-reversible evo-
lutionary model, the number of autonomous subtrees can
be maximized if the tree is rerooted so that ⌊n/2⌋, or
alternatively, ⌈n/2⌉, tips are on one side of the root. Such
rerooting and tree evaluation with a reverse level-order
traversal results in ⌈n/2⌉ sets of concurrent operations
(Fig. 3, bottom). Consequently for pectinate trees we have
a precise expectation for relative performance increase re-
sulting from optimal rerooting and concurrent computation
of independent subtrees, apart from the cost of rerooting
itself, possible inefficiencies, and stochastic variance. The
expectation is that as n ↑, (n − 1)/⌈n/2⌉ → 2, i.e., the

performance gain for should be 2− ϵ fold, ϵ > 0.

B. Intermediate Trees (Neither Fully Balanced Nor Fully

Pectinate)

For any tree, rooted or unrooted, evaluated with a time-
reversible evolutionary model, the number of autonomous
subtrees can be maximized if the tree is rerooted so that
⌊n/2⌋, or alternatively, ⌈n/2⌉, tips are on one side of
the root. Thus, more generally, any optimally rerooted tree
results in ≤ ⌈n/2⌉ sets of concurrent operations. Therefore,
with appropriate algorithmic capability and sufficient hard-
ware capacity the number of sets of subtree calculations can
be very substantially reduced from n− 1 for standard post-
order traversal to a value in the interval [⌈log2n⌉, ⌈n/2⌉]
with post-order traversal and concurrent computation.

As in the case of pectinate trees, we can specify the
expectation for relative performance resulting from opti-
mal rerooting and concurrent computation of independent
subtrees, apart from the cost of rerooting itself, possi-
ble inefficiencies, and stochastic variance. This expectation
is that the performance gain should fall in the interval
[(n−1)/⌈n/2⌉, (n−1)/⌈log2n⌉], i.e., the performance gain
should be between 2 − ϵ fold, ϵ > 0, and (n − 1)/⌈log2n⌉
fold, depending on the balance-pectinate properties of the
tree and the initial rooting.

VI. METHODS

We have developed a set of benchmarks to assess perfor-
mance gains from increased concurrency due to rerooting.
These benchmarks were run on a top-of-the-line workstation
and use an extended version of the testing platform which
is part of the BEAGLE library source code.

A. Concurrent Partial Likelihood Computation in BEAGLE

The current development version of BEAGLE can con-
currently compute independent partial likelihood arrays on
parallel hardware devices. We leveraged this capability to
achieve performance increases through optimal rerooting.
BEAGLE employs a variety of methods to concurrently
compute partial likelihoods, depending on a combination
of parameters including problem size, hardware, and frame-
work [2] (herein described as an implementation class).

For this work, we focused on the NVIDIA CUDA imple-
mentation for problems with fewer than 103 alignment pat-
terns. Problems with few patterns have more scope to benefit
from increased concurrency and, generally, we have noticed
that the CUDA implementation to be the most efficient in
terms of framework overhead.

For this implementation class, BEAGLE concurrently com-
putes partial likelihoods using a multi-operation kernel,
which enables the computation of multiple likelihood arrays
in a single execution launch. This is done using pointer
arithmetic to allow different input and output arrays for
different execution blocks. For this to work BEAGLE requires
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Table I
SYSTEM SPECIFICATIONS.

System 1

CPU Intel Xeon E5-2697v4 (x2)

GPU NVIDIA Quadro GP100

Linux kernel 3.10.0

GCC version 6.2.0

CUDA release 8.0.61

partial likelihood subtree operations to be sent according to
a reverse level-order traversal of the proposed tree. BEAGLE

adds each consecutive operation to a set until it finds an
operation that is dependent on the result of a previous
operation in the set. The library then starts a new operation
set, repeating the same process. Once all operations are
processed in this manner, operation sets are successively
launched for concurrent computation using a multi-operation
partial likelihoods kernel [2].

B. System Specifications

We report benchmark results for the system configuration
shown in Table I. We focused on the NVIDIA CUDA platform
as it previously has shown least amount of overhead [3], thus
reducing the amount of noise for the empirical evaluation of
the gains from rerooting. Further, we utilized a top-of-the-
line Pascal generation GPU which uses a GP100 chip with
3,584 CUDA cores and HBM2 memory with 720 GB/s of total
bandwidth. This allowed us to push the hardware saturation
point for parallelism further into larger problem sizes.

C. Performance Metric

We have used the performance of the partial likelihoods
kernel in BEAGLE as the relevant metric throughout this
study, as rerooting increases concurrency of computation for
this function only. Using this metric allows us to best focus
on the specific performance effect of rerooting. Further, the
partial likelihoods kernel is the computational bottleneck for
phylogenetic analyses and performance improvements to this
function correspond directly to application run time gains for
full inferences [2], [3].

Specifically, we report a measure of throughput in terms of
the effective number of floating point operations per second
(GFLOPS) for computation of the partial likelihoods function
(see equation II-A). In contrast to a direct timing benchmark,
throughput allows us to more easily compare performance
across different problem sizes and to assess how efficiently
the hardware resource is being utilized.

D. Tree Topologies

To better assess performance gains due to rerooting
across a range of scenarios, we augmented synthetictest

(a testing program included in the BEAGLE repository, see
Section VI-F) to be able to generate additional tree topology

types. By default synthetictest generates trees that are fully
balanced, that is, trees that have the optimal topology type
for exploiting partial likelihood concurrency and thus that
do not benefit from rerooting.

We developed new topology-type options to enable the
generation of pectinate, and arbitrary or random topology
trees, in addition to the default balanced topology. These
additional options allow us to assess the effect of rerooting
on worst and average-case topologies for concurrent com-
putation.

For randomly generating a topology, we iteratively con-
struct trees one tip node at a time. We connect each new
tip to a randomly chosen sibling, which can be any of the
existing nodes, including internal ones. The new tip node
and the randomly chosen sibling node then gain a new parent
node, which becomes a child of the previous parent node of
the sibling. For pectinate trees we use the same procedure
but always use the current root as the sibling node as each
tip node is added.

E. Rerooting

We extended synthetictest to support rerooting of any tree
such that it is optimally balanced, and thus requires the
fewest number of parallel kernel launches for computing
its likelihood. We implemented rerooting as a one-time
procedure, performed before any calls to the BEAGLE library,
so that the effectiveness of this operation did not impact the
benchmarks in this study.

To perform an optimally balanced rerooting, we use
a naive algorithm that exhaustively searches all possible
rootings. For each branch of the original tree, we recursively
reconstruct a tree with a new root at this branch. Then,
for each of these tree rootings, we assess the number of
necessary kernel launches to compute its likelihood. This is
done using a reverse level-order traversal, and counting the
number of sets of independent partial likelihood operations.
We then choose a rooting that results in the fewest number
of concurrent operation sets.

F. Test Program and Scripts

We used the BEAGLE test program synthetictest and a set
of Python scripts to evaluate the performance effect of re-
rooting on the partial likelihoods function. The synthetictest

program can generate arbitrary datasets, evolutionary mod-
els, and tree topologies according to user-defined parameters
and uses the BEAGLE library to evaluate the overall tree like-
lihood. This test program is included with the library source
code, available at https://github.com/beagle-dev/beagle-lib.

The results shown in the next section can be reproduced
using synthetictest with a combination of the command line
settings described in Table II. The command line options
shown are divided in two categories, those which were used
across all benchmarks and those which were used according
to the specific tree type being evaluated.
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Table II
TEST PROGRAM PARAMETERS.

Command line option Description

Always used

--rsrc n selects the hardware resource

--taxa n sets the number of taxa or OTUs
in the randomly generated data
set

--sites n sets the number of site patterns
in the randomly generated data
set

--reps n sets the number of calculation
repetitions

--full-timing enables output of detailed tim-
ing information

--manualscale enables application-managed
floating-point rescaling

--rescale-frequency n sets the frequency of computa-
tion of new rescaling factors,
relative to the number of cal-
culation repetitions

Benchmark dependent

--pectinate sets tree topology type to pecti-
nate

--randomtree sets tree topology type to arbi-
trary

--reroot enables optimal rerooting of
tree

--seed n sets the random seed to be used
for generating arbitrary align-
ment data, evolutionary model
parameters, and tree topology

For this study, the --rsrc option was used to select the
GP100 GPU on System 1 (Table I) for all benchmarks. The
--taxa option was set according to the tree size being
benchmarked. The --sites option was set to 512 for all
problems; we used a relatively small alignment size to avoid
saturating the GPU when computing the partial likelihood at
a single node, thus allowing gains from concurrent compu-
tation of multiple nodes (see previous work [3] for a GPU

performance curve relative to number of sites). The --reps
option was set to 1, 000 to overcome a potential warm-up
period from the GPU and capture best-case performance.
The --full-timing option was enabled to capture both
compute throughput from the partial likelihood kernel and
the number of concurrent operation launches necessary to
compute the tree likelihood. The --manualscale option
was enabled to overcome underflow due to the use of single-
precision floating-point format for trees with large numbers
of taxa in this study (it was enabled for all benchmarks,
to allow direct comparison across problem sizes). The
--rescale-frequency option was set to 1, 000 so that
new rescaling factors were only computed once per run and
thus did not affect measurement of best-case performance.

Newly developed --pectinate and --randomtree

options were used to enable different tree topology types,
according to the benchmark. Balanced topology trees
were generated by omitting either of these options. The
--reroot option was used in combination with either of
the two non-balanced topology type options, to optimally
reroot the tree. The --seed option was used in conjunction
--randomtree option and set to different values (1 to
1, 000) to generate trees with different, arbitrary, topologies.
As an example, to evaluate the performance of a

randomly generated, optimally rooted tree with 64
OTUs, we would have used the following command:
./synthetictest --rsrc 1 --taxa 64

--sites 512 --reps 1000 --full-timing

--manualscale --rescale-frequency 1000

--randomtree --reroot --seed 1.
Python scripts were used to automate the process of

initiating multiple runs of the synthetictest program, each
with different command line parameters. The scripts were
also used to collect the program output from these runs and
process it into data tables.

VII. RESULTS

Here we describe our investigations of the performance
effect of the concurrency gains due to rerooting topologies.
We have used the synthetictest program to benchmark the
performance of the core likelihood function in the BEAGLE

library v3.0 (upcoming release) when evaluating pectinate
trees, perfectly balanced trees, random trees, rerooted pecti-
nate trees and rerooted random trees. System specifications
were as shown in Table I.

A. Rerooting Effect on Number of Concurrent Operation

Sets

Here we explore how optimal rerooting reduces the num-
ber of required concurrent operation sets (i.e., the number
of kernel launches for the GPU implementation in BEAGLE)
for computing the overall tree likelihood.
Figure 4 shows how, for a sample of 100 arbitrarily

generated trees each with 256 OTUs, the number of necessary
operation sets is consistently reduced by performing an
optimally balanced rerooting. For this sample of trees, we
observe that the number of operation sets is reduced by as
much as half for trees that were originally less balanced (i.e.,
required more operation sets). We also observe that in one
case, for a tree which required 26 operation sets, rerooting
did not offer any benefit as this tree was already optimally
balanced. Overall, it is clear that the rerooting procedure
can significantly reduce the required number of concurrent
operation sets, which can lead to performance gains if the
parallel hardware resource has unutilized capacity.

B. Rerooting Effect on Throughput Performance

We used the same data set of 100 trees from Section VII-A
to measure the effect of rerooting on throughput perfor-
mance of the partial likelihoods GPU kernel in BEAGLE.
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Figure 4. Plot showing the number of required GPU kernel launches of
the partial likelihood function with subtree concurrency for 100 randomly
generated trees with arbitrary rooting, and for the same trees with optimal
rerooting. Each tree had 256 OTUs. Dashed line represents the null
hypothesis of no difference in kernel launches resulting from rerooting.

Table III
PROPORTION OF THEORETICAL SPEEDUP REALIZED FOR CONCURRENT

SUBTREE CALCULATIONS FOR 64 OTUS AND 512 PATTERNS.

Theoretical NVIDIA Realized

Topology Type Expectation GP100 Speedup

balanced 10.5 3.95 0.38

pectinate 1.00 1.00 na

pectinate rerooted 1.97 1.55 0.79

random [1.85, 5.25] [1.56, 3.07] [0.84, 0.58]

random rerooted [3.15, 5.73] [2.22, 3.30] [0.70, 0.57]

Each sample in the data set had 512 unique site patterns.
This experiment allows us to analyze in more detail the
performance effect of rerooting on a fixed-size tree with
varying topology.

Figure 5 shows how throughput performance increases
with the inverse of the number of concurrent operation
sets, as we would expect due to better GPU utilization.
Further, since rerooting increases the number of concurrent
operations, the result is higher throughput. For this sample
of trees, we observe a mean performance improvement of
1.26-fold due to rerooting.

C. Theoretical Comparison

Here we compare the previously established theoretical
bounds to empirical results for speedups of the partial-
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Figure 5. Plot showing throughput for the partial likelihood kernel
with subtree concurrency for 100 randomly generated trees with arbitrary
rooting, and for the same trees with optimal rerooting for a problem with
512 site patterns and 256 OTUs. Benchmarks were performed using the
GP100 GPU on System 1. Note that the horizontal axis is decreasing from
left to right, this was done to facilitate the visualization of the increase in
performance with the decrease in number of operations.

likelihoods kernel relative to the sequential case when using
concurrent subtree operations. To perform the sequential
benchmarks, we modified the BEAGLE source code to dis-
able multi-operation kernel launches, so that each partial
likelihood array was computed in turn.

Theoretical speedup expectations for balanced and pecti-
nate tree topologies were previously defined in Section V.
For randomly generated tree topologies we determined the
theoretical speedup bounds for each specific tree in the
random sample being evaluated by counting the number
of operation sets. The theoretical bounds together with
empirical results allow us to further assess rerooting gains,
as we compare across a variety of tree topology types. These
comparisons also allow us to assess the effectiveness of the
GPU implementation in BEAGLE, and of the hardware and
software solution as a whole.

Table III compares empirical speedups to theoretical ex-
pectations across a variety of tree topology types, for a tree
with 64 OTUs and 512 unique site patterns. For the random
topology benchmarks we used samples of 100 arbitrarily
generated trees. We observe that, as expected, none of
the empirical results fall outside of the theoretical bounds.
The proportion of theoretical maximum speedup realized
ranges 0.38 (for a balanced topology) to 0.84 (for random
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Figure 6. Plot showing throughput for the partial likelihood kernel
with subtree concurrency for fully balanced trees (filled dots), for 1,000
random topology trees (distribution characterized by open box plot), and
for pectinate trees (open triangles) for a problem with 512 site patterns
and increasing number of OTUs. Throughput for rerooted trees are shown
in filled box plots (random topology trees) and filled triangles (pectinate
trees). Throughput and number of tips are on a log-scale. Benchmarks were
performed using the GP100 GPU on System 1.

topology), and thus much of the expected performance gains
due to rerooting are realized in the empirical results.

D. Overall Effect of Rerooting on Throughput Performance

Here we expand on the benchmarks performed for Sec-
tion VII-B by including balanced and pectinate tree topolo-
gies, using larger samples of 1,000 random trees each, and
using a range of tree sizes, from 16 to 4,096 OTUs. Figure 5
shows throughput performance with concurrent computation
of independent subtrees for a problem with 512 patterns
across a variety of tree sizes and topology types, with and
without rerooting. For reference, we note that the non-
rerooted pectinate case (open white triangle) is equivalent
to the performance for any tree topology when computing
partial likelihood arrays without subtree concurrency (i.e.,
the prevailing methodology).

We observe that rerooting pectinate trees consistently
results in significant increases in performance, with a best-
case speedup of 1.93-fold for a tree with 406 OTUs. Effective
performance towards the pectinate end of the tree symmetry
scale is highly relevant as phylogenetic inference programs
are optimized such that only a subtree representing the
modified portion of the overall tree is recomputed for each
topology change. These subtrees are often less symmetrical

than the full tree.
Further, we can note that randomly generated trees also

consistently benefit from rerooting, although to a lesser
extent than pectinate ones. Overall, we observe increasing
speedups with tree size for non-pectinate trees. We also note
that for larger trees the throughput distribution for a random
tree is skewed towards the fully balanced case, which is
attributable to larger random trees having relatively more
inherent concurrent computing opportunities on one hand,
and on the other hand hardware device saturation decreasing
performance for fully balanced trees relatively more strongly
with increased tree size.

VIII. DISCUSSION

For simplicity of study design, we have explored here
rerooting performance gains only in synthetic tests and have
not empirically assessed the applicability of our approach in
the course of a complete inference run. There are important
factors that need to be considered when analyzing the
relevance of the results presented here to the performance
of a full inference.
Firstly, we have considered likelihood calculations only

in the context of a full tree traversal. However, many
phylogenetic analysis programs only calculate those subtree
partial likelihoods as required for a topology change, which
in some cases is a small part of the full tree, as other
subtrees may not require recalculation. This elimination
of unnecessary computation is among the reasons for the
increased performance of modern statistical phylogenetics
programs. Hence it maybe fair to ask, does the concurrent
computation of autonomous subtrees (Section IV-B) results
in performance gains in practice with a modern phylogenet-
ics analysis program?
Additionally, our design separated the rerooting steps

from the concurrent computation of tree likelihoods, and
we did not consider the computational cost of the reroot-
ing operation itself. Our use of a naive exhaustive search
through all possible rootings to find the optimal rooting
(Section VI-E) was done for expedience, and a more efficient
algorithm could be employed. Regardless of the specific
algorithm, the desired outcome is that the benefit gained by
the increased concurrent computation on the rerooted tree is
greater than the cost of optimally rerooting the original tree.
The specific characteristic of this cost-benefit relationship is
also an important issue when considering the applicability
of our approach.
In this section we consider in detail the impact of these

factors on how well our results might translate to real-world
gains. We conclude that we can expect the benefits of the
rerooting approach presented here to largely apply in the
context of a phylogenetic analysis.

A. Applicability Considerations

In this study we have measured the effect of balanced
rerooting on the performance of the partial likelihood func-
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tion in BEAGLE. Although focusing on this metric allows us
to directly investigate the throughput impact of rerooting,
ultimately our objective is to allow phylogenetic analysis
to complete in less time. We considered an application-
side implementation of rerooting to be beyond the scope
of this initial study and thus do not present empirical results
of application-level performance. Nonetheless the results
presented here together with our previous research indicate
that, at least for large trees with few site patterns, balanced
rerooting would result in clear performance gains at the
application level.
In order to reach this conclusion, we considered the

typical characteristic of the following factors related to the
performance of phylogenetic inferences: 1) the proportion
of time spent computing partial likelihoods; 2) the topology
of the tree being updated in a given iteration; 3) the relative
cost and necessary frequency of the rerooting operation.
In regards to factor 1, the time spent computing partial

likelihoods, our experience has been that this function is
where the vast majority of the run time is spent. We have
performed profiling using BEAST [10], MrBayes [11], and
GARLI [8] and have observed that, for nucleotide-model
analyses, this proportion is typically in excess of 0.9 of
the overall run time. Further, in previous studies where
we have benchmarked throughput for the partial likelihoods
function in BEAGLE, we have observed that improvements
to the performance of this function directly correspond to
application-level gains [2], [3].
Although it is clear that computing partial likelihoods

is the primary bottleneck for typical phylogenetic infer-
ence analyses, it is also important to consider factor 2,
the topology of the tree or subtree being updated at each
iteration of the search algorithm of the inference program.
For iterations which involve a topology change, modern
inference programs only recompute the partial likelihoods
for a small subset of the overall tree. In contrast, for an
otherwise underutilized GPU, the potential rerooting gains
described in this study increase as tree size increases, as
larger trees allow for more nodes to be computed in parallel.
This fact might appear to limit the applicability of the

approach described here, however there are additional factors
to consider. For a given inference algorithm, search iterations
that change a non-topology parameter will often require re-
computation of the entire tree. For these iterations, the results
shown here will directly correspond to the expected gains.
Further, recent developments in Bayesian phylogenetic infer-
ence use an adaptive Markov Chain Monte Carlo (MCMC)
approach to allow for multiple continuous parameters to be
updated in a single iteration, in order to increase the effective
sample size [13]. One consequence relevant here is that, for
programs using this adaptive MCMC approach, every non-
topology move requires updating the entire tree. Although
this technique is currently only used for rooted trees with
BEAST, it is not incompatible with unrooted trees.

Still further in regard to factor 2, our own empirical testing
with MrBayes has shown that the general approach of ex-
ploiting partial likelihood concurrency of independent nodes
on a proposed tree results in appreciable application-level
speedups [2], even if the calling program only recomputes
a small subtree on topology changes. Specifically, for a
unpartitioned data set with 500 taxa and 759 unique patterns,
we observed an overall speedup of 1.41× on an NVIDIA

Quadro P5000 GPU by enabling concurrent computation of
partial likelihoods on independent nodes. These benchmarks
were performed with a random starting tree and we expect
that applying the balanced rerooting described here to the
starting topology would have resulted in further performance
gains.

Finally, we consider factor 3, the relative cost and required
frequency of the rerooting operation. For this study, we did
not explore the computational cost or performance impact of
the rerooting operation itself. Most importantly we believe
that it is sufficient to reroot the starting tree in order to
achieve appreciable performance gains. This is because, in
aggregate, we can expect topology moves to be randomly
distributed on either side of a balanced rooting. Given that
typical phylogenetic inferences take many hours or days
to complete, the cost of finding a balanced rooting and
applying it to the starting tree will be trivial in comparison.
Nonetheless, we also consider it likely that further balanced
rerootings, later in the search process, might result in further
performance gains, and this remains an issue to be studied.

IX. CONCLUSION

Parallel computing algorithms for calculating tree like-
lihoods, such as those employed by the BEAGLE library,
benefit from balanced topologies. These topologies allow
for greater concurrency and thus better utilization of the
multi-core hardware. Non-balanced trees can be rerooted
to make them more symmetric, thus reducing the number
of concurrent operation sets required for further likelihood
evaluations.

Empirical results demonstrate that rerooting can lead to
significant increases in performance for the core likelihood
function in BEAGLE, with speedups on a modern GPU

approaching 2-fold for pectinate trees with more than 102

OTUs and even larger performance gains for some random
tree topologies.

We expect that, for similarly sized problems, the perfor-
mance gains observed here can be largely realized by phylo-
genetic inference applications which use BEAGLE once they
incorporate rerooting using a run-time efficient algorithm.
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