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Abstract

Many problems in high-dimensional statistics and optimization involve minimization over nonconvex

constraints—for instance, a rank constraint for a matrix estimation problem—but little is known about the the-

oretical properties of such optimization problems for a general nonconvex constraint set. In this paper we study

the interplay between the geometric properties of the constraint set and the convergence behavior of gradient

descent for minimization over this set. We develop the notion of local concavity coefficients of the constraint

set, measuring the extent to which convexity is violated, which govern the behavior of projected gradient de-

scent over this set. We demonstrate the versatility of these concavity coefficients by computing them for a range

of problems in low-rank estimation, sparse estimation, and other examples. Through our understanding of the

role of these geometric properties in optimization, we then provide a convergence analysis when projections are

calculated only approximately, leading to a more efficient method for projected gradient descent in low-rank

estimation problems.

1 Introduction

Nonconvex optimization problems arise naturally in many areas of high-dimensional statistics and data analysis,

and pose particular difficulty due to the possibility of becoming trapped in a local minimum or failing to converge.

Nonetheless, recent results have begun to extend some of the broad convergence guarantees that have been

achieved in the literature on convex optimization, into a nonconvex setting.

In this work, we consider a general question: when minimizing a function g(x) over a nonconvex constraint set

C ⇢ R
d,

bx = argmin
x2C

g(x),

what types of conditions on g and on C are sufficient to guarantee the success of projected gradient descent?

More concretely, when can we expect that optimization of this nonconvex problem will converge at essentially

the same rate as a convex problem?

In examining this question, we find that local geometric properties of the nonconvex constraint set C are closely

tied to the behavior of gradient descent methods, and the main results of this paper study the equivalence between

local geometric conditions on the boundary of C, and the local behavior of optimization problems constrained to

C.

The main contributions of this paper are:

• We develop the notion of local concavity coefficients of a nonconvex constraint set C, characterizing the

extent to which C is nonconvex relative to each of its points. These coefficients, a generalization of the

notions of prox-regular sets and sets of positive reach in the analysis literature, bound the set’s violations

of four different characterizations of convexity—e.g. convex combinations of points must lie in the set,

and the first-order optimality conditions for minimization over the set—with respect to a structured norm,

such as the `1 norm for sparse problems, chosen to capture the natural structure of the problem. The local
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concavity coefficients allow us to characterize the geometric properties of the constraint set C that are

favorable for analyzing the convergence of projected gradient descent. Our key results Theorems 1 and 2

prove that these multiple notions of nonconvexity are in fact exactly equivalent, shedding light on the

interplay between geometric properties such as curvature, and optimality properties such as the first-order

conditions, in a nonconvex setting.

• We next prove convergence results for projected gradient descent over a nonconvex constraint set, mini-

mizing a function g that is assumed to exhibit restricted strong convexity and restricted smoothness (these

types of conditions are common in the high-dimensional statistics literature—see e.g. Negahban et al. [23]

for background). We also allow for the projection step, i.e. projection to C, to be calculated approximately,

which enables greater computational efficiency. Our main convergence analysis shows that, as long as we

initialize at a point x0 that is not too far away from bx, projected gradient descent converges linearly to bx
when the constraint space C satisfies the geometric properties described above.

• Finally, we apply these ideas to a range of specific examples: low-rank matrix estimation (where opti-

mization is carried out under a rank constraint), sparse estimation (with nonconvex regularizers such as

SCAD offering a lower-shrinkage alternative to the `1 norm), and several other nonconvex constraints. We

discuss some interesting differences between constraining versus penalizing a nonconvex regularization

function, in the context of sparse estimation. For the low-rank setting, we propose an approximate projec-

tion step that provides a computationally efficient alternative for low-rank estimation problems, which we

then explore empirically with simulations.

2 Concavity coefficients for a nonconvex constraint space

We begin by studying several properties which describe the extent to which the constraint set C ⇢ R
d deviates

from convexity. To quantify the concavity of C, we will define the (global) concavity coefficient of C, denoted

� = �(C), which we will later expand to local measures of concavity, �x(C), indexed over points x 2 C. We

examine several definitions of this concavity coefficient: essentially, we consider four properties that would

hold if C were convex, and then use � to characterize the extent to which these properties are violated. Our

definitions are closely connected to the notion of prox-regular sets in the analysis literature, and we will discuss

this connection in detail in Section 2.3 below.

Since we are interested in developing flexible tools for high-dimensional optimization problems, several different

norms will appear in the definitions of the concavity coefficients:

• The Euclidean `2 norm, k·k2. Projections to C will always be taken with respect to the `2 norm, and

our later convergence guarantees will also be given with respect to this norm. If our variable is a matrix

X 2 R
n⇥m, the Euclidean `2 norm is known as the Frobenius norm, kXkF =

qP
ij X

2
ij .

• A “structured” norm k·k, which can be chosen to be any norm on R
d. In some cases it may be the `2 norm,

but often it will be a different norm reflecting natural structure in the problem. For instance, for a low-rank

estimation problem, if C is a set of rank-constrained matrices then we will work with the nuclear norm,

k·k = k·knuc (defined as the sum of the singular values of the matrix). For sparse signals, we will instead

use the `1 norm, k·k = k·k1.

• A norm k·k⇤, which is the dual norm to the structured norm k·k. For low-rank matrix problems, if we

work with the nuclear norm, k·k = k·knuc, then the dual norm is given by the spectral norm, k·k⇤ = k·ksp

(i.e. the largest singular value of the matrix, also known as the matrix operator norm). For sparse problems,

if k·k = k·k1 then its dual is given by the `1 norm, k·k⇤ = k·k1.

When we take projections to the constraint set C, if the minimizer PC(z) 2 argminx2Ckx� zk2 is non-unique,

then we write PC(z) to denote any point chosen from this set. Throughout, any assumption or claim involving
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PC(z) should be interpreted as holding for any choice of PC(z). From this point on, we will assume without

comment that C is closed and nonempty so that the set argminx2Ckx� zk2 is nonempty for any z.

We now present several definitions of the concavity coefficient of C.

Curvature First, we define � as a bound on the extent to which a convex combination of two elements of C
may lie outside of C: for x, y 2 C,

lim sup
t&0

minz2Ckz � ((1� t)x+ ty)k
t

 �kx� yk22. (1)

Approximate contraction Second, we define � via a condition requiring that the projection operator PC is

approximately contractive in a neighborhood of the set C, that is, kPC(z)� PC(w)k2 is not much larger than

kz � wk2: for x, y 2 C,

For any z, w 2 R
d with PC(z) = x and PC(w) = y,

�
1� �kz � xk⇤ � �kw � yk⇤

�
· kx� yk2  kz � wk2. (2)

For convenience in our theoretical analysis we will also consider a weaker “one-sided” version of this property,

where one of the two points is assumed to already lie in C: for x, y 2 C,

For any z 2 R
d with PC(z) = x, (1� �kz � xk⇤) · kx� yk2  kz � yk2. (3)

First-order optimality For our third characterization of the concavity coefficient, we consider the standard

first-order optimality conditions for minimization over a convex set, and measure the extent to which they are

violated when optimizing over C: for x, y 2 C,1

For any differentiable f : Rd ! R such that x is a local minimizer of f over C,

hy � x,rf(x)i � ��krf(x)k⇤ky � xk22. (4)

Inner products Fourth, we introduce an inner product condition, requiring that projection to the constraint set

C behaves similarly to a convex projection: for x, y 2 C,

For any z 2 R
d with PC(z) = x, hy � x, z � xi  �kz � xk⇤ky � xk22. (5)

We will see later that, by choosing k·k to reflect the structure in the signal (rather than working only with the `2
norm), we are able to obtain a more favorable scaling in our concavity coefficients, and hence to prove meaningful

convergence results in high-dimensional settings. On the other hand, regardless of our choice of k·k, note that

the `2 norm also appears in the definition of the concavity coefficients, as is natural when working with inner

products.

Our first main result shows that the above conditions are in fact exactly equivalent:

Theorem 1. The properties (1), (2), (3), (4), and (5) are equivalent; that is, for a fixed choice � 2 [0,1], they

either all hold for every x, y 2 C, or all fail to hold for some x, y 2 C.

Formally, we will define �(C) to be the smallest value such that the above properties hold:

�(C) := min {� 2 [0,1] : Properties (1), (2), (3), (4), (5) hold for all x, y 2 C} .

However, this global coefficient �(C) is often of limited use in practical settings, since many sets are well-behaved

locally but not globally. For instance, the set C = {X 2 R
n⇥m : rank(X)  r} has �(C) = 1, but exhibits

smooth curvature and good convergence behavior as long as we stay away from rank-degenerate matrices (that

is, matrices with rank(X) < r). Since we may often want to ensure convergence in this type of setting where

global concavity cannot be bounded, we next turn to a local version of the same concavity bounds.

1A more general form of this condition, with f Lipschitz but not necessarily differentiable, appears in Appendix A.2.1.
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Figure 1: A simple example of the local concavity coefficients on C = {x 2 R
2 : x1  0 or x2  0}. The gray

shaded area represents C while the numbers give the local concavity coefficients at each marked point.

2.1 Local concavity coefficients

We now consider the local concavity coefficients �x(C), measuring the concavity in a set C relative to a specific

point x in the set. We will see examples later on where �(C) = 1 but �x(C) is bounded for many points x 2 C.

First we define a set of “degenerate points”,

Cdgn = {x 2 C : PC is not continuous over any neighborhood of x} ,

and then let

�x(C) =

(
1, x 2 Cdgn,

min {� 2 [0,1] : Property (*) holds for this point x and any y 2 C} , x 62 Cdgn,
(6)

where the property (*) may refer to any of the four definitions of the concavity coefficients,2 namely (1), (3), (4),

or (5). We will see shortly why it is necessary to make an exception for the degenerate points x 2 Cdgn in the

definition of these coefficients.

Our next main result shows that the equivalence between the four properties (1), (3), (4), and (5) in terms of the

global concavity coefficient �(C), holds also for the local coefficients:

Theorem 2. For all x 2 C, the definition (6) of �x(C) is equivalent for all four choices of the property (*),

namely the conditions (1), (3), (4), or (5).

To develop an intuition for the global and local concavity coefficients, we give a simple example in R
2 (relative

to the `2 norm, i.e. k·k = k·k⇤ = k·k2), displayed in Figure 1. Define C = {x 2 R
2 : x1  0 or x2  0}. Due

to the degenerate point x = (0, 0), we can see that �(C) = 1 in this case. The local concavity coefficients are

given by 8
><
>:

�x(C) = 1, if x = (0, 0),

�x(C) =
1
2t , if x = (t, 0) or (0, t) for t > 0,

�x(C) = 0, if x1 < 0 or x2 < 0.

Note that at the degenerate point x = (0, 0), C actually contains all convex combinations of this point x with

any y 2 C, and so the curvature condition (1) is satisfied with � = 0. However, x 2 Cdgn, so we nonetheless set

�x(C) = 1.

2In this definition, We only consider the “one-sided” formulation (3) of the contraction property, since the two-sided formulation (2)

would involve the local concavity coefficient at both x and y due to symmetry—we will see in Lemma 4 below that a version of the two-

sided contraction property still holds using local coefficients.
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Practical high-dimensional examples, such as a rank constraint, will be discussed in depth in Section 5. For

example we will see that, for the rank-constrained set C = {X 2 R
n⇥m : rank(X)  r}, the local concavity

coefficients satisfy �X(C) = 1
2�r(X) relative to the nuclear norm.

In general, a rough intuition for the local coefficients is that:

• If x lies in the interior of C, or if C is convex, then �x(C) = 0;

• If x lies on the boundary of C, which is a nonconvex set with a smooth boundary, then we will typically

see a finite but nonzero �x(C);

• �x(C) = 1 can indicate a nonconvex cusp or other degeneracy at the point x.

2.2 Properties

We next prove some properties of the local coefficients �x(C) that will be useful for our convergence analysis, as

well as for gaining intuition for these coefficients.

First, the global and local coefficients are related in the natural way:

Lemma 1. For any C, �(C) = supx2C �x(C).

Next, observe that x 7! �x(C) is not continuous in general (in particular, since �x(C) = 0 in the interior of C but

is often positive on the boundary). However, this map does satisfy upper semi-continuity:

Lemma 2. The function x 7! �x(C) is upper semi-continuous over x 2 C.

Furthermore, setting �x(C) = 1 at the degenerate points x 2 Cdgn is natural in the following sense: the resulting

map x 7! �x(C) is the minimal upper semi-continuous map such that the relevant local concavity properties are

satisfied. We formalize this with the following lemma:

Lemma 3. For any u 2 Cdgn, for any of the four conditions, (1), (3), (4), or (5), this property does not hold in

any neighborhood of u for any finite �. That is, for any r > 0,

min
n
� � 0 : Property (*) holds for all x 2 C \ B2(u, r) and for all y 2 C

o
= 1,

where (*) may refer to any of the four equivalent properties, i.e. (1), (3), (4), and (5). (Here B2(u, r) is the ball

of radius r around the point u, with respect to the `2 norm.)

Finally, the next result shows that two-sided contraction property (2) holds using local coefficients, meaning that

all five definitions of concavity coefficients are equivalent:

Lemma 4. For any z, w 2 R
d,

�
1� �PC(z)(C)kz � PC(z)k⇤ � �PC(w)(C)kw � PC(w)k⇤

�
· kPC(z)� PC(w)k2  kz � wk2

In particular, for any fixed c 2 (0, 1), Lemma 4 proves that

PC is c-Lipschitz over the set
�
z 2 R

d : 2�PC(z)(C)kz � PC(z)k⇤  1� c
 

, (7)

where the Lipschitz constant is defined with respect to the `2 norm. This provides a sort of converse to our

definition of the degenerate points, where we set �x(C) = 1 for all x 2 Cdgn, i.e. all points x where PC is not

continuous in any neighborhood of x.
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2.3 Connection to prox-regular sets

The notion of prox-regular sets and sets of positive reach arises in the literature on nonsmooth analysis in Hilbert

spaces, for instance see Colombo and Thibault [10] for a comprehensive overview of the key results in this area.

The work on prox-regular sets generalizes also to the notion of prox-regular functions (see e.g. Rockafellar and

Wets [27, Chapter 13.F]).

A prox-regular set is a set C ⇢ R
d that satisfies3

hy � x, z � xi  1

2⇢
kz � xk2ky � xk22, (8)

for all x, y 2 C and all z 2 R
d with PC(z) = x, for some constant ⇢ > 0. To capture the local variations in

concavity over the set C, C is prox-regular with respect to a continuous function ⇢ : C ! (0,1] if

hy � x, z � xi  1

2⇢(x)
kz � xk2ky � xk22 (9)

for all x, y 2 C and all z 2 R
d with PC(z) = x (see e.g. Colombo and Thibault [10, Theorem 3b]).4 Historically,

prox-regularity was first formulated via the notion of “positive reach” [13]: the parameter ⇢ appearing in (8) is

the largest radius such that the projection operator PC is unique for all points z within distance ⇢ of the set C; in

the local version (9), the radius is allowed to vary locally as a function of x 2 C.

These definitions (8) and (9) exactly coincide with our inner product condition (5), in the special case that k·k is

the `2 norm, by taking � = 1
2⇢ or, for the local coefficients, � = 1

2⇢(x) . In the `2 setting, there is substantial liter-

ature exploring the equivalence between many different characterizations of prox-regularity, including properties

that are equivalent to each of our characterizations of the local concavity coefficients. Here we note a few places

in the literature where these conditions appear, and refer the reader to Colombo and Thibault [10] for historical

background on these ideas. The curvature condition (1) is proved in Colombo and Thibault [10, Proposition 9,

Theorem 14(q)]. The one- and two-sided contraction conditions (3) and (2) appear in Federer [13, Section 4.8]

and Colombo and Thibault [10, Theorem 14(g))]; the inner product condition (5) can be found in Federer [13,

Section 4.8], Colombo and Thibault [10, Theorem 3(b)], Canino [6, Definition 1.5], and Colombo and Marques

[9, Definition 2.1]. The first-order optimality condition (4) is closely related to the inner product condition, when

formulated using the ideas of normal cones and proximal normal cones (for instance, Rockafellar and Wets [27,

Theorem 6.12] relates gradients of f to normal cones at x).

The distinctions between our definitions and results on local concavity coefficients, and the literature on prox-

regularity, center on two key differences: the role of continuity, and the flexibility of the structured norm k·k
(rather than the `2 norm). We discuss these two separately.

Continuity In the literature on prox-regular sets, the “reach” function x 7! ⇢(x) 2 (0,1] is assumed to be

continuous [10, Definition 1]. Equivalently, we could take a continuous function x 7! �x = 1
2⇢(x) 2 [0,1) to

agree with the notation of our local concavity coefficients. However, this is not the same as finding the smallest

value �x such that the concavity coefficient conditions are satisfied (locally at the point x). For our definitions,

we do not enforce continuity of the map x 7! �x, and instead define �x(C) as the smallest value such that the

conditions are satisfied. This leads to substantial challenges in proving the equivalence of the various conditions;

in Lemma 2 we prove that the map is naturally upper semi-continuous, which allows us to show the desired

equivalences.

In terms of practical implications, in order to use the local concavity coefficients to describe the convergence

behavior of optimization problems, it is critical that we allow for non-continuity. For instance, suppose that C

3The notion of prox-regularity is typically defined over any Hilbert space with its norm | · | =
p

h·, ·i in place of the `2 norm, however,

we restrict to the case of Rd for ease of comparison.
4There also exists in the literature an alternative notion of local prox-regularity, studied by Shapiro [28], Poliquin et al. [26], Mazade and

Thibault [21], and others, where C is said to be prox-regular at a point u 2 C if (8) holds over x, y 2 C that are in some arbitrarily small

neighborhood of u. Importantly, this definition of local prox-regularity differs from our notion of local concavity coefficients, since we allow

y to range over the entire set; this distinction is critical for studying convergence to a global rather than local minimizer.
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is nonconvex, and its interior Int(C) is nonempty. For any x 2 Int(C), the concavity coefficient conditions are

satisfied with �x = 0. In particular, consider the first-order optimality condition (4): if x 2 Int(C) is a local

minimizer of some function f, then x is in fact the global minimizer of f(x) and we must have rf(x) = 0. On

the other hand, since C is nonconvex, we must have �x > 0 for at least some of the points x on the boundary of

C. If we do require a continuity assumption on the function x 7! �x, then we would be forced to have �x > 0
for some points x 2 Int(C) as well. This means that �x would not give a precise description of the behavior of

first-order methods when constraining to C—it would not reveal that non-global minima are impossible in the

interior of the set. More generally, we will show in Lemma 5 that the local concavity coefficients (defined as

the lowest possible constants, as in (6)) provide a tight characterization of the convergence behavior of projected

gradient descent over the constraint set C; if we enforce continuity, we would be forced to choose larger values

for �x(C) at some points x 2 C, and the concavity coefficients would no longer be both necessary and sufficient

for convergence.

One related point is that, by allowing for �x(C) to be infinite if needed (which would be equivalent to allowing the

“reach” ⇢(x) to be zero for some x), we can accommodate constraint sets such as the low-rank matrix constraint,

C = {X 2 R
n⇥m : rank(X)  r}. Recalling that �X(C) = 1

2�r(X) as mentioned earlier, we see that a rank-

deficient matrix X (i.e. rank(X) < r) will have �X(C) = 1. By not requiring that the concavity coefficient is

finite (equivalently, that the reach is positive), we avoid the need for any inelegant modifications (e.g. working

with a truncated set such as C = {X : rank(X)  r,�r(X) � ✏}).

Structured norms Prox-regularity (or equivalently the notion of positive reach) is studied in the literature in

a Hilbert space, with respect to its norm, which in R
d means the `2 norm (or a weighted `2 norm).5 In contrast,

our work defines local concavity coefficients with respect to a general structured norm k·k, such as the `1 norm

in a sparse signal estimation setting. To see the distinction, compare our inner product condition (5) with the

definition of prox-regularity (8).

Of course, the equivalence of all norms on R
d means that if �(C) is finite when defined with respect to the `2

norm (i.e. C is prox-regular), then it is finite with respect to any other norm—so the importance of the distinction

may not be immediately clear. As an example, let �`1(C) and �`2(C) denote the concavity coefficients with

respect to the `1 and `2 norms. Since k·k2  k·k1 
p
dk·k2, we could trivially show that

�`2(C)  �`1(C) 
p
d · �`2(C),

but the factor
p
d is unfavorable so in many settings this is a very poor bound on �`1(C).

We may then ask, why can we not simply define the coefficients in terms of the `2 norm? The reason is that in op-

timization problems arising in high-dimensional settings (for instance, high-dimensional regression in statistics),

structured norms such as the `1 norm (for problems involving sparse signals) or the nuclear norm (for low-rank

signals) allow for statistical and computational analyses that would not be possible with the `2 norm. In partic-

ular, we will see later on that convergence for the minimization problem minx2C g(x) will depend on bounding

krg(x)k⇤. If k·k is the `1 norm, for instance, then krg(x)k⇤ = krg(x)k1 will in general be much smaller

than krg(x)k2. For instance, in a statistical problem, if rg(x) consists of Gaussian or sub-gaussian noise at the

true parameter vector x, then krg(x)k1 ⇠
p
log(d) while krg(x)k2 ⇠

p
d. Therefore, being able to bound

the concavity of C with respect to the `1 norm rather than the `2 norm is crucial for analyzing convergence in a

high-dimensional setting.

In the next section, we will study how the choice of the norm k·k and its dual k·k⇤ relates to the convergence

properties of projected gradient descent.

5The notion of prox-regular sets has been extended to Banach spaces, e.g. by Bernard et al. [1], but this does not relate directly to our

results.
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3 Fast convergence of projected gradient descent

Consider an optimization problem constrained to a nonconvex set, min{g(x) : x 2 C}, where g : Rd ! R is a

differentiable function. We will work with projected gradient descent algorithms in the setting where g is convex

or approximately convex, while C is nonconvex with local concavity coefficients �x(C). After choosing some

initial point x0 2 C, for each t � 0 we define

(
x0
t+1 = xt � ⌘rg(xt),

xt+1 = PC(x
0
t+1),

(10)

where if PC(x
0
t+1) is not unique then any closest point may be chosen.

3.1 Assumptions

Assumptions on g We first consider the objective function g. Let bx be the target of our optimization procedure,

bx 2 argminx2C g(x).

We assume that g satisfies restricted strong convexity (RSC) and restricted smoothness (RSM) conditions over

x, y 2 C,

g(y) � g(x) + hy � x,rg(x)i+ ↵

2
kx� yk22 �

↵

2
"2g, (11)

and

g(y)  g(x) + hy � x,rg(x)i+ �

2
kx� yk22 +

↵

2
"2g. (12)

Without loss of generality we can take ↵  �. As is common in the low-rank factorized optimization literature,

we will work in a local neighborhood of the target bx by assuming that our initialization point lies within radius ⇢

of bx, which will allow us to require these conditions on g to hold only locally.

The term "g gives some “slack” in our assumption on g, and is intended to capture some vanishingly small

error level. This term is often referred to as the “statistical error” in the high-dimensional statistics literature,

which represents the best-case scaling of the accuracy of our recovered solution. Often bx may represent a global

minimizer which is within radius "g of some “true” parameter in a statistical setting; therefore, converging to

bx up to an error of magnitude "g means that the recovered solution is as accurate as bx at recovering the true

parameter. For instance, often we will have "g ⇠
q

log(d)
n in a statistical setting where we are solving a sparse

estimation problem of dimension d with sample size n.

Assumptions on C Next, turning to the nonconvexity of C, we will assume local concavity coefficients �x(C)
that are not too large in a neighborhood of bx, with details given below. We furthermore assume a norm compati-

bility condition,

kz � PC(z)k⇤  �min
x2C

kz � xk⇤ for all z 2 R
d, (13)

for some constant � � 1. The norm compatibility condition is trivially true with � = 1 if k·k is the `2 norm,

since PC is a projection with respect to the `2 norm. We will see that in many natural settings it holds even for

other norms, often with � = 1.

Assumptions on gradient and initialization Finally, we assume a gradient condition that reveals the connec-

tion between the curvature of the nonconvex set C and the target function g: we require that

2� · max
x,x02C\B2(bx,⇢)

�x(C)krg(x0)k⇤  (1� c0) · ↵. (14)

(Since x 7! �x(C) is upper semi-continuous, if g is continuously differentiable, then we can find some radius

⇢ > 0 and some constant c0 > 0 satisfying this condition, as long as 2��bx(C)krg(bx)k⇤ < ↵.) Our projected
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gradient descent algorithm will then succeed if initialized within this radius ⇢ from the target point bx, with an

appropriate step size. We will discuss the necessity of this type of initialization condition below in Section 3.4.

In practice, relaxing the constraint x 2 C to a convex constraint (or convex penalty) is often sufficient for provid-

ing a good initialization point. For example, in low-rank matrix setting, if we would like to solve argmin{g(X) :
rank(X)  r}, we may first solve argminX{g(X) + �kXknuc}, where kXknuc is the nuclear norm and � � 0
is a penalty parameter (which we would tune to obtain the desired rank for X). Alternately, in some settings,

it may be sufficient to solve an unconstrained problem argminX g(X) and then project to the constraint set,

PC(X). For some detailed examples of suitable initialization procedures for various low-rank matrix estimation

problems, see e.g. Chen and Wainwright [8], Tu et al. [31].

3.2 Convergence guarantee

We now state our main result, which proves that under these conditions, initializing at some x0 2 C sufficiently

close to bx will guarantee fast convergence to bx.

Theorem 3. Let C ⇢ R
d be a constraint set and let g be a differentiable function, with minimizer bx 2

argminx2C g(x). Suppose C satisfies the norm compatibility condition (13) with parameter �, and g satisfies

restricted strong convexity (11) and restricted smoothness (12) with parameters ↵,�, "g for all x, y 2 B2(bx, ⇢),
and the initialization condition (14) for some c0 > 0. If the initial point x0 2 C and the error level "g satisfy

kx0 � bxk22 < ⇢2 and "2g < c0⇢
2

1.5 , then for each step t � 0 of the projected gradient descent algorithm (10) with

step size ⌘ = 1/�,

kxt � bxk22 
✓
1� c0 ·

2↵

↵+ �

◆t

kx0 � bxk22 +
1.5"2g
c0

.

In other words, the iterates xt converge linearly to the minimizer bx, up to precision level "g.

3.3 Comparison to related work

We now compare to several related results for convex and nonconvex projected gradient descent. (For methods

that are specific to the problem of optimization over low-rank matrices, we will discuss this comparison and

perform simulations later on.)

Comparison to convex optimization To compare this result to the convex setting, if C is a convex set and g is

↵-strongly convex and �-smooth, then we can set c0 = 1 and "g = 0. Our result then yields

kxt � bxk22 
✓
1� 2↵

↵+ �

◆t

kx0 � bxk22 =

✓
� � ↵

� + ↵

◆t

kx0 � bxk22,

matching known rates for the convex setting (see e.g. Bubeck [2, Theorem 3.10]).

Comparison to known results using descent cones Oymak et al. [24] study projected gradient descent for

a linear regression setting, g(x) = 1
2kb�Axk22, while constraining some potentially nonconvex regularizer,

C = {x : Pen(x)  c}. Given a true solution x? 2 C (for instance, in a statistical setting, we may have

b = Ax? + (noise)), their work focuses on the descent cone of C at x?, given by

DCx? = Smallest closed cone containing {u : Pen(x? + u)  c}.

(Trivially we will have xt � x? 2 DCx? since xt 2 C.) Their results characterize the convergence of projected

gradient descent in terms of the eigenvalues of A>A restricted to this cone. For simplicity, we show their result

specialized to the noiseless setting, i.e. b = Ax?, given in [24, Theorem 1.2]:

kxt � x?k2 
✓
2 · max

u,v2DCx?\Sd�1

u>
�
Id � ⌘A>A

�
v

◆t

kx?k2. (15)
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For this result to be meaningful we of course need the radius of convergence to be < 1. For a convex constraint

set C (i.e. if Pen(x) is convex), the factor of 2 can be removed. In the nonconvex setting, however, the factor

of 2 means that the maximum in (15) must be < 1
2 for the bound to ensure convergence. Noting that rg(x) =

A>A(x�x?) in this problem, by setting u = v / x�x? we see that (15) effectively requires that ⌘ > 1
2↵ , where

↵ is the restricted strong convexity parameter (11). However, we also know that ⌘  1
�

is generally a necessary

condition to ensure stability of projected gradient descent; if ⌘ > 1
�

then we may see values of g increase over

iterations, i.e. g(x1) > g(x0). Therefore, the condition (15) effectively requires that g is well-conditioned with

� . 2↵, and furthermore that x? is not in the interior of C (since, if this were the case, then DCx? = R
d). On

the other hand, if the radius in (15) is indeed < 1, then their work does not assume any type of initialization

condition for convergence to be successful, in contrast to our initialization assumption (14).

Comparison to known results for iterative hard thresholding We now compare our results to those of Jain

et al. [17], which specifically treat the iterative hard thresholding algorithm for a sparsity constraint or a rank

constraint,

C = {x 2 R
d : | support(x)|  k} or C = {X 2 R

n⇥m : rank(X)  r}.

In their work, they take a substantially different approach: instead of bounding the distance between xt and the

minimizer bx 2 argminx2C g(x), they instead take bx to be a minimizer over a stronger constraint,

bx = argmin
| support(x)|k?

g(x) or bX = argmin
rank(X)r?

g(X),

taking k? ⌧ k or r? ⌧ r to enforce that the sparsity of bx or rank of bX is much lower than the optimization

constraint set C. With this definition, then bound the gap in objective function values, g(xt) � g(bx). In other

words, the objective function value g(xt) is, up to a small error, no larger than the best value obtained over the

substantially more restricted set of k?-sparse vectors or of rank-r? matrices. By careful use of this gap k? ⌧ k or

r? ⌧ r, their analysis allows for convergence results from any initialization point x0 2 C. In contrast, our work

allows bx to lie anywhere in C, but this comes at the cost of assuming a local initialization point x0 2 C\B2(bx, ⇢).
This result suggests a possible two-phase approach: first, we might optimize over a larger rank constraint C =
{X : rank(X)  k} where k � k? to obtain the convergence guarantees of Jain et al. [17] (which do not

assume a good initialization point, but obtain weaker guarantees); then, given the solution over rank k as a good

initialization point, we would then optimize over the tighter constraint C = {X : rank(X)  k?} to obtain our

stronger guarantees.

Comparison to results on prox-regular functions Pennanen [25] studies conditions for linear convergence

of the proximal point method for minimizing a function f(x), and shows that prox-regularity of f(x) is sufficient;

Lewis and Wright [19] also study this problem in a more general setting. For our optimization problem, this

translates to setting f(x) = g(x) + �C(x), where

�C(x) =

(
0, x 2 C,

1, x 62 C.

(This is usually called the “indicator function” for the set C.) If g(x)+ µ
2 kxk22 is convex (i.e. the concavity of g is

bounded) and C is a prox-regular set (i.e. �(C) < 1, see Section 2.3), then f(x) is a prox-regular function. This

work was extended by Iusem et al. [15] and others to an inexact proximal point method, allowing for error in each

interation, which can be formulated to encompass the projected gradient descent algorithm studied here. Our first

convergence result Theorem 3 extends these results into a high-dimensional setting by using the structured norm

k·k and its dual k·k⇤ (e.g. the `1 norm and its dual the `1 norm), and requiring only restricted strong convexity

and restricted smoothness on g, without which we would not be able to obtain convergence guarantees in settings

such as high-dimensional sparse regression or low-rank matrix estimation.
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3.4 Initialization point and the gradient assumption

In this result, we assume that the initialization point x0 is within some radius ⇢ of the target bx, ensuring that

2��x(C)krg(x)k⇤ < ↵ for all x in the initialization neighborhood, where ↵ is the restricted strong convex-

ity (11) parameter. This type of assumption arises in much of the related literature; for example in the setting of

optimization over low-rank matrices, as we will see in Section 5.1, we will require that kX0 � bXkF . �r( bX),
which is the same condition found in existing work such as Chen and Wainwright [8].

In fact, the following result demonstrates that the bound (14) is in a sense necessary:

Lemma 5. For any constraint set C and any point x 2 C\Cdgn with �x(C) > 0, for any ↵, ✏ > 0 there exists an

↵-strongly convex g such that

• The gradient condition (14) is nearly satisfied at x, with 2�x(C)kg(x)k⇤  ↵(1 + ✏),

• And, x is a stationary point of the projected gradient descent algorithm (10) for all sufficiently small step

sizes ⌘ > 0,

• But x does not minimize g over C.

That is, if projected gradient descent is initialized at the point x, then the algorithm will never leave this point,

even though it is not optimal (i.e. x is not the global minimizer).

We can see with a concrete example that the condition (14) may be even more critical than this lemma suggests:

without this bound, we may find that projected gradient descent becomes trapped at a stationary point x which is

not even a local minimum, as in the following example.

Example 1. Let C = {X 2 R
2⇥2 : rank(X)  1}, let g(X) = 1

2

����X �
✓

1 0
0 1 + ✏

◆����
2

F

, and let X0 =
✓

1 0
0 0

◆
. Then trivially, we can see that g is ↵-strongly convex for ↵ = 1, and that X0 is a stationary point

of the projected gradient descent algorithm (10) for any step size ⌘ < 1
1+✏

. However, for any 0 < t <
p
2✏,

setting X =

✓
1 t
t t2

◆
2 C, we can see that g(X) < g(X0)—that is, X0 is stationary point, but is not a local

minimum.

We will later calculate that �X0
(C) = 1

2�1(X0)
= 1

2 relative to the nuclear norm k·k = k·knuc, with norm

compatibility constant � = 1 (see Section 5.1 for this calculation). Comparing against the condition (14) on the

gradient of g, since the dual norm to k·knuc is the matrix spectral norm k·ksp, we see that

2��X0
(C) · krg(X0)ksp = 2 · 1 ·

1

2
·

�����
✓

0 0
0 1 + ✏

◆����
sp

= 1 + ✏ = ↵(1 + ✏).

Therefore, when the initial gradient condition (14) is even slightly violated in this example (i.e. small ✏ > 0), the

projected gradient descent algorithm can become trapped at a point that is not even a local minimum.

While we might observe that in this particular example, the “bad” stationary point X0 could be avoided by in-

creasing the step size, in other settings if g has strong curvature in some directions (i.e. the smoothness parameter

� is large), then we cannot afford a large step size ⌘ as it can cause the algorithm to fail to converge.

4 Convergence analysis using approximate projections

In some settings, computing projections PC(x
0
t+1) at each step of the projected gradient descent algorithm may

be prohibitively expensive; for instance in a low-rank matrix optimization problem of dimension d⇥d, this would

generally involve taking the singular value decomposition of a dense d ⇥ d matrix at each step. In these cases
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we may sometimes have access to a fast but approximate computation of this projection, which may come at the

cost of slower convergence.

We now generalize to the idea of a family of approximate projections, which allows for operators that approximate

projection to C. Specifically, the approximations are carried out locally:

(
x0
t+1 = xt � ⌘rg(xt),

xt+1 = Pxt
(x0

t+1),
(16)

where Pxt
comes from a family of operators Px : Rd ! C indexed by x 2 C. Intuitively, we think of Px(z) as

providing a very accurate approximation to PC(z) locally for z near x, but it may distort the projection more as

we move farther away.

To allow for our convergence analysis to carry through even with these approximate projections, we assume that

the family of operators {Px} satisfies a relaxed inner product condition:

For any x 2 C and z 2 R
d with x, Px(z) 2 B2(bx, ⇢),

hbx� Px(z), z � Px(z)i  max{kz � Px(z)k⇤| {z }
concavity term

, kz � xk⇤| {z }
distortion term

} ·
⇣
�ckbx� Px(z)k22| {z }

concavity term

+ �dkbx� xk22| {z }
distortion term

⌘
. (17)

Here the “concavity” terms are analogous to the inner product bound in (5) for exact projection to the nonconvex

set C, except with the projection PC replaced by the operator Px; the “distortion” terms mean that as we move

farther away from x the bound becomes looser, as Px becomes a less accurate approximation to PC .

We now present a convergence guarantee nearly identical to the result for the exact projection case, Theorem 3.

We first need to state a version of the norm compatibility condition, modified for approximate projections:

kz � Px(z)k⇤  �kz � xk⇤ for all x 2 C \ B2(bx, ⇢) and z 2 R
d. (18)

We also require a modified initialization condition,

2�(�c + �d) max
x2C\B2(bx,⇢)

krg(x)k⇤  (1� c0)↵, (19)

and a modified version of local uniform continuity (compare to (7) for exact projections),

For any x 2 C \ B2(bx, ⇢), for any ✏ > 0, there exists a � > 0 such that,

for any z, w 2 R
d such that Px(z) 2 B2(bx, ⇢) and 2(�c + �d)kz � Px(z)k⇤  1� c0,

if kz � wk2  � then kPx(z)� Px(w)k2  ✏. (20)

Our result for this setting now follows.

Theorem 4. Let C ⇢ R
d be a constraint set and let g be a differentiable function, with minimizer bx 2

argminx2C g(x). Let {Px} be a family of operators satisfying the inner product condition (17), the norm com-

patibility condition (18), and the local continuity condition (20) with parameters �c, �d,� and radius ⇢. Assume

that g satisfies restricted strong convexity (11) and restricted smoothness (12) with parameters ↵,�, "g for all

x, y 2 B2(bx, ⇢), and the initialization condition (19) for some c0 > 0. If the initial point x0 2 C and the error

level "g satisfy kx0 � bxk22 < ⇢2 and "2g < c0⇢
2

1.5 , then for each step t � 0 of the approximate projected gradient

descent algorithm (16) with step size ⌘ = 1/�,

kxt � bxk22 
✓
1� c0 ·

2↵

↵+ �

◆t

kx0 � bxk22 +
1.5"2g
c0

.

This convergence rate is identical to that obtained in Theorem 3 for exact projections—the only differences lie in

the assumptions.
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4.1 Exact versus approximate projections

To compare the two settings we have considered, exact projections PC versus approximate projections Px, we

focus on a local form of the inner product condition (17) for the family of approximate operators {Px}, rewritten

to be analogous to the inner product condition (5) for exact projections. Suppose that �c
u(C) and �d

u(C) satisfy

the property that

For any x, y 2 C and any z 2 R
d, writing u = Px(z),

hy � u, z � ui  max{ kz � uk⇤| {z }
concavity term

, kz � xk⇤| {z }
distortion term

} ·
⇣
�c
u(C)ky � uk22| {z }

concavity term

+ �d
u(C)ky � xk22| {z }

distortion term

⌘
, (21)

where u 7! �c
u(C) and u 7! �d

u(C) are upper semi-continuous maps. We now prove that the existence of a family

of operators {Px} satisfying this general condition (21) is in fact equivalent to bounding the local concavity

coefficients of C.

Lemma 6. Consider a constraint set C ⇢ R
d and a norm k·k on R

d with dual norm k·k⇤. If C has local

concavity coefficients given by �x(C) for all x 2 C, then by defining operators Px = PC for all x 2 C, the

inner product condition (21) holds with �c
x(C) = �x(C) and �d

x(C) = 0. Conversely, if there is some family of

operators {Px}x2C satisfying the inner product condition (21), then the local concavity coefficients of C satisfy

�x(C)  �c
x(C) + �d

x(C), provided that x 7! �c
x(C), x 7! �d

x(C) are upper semi-continuous, and that Px also

satisfies a local continuity assumption,

If �c
x(C) + �d

x(C) < 1 and zt ! x, then Px(zt) ! x. (22)

For this reason, we see that generalizing from exact projection PC to a family of operators {Px} does not expand

the class of problems whose convergence is ensured by our theory; essentially, if using the approximate projection

operators Px guarantees fast convergence, then the same would also be true using exact projection PC . However,

there may be substantial computational gain in switching from exact to approximate projection, which comes

with little or no cost in terms of convergence guarantees.

5 Examples

In this section we consider a range of nonconvex constraints arising naturally in high-dimensional statistics,

and show that these sets come equipped with well-behaved local concavity coefficients (thus allowing for fast

convergence of gradient descent, for appropriate functions g).

5.1 Low rank optimization

Estimating a matrix with low rank structure arises in a variety of problems in high-dimensional statistics and

machine learning. A partial list includes PCA (principal component analysis), factor models, matrix comple-

tion, and reduced rank regression. The past few years have seen extensive results on the specific problem of

optimization over the space of low-rank matrices:

min{g(X) : X 2 R
n⇥m, rank(X)  r},

where in various settings g(X) may represent a least-squares loss from a linear matrix sensing problem, an ob-

jective function for the matrix completion problem, or a more general function satisfying some type of restricted

convexity assumption. In addition to extensive earlier work on convex relaxations of this problem via the nuclear

norm and other penalties, more recently this problem has been studied using the exact rank-r constraint. The

recent literature has generally treated the rank-constrained problem in one of two ways. First, the iterative hard

thresholding method (also discussed earlier in Section 3.3) proceeds by taking gradient descent in the space of
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n ⇥ m matrices, then at each step projecting to the nearest rank-r matrix in order to enforce a rank constraint

on X . This amounts to optimizing the function g(X) over the nonconvex constraint space of rank-r matrices.

Convergence results for this setting have been proved by Meka et al. [22], Jain et al. [17]. However, in high

dimensions, a computational drawback of this method is the need to take a singular value decomposition of a

(potentially dense) n ⇥ m matrix at each step. Alternately, one can consider the factorized approach, which

reparametrizes the problem by taking a low-rank factorization, X = AB> where A 2 R
n⇥r and B 2 R

m⇥r,

and pursuing alternating minimization or alternating gradient descent on the factors A and B. Recent results

in this line of work include Gunasekar et al. [14], Jain et al. [16], Sun and Luo [29], Tu et al. [31], Zhao et al.

[33], Zhu et al. [35], and many others. This reformulation of the problem now consists of a highly nonconvex

objective function g(AB>) optimized over a generally convex space of factor matrices (A,B) 2 R
n⇥r⇥R

m⇥r,

via alternating gradient descent or alternating minimization over the factors A and B. In the special case where

X is positive semidefinite, we can instead optimize g(AA>) via gradient descent on A 2 R
n⇥r, which is again

a nonconvex objective function being minimized over a convex space, and has also been extensively studied,

e.g. by Zheng and Lafferty [34], Candès et al. [5], Chen and Wainwright [8], among others. For both of these

cases, the analysis of the optimization problem is complicated by the issue of identifiability, where the factor(s)

can only be identified up to rotation.

In this section, we will study the set of rank-constrained matrices

C = {X 2 R
n⇥m : rank(X)  r}

to determine how our general framework of local concavity applies to this specific low rank setting. To avoid

triviality, we assume r < min{n,m}. Writing �1(X) � �2(X) � . . . to denote the sorted singular values of

any matrix X , we compute the curvature condition and norm compatibility condition of C:

Lemma 7. Let C = {X 2 R
n⇥m : rank(X)  r}. Then C has local concavity coefficients given by �X(C) =

1
2�r(X) for all X 2 C, and satisfies the norm compatibility condition (13) with parameter � = 1, with respect to

norms k·k = k·knuc and k·k⇤ = k·ksp.

Thus, as long as the objective function g satisfies the appropriate conditions, we can expect projected gradient

descent over the space of rank-r matrices to converge well when we initialize at some matrix X0 that is within

a distance smaller than �r( bX) from the target matrix bX , so that �X(C) is bounded over all X’s in within this

radius. This is comparable to results in the factorized setting, for instance Chen and Wainwright [8, Theorem

1], where the initialization point is similarly assumed to be within a radius that is smaller than �r( bX) of the true

solution bX .

Approximate projections The projection to C, PC , can be obtained using a singular value decomposition

(SVD), where only the top r singular values and singular vectors of the matrix are retained to compute the best

rank r approximation. Nonetheless, it can be expensive to compute the SVD of a dense n⇥m matrix. We next

propose an approximate projection operator for this space to avoid the cost of a singular value decomposition on

an n⇥m matrix at each iteration of projected gradient descent.

To construct PX , we first define some notation: for any rank-r matrix X , let TX be the tangent space of low-rank

matrices at X , given by6

TX =
n
UA> +BV > : U 2 R

n⇥r, V 2 R
m⇥r are orthonormal bases for the column and row span of X;

A 2 R
m⇥r, B 2 R

n⇥r are any matrices
o
. (23)

(This tangent space has frequently been studied in the context of nuclear norm minimization, see for instance [3].)

We then define PX by first projecting to TX , then projecting to the rank-r constraint, that is,

PX(Z) = PC (PTX
(Z)) . (24)

6For X 2 C which is of rank strictly lower than r, we can define TX by taking U 2 R
n×r , V 2 R

m×r to be any orthonormal matrices

which contain the column and row span of X; this choice is not unique, but formally we assume that we have fixed some choice of space

TX for each X 2 C.
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While this approximate projection will introduce some small error into the update steps, thus slowing conver-

gence somewhat, it comes with a potentially large benefit: the SVD computations are always carried out on low

rank matrices. Specifically, defining U, V to be orthonormal bases for column and row spans of X as before, for

any Z 2 R
d we can write

PTX
(Z) = UU>Z + ZV V > � UU>ZV V > =

�
U (In � UU>)ZV

�
| {z }

n⇥2r

·
�
Z>U V

�
| {z }

m⇥2r

>,

which means that calculating PC(PTX
(Z)) can be substantially faster than the exact projection PC(Z) when the

rank bound r is small while dimensions n,m are large. Once this projection is computed, we now have new row

and column span matrices U, V ready to use for the next iteration’s approximate projection step.

Our next result shows that this family of operators satisfies the conditions needed for our convergence results to

be applied.

Lemma 8. Let C = {X 2 R
n⇥m : rank(X)  r}, and define the family of operators PX as in (24). Let

⇢ = �r( bX)
4 . Then the inner product condition (17), the norm compatibility condition (18), and the local continuity

condition (20), are satisfied with �c = �d = 6

�r( bX)
and � = 3, with respect to norms k·k = k·knuc and

k·k⇤ = k·ksp.

We see that up to a constant, this matches the results in Lemma 7 for the exact projection PC , and so we can expect

roughly comparable convergence behavior with these approximate projections, while at the same time gaining

computational efficiency by avoiding large singular value decompositions. We will compare this approximate

projection method to exact projection and factored projection empirically in Section 6.

5.2 Sparsity

In many applications in high-dimensional statistics, the signal of interest is believed to be sparse or approximately

sparse. Using an `1 penalty or constraint serves as a convex relaxation to the sparsity constraint,

argmin
x

{g(x) + �kxk1} or argmin
x

{g(x) : kxk1  c}

(i.e. the Lasso method [30], in the case of a linear regression problem). The convex `1 norm penalty shrinks

many coefficients to zero, but also leads to undesirable shrinkage bias on the large coefficients of x. Optimization

with hard sparsity constraints (e.g. the iterative hard thresholding method [17]), while sometimes prone to local

minima, are known to be successful in many settings and provide an alternative to convex relaxations (like the `1
penalty) which induce shrinkage bias on large coefficients.

The shrinkage problem can also be alleviated by turning to nonconvex regularization functions, including the `q
“norm” for q < 1, kxkqq =

P
i |xi|

q , whose convergence properties are studied by e.g. [18, 7], as well as the

SCAD penalty [12], the MCP penalty [32], and the adaptive Lasso / reweighted `1 method [4], which is related

to a nonconvex “log-`1” penalty of the form

logL1⌫(x) =
X

i

⌫ log(1 + |xi|/⌫). (25)

Smaller values of ⌫ > 0 correspond to greater nonconvexity, while setting ⌫ = 1 recovers the `1 norm.

Loh and Wainwright [20] study the convergence properties of a gradient descent algorithm for the penalized

optimization problem argminx{g(x) + �Pen(x)}, where the regularizer takes the form

Pen(x) =
X

i

p(|xi|)

where p(t) is nondecreasing and concave over t � 0, but its concavity is bounded and it has finite derivative as

t & 0. Essentially, this means that Pen(x) behaves like a nonconvex version of the `1 norm, shrinking small
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coefficients to zero but avoiding heavy shrinkage on large coefficients; the SCAD, MCP, and log-`1 penalties

are all examples. (The `q norm for q < 1 does not fit these assumptions, however, due to infinite derivative

for coordinates xi ! 0.) Proximal gradient descent with a nonconvex penalty such as SCAD is also studied

by Lewis and Wright [19, Section 2.5] in the context of prox-regular functions. In this work, we consider the

constrained version of this optimization problem, namely argminx{g(x) : Pen(x)  c}.

Nonconvex regularizers The general nonconvex sparsity-inducing penalties studied by Loh and Wainwright

[20] are required to satisfy the following conditions (changing their notation slightly):

Pen(x) =
X

i

p(|xi|) where

8
>>><
>>>:

p(0) = 0 and p is nondecreasing,

t 7! p(t)/t is nonincreasing (i.e. p is concave),

t 7! p(t) + µ
2 t

2 is convex,

p is differentiable on t > 0, with limt&0 p
0(t) = 1.

(26)

The following result calculates the local concavity coefficients for C = {x : Pen(x)  c}.

Lemma 9. Suppose that Pen(x) =
P

i p(|xi|) where p satisfies conditions (26). Then

(
�x(C)  µ/2

p0(xmin)
, if Pen(x) = c,

�x(C) = 0, if Pen(x) < c,

with respect to the norm k·k = k·k1 and its dual k·k⇤ = k·k1, where for any x 2 R
d\{0} we define xmin to be

the magnitude of its smallest nonzero entry.

As an example, consider the log-`1 penalty (25), so that our constraint set is

C =

(
x 2 R

d :
X

i

⌫ log(1 + |xi|/⌫)  c

)
.

In this case we have p(t) = ⌫ log(1 + t/⌫), which satisfies Loh and Wainwright [20]’s conditions (26) with

µ = 1
⌫

, and we can calculate p0(t) = 1
1+t/⌫ . Therefore the local concavity coefficients for points x on the

boundary of C are bounded as �x(C)  1+xmin/⌫
2⌫ . In particular, taking a maximum over all x 2 C, we obtain

�(C)  ec/⌫

2⌫ . We can also check the norm compatibility condition:

Lemma 10. If C = {x 2 R
d :

P
i p(|xi|)  c} where c > 0 and p : [0,1) ! [0,1) satisfies the condi-

tions (26), then the norm compatibility condition (13) is satisfied with � = 1
p0(p�1(c)) .

With these results in place, we would therefore expect good convergence for projected gradient descent algo-

rithms over the nonconvex sparsity constraint Pen(x)  c, as long as the objective function g and the initialization

point satisfy the appropriate assumptions.

5.2.1 Constraints versus penalities

In Loh and Wainwright [20], the nonconvex optimization problem minx{g(x) + �Pen(x)} is studied with no

assumptions about the initial point x0. Instead, they give an assumption that the concavity in Pen must be

outweighed by the (restricted) convexity in g. In our work on the constrained form of this problem, min{g(x) :
Pen(x)  c}, we instead rely heavily on initialization conditions, namely (14), for projected gradient descent to

succeed. While our result, Lemma 5, gives some justification for the necessity of the initialization conditions for

general constraint sets C, here we consider the specific setting of nonconvex sparsity penalties, and offer a more

direct comparison of projected and proximal gradient descent (solving the constrained or penalized forms of the

problem, respectively).
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Lemma 5 suggests that the condition

2�x(C)krg(x)k⇤ < ↵, (27)

where ↵ is the restricted strong convexity parameter for the loss g, is to some extent necessary for the success

of projected gradient descent to be assured; otherwise projected gradient descent may have x as a “bad” station-

ary point. How does this condition relate to the proximal gradient descent algorithm for the penalized form?

Specifically, suppose that x is a stationary point of proximal gradient descent for some step size ⌘ > 0, namely,

x = argmin
y

⇢
1

2
ky � (x� ⌘rg(x))k22 + ⌘�Pen(y)

�
.

By first-order optimality conditions, we must therefore have

0 2 @

✓
1

2
ky � (x� ⌘rg(x))k22 + ⌘�Pen(y)

◆ ����
y=x

,

where the subdifferential @Pen(y) is defined coordinatewise,

@p(|yi|) =

(
p0(|yi|) · sign(yi), yi 6= 0,

[�1, 1], yi = 0.

In other words,

x� (x� ⌘rg(x)) + ⌘�@Pen(x) 3 0,

and so for all i, (rg(x))i 2 ��@p(|xi|) ⇢ [��,�]. Therefore, applying the bound on the concavity coefficients

given in Lemma 9, we have

2�x(C)krg(x)k1  µ�

p0(xmin)

for any stationary point x of the proximal gradient descent algorithm. The assumptions for convergence of

proximal gradient descent in Loh and Wainwright [20] require that µ�  (constant) · ↵. Therefore, up to some

constant, we see that the condition (27) is automatically satisfied by any stationary point of proximal gradient

descent, but for projected gradient descent this condition can instead fail and this allows for “bad” stationary

points. Of course, if � is too large, then proximal gradient descent can also fail to find the global minimum;

however, if � is chosen appropriately then no initialization condition is needed, while for the constrained form,

an initialization condition is apparently necessary regardless of the constraint value c.

To some extent, this suggests that projected and proximal gradient descent may have fundamentally different

behavior in the nonconvex setting, contradicting the notion that working with a constraint or a regularizer should

lead to the same results (up to issues of tuning).

5.3 Spheres, orthogonal groups, and orthonormal matrices

We next consider a constraint set given by C = {X 2 R
n⇥r : X>X = Ir}, the space of all orthonormal n ⇥ r

matrices. We can also consider a related set, C = {X 2 R
n⇥n : X2 = X, rank(X) = r}, the set of all rank-r

projection matrices (with the orthogonal group as a special case when r = n). These examples have a different

flavor than the low rank and sparse settings considered above; while the previous examples effectively bound the

complexity of the signal (by finding latent sparse or low-rank structure), here we are instead enforcing special

properties, namely orthogonality and/or unit norm. Optimization problems over these types of constraint sets

arise, for instance, in PCA type problems where we would like to find the best low-rank representation of a data

set.

First, we consider n⇥ r orthonormal matrices:

Lemma 11. Let C = {X 2 R
n⇥r : X>X = Ir}, the space of orthogonal n ⇥ r matrices. Then C has

local concavity coefficients �X(C) = 1
2 with respect to k·k = k·knuc and dual norm k·k⇤ = k·ksp. The norm

compatibility condition (13) holds with � = 1.
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7 Discussion

In this paper we have developed the local concavity coefficients, a measure of the extent to which a constraint set

C violates convexity and may therefore be challenging for first-order optimization methods. These coefficients,

related to the notion of prox-regularity in the analysis literature, are defined through four different measures of

concavity that we then prove to be equivalent, connecting the geometric curvature of C with its behavior with

respect to projections and first-order optimality conditions. This reveals a deep connection between geometry

and optimization and allows us to analyze projected gradient descent to a range of examples such as low-rank

estimation problems.

Many open questions remain in this area. As discussed earlier, the extent to which constrained versus penalized

regularization (i.e. projected or proximal gradient descent) differ is not yet understood for nonconvex regular-

izers. In sparse estimation problems, the nonconvex `q “norm” is a popular regularizer that is empirically very

successful (and has been studied theoretically), but it is not clear whether an `q norm constraint can fit into the

framework of the concavity coefficients (i.e. whether �x(C) is finite on the `q norm ball). For a low-rank estima-

tion problem, research on factored gradient descent methods, which optimize over the function U 7! g(UU>)
or (U, V ) 7! g(UV >), has developed tools to work around the identifiability issue where factors are identifiable

only up to rotation. Is there a more general way in which nonidentifiability, which can be thought of as a lack of

convexity in certain directions, can be accounted for in the theory developed here?

Turning to our general results for convergence on an arbitrary nonconvex constraint set C, it would be inter-

esting to determine whether we can obtain a slower convergence rate assuming g is (restricted) Lipschitz and

satisfies restricted strong convexity, but without a restricted smoothness result—standard results in the convex

setting for this case suggest that we would want to take step size ⌘t / 1/t and could expect a convergence rate

of kxt � bxk22 ⇠ 1/t. Finally, the strong initialization condition to ensure convergence to a global minimizer

suggests that there may be some settings in which we can obtain weaker results—since our examples show that

even convergence to a local minimum cannot be assured without checking the local concavity of the constraint

set, are local concavity type assumptions sufficient to guarantee that projected gradient descent converges at least

to some local minimizer?
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A Proofs of local concavity coefficient results

In this section we prove the equivalence of the multiple notions of the (local or global) concavity of the constraint

set C, given in Theorems 1 and 2, as well as some properties of these coefficients (Lemmas 1, 2, 3, and 4).

Since our equivalent characterizations of the local concavity coefficients are inspired by many related conditions

in the prox-regularity literature, some of the equivalence results are well-known in the `2 setting (i.e. when the

structured norm k·k is chosen to be the `2 norm), as we have described in Section 2.3. Once we move to the

general setting, where k·k may be any norm chosen to reflect the structure of the underlying signal, and where we

do not assume that x 7! �x(C) is continuous, many of the previously developed proof techniques will no longer

apply. Throughout the proof, we will highlight those portions where our proof uses novel techniques due to the

challenges of this more general setting.

In order to help discuss the various definitions of these coefficients before the equivalence is established, we

begin by introducing notation for the local concavity coefficients defined using each of these four properties: for
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all x 2 C, define

�curv
x (C) = min {� 2 [0,1] : The curvature condition (1) holds for this point x and any y 2 C} ,

�contr
x (C) = min {� 2 [0,1] : The contraction condition (3) holds for this point x and any y 2 C} ,

�FO
x (C) = min {� 2 [0,1] : The first-order condition (4) holds for this point x and any y 2 C} ,

�IP
x (C) = min {� 2 [0,1] : The inner product condition (5) holds for this point x and any y 2 C} .

We emphasize that here we are not explicitly setting these coefficients to equal 1 at degenerate points x 2 Cdgn—

they may take finite values (we will need this distinction for some technical parts of our proofs later on). We

will prove that these four definitions are all equal for all x 62 Cdgn, which is sufficient for the equivalence result

Theorem 2 since the local concavity coefficients are set to 1 at degenerate points.

Before proceeding, we introduce one more definition: by equivalence of norms on R
d, we can find some finite

constant Bnorm such that

For all z 2 R
d,

(
B�1

normkzk2  kzk  Bnormkzk2,
B�1

normkzk2  kzk⇤  Bnormkzk2.
(28)

Note that, while Bnorm is finite, it may be extremely large—for instance, Bnorm =
p
d when k·k is the `1 norm.

A.1 Proof of upper semi-continuity (Lemma 2)

Before we can prove the equivalence of the four definitions of the local coefficients in (6), we need to first show

that these coefficients are upper semi-continuous, as claimed in Lemma 2. Of course, since we do not yet know

that the four definitions are equivalent, we need to specify which definition we are using. We will work with the

inner products property (5).

Lemma 13. The map x 7! �IP
x (C) is upper semi-continuous over x 2 C\Cdgn.

This lemma will allow us to prove the equivalence result, Theorem 2. Once Theorem 2 is proved, then Lemma 13

becomes equivalent to the original lemma, Lemma 2, since �x(C) = 1 by definition on the subset Cdgn ⇢ C,

which is a closed subset by definition, while Lemma 13 proves that x 7! �x(C) is upper semi-continuous over

the open subset C\Cdgn ⇢ C.

Before proving this result, we first state a well-known fact about projections, which we will use throughout our

proofs:

For any z 2 R
d and x 2 C with PC(z) = x, for any t 2 [0, 1], PC((1� t)x+ tz) = x. (29)

Now we prove upper semi-continuity.

Proof of Lemma 13. Take any sequence xn ! x, with x, x1, x2, · · · 2 C\Cdgn. We want to prove that

� := lim sup
n!1

�IP
xn
(C)  �IP

x (C). (30)

Since x 62 Cdgn by assumption, we know that PC is continuous in some neighborhood of x. Let r > 0 be some

radius so that PC is continuous on B⇤(x, r), where B⇤(x, r) is the ball of radius r around the point x in the dual

norm k·k⇤. Assume also that � > 0, otherwise again the claim is trivial.

Taking a subsequence of the points x1, x2, . . . if necessary, we can assume without loss of generality that

�IP
xn
(C) ! �.

Fix any ✏ > 0 such that ✏ < �. For each n, by definition of the local concavity coefficient �IP
xn
(C), there must

exist some yn 2 C and some z0n 2 R
d with PC(z

0
n) = xn, such that

hyn � xn, z
0
n � xni >

�
�IP
xn
(C)� ✏

�
kz0n � xnk⇤kyn � xnk22. (31)
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Define

zn =

(
z0n, if kz0n � xnk⇤  r/2,

xn + (z0n � xn) ·
r/2

kz0
n�xnk⇤ , if kz0n � xnk⇤ > r/2,

so that kzn � xnk⇤  r/2. By (29), PC(zn) = xn. Furthermore, rescaling both sides of the inequality (31),

hyn � xn, zn � xni >
�
�IP
xn
(C)� ✏

�
kzn � xnk⇤kyn � xnk22. (32)

Since the left-hand side is bounded by kyn � xnkkzn � xnk⇤, we see that

kyn � xnk22 <
kyn � xnk
�IP
xn
(C)� ✏

 kyn � xnk
(� � ✏)/2

for all n sufficiently large so that �IP
xn
(C) > � � ��✏

2 . Therefore, since kyn � xnk  Bnormkyn � xnk2 for some

finite Bnorm, then for all large n, yn lies in some ball of finite radius around x. The same is true for zn since

kzn � xnk⇤  r/2 by construction. Thus we can find a convergent subsequence, that is, n1, n2, . . . such that

(
yni ! y for some point y,

zni
! z for some point z.

Since C is closed, we must have y 2 C. And, since xni
! x, for sufficiently large i we have kxni

� xk⇤  r/2,

so that zni
2 B⇤(x, r). Since PC is continuous on the ball B⇤(x, r), then, PC(zni

) = xni
! x implies that we

must have PC(z) = x. And,

hy � x, z � xi = lim
i!1

hyni
� xni

, zni
� xni

i � lim
i!1

⇣
�IP
xni

(C)� ✏
⌘
kzni

� xni
k⇤kyni

� xni
k22

= (� � ✏)kz � xk⇤ky � xk22,

where the inequality applies (32) for each ni. Therefore, �IP
x (C) � ��✏. Since ✏ > 0 was chosen to be arbitrarily

small, this proves that �IP
x (C) � �, as desired.

A.2 Proof of equivalence for local concavity (Theorem 2)

Now that we have established upper semi-continuity of �IP
x (C) over x 2 C\Cdgn, we are ready to prove the

equivalence of the local concavity coefficients.

Recall that if x 2 Cdgn then �x(C) = 1 under all four definitions. Therefore, from this point on, we only need

to show that

�curv
x (C) = �contr

x (C) = �IP
x (C) = �FO

x (C) for all x 2 C\Cdgn.

In fact, we will also show that a weaker statement holds for all x 2 C (i.e. without excluding degenerate points),

namely

�IP
x (C)  min{�curv

x (C), �contr
x (C), �FO

x (C)} for all x 2 C. (33)

This additional bound will be useful later in our characterization of the degenerate points, when we prove

Lemma 3.

A.2.1 Inner products ) First-order optimality

Fix any u 2 C\Cdgn. Let f : Rd ! R be differentiable, and suppose that u is a local minimizer of f over C. By

Rockafellar and Wets [27, Theorem 6.12], this implies that �rf(u) 2 NC(u), where NC(u) is the normal cone

to C at the point u (see Rockafellar and Wets [27, Definition 6.3]). By Colombo and Thibault [10, (12)], we know

that the normal cone can be obtained by a limit of proximal normal cones,

NC(u) = lim sup
x2C,x!u

�
w 2 R

d : PC(x+ ✏ · w) = x for some ✏ > 0
 

| {z }
Proximal normal cone to C at x

.
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Therefore, we can find some sequences u1, u2, · · · 2 C, w1, w2, · · · 2 R
d, and ✏1, ✏2, · · · > 0, such that PC(un +

✏n · wn) = un for all n � 1, with un ! u and wn ! �rf(u).

Now fix any y 2 C. By the inner product condition (5), for each n � 1,

hy � un, wni = hy � un, (un + wn)� uni  �IP
un

(C)kwnk⇤ky � unk22.

Taking limits on both sides, since un ! u and wn ! �rf(u),

hy � u,�rf(u)i 
✓
lim sup

t!1
�IP
un

(C)

◆
· krf(u)k⇤ky � uk22.

Finally, recall that Lemma 13 proves that x 7! �IP
x (C) is upper semi-continuous over x 2 C\Cdgn, and Cdgn ⇢ C

is a closed subset. Since u 2 C\Cdgn, we therefore have un 2 C\Cdgn for all sufficiently large t, and therefore

lim supt!1 �IP
un

(C)  �IP
u (C). This proves that �FO

u (C)  �IP
u (C), as desired.

In fact, we can formulate a more general version of the first-order optimality condition:

For any Lipschitz continuous f : Rd ! R such that x is a local minimizer of f over C,

hy � x, vi � ��kvk⇤ky � xk22 for some v 2 @f(x), (34)

where @f(x) is the subdifferential to f at x (see Rockafellar and Wets [27, Definition 8.3]). To see why (34)

holds, Rockafellar and Wets [27, Theorem 8.15] guarantees that, since f is Lipschitz and x is a local minimizer

of f over the closed set C, then we must have �v 2 NC(x) for some subgradient v 2 @f(x).8 The remainder of

the proof is identical to the differentiable case treated above, with v in place of rf(x); this proves that, for any

x 2 C\Cdgn and any y 2 C, the stronger first-order optimality condition (34) holds with � = �IP
x (C).

Comparing to proofs of related conditions in the literature, we see that avoiding a continuity assumption on the

map x 7! �x means that the first-order optimality condition (4) does not follow immediately from the inner

product condition (5); however, by first establishing upper semi-continuity of the map x 7! �IP
x (C), the result

follows.

A.2.2 First-order optimality ) Inner products

This direction of the equivalence is immediate from the definitions of these two conditions. Fix any x, y 2 C and

z 2 R
d with PC(z) = x. Consider the function f(w) = 1

2kw � zk22, so that PC(z) = x 2 C minimizes f over C.

We see trivially that rf(x) = x� z and so

hy � x, z � xi = hy � x,�rf(x)i  �FO
x (C)krf(x)k⇤kx� yk22 = �FO

x (C)kz � xk⇤kx� yk22.

Therefore �IP
x (C)  �FO

x (C) for all x 2 C, while previously we showed that the reverse inequality holds over

x 2 C\Cdgn. Therefore, �IP
x (C) = �FO

x (C) for x 2 C\Cdgn.

A.2.3 Curvature ) Inner products

Fix any x, y 2 C and any z 2 R
d with PC(z) = x. For all t 2 (0, 1), let xt = (1� t)x+ ty, and choose

x̃t 2 argmin
x2C

kx� xtk such that lim sup
t&0

kext � xtk
t

 �curv
x (C)kx� yk22,

as in the definition of �curv
x (C). Fix any ✏ > 0. Then for some t0 > 0, for all t < t0,

kext � xtk
t

 �curv
x (C)kx� yk22 + ✏.

8More precisely, Rockafellar and Wets [27, Theorem 8.15] assumes only that f is proper and lower semi-continuous, but additionally

requires the condition that @∞f(x) \
�

� NC(x)
�

= {0} (see Rockafellar and Wets [27, Chapter 8] for definitions). Since the horizon

subdifferential @∞f(x) contains only the zero vector for any Lipschitz function f, this condition must be satisfied once we assume that f is

Lipschitz.
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Since x = PC(z), this means that for all t 2 (0, 1),

kz � xk22  kz � extk22 = kz � xtk22 + kext � xtk22 + 2hz � xt, xt � exti.

We can also calculate

kz � xtk22 = kz � (1� t)x� tyk22 = kz � xk22 � 2thy � x, z � xi+ t2kx� yk22.

We rearrange terms to obtain

hy � x, z � xi  1

2t

�
kext � xtk22 + 2hz � xt, xt � exti+ t2kx� yk22

�
.

Recalling that k·k2  Bnormk·k for some finite constant Bnorm by (28), we then have

hy � x, z � xi  1

2t

�
(Bnorm)

2kext � xtk2 + 2kz � xtk⇤kext � exk+ t2kx� yk22
�

 1

2t

⇣
(Bnorm)

2
�
(�curv

x (C)kx� yk22 + ✏) · t
�2

+ 2kz � xtk⇤(�curv
x (C)kx� yk22 + ✏) · t+ t2kx� yk22

⌘

= kz � xtk⇤(�curv
x (C)kx� yk22 + ✏) +

t

2

⇣
(Bnorm)

2
�
(�curv

x (C)kx� yk22 + ✏)
�2

+ kx� yk22
⌘
.

Taking a limit as t approaches zero,

hy � x, z � xi  (�curv
x (C)kx� yk22 + ✏) · kz � xk⇤.

Since ✏ > 0 was chosen to be arbitrarily small, therefore, �IP
x (C)  �curv

x (C), for any x 2 C.

To compare this portion of the proof to the existing literature, in the `2 setting, this equivalence is proved in

Colombo and Thibault [10, Theorem 14(q)]. Their proof relies on the fact that the projection operator PC is

taken with respect to the `2 norm, and the curvature condition also seeks to bound the `2 distance between the

point xt and the set C. In our more general setting, the curvature condition (1) works with the structured norm

k·k, while projections are still taken with respect to the `2 norm, and so the same proof technique can no longer

be applied (for instance, using this technique in a sparse problem with k·k = k·k1, our results would suffer a

factor of Bnorm =
p
d by converting from the `1 norm to the `2 norm). In our proof, a careful treatment of these

various notions of distance allows for the bound to hold.

A.2.4 Inner products ) Curvature

To prove the curvature condition, we will actually need to use the stronger form (34) of the first-order optimality

condition—as proved in Appendix A.2.1, this condition holds with � = �IP
x (C) for all x 2 C\Cdgn.

Fix any u 2 C\Cdgn and y 2 C. Let ut = (1 � t) · u + t · y, and define f(x) = kx� utk. Note that f is a

Lipschitz function. Since C is closed, and f is continuous and nonnegative, it must attain a minimum over C,

xt 2 argminx2C f(x). Since Cdgn is a closed subset of C, this means that xt 2 C\Cdgn for any sufficiently small

t > 0, since

kxt � uk  kxt � utk+ kut � uk  2ku� utk = 2tku� yk
(where the second inequality uses the definition of xt), and so xt ! u.

Next, consider the subdifferential @f(xt). It is well known that this subdifferential is not empty, and any element

v 2 @f(xt) must satisfy kvk⇤  1 and hv, xt � uti = kxt � utk. Now, applying the stronger form of the

first-order optimality condition given in (34), we have

hv, y � xti � ��IP
xt
(C)kvk⇤ky � xtk22 = ��IP

xt
(C)ky � xtk22

and similarly, replacing y 2 C with u 2 C,

hv, u� xti � ��IP
xt
(C)ku� xtk22.
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Taking the appropriate linear combination of these two inequalities,

hv, xt � uti  �IP
xt
(C)
�
(1� t)ku� xtk22 + tky � xtk22

�
= �IP

xt
(C)
�
t(1� t)ku� yk22 + kut � xtk22

�
,

where the last step simply uses the definition ut = (1 � t)u + ty and rearranges terms. Finally, kut � xtk2 
Bnormkut � xtk  Bnormku� utk = tBnormku� yk, by definition of ut and xt, so combining everything we

can write

min
x2C

kx� utk = kxt � utk = hv, xt � uti  �IP
xt
(C)
�
t(1� t)ku� yk22 + t2B2

normku� yk2
�
.

Dividing by t and taking a limit,

lim
t&0

minx2Ckx� utk
t


 
lim sup

t&0
�IP
xt
(C)

!
· ku� yk22.

Finally, recall that x 7! �IP
x (C) is upper semi-continuous by Lemma 13, and xt ! u as proved above. We thus

have lim supt&0 �
IP
xt
(C)  �IP

u (C). This proves that �curv
u (C)  �IP

u (C), for any u 2 C\Cdgn.

Combining with our previous steps, we now have

�FO
x (C) = �IP

x (C) = �curv
x (C)

for all x 2 C\Cdgn, while for x 2 Cdgn we have the weaker statement �IP
x (C)  min{�curv

x (C), �FO
x (C)}.

To compare this portion of the proof to the existing literature, in the `2 setting, the equivalient result is proved

in Colombo and Thibault [10, Proposition 9]. In their proof, they use the identity kxt � utk2 = hxt�ut,xt�uti
kxt�utk2

,

and then upper bound the right-hand side via the inner product condition. To translate this proof into the more

general structured norm setting, we write kxt � utk = hv, xt � uti for a subgradient v in the subdifferential of

the function x 7! kx� utk, and apply results from the analysis literature along with our upper semi-continuity

result, Lemma 13.

A.2.5 Approximate contraction , Inner products

This proof, for the case of a general norm k·k, proceeds identically as the proof for the case where k·k = k·k2
(presented e.g. in Colombo and Thibault [10, Theorem 3(b,d)]). For completeness, we reproduce the argument

here.

First, we show that �IP
x (C)  �contr

x (C). Fix any x 2 C, and any z 2 R
d with x = PC(z). Define zt =

t · z + (1� t) · x for t 2 [0, 1]. By (29), x = PC(zt) for all t 2 [0, 1].

Then for any y 2 C, since kzt � xk⇤ = tkz � xk⇤,

ky � xk2
�
1� �contr

x (C) · tkz � xk⇤
�
 ky � ztk2

by the approximate contraction property (3). For sufficiently small t, the left-hand side is nonnegative (except

for the trivial case �contr
x (C) = 1, in which case there is nothing to prove). Squaring both sides and rearranging

some terms,

ky � xk22  ky � ztk22 + (2�contr
x (C) · tkz � xk⇤ � (�contr

x (C) · tkz � xk⇤)2)ky � xk22.

And,

ky � ztk22 = ky � xk22 + kx� ztk22 + 2hy � x, x� zti
so rearranging terms again,

2hy � x, zt � xi  kx� ztk22 + (2�contr
x (C) · tkz � xk⇤ � (�contr

x (C) · tkz � xk⇤)2)ky � xk22.
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Plugging in the definition of zt,

2thy � x, z � xi  t2kx� zk22 + (2�contr
x (C) · tkz � xk⇤ � �contr

x (C)2 · t2(kz � xk⇤)2)ky � xk22.

Dividing by 2t, then taking the limit as t & 0,

hy � x, z � xi  �contr
x (C)kz � xk⇤ky � xk22.

Therefore, for any x 2 C, �IP
x (C)  �contr

x (C).

Now we prove the reverse inequality, i.e. �contr
x (C)  �IP

x (C). Fix any x, y 2 C and any z 2 R
d with x = PC(z).

Then

ky � xk22 + hy � x, z � yi = hy � x, z � xi  �IP
x (C)kz � xk⇤ky � xk22.

Simplifying, �
1� �IP

x (C)kz � xk⇤
�
ky � xk22  �hy � x, z � yi  ky � xk2kz � yk2,

and so �
1� �IP

x (C)kz � xk⇤
�
ky � xk2  kz � yk2.

Therefore, for any x 2 C �contr
x (C)  �IP

x (C).

Combining everything, we have now proved

�contr
x (C) = �IP

x (C) = �FO
x (C) = �curv

x (C)

for all x 2 C\Cdgn, in addition to the weaker bound (33) for all x 2 C, as desired. This completes the proof of

Theorem 2.

A.3 Proof of characterization of degenerate points (Lemma 3)

Next we prove that the degenerate points u 2 Cdgn are precisely those points where any of the four local concavity

conditions would fail to hold, in any neighborhood of u and for any finite �. First, the characterization of prox-

regularity given in Poliquin et al. [26, Proposition 1.2, Theorem 1.3(i)] proves that, if the projection operator PC

is not continuous in a neighborhood of u 2 C, then there are no constants ✏ > 0 and � < 1 such that the inner

product condition (5) holds for all x 2 C \ B2(u, ✏). Therefore, for any r > 0, supx2C\B2(u,r) �
IP
x (C) = 1.

Finally, in proving Theorem 2, we proved (33), i.e. �IP
x (C)  min{�curv

x (C), �contr
x (C), �FO

x (C)} for all x 2 C.

This implies that,

lim
r!0

(
sup

x2C\B2(u,r)

�(⇤)
x (C)

)
= 1,

where (*) denotes any of the four properties, i.e. �curv
x (C) for the curvature condition (1), �contr

x (C) for the contrac-

tion property (3), �IP
x (C) for the inner product condition (5), or �FO

x (C) for the first-order optimality condition (4).

This proves the lemma.

A.4 Proof of two-sided contraction property (Lemma 4)

This proof, for the case of a general norm k·k, proceeds identically as the proof for the case where k·k = k·k2
(presented e.g. in Colombo and Thibault [10, Theorem 3(b,d)]). For completeness, we reproduce the argument

here.

Take any x, y 2 C and any z, w 2 R
d with PC(z) = x and PC(w) = x. By definition of the local concavity

coefficients, applying the inner product bound (5) we have

hy � x, z � xi  �x(C)kz � xk⇤kx� yk22.
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Applying the same property with the roles of the variables reversed,

hx� y, w � yi  �y(C)kw � yk⇤kx� yk22.

Adding these two inequalities together,

hy � x, z � x� w + yi  �x(C)kz � xk⇤kx� yk22 + �y(C)kw � yk⇤kx� yk22.

Rearranging terms and simplifying,

�
1� �x(C)kz � xk⇤ � �y(C)kw � yk⇤

�
kx� yk22  hy � x,w � zi.

Since the right-hand side is bounded by kx� yk2kz � wk2 by the Cauchy–Schwarz inequality, this proves the

lemma.

In fact, we will also prove a related result that will be useful for our convergence proofs later on. As above, we

have

hy � x, z � xi  �x(C)kz � xk⇤kx� yk22,
and since y = PC(w), we also have

0 � ky � wk22 � kx� wk22 = kx� yk22 + 2hy � x, x� wi.

Then, adding the two bounds together,

hy � x, z � wi = hy � x, z � xi+ hy � x, x� wi  �x(C)kz � xk⇤kx� yk22 �
1

2
kx� yk22,

and so ✓
1

2
� �x(C)kz � xk⇤

◆
kx� yk22  �hy � x, z � wi  kx� yk2kz � wk2.

This proves that ✓
1

2
� �x(C)kz � xk⇤

◆
kx� yk2  kz � wk2. (35)

In a setting where �x(C)kz � xk⇤ is small but �y(C)kw � yk⇤ may be large, this alternate result can give a

stronger bound than Lemma 4.

A.5 Proof of equivalence for global concavity (Theorem 1) and local vs global coeffi-

cients (Lemma 1)

We prove Theorem 1, which states that the five definitions for the global concavity coefficient �(C) are equivalent,

alongside Lemma 1, which states that �(C) = supx2C �x(C).

First, suppose that C contains one or more degenerate points, Cdgn 6= ∅, in which case supx2C �x(C) = 1. By

definition of Cdgn, the projection operator PC is not continuous on any neighborhood of C. Poliquin et al. [26,

Theorem 4.1] prove that this implies C is not prox-regular, and so �(C) = 1 as discussed in Section 2.3.

Next, suppose that C contains no degenerate points. Let �⇤ = supx2C �x(C). Then clearly, by definition of the

local coefficients �x(C),

�⇤ = min{� 2 [0,1] : Property (*) holds for all x, y 2 C}

where (*) may refer to any of the four equivalent properties, namely the curvature condition (1), the (one-sided)

contraction property (3), the inner product condition (5), and the first-order condition (4). Next, let

�] = min{� 2 [0,1] : The two-sided contraction property (2) holds for all x, y 2 C}.
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Clearly, the two-sided contraction property (2) is stronger than its one-sided version (3), and so �⇤  �]. How-

ever, Lemma 4 shows that they are in fact equal, proving that

�
1� �x(C)kz � xk⇤ � �y(C)kw � yk⇤

�
· kx� yk2  kz � wk2

for all z, w 2 R
d with x = PC(z), y = PC(w). Since �x(C), �y(C)  �⇤ for all x, y 2 C, this implies that

�
1� �⇤kz � xk⇤ � �⇤kw � yk⇤

�
· kx� yk2  kz � wk2,

that is, (2) holds for all x, y 2 C with constant � = �⇤. So, we have �]  �⇤. Therefore, the five conditions

defining �(C) are equivalent, and �(C) = �] = �⇤ = supx2C �x(C), proving Theorem 1 and Lemma 1.

B Proofs of convergence results

In this section we prove our convergence results for projected gradient descent (Theorem 3) and approximate

projected gradient descent (Theorem 4), along with the necessity of the initialization condition (Lemma 5) and

equivalence of the exact and approximate convergence results (Lemma 6).

B.1 Proof of Theorem 3

This result, using the exact projection operator PC , is in fact a special case of Theorem 4, which provides a

convergence guarantee using a family of operators {Px}. To see why, define Px = PC for all x 2 C. To apply

Theorem 4, we only need to check that the relevant assumptions, namely (17), (18), (19), and (20), all hold.

To check (17), by setting

�c = max{�x(C) : x 2 C \ B2(bx, ⇢)} and �d = 0,

we see that the desired bound is a trivial consequence of the inner product condition (5). The norm compatibility

condition (18) for {Px} holds as a trivial consequence of the original norm compatibility condition (13). The

initialization condition (19) follows directly from the original initialization condition (14) by our choice of �c, �d.

Finally, we verify the local continuity condition (20). Fix any x 2 C \ B2(bx, ⇢) and any z 2 R
d such that

PC(z) 2 B2(bx, ⇢) and 2(�c + �d)kz � Px(z)k⇤  1� c0. By (35), for all w 2 R
d,

✓
1

2
� �PC(z)(C)kz � PC(z)k⇤

◆
kPC(z)� PC(w)k2  kz � wk2.

Since Px(z) = PC(z) 2 B2(bx, ⇢) and �c + �d = maxu2C\B2(bx,⇢) �u(C) � �PC(z)(C), then,

kPC(z)� PC(w)k2  kz � wk2
1/2� (�c + �d)kz � Px(z)k⇤

 kz � wk2
c0/2

.

Setting � = ✏ · c0/2 then proves the condition (20).

With these conditions in place, Theorem 3 becomes simply a special case of Theorem 4.

B.2 Proof of Theorem 4

For t = 0, the statement holds trivially. To prove that the bound holds for subsequent steps, we will proceed by

induction. Choose any ⇢0 2 (0, ⇢) such that

⇢0 � max

8
<
:kx0 � bxk2,

s
1.5"2g
c0

9
=
; ,
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where this maximum is < ⇢ by assumption of the theorem. We will prove that

(
kxt+1 � bxk22 

�
1� 2c0↵

Denom

�
kxt � bxk22 + 3↵

Denom
"2g,

kxt+1 � bxk2  ⇢0,
(36)

for all t � 0, where the denominator term is given by

Denom = � + ↵

✓
c0 � (1� c0) ·

�c

�c + �d

◆
 ↵+ �.

Assuming that this holds, then applying the first bound of (36) iteratively, we will then have

kxt � bxk22 
✓
1� 2c0↵

Denom

◆t

kx0 � bxk22 +
1.5

c0
"2g 

✓
1� 2c0↵

↵+ �

◆t

kx0 � bxk22 +
1.5

c0
"2g,

which proves the theorem.

Now we turn to proving (36), assuming that it holds at the previous time step. In order to apply assumptions such

as restricted strong convexity (11) and the inner product condition (17), we first need to know that kxt+1 � bxk2 
⇢, which we cannot ensure directly at the start. To get around this, we first consider reducing the step size. For

any step size s 2 [0, ⌘], define

x0
t+1(s) = xt � srg(xt) and xt+1(s) = Pxt(x

0
t+1(s)).

Define

S = {s 2 [0, ⌘] : kxt+1(s)� bxk2  ⇢} and S0 = {s 2 [0, ⌘] : kxt+1(s)� bxk  ⇢0} .

Clearly 0 2 S0 ✓ S since xt+1(0) = xt, which satisfies kxt � bxk2  ⇢0 by assumption. First, we claim that we

can find some ∆ > 0 such that

If s 2 S0 then min{s+∆, ⌘} 2 S . (37)

To prove this, we will apply the local uniform continuity assumption (20). Let x = xt and ✏ = ⇢ � ⇢0, and

find � > 0 as in the assumption (20). For any s 2 S0, let z = x0
t+1(s) = xt � srg(xt). Then Px(z) =

Pxt
(x0

t+1(s)) = xt+1(s) 2 B2(bx, ⇢0) ⇢ B2(bx, ⇢), and

2(�c + �d)kz � Px(z)k⇤  2(�c + �d) · �kz � xtk⇤ = 2(�c + �d)�skrg(xt)k⇤

 2(�c + �d) · �⌘ max
x2C\B2(bx,⇢)

krg(x)k⇤  ⌘ · (1� c0)↵  1� c0,

where the first inequality uses the norm compatibility condition (18), the third uses the initialization condi-

tion (19), and the fourth uses ⌘ = 1/�  1/↵. Therefore, the conditions of the local continuity statement (20)

are satisfied, and so for any w 2 R
d with kw � zk2  �, we must have kPx(w)� Px(z)k2  ✏ = ⇢� ⇢0. Then

kPx(w)� bxk2  kPx(w)� Px(z)k2 + kPx(z)� bxk2  (⇢� ⇢0) + ⇢0 = ⇢.

Now, define ∆ = �/kg(xt)k2 and set w = x0
t+1(min{s +∆, ⌘}). Then kw � x0

t+1(s)k2  ∆krg(xt)k2  �,

and so kPx(w)� bxk2  ⇢. This proves that min{s+∆, ⌘} 2 S, and so (37) holds.

Next, consider any s 2 S . If s = 0, then s 2 S0 since kxt � bxk2  ⇢0 by the previous step. Otherwise, assume

s > 0. We first have

max{kx0
t+1(s)� xt+1(s)k⇤, kx0

t+1(s)� xtk⇤} = max{kx0
t+1(s)� Pxt(x

0
t+1(s))k⇤, kx0

t+1(s)� xtk⇤}

 �kx0
t+1(s)� xtk⇤ = �k�srg(xt)k⇤  s↵(1� c0)

2(�c + �d)
, (38)

where first inequality uses the norm compatibility condition (18) while the second uses the initialization condi-

tion (19), since kxt � bxk2  ⇢.
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We can now use the inner product condition (17), applied with x = xt and z = x0
t+1(s), with Px(z) =

Pxt
(x0

t+1(s)) = xt+1(s). (This condition can be applied as we have checked that xt, xt+1(s) 2 B2(bx, ⇢).)
The inner product condition yields

hbx� xt+1(s), x
0
t+1(s)� xt+1(s)i

 max{kx0
t+1(s)� xt+1(s)k⇤, kx0

t+1(s)� xtk⇤} ·
⇣
�ckbx� xt+1(s)k22 + �dkbx� xtk22

⌘

 s↵(1� c0)

2(�c + �d)

⇣
�ckbx� xt+1(s)k22 + �dkbx� xtk22

⌘
, (39)

where the last step applies (38).

Next, abusing notation, define for every u 2 C

�c
u(C) =

(
�c, ku� bxk2 < ⇢,

1, ku� bxk2 � ⇢,
and �d

u(C) =

(
�d, ku� bxk2 < ⇢,

1, ku� bxk2 � ⇢.

Trivially these maps are upper semi-continuous. We also need to check the local continuity assumption (22),

which requires that if �c
x(C) + �d

x(C) < 1 and zt ! x, then Px(zt) ! x. In fact, by the norm compatibility

assumption (18), for all x 2 C \ B2(bx, ⇢) we have kzt � Px(zt)k⇤  �kzt � xk⇤, and so

kPx(zt)� xk⇤  kPx(zt)� ztk⇤ + kzt � xk⇤  (1 + �)kzt � xk⇤ ! 0,

proving that Px(zt) ! x, as desired. By Lemma 6, the local concavity coefficients of C then satisfy �u(C) 
�c
u(C) + �d

u(C), and so in particular, �bx(C)  �c + �d.

We will now apply the first-order optimality conditions (4) at the point x = bx. We have

g(xt+1(s))� g(bx) � hxt+1(s)� bx,rg(bx)i+ ↵

2
kxt+1(s)� bxk22 �

↵"2g

2
by restricted strong convexity (11)

� �(�c + �d)krg(bx)k⇤kxt+1(s)� bxk22 +
↵

2
kxt+1(s)� bxk22 �

↵"2g

2
by first-order optimality

� �↵(1� c0)

2
kxt+1(s)� bxk22 +

↵

2
kxt+1(s)� bxk22 �

↵"2g

2

=
c0↵

2
kxt+1(s)� bxk22 �

↵"2g

2
, (40)

where the next-to-last step applies the initialization condition (19) (plus the fact that � � 1) to bound krg(bx)k⇤.

On the other hand, we have

g(xt+1(s))� g(bx) = g(xt+1(s))� g(xt) + g(xt)� g(bx)

 hxt+1(s)� xt,rg(xt)i+
�

2
kxt+1(s)� xtk22 +

↵"2g

2
+ hxt � bx,rg(xt)i �

↵

2
kxt � bxk22 +

↵"2g

2

= hxt+1(s)� bx,rg(xt)i+
�

2
kxt+1(s)� xtk22 �

↵

2
kxt � bxk22 + ↵"2g, (41)

where the inequality applies restricted strong convexity (11) and restricted smoothness (12). To bound the re-

maining inner product term, we have

hxt+1(s)� bx,rg(xt)i =
1

s
hxt+1(s)� bx, xt � x0

t+1(s)i

=
1

s
hxt+1(s)� bx, xt � xt+1(s)i+

1

s
hxt+1(s)� bx, xt+1(s)� x0

t+1(s)i

 1

s
hxt+1(s)� bx, xt � xt+1(s)i+

↵(1� c0)

2(�c + �d)

⇣
�ckbx� xt+1(s)k22 + �dkbx� xtk22

⌘
, (42)
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where the last step applies (39). For the first term on the right-hand side, we can trivially check that

1

s
hxt+1(s)� bx, xt � xt+1(s)i =

1

2s
kxt � bxk22 �

1

2s
kxt+1(s)� bxk22 �

1

2s
kxt+1(s)� xtk22. (43)

Combining steps (40), (41), (42), and (43), then, since 1
2s � 1

2⌘ = �
2 ,

c0↵

2
kxt+1(s)� bxk22  1

2s
kxt � bxk22 �

1

2s
kxt+1(s)� bxk22

+
↵(1� c0)

2(�c + �d)

⇣
�ckbx� xt+1(s)k22 + �dkbx� xtk22

⌘
� ↵

2
kxt � bxk22 + 1.5↵"2g.

Rearranging terms we obtain

kxt+1(s)� bxk22 

0
@1� 2↵c0

1
s + ↵

⇣
c0 � (1� c0) ·

�c

�c+�d

⌘

1
A kxt � bxk22 +

3↵

1
s + ↵

⇣
c0 � (1� c0) ·

�c

�c+�d

⌘"2g.

(44)

In particular, since kxt � bxk2  ⇢0 and "2g  c0⇢
2

0

1.5 by assumption, this proves that

kxt+1(s)� bxk2  ⇢0. (45)

Therefore, we see that s 2 S0.

To summarize, we have proved that for all s 2 S , we also have s 2 S0; while for s 2 S0, we also have

min{s + ∆, ⌘} 2 S , where ∆ > 0 is fixed. Starting with s = 0 2 S and proceeding inductively, we see that

∆ 2 S , then 2∆ 2 S , etc, until inductively we obtain ⌘ 2 S . Therefore, setting s = ⌘ and xt+1(s) = xt+1, the

above bounds (44) and (45) will hold. Looking at (44) in particular, since s = ⌘ = 1/�, we can simplify to

kxt+1 � bxk22 

0
@1� 2↵c0

� + ↵
⇣
c0 � (1� c0) ·

�c

�c+�d

⌘

1
A kxt � bxk22 +

3↵

� + ↵
⇣
c0 � (1� c0) ·

�c

�c+�d

⌘"2g.

This proves that the inductive step (36) holds for xt+1, as desired, which completes the proof of Theorem 4.

B.3 Proof of necessity of the initialization conditions (Lemma 5)

By definition of the local concavity coefficients (6), since x 62 Cdgn and �x(C) > 0, we see that there must exist

some y 2 C and z 2 R
d, with x = PC(z) such that

hy � x, z � xi > �x(C)

1 + ✏
kz � xk⇤kx� yk22.

(If no such y, z exist then local concavity coefficient at x would be  �x(C)
1+✏

, which is a contradiction.) Next

define g(v) = ↵
2 kv � ezk22, where ez = x+ z�x

kz�xk⇤ · 1+✏
2�x(C)

. Then g is ↵-strongly convex, and

2�x(C) · krg(x)k⇤ = 2�x(C) · k↵(ez � x)k⇤ = ↵(1 + ✏).

Furthermore, for sufficiently small step size ⌘ > 0, we can see that x � ⌘rg(x) is a convex combination of x
and z, and so we have PC(x � ⌘rg(x)) = x by (29). Thus x is a stationary point of projected gradient descent

by (29), for sufficiently small ⌘ > 0. However, x does not minimize g over C, since

ky � ezk22 � kx� ezk22 = ky � xk22 � 2hy � x, ez � xi = ky � xk22 � 2hy � x, z � xi · 1 + ✏

2�x(C)kz � xk⇤

< ky � xk22 � 2 ·
�x(C)

1 + ✏
kz � xk⇤kx� yk22 ·

1 + ✏

2�x(C)kz � xk⇤ = 0,

which shows that g(y) < g(x).
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B.4 Proof of equivalence of the exact and approximate settings (Lemma 6)

B.4.1 Local concavity coefficients ) Family of approximate projections

Suppose that C has local concavity coefficients �x(C) for all x 2 C. Then the inner product condition (5) for

exact projection PC gives

hy � u, z � ui  �u(C)kz � uk⇤ky � uk22
for all u, y 2 C and z 2 R

d with PC(z) = u. Therefore, the general condition (21) holds for Px = PC when we

set �c
u(C) = �u(C) and �d

u(C) = 0.

B.4.2 Family of approximate projections ) Local concavity coefficients

Suppose there exists a family of operators Px : R
d ! C indexed over x 2 C, satisfying the inner product

condition in (21). Assume that the local continuity property (22) holds. We now check that the local concavity

coefficients satisfy �x(C)  �c
x(C) + �d

x(C).

Fix any x 2 C. Assume that �c
x(C) + �d

x(C) < 1 (otherwise, there is nothing to prove). We will verify that the

inner product condition (5) holds at this point x with � = �c
x(C) + �d

x(C). Fix any ✏ > 0, y 2 C, and z 2 R
d

such that x = PC(z) 2 C. Define

zt = (1� t)x+ tz.

We will take limits as t approaches zero throughout the proof. Below we will prove that there exists some t0 > 0
such that

Px(zt) = x for all t  t0. (46)

Assume for now that this holds.

Take any t 2 (0, t0). By the inner product condition (21) for the approximate projections Px, since x = Px(zt)
for this small t,

hy � x, zt � xi = hy � Px(zt), zt � Px(zt)i

 max{kzt � Px(zt)k⇤, kzt � xk⇤} ·
⇣
�c
Px(zt)

(C)ky � Px(zt)k22 + �d
Px(zt)

(C)ky � xk22
⌘

= kzt � xk⇤ ·
�
�c
x(C) + �d

x(C)
�
· ky � xk22.

Plugging in the definition of zt, and then dividing by t,

hy � x, z � xi  kz � xk⇤ · (�c
x(C) + �d

x(C))ky � xk22,

proving that the inner product condition (5) holds, at this point x and for any y 2 C, with � = �c
x(C) + �d

x(C).
By definition of the local concavity coefficients, if x 2 C\Cdgn, then �x(C)  � = �c

x(C) + �d
x(C). Now we

consider the case that x 2 Cdgn. Since x 7! �c
x(C) + �d

x(C) is upper semi-continuous by assumption, we can

find some r > 0 such that � := supx02C\B2(x,r)

�
�c
x0(C) + �d

x0(C)
�
< 1. By the reasoning above, then, the

inner product condition (5) holds, with any x0 2 C \ B2(x, r) in place of x and for any y 2 C, with the constant

�. However, if x 2 Cdgn then this is not possible, due to Lemma 3. Thus we have reached a contradiction—if

�c
x(C) + �d

x(C) < 1 then we must have x 2 C\Cdgn. This completes the proof that �x(C)  �c
x(C) + �d

x(C) for

all x 2 C, assuming that (46) holds

Now it remains to be shown that (46) is indeed true. Since zt ! x trivially, and Px(zt) ! x by the local

continuity assumption (22), we see that (zt � Px(zt)) ! 0. Since u 7! �c
u(C) is upper semi-continuous, then

�c
Px(zt)

 �c
x(C) + ✏ for sufficiently small t > 0, and also �c

x(C) < 1 by assumption. Therefore, for sufficiently

small t > 0, we have 2�c
Px(zt)

(C)max{kzt � Px(zt)k⇤, kzt � xk⇤}  1. Then, applying the inner product
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condition (21), with u = Px(zt), with y = x, and with zt in place of z, we obtain

kzt � Px(zt)k22 � kzt � xk22 = 2hzt � Px(zt), x� Px(zt)i � kx� Px(zt)k22
 2max{kzt � Px(zt)k⇤, kzt � xk⇤}

⇣
�c
Px(zt)

(C)kx� Px(zt)k22 + �d
Px(zt)

(C)kx� xk22
⌘
� kx� Px(zt)k22

= kx� Px(zt)k22 · (2�c
Px(zt)

(C)max{kzt � Px(zt)k⇤, kzt � xk⇤}� 1)  0,

implying that kzt � Px(zt)k22  kzt � xk22. So,

0  kzt � xk22�kzt � Px(zt)k22 = 2hzt � x, Px(zt)� xi�kPx(zt)� xk22 = 2thz � x, Px(zt)� xi�kPx(zt)� xk22.

Furthermore, x = PC(z), so

kz � xk22  kz � Px(zt)k22 = kz � xk22 + 2hz � x, x� Px(zt)i+ kx� Px(zt)k22

so we have 2hz � x, Px(zt)� xi  kx� Px(zt)k22. Since we have taken t > 0, we then have kx� Px(zt)k22 
tkx� Px(zt)k22 which implies that x = Px(zt) for sufficiently small t. This proves (46), thus completing the

proof of the lemma.

C Proofs for examples

In this section we prove results calculating the local concavity coefficients �x(C) and the norm compatibility

constant � for the constraint sets considered in Section 5.

C.1 Low rank constraints

For the low-rank constraint, we first recall the various matrix norms used in our analysis: the Frobenius norm

kXkF =
qP

ij X
2
ij is the Euclidean `2 norm when X is reshaped into a vector; the nuclear norm kXknuc =

P
i �i(X) is the sum of its singular values, and promotes a low-rank solution X (in the same way that, for sparse

vector estimation, the `1 norm promotes sparse solutions); and the spectral norm kXksp = �1(X) is the largest

singular value of X (sometimes called the operator norm).

Recalling the subspace TX defined in (23) for any rank-r matrix X , we begin with an auxiliary lemma:

Lemma 14. Let X,Y 2 R
n⇥m satisfy rank(X), rank(Y )  r. Then

kP?
TX

(Y )knuc 
1

2�r(X)
kX � Y k2F.

Proof of Lemma 14. Assume �r(X) > 0 (otherwise the statement is trivial). For any matrix M 2 (TX)? with

kMksp  1, define a function

fM (Z) =
1

2�r(X)
kZ �Xk2F � hZ,Mi

over matrices Z 2 R
n⇥m. We can rewrite this as

fM (Z) =
1

2�r(X)
kZ � (X + �r(X)M)k2F + hX,Mi � �r(X)

2
kMk2F.

Now, we minimize fM (Z) over a rank constraint:

argmin
rank(Z)r

fM (Z) = argmin
Z

{kZ � (X + �r(X)M)k2F : rank(Z)  r} = PC (X + �r(X)M) .
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Since �1(X), . . . ,�r(X) � �r(X) while k�r(X)Mksp  �r(X), and M 2 (TX)?, we see that

X = PC (X + �r(X)M) .

(It may be the case that X and �r(X)M both have one or more singular values exactly equal to �r(X), in which

case the projection is not unique, but X is always one of the values of the projection.) So, Z = X minimizes

fM (Z) over rank-r matrices, and therefore, for any Z with rank(Z)  r,

fM (Z) � fM (X) =
1

2�r(X)
kX �Xk2F + hX,Mi = 0,

since hX,Mi = 0 due to M 2 (TX)?. Therefore, in particular, fM (Y ) � 0 which implies that

hY,Mi  1

2�r(X)
kY �Xk2F.

Since this is true for all M 2 (TX)? with kMksp  1, we have proved that

kP?
TX

(Y )knuc = max
M2(TX)?,kMksp=1

hY,Mi  1

2�r(X)
kY �Xk2F,

as desired.

Proof of Lemma 7. First, let PC(Z) be any closest rank-r matrix to Z (not necessarily unique), and let U 2 R
n⇥r

and V 2 R
m⇥r be orthonormal bases for the column span and row span of PC(Z) (that is, if PC(Z) is unique

then the columns of U and V are the top r left and right singular vectors of Z). Regardless of uniqueness we will

have Z � PC(Z) orthogonal to U on the left and to V on the right, i.e. we can write

Z � PC(Z) = (I� UU>) · (Z � PC(Z)) · (I� V V >).

We then have

hY � PC(Z), Z � PC(Z)i = hY � PC(Z), (I� UU>) · (Z � PC(Z)) · (I� V V >)i
= h(I� UU>) · (Y � PC(Z)) · (I� V V >), Z � PC(Z)i
 k(I� UU>) · (Y � PC(Z)) · (I� V V >)knuc · kZ � PC(Z)ksp

 k(I� UU>) · Y · (I� V V >)knuc · kZ � PC(Z)ksp,

where the last step holds since PC(Z) is spanned by U on the left and V on the right. Applying Lemma 14 with

X = PC(Z), which trivially has U, V as its left and right singular vectors, we obtain

k(I� UU>) · Y · (I� V V >)knuc 
1

2�r(PC(Z))
kY � PC(Z)k2F.

Therefore,

hY � PC(Z), Z � PC(Z)i  1

2�r(PC(Z))
kZ � PC(Z)kspkY � PC(Z)k2F.

This proves that �X(C)  1
2�r(X) for all x 2 C by the inner product condition (5).

To prove equality, take any X 2 C\Cdgn (that is, we assume that rank(X) = r), and let X = �1u1v
>
1 + · · · +

�rurv
>
r be a singular value decomposition with �1 � · · · � �r > 0. Let u0 2 R

n, v0 2 R
m be unit vectors

orthogonal to the left and right singular vectors of X , respectively. Define

Y = �1u1v
>
1 + · · ·+ �r�1ur�1v

>
r�1 + �ru

0v0>

and

Z = X + cu0v0>,
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for some fixed c 2 (0,�r). Then PC(Z) = X , and we have

hY �X,Z �Xi = h�ru
0v0> � �rurv

>
r , cu

0v0>i = c�r

while

kZ �XkspkY �Xk2F = kcu0v0>kspk�ru
0v0> � �rurv

>
r k2F = 2c�2

r ,

therefore by the inner product condition (5), we must have �X(C) � 1
2�r(X) .

Turning to the norm compatibility condition, the desired bound is an immediate result of the Eckart–Young

theorem [11], as

kZ � PC(Z)ksp  kZ �Xksp,

for all X 2 C and Z 2 R
n⇥m.

Proof of Lemma 8. Let X be any matrix with rank(X)  r and let Z be any matrix. Assume X,PX(Z) 2
B2( bX, ⇢) for ⇢ = �r( bX)

4 . According to Weyl’s inequality, we will have �r(X),�r(PX(Z)) � 3�r( bX)
4 . Write

T = TX for convenience, and define ZT = PT (Z) and Z? = P?
T (Z).

Then PX(Z) = PC(PT (Z)) = PC(ZT ), and so

h bX � PX(Z), Z � PX(Z)i = h bX � PC(ZT ), Z � PC(ZT )i
= h bX � PC(ZT ), PT (Z � PC(ZT ))i| {z }

(Term 1)

+ h bX � PC(ZT ), P
?
T (Z � PC(ZT ))i| {z }

(Term 2)

.

First consider (Term 1). We have

h bX � PC(ZT ), PT (Z � PC(ZT ))i
= h bX � PC(ZT ), ZT � PT (PC(ZT ))i
= h bX � PC(ZT ), ZT � PC(ZT )i+ h bX � PC(ZT ), P

?
T (PC(ZT ))i

= h bX � PC(ZT ), ZT � PC(ZT )i � h bX � PC(ZT ), P
?
T (ZT � PC(ZT ))i

 2

3�r( bX)
kZT � PC(ZT )kspk bX � PC(ZT )k2F � h bX � PC(ZT ), P

?
T (ZT � PC(ZT ))i

 2

3�r( bX)
kZT � PC(ZT )kspk bX � PC(ZT )k2F + kZT � PC(ZT )ksp

⇣
kP?

T ( bX)knuc + kP?
T (PC(ZT ))knuc

⌘

 2

3�r( bX)
kZT � PC(ZT )kspk bX � PC(ZT )k2F + kZT � PC(ZT )ksp

 
2

3�r( bX)
k bX �Xk2F +

2

3�r( bX)
kPC(ZT )�Xk2F

!
,

where the first inequality applies the inner product condition (5), using the fact that �PC(ZT ) = 1
2�r(PC(ZT )) 

2

3�r( bX)
; the second inequality uses the duality between nuclear norm and spectral norm; and the third applies

Lemma 14 to both nuclear norm terms since rank( bX), rank(PC(ZT ))  r and 1
2�r(X)  2

3�r( bX)
. Also, since

kPC(ZT )�Xk2F  2kPC(ZT )� bXk2F + 2k bX �Xk2F,

we can simplify our bound to

h bX � PC(ZT ), PT (Z � PC(ZT ))i 
2

�r( bX)
kZT � PC(ZT )ksp

⇣
k bX � PC(ZT )k2F + k bX �Xk2F

⌘
.

Finally, we have

kZT � PC(ZT )ksp  kZ � PC(ZT )ksp + kP?
T (Z)ksp = kZ � PX(Z)ksp + kP?

T (Z �X)ksp

 kZ � PX(Z)ksp + kZ �Xksp  2max{kZ � PX(Z)ksp, kZ �Xksp}
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since X 2 T by definition and P?
T is contractive with respect to spectral norm. Then, returning to the work

above,

h bX � PC(ZT ), PT (Z � PC(ZT ))i 
4

�r( bX)
max{kZ � PX(Z)ksp, kZ �Xksp}

⇣
k bX � PC(ZT )k2F + k bX �Xk2F

⌘
.

Next we turn to (Term 2). We have

h bX � PC(ZT ), P
?
T (Z � PC(ZT ))i = hP?

T ( bX), Z � PC(ZT )i � hP?
T (PC(ZT )), Z � PC(ZT )i

 kP?
T ( bX)knuckZ � PC(ZT )ksp + kP?

T (PC(ZT ))knuckZ � PC(ZT )ksp

 2

3�r( bX)
k bX �Xk2FkZ � PC(ZT )ksp +

2

3�r( bX)
kPC(ZT )�Xk2FkZ � PC(ZT )ksp

 2

�r( bX)
kZ � PC(ZT )ksp

⇣
k bX �Xk2F + k bX � PC(ZT )k2F

⌘
,

where the second inequality applies Lemma 14 as before, while the third inequality again uses

kPC(ZT )�Xk2F  2kPC(ZT )� bXk2F + 2k bX �Xk2F.

Putting the bounds for (Term 1) and (Term 2) together, we conclude that

h bX � PX(Z), Z � PX(Z)i  6

�r( bX)
·max{kZ � PX(Z)ksp, kZ �Xksp}

⇣
k bX � PC(ZT )k2F + k bX �Xk2F

⌘
,

thus proving the inner product condition (17).

Now we turn to the norm compatibility condition (18). We have

kZ � PX(Z)ksp = kZ � PC(ZT )ksp  kZT � PC(ZT )ksp + kZ?ksp  kZT �Xksp + kZ?ksp,

where the last step holds by the Eckart–Young theorem [11]. Next, since ZT = Z � Z?, we have

kZT �Xksp  kZ �Xksp + kZ?ksp,

while since P?
T (X) = 0, we have

kZ?ksp = kP?
T (Z �X)ksp  kZ �Xksp.

Combining everything, then,

kZ � PX(Z)ksp  3kZ �Xksp,

for any X 2 C and any Z 2 R
n⇥m. This proves that the norm compatibility condition holds with � = 3.

Finally, we consider the local continuity condition (20). Fix any c, ✏ > 0 and any X 2 C and Z 2 R
n⇥m so that

kX � bXkF  ⇢ and kPX(Z)� bXkF  ⇢ where again ⇢ = �r( bX)
4 . Suppose that

2(�c + �d)kZ � PX(Z)ksp =
24

�r( bX)
kZ � PX(Z)ksp  1� c

and take any W 2 R
n⇥m with kZ �WkF  � := ✏/4.5.

Then we calculate

�PX(Z)(C) 
1

2�r(PX(Z))
 2

3�r( bX)
,
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as before. And,

kPT (Z)� PX(Z)ksp  kZ � PX(Z)ksp + kP?
T (Z)ksp by the triangle inequality

= kZ � PX(Z)ksp + kP?
T (Z �X)ksp since P?

T (X) = 0

 kZ � PX(Z)ksp + kZ �Xksp since P?
T is contractive with respect to spectral norm

 2kZ � PX(Z)ksp + kPX(Z)� bXksp + kX � bXksp by the triangle inequality

 2 ·
(1� c)�r( bX)

24
+ 2⇢ since k·ksp  k·kF

 7�r( bX)

12
.

Then

kPX(Z)� PX(W )kF = kPC(PT (Z))� PC(PT (W ))kF

 kPT (Z)� PT (W )kF
1� 2�PX(Z)(C)kPT (Z)� PC(PT (Z))ksp

by the contraction property (3)

 kPT (Z)� PT (W )kF
1� 2 · 2

3�r( bX)
· 7�r( bX)

12

by the calculations above

= 4.5kPT (Z)� PT (W )kF
 4.5kZ �WkF,

since T is a subspace so PT is contractive with respect to the Frobenius norm. Since kZ �WkF  � = ✏/4.5
by assumption, this proves that kPX(Z)� PX(W )kF  ✏, as desired.

C.2 Sparsity

Proof of Lemma 9. We check the local concavity coefficients. Fix any x 2 C. As before, if x is in the interior

(i.e. Pen(x) < c) then �x(C) = 0, so we turn to the case that Pen(x) = c, and in particular, x 6= 0. Without

loss of generality, assume that x1 > 0 and that x1 is the smallest nonzero coordinate of x (and then xmin = x1).

Choose any y 2 C and t 2 [0, 1]. Let

xt = (1� t)x+ ty and zt = xt � ste1

where e1 = (1, 0, . . . , 0) and

st = t ·
µ/2

p0((xt)1)
· kx� yk22.

Since limt& xt = x, and p is continuously differentiable (since it is both concave and differentiable on the

positive real line), we have

lim
t&0

st
t
=

µ/2

p0(x1)
· kx� yk22.

In particular, this implies that, for sufficiently small t, we have (xt)1 > 0 and (zt)1 > 0.

We claim that Pen(zt)  c, in which case

lim
t&0

minx02Ckxt � x0k1
t

 lim
t&0

kxt � ztk1
t

= lim
t&0

st
t
=

µ/2

p0(xmin)
· kx� yk22,

which proves the lemma.

It now remains to check that Pen(zt)  c. We have, for coordinate i = 1,

p(|zt|i) = p((xt)1 � st)  p((xt)1)� stp
0((xt)1),
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since 0 < (xt)1 � st < (xt)1 and ⇢ is concave over R+. And, for every coordinate i,

p(|(xt)i|) = p (|(1� t)xi + tyi|)

 p ((1� t)|xi|+ t|yi|) since ⇢ is nondecreasing

 (1� t)p(|xi|) + tp(|yi|) +
µ

2
t(1� t)(|xi|� |yi|)

2 since t 7! p(t) + µt2/2 is convex

 (1� t)p(|xi|) + tp(|yi|) +
µ

2
t(1� t)(xi � yi)

2.

Therefore,

Pen(zt) =
X

i

p(|zt|i) 
 
X

i

(1� t)p(|xi|) + tp(|yi|) +
µ

2
t(1� t)(xi � yi)

2

!
� stp

0((xt)1)

 (1� t)Pen(x) + tPen(y) +
µ

2
kx� yk22 � stp

0((xt)1)  c+
µ

2
kx� yk22 � stp

0((xt)1) = c,

where the last step holds by definition of st.

Proof of Lemma 10. Choose any z 2 R
d and let x = PC(z). Without loss of generality we take z, x � 0 and

consider only the nontrivial case that z 62 C, therefore Pen(x) = c as x cannot lie in the interior of the set.

Furthermore, we can see that

xi = (PC(z))i = max {0, zi � �p0(xi)} for all i = 1, . . . , d

for some � � 0 by optimality of x as the closest point to z under the constraint
P

i p(xi)  c. That is, PC(z)
behaves like projection to a weighted `1 ball, with weights determined by the projection xi itself. Note that

Pen(x) = c, therefore p(xi)  c and so p0(xi) � p0(p�1(c)) for all i. Now consider any w with kw � zk1 <
�p0(p�1(c)). Let v be the vector with entries vi = min{max{0, wi}, zi}. Then for all i 2 S, we have

|vi � zi| < �p0(p�1(c))  �p0(xi) = |xi � zi|.

And, for i 62 S, |vi � zi|  |zi| = |xi � zi|. So, kv � zk2 < kx� zk2 (since x 6= 0 and so S 6= ∅). Therefore,

since x is the closest point to z in C, we must have v 62 C. Since |vi|  |wi| for all i by construction of v, this

means that Pen(w) � Pen(v) > c, and therefore any w with kw � zk1 < �p0(p�1(c)) cannot lie in C. In other

words,

min
w2C

kw � zk1 � �p0(p�1(c)).

On the other hand,

kz � xk1 = max
i

|zi �max {0, zi � �p0(xi)}|  �max
i

p0(xi)  �,

since p0(t)  1 for all t. So, the norm compatibility condition (13) is satisfied with � = 1
p0(p�1(c)) .

C.3 Other examples

Proof of Lemma 11. Let X,Y 2 C. For a fixed t 2 (0, 1), let (1 � t)X + tY = ADB> be a singular value

decomposition. Since AB> 2 R
n⇥r is an orthonormal matrix, we then have

min
Z2C

kZ � ((1� t)X + tY )knuc  kAB> � ((1� t)X + tY )knuc = kAB> �ADB>knuc =
rX

i=1

(1�Dii).
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Furthermore,

kDk2F = k(1� t)X + tY k2F
= (1� t)2kXk2F + t2kY k2F + 2t(1� t)hX,Y i
= (1� t)2kXk2F + t2kY k2F + t(1� t)

�
kXk2F + kY k2F � kX � Y k2F

�

= (1� t)2r + t2r + t(1� t)
�
r + r � kX � Y k2F

�

= r � t(1� t)kX � Y k2F.

A trivial calculation shows that 1�Dii =
1�D2

ii

2 + (1�Dii)
2

2 , so we have

min
Z2C

kZ � ((1� t)X + tY )knuc 
rX

i=1

(1�Dii) =

rX

i=1

1�D2
ii

2
+
(1�Dii)

2

2
=

r � kDk2F
2

+

rX

i=1

(1�Dii)
2

2

=
1

2
t(1� t)kX � Y k2F +

rX

i=1

(1�Dii)
2

2
.

Furthermore, we can show that the last term is o(t), as follows. For any unit vector u 2 R
r,

k((1� t)X + tY )uk2 � (1� t)kXuk2 � tkY uk2 � 1� 2t

since X,Y are both orthonormal. Therefore (1�t)X+tY has all its singular values � 1�2t, that is, Dii � 1�2t
for all i. And trivially k((1� t)X + tY )uk2  1 so Dii  1. Then

Pr
i=1(1�Dii)

2 Pr
i=1(2t)

2 = 4t2r, so

we have

min
Z2C

kZ � ((1� t)X + tY )knuc 
1

2
t(1� t)kX � Y k2F + 2t2r.

Dividing by t and taking a limit,

lim
t&0

minZ2CkZ � ((1� t)X + tY )knuc

t
 1

2
kX � Y k2F.

Comparing to the curvature condition (1) we see that �X(C)  1
2 , as desired.

Next, to obtain equality, take any X 2 C. Fix any c 2 (0, 1). Let Y = �X 2 C and Z = cX 2 R
n⇥r. Clearly,

PC(Z) = X . By the contraction property (3), we must have

(1� �X(C)kZ �Xk⇤)kY �XkF  kY � ZkF.

Plugging in our choices for Y and Z, we obtain

(1� �X(C) · (1� c)) · 2
p
r  (1 + c)

p
r,

and so �X(C) � 1
2 .

Now we check the norm compatibility condition. For any X 2 R
n⇥r, write X = ADB>. Then PC(X) = AB>

and so kX � PC(X)k⇤ = kADB> �AB>ksp = max{d1 � 1, 1 � dr}, where d1 � · · · � dr � 0 are the

diagonal entries of D, i.e. the singular values of X . Let u 2 R
d be the first column of B, so that kXuk2 = d1.

Then for any W 2 C, we have kWuk2 = 1 since W is orthonormal and u is a unit vector, so

kX �Wk⇤ = kX �Wksp � k(X �W )uk2 � kXuk2 � kWuk2 = d1 � 1.

Now let v 2 R
d be the rth column of B, so that kXvk2 = dr. Similarly we have

kX �Wk⇤ = kX �Wksp � k(X �W )vk2 � kWvk2 � kXvk2 = 1� dr.

Therefore, kX �Wk⇤ � max{d1 � 1, 1� dr} = kX � PC(X)k⇤, proving that � = 1.
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Proof of Lemma 12. For X,Y 2 C, write X = UU>, and Y = V V > for some orthonormal matrices U, V 2
R

n⇥r. For t 2 (0, 1), let Ut = (1 � t)U + tV , and let Ut = ADB> be a singular value decomposition. Then

AB> is the projection of Ut onto the set of orthonormal n ⇥ r matrices. Since A 2 R
n⇥r is orthonormal, we

have AA> 2 C, and so

min
Z2C

kZ � ((1� t)X + tY )knuc  kAA> � ((1� t)X + tY )knuc

 kAA> � UtU
>
t knuc| {z }

(Term 1)

+ kUtU
>
t � ((1� t)X + tY )knuc| {z }

(Term 2)

.

For (Term 1),

kAA> � UtU
>
t knuc = kAA> �ADB> ·BDA>knuc

= kA(Ir �D2)A>knuc

= r � kDk2F = r � kUtk2F
= r � k(1� t)U + tV k2F
= r � (1� t)2kUk2F � t2kV k2F � 2t(1� t)hU, V i
= r � (1� t)2kUk2F � t2kV k2F � t(1� t)

�
kUk2F + kV k2F � kU � V k2F

�

= r � (1� t)2r � t2r � t(1� t)
�
2r � kU � V k2F

�

= t(1� t)kU � V k2F.

For (Term 2),

kUtU
>
t � ((1� t)X + tY )knuc = k((1� t)U + tV )((1� t)U + tV )> � (1� t)UU> � tV V >knuc

= k�t(1� t)UU> � t(1� t)V V > + t(1� t)UV > + t(1� t)V U>knuc

= k�t(1� t)(U � V )(U � V )>knuc

= t(1� t)kU � V k2F.

Combining the two, then,

min
Z2C

kZ � ((1� t)X + tY )knuc  2t(1� t)kU � V k2F.

Next, note that the choice of U and V is not unique. Fixing any factorizations X = UU> and Y = V V >, let

U>V = ADB> be a singular value decomposition, and let eV = V BA>. Then Y = eV eV >, and following the

same steps as above we can calculate

min
Z2C

kZ � ((1� t)X + tY )knuc  2t(1� t)kU � eV k2F.

Furthermore,

kU � eV k2F = kUk2F + keV k2F � 2 trace(U> eV ) = 2r � 2 trace(U>V BA>)

= 2r � 2 trace(ADB>BA>) = 2r � 2 trace(D).

And,

kX � Y k2F = kXk2F + kY k2F � 2 trace(XY ) = 2r � 2 trace(UU> eV eV >)

= 2r � 2kU> eV k2F = 2r � 2kDk2F � 2r � 2 trace(D),
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since kDk2F =
P

i(Dii)
2 

P
i Dii, as 0  Dii  1 for all i since U, V are both orthonormal matrices.

Therefore, this proves that kU � eV k2F  kX � Y k2F, and so

min
Z2C

kZ � ((1� t)X + tY )knuc  2t(1� t)kX � Y k2F.

Based on the curvature condition characterization (1) of the local concavity coefficients, we have therefore com-

puted �X(C)  2, as desired.


