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Abstract In vivo calcium imaging through microendoscopic lenses enables imaging of previously
inaccessible neuronal populations deep within the brains of freely moving animals. However, it is
computationally challenging to extract single-neuronal activity from microendoscopic data, because
of the very large background fluctuations and high spatial overlaps intrinsic to this recording
modality. Here, we describe a new constrained matrix factorization approach to accurately
separate the background and then demix and denoise the neuronal signals of interest. We
compared the proposed method against previous independent components analysis and
constrained nonnegative matrix factorization approaches. On both simulated and experimental
data recorded from mice, our method substantially improved the quality of extracted cellular
signals and detected more well-isolated neural signals, especially in noisy data regimes. These
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advances can in turn significantly enhance the statistical power of downstream analyses, and
ultimately improve scientific conclusions derived from microendoscopic data.
DOI: https://doi.org/10.7554/eLife.28728.001

Introduction

Monitoring the activity of large-scale neuronal ensembles during complex behavioral states is funda-
mental to neuroscience research. Continued advances in optical imaging technology are greatly
expanding the size and depth of neuronal populations that can be visualized. Specifically, in vivo cal-
cium imaging through microendoscopic lenses and the development of miniaturized microscopes
have enabled deep brain imaging of previously inaccessible neuronal populations of freely moving
mice (Flusberg et al., 2008; Ghosh et al., 2011; Ziv and Ghosh, 2015). This technique has been
widely used to study the neural circuits in cortical, subcortical, and deep brain areas, such as hippo-
campus (Cai et al., 2016; Ziv et al., 2013; Jimenez et al., 2018; Rubin et al., 2015), entorhinal cor-
tex (Kitamura et al., 2015; Sun et al., 2015), hypothalamus (Jennings et al., 2015), prefrontal
cortex (PFC) (Pinto and Dan, 2015), premotor cortex (Markowitz et al., 2015), dorsal pons
(Cox et al., 2016), basal forebrain (Harrison et al., 2016), striatum (Barbera et al., 2016;
Carvalho Poyraz et al., 2016; Klaus et al., 2017), amygdala (Yu et al., 2017), and other brain
regions.

Although microendoscopy has potential applications across numerous neuroscience fields
(Ziv and Ghosh, 2015), methods for extracting cellular signals from this data are currently limited
and suboptimal. Most existing methods are specialized for two-photon or light-sheet microscopy.
However, these methods are not suitable for analyzing single-photon microendoscopic data because
of its distinct features: specifically, this data typically displays large, blurry background fluctuations
due to fluorescence contributions from neurons outside the focal plane. In Figure 1, we use a typical
microendoscopic dataset to illustrate these effects (see Video 1 for raw video). Figure 1A shows an
example frame of the selected data, which contains large signals additional to the neurons visible in
the focal plane. These extra fluorescence signals contribute as background that contaminates the
single-neuronal signals of interest. In turn, standard methods based on local correlations for visualiz-
ing cell outlines (Smith and Hausser, 2010) are not effective here, because the correlations in the
fluorescence of nearby pixels are dominated by background signals (Figure 1B). For some neurons
with strong visible signals, we can manually draw regions-of-interest (ROI) (Figure 1C). Following
(Barbera et al., 2016; Pinto and Dan, 2015), we used the mean fluorescence trace of the surround-
ing pixels (blue, Figure 1D) to roughly estimate this background fluctuation; subtracting it from the
raw trace in the neuron ROI yields a relatively good estimation of neuron signal (red, Figure 1D).
Figure 1D shows that the background (blue) has much larger variance than the relatively sparse neu-
ral signal (red); moreover, the background signal fluctuates on similar timescales as the single-neuro-
nal signal, so we can not simply temporally filter the background away after extraction of the mean
signal within the ROI. This large background signal is likely due to a combination of local fluctuations
resulting from out-of-focus fluorescence or neuropil activity, hemodynamics of blood vessels, and
global fluctuations shared more broadly across the field of view (photo-bleaching effects, drifts in z
of the focal plane, etc.), as illustrated schematically in Figure 1E.

The existing methods for extracting individual neural activity from microendoscopic data can be
divided into two classes: semi-manual ROl analysis (Barbera et al., 2016, Klaus et al., 2017,
Pinto and Dan, 2015) and PCA/ICA analysis (Mukamel et al., 2009). Unfortunately, both
approaches have well-known flaws (Resendez et al., 2016). For example, ROl analysis does not
effectively demix signals of spatially overlapping neurons, and drawing ROlIs is laborious for large
population recordings. More importantly, in many cases, the background contaminations are not
adequately corrected, and thus the extracted signals are not sufficiently clean enough for down-
stream analyses. As for PCA/ICA analysis, it is a linear demixing method and therefore typically fails
when the neural components exhibit strong spatial overlaps (Pnevmatikakis et al., 2016), as is the
case in the microendoscopic setting.

Recently, constrained nonnegative matrix factorization (CNMF) approaches were proposed to
simultaneously denoise, deconvolve, and demix calcium imaging data (Pnevmatikakis et al., 2016).
However, current implementations of the CNMF approach were optimized for 2-photon and light-
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Figure 1. Microendoscopic data contain large background signals with rapid fluctuations due to multiple sources. (A) An example frame of

microendoscopic data recorded in

dorsal striatum (see Materials and methods section for experimental details). (B) The local ‘correlation image’

(Smith and Hausser, 2010) computed from the raw video data. Note that it is difficult to discern neuronal shapes in this image due to the high
background spatial correlation level. (C) The mean-subtracted data within the cropped area (green) in (A). Two ROIs were selected and coded with
different colors. (D) The mean fluorescence traces of pixels within the two selected ROIs (magenta and blue) shown in (C) and the difference between
the two traces. (E) Cartoon illustration of various sources of fluorescence signals in microendoscopic data. ‘BG’ abbreviates ‘background’.

DOI: https://doi.org/10.7554/eLife.28728.002

sheet microscopy, where the background has a simpler spatiotemporal structure. When applied to
microendoscopic data, CNMF often has poor performance because the background is not modeled
sufficiently accurately (Barbera et al., 2016).

In this paper, we significantly extend the CNMF framework to obtain a robust approach for
extracting single-neuronal signals from microendoscopic data. Specifically, our extended CNMF for
microendoscopic data (CNMF-E) approach utilizes a more accurate and flexible spatiotemporal
background model that is able to handle the properties of the strong background signal illustrated
in Figure 1, along with new specialized algorithms to initialize and fit the model components. After
a brief description of the model and algorithms, we first use simulated data to illustrate the power
of the new approach. Next, we compare CNMF-E with PCA/ICA analysis comprehensively on both
simulated data and four experimental datasets recorded in different brain areas. The results show
that CNMF-E outperforms PCA/ICA in terms of detecting more well-isolated neural signals, extract-
ing higher signal-to-noise ratio (SNR) cellular signals, and obtaining more robust results in low SNR
regimes. Finally, we show that downstream analyses of calcium imaging data can substantially bene-
fit from these improvements.
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Model and model fitting
CNMF for microendoscope data (CNMF-E)

The recorded video data can be represented by a matrix ¥ € RZ", where d is the number of pixels
in the field of view and T is the number of frames observed. In our model, each neuron i is character-
ized by its spatial ‘footprint’ vector a; € R?. characterizing the cell’s shape and location, and ‘calcium
activity’ timeseries ¢; € R”, modeling (up to a multiplicative and additive constant) cell i's mean fluo-
rescence signal at each frame. Here, both a; and ¢; are constrained to be nonnegative because of
their physical interpretations. The background fluctuation is represented by a matrix B € RY". If the
field of view contains a total number of K neurons, then the observed movie data is modeled as a
superposition of all neurons’ spatiotemporal activity, plus time-varying background and additive
noise:

K
Y=> a-c/ +B+E=AC+B+E, M

i=1

where A=|ay,...,ax] and C= [cl,...7cK]T. The noise term EeR¥7T is modeled as Gaussian,
E(t)~N(0,%) is a diagonal matrix, indicating that the noise is spatially and temporally uncorrelated.

Estimating the model parameters A, C in model (1) gives us all neurons’ spatial footprints and
their denoised temporal activity. This can be achieved by minimizing the residual sum of squares
(RSS), aka the Frobenius norm of the matrix ¥ — (AC + B),

Y —(AC+B)|z, 2
while requiring the model variables A, C and B to follow the desired constraints, discussed below.

Constraints on neuronal spatial footprints A and neural temporal traces
C

Each spatial footprint a; should be spatially localized and sparse, since a given neuron will cover only
a small fraction of the field of view, and therefore most elements of g; will be zero. Thus, we need to
incorporate spatial locality and sparsity constraints on A (Pnevmatikakis et al., 2016). We discuss
details further below.

Similarly, the temporal components ¢; are highly structured, as they represent the cells’ fluores-
cence responses to sparse, nonnegative trains of action potentials. Following (Vogelstein et al.,
2010; Pnevmatikakis et al., 2016), we model the calcium dynamics of each neuron ¢; with a stable
autoregressive (AR) process of order p,

P .
()= yeilt—j) +si(0), (3)
Jj=1

where s;(1) > 0 is the number of spikes that neuron fired at the 7-th frame. (Note that there is no fur-
ther noise input into ¢;(t) beyond the spike signal s;().) The AR coefficients {yj(.i)} are different for

each neuron and they are estimated from the data. In practice, we usually pick p =2, thus incorporat-
ing both a nonzero rise and decay time of calcium transients in response to a spike; then Equa-
tion (3) can be expressed in matrix form as

1 0 0 0
"1 o 0
. _ 0 0
G;-ci=s;, with G; = Y2 Y1 (4)

0 gy

The neural activity s; is nonnegative and typically sparse; to enforce sparsity, we can penalize the
4y (Jewell and Witten, 2017) or ¢, (Pnevmatikakis et al., 2016; Vogelstein et al., 2010) norm of s;,
or limit the minimum size of nonzero spike counts (Friedrich et al., 2017b). When the rise time
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Video 2. Comparison of CNMF-E with rank-1 NMF in
estimating background fluctuation in simulated data.
Top left: the simulated fluorescence data in Figure 2.
Bottom left: the ground truth of neuron signals in the
simulation. Top middle: the estimated background
from the raw video data (top left) using CNMF-E.

Video 1. An example of typical microendoscopic data. Bottom middle: the residual of the raw video after
The video was recorded in dorsal striatum; subtracting the background estimated with CNMF-E.
experimental details can be found above. MP4 Top right and top bottom: same as top middle and
DOI: https://doi.org/10.7554/elife.28728.003 bottom middle, but the background is estimated with

rank-1 NMF. MP4
DOI: https://doi.org/10.7554/eLife.28728.005

constant is small compared to the timebin width (low imaging frame rate), we typically use a simpler
AR(1) model (with an instantaneous rise following a spike) (Pnevmatikakis et al., 2016).

Constraints on background activity B

In the above we have largely followed previously described CNMF approaches
(Pnevmatikakis et al., 2016) for modeling calcium imaging signals. However, to accurately model
the background effects in microendoscopic data, we need to depart significantly from these previ-
ous approaches. Constraints on the background term B in Equation (1) are essential to the success
of CNMF-E, since clearly, if B is completely unconstrained we could just absorb the observed data Y
entirely into B, which would lead to recovery of no neural activity. At the same time, we need to pre-
vent the residual of the background term (i.e. B — B, where B denotes the estimated spatiotemporal
background) from corrupting the estimated neural signals AC in model (1), since subsequently, the
extracted neuronal activity would be mixed with background fluctuations, leading to artificially high
correlations between nearby cells. This problem is even worse in the microendoscopic context
because the background fluctuation usually has significantly larger variance than the isolated cellular
signals of interest (Figure 1D), and therefore any small errors in the estimation of B can severely cor-
rupt the estimated neural signal AC.

In (Pnevmatikakis et al., 2016), B is modeled as a rank-1 nonnegative matrix B = b - f7, where b €
R? and f € RY. This model mainly captures the global fluctuations within the field of view (FOV). In
applications to two-photon or light-sheet data, this rank-1 model has been shown to be sufficient for
relatively small spatial regions; the simple low-rank model does not hold for larger fields of view,
and so we can simply divide large FOVs into smaller patches for largely parallel processing
(Pnevmatikakis et al., 2016; Giovannucci et al., 2017b). (See [Pachitariu et al., 2016] for an alter-
native approach.) However, as we will see below, the local rank-1 model fails in many microendo-
scopic datasets, where multiple large overlapping background sources exist even within
modestly sized FOVs.

Thus, we propose a new model to constrain the background term B. We first decompose the
background into two terms:

B=8B +B, (5)
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where B represents fluctuating activity and B° = by - 1”7 models constant baselines (1 € R denotes a
vector of T ones). To model B/, we exploit the fact that background sources (largely due to blurred
out-of-focus fluorescence) are empirically much coarser spatially than the average neuron soma size
1. Thus, we model B/ at one pixel as a linear combination of the background fluorescence in pixels
which are chosen to be nearby but not nearest neighbors:

B, =Y w; B}, Vi=1..T, 6)

JEQ

where §; = {j| dist(x;,x;) € [l,,1,+ 1)}, with dist(x;,x;) the Euclidean distance between pixel i and ;.
Thus, Q; only selects the neighboring pixels with a distance of , from the i-th pixel (the green dot
and black pixels in Figure 2B illustrate i and €, respectively); here I, is a parameter that we choose
to be greater than [ (the size of the typical soma in the FOV), e.g., [, =2I. This choice of I, ensures
that pixels i and j in Equation (6) share similar background fluctuations, but do not belong to the
same soma.

We can rewrite Equation (6) in matrix form:

B =whH, %

where W;; =0 if dist(x;,x;)&[l,,1, + 1). In practice, this hard constraint is difficult to enforce computa-
tionally and is overly stringent given the noisy observed data. We relax the model by replacing the
right-hand side B/ with the more convenient closed-form expression

B =W.-(Y—AC—by-17). (8)

According to Equations (1) and (5), this change ignores the noise term E; since elements in E are
spatially uncorrelated, W - E contributes as a very small disturbance to B’ in the left-hand side. We

found this substitution for B’ led to significantly faster and more robust model fitting.

Fitting the CNMF-E model
Table 1 lists the variables in the proposed CNMF-E model. Now we can formulate the estimation of
all model variables as a single optimization meta-problem:

ACSHWh Y —AC—bo- 1T — B |2 (P-All)
subject to A >0, Ais sparse and spatially localized

c;>0,s5 >0, G(”c,- =g;,8iissparse Vi=1...K

B1=0

B =W-(Y—AC—b,-1")

Wy = Oif dist (x, %)) [ly, [, + 1).

We call this a ‘meta-problem’ because we have not yet explicitly defined the sparsity and spatial
locality constraints on A and §= [sh...,sK]T; these can be customized by users under different
assumptions (see details in Materials and methods). Also note that s; is completely determined by ¢;
and GY%, and B is not optimized explicitly but (as discussed above) can be estimated as
W-(Y —AC —by-17), so we optimize with respect to W instead.

The problem (P-All) optimizes all variables together and is non-convex but can be divided into
three simpler subproblems that we solve iteratively:

Estimating A, by given C, B

R Y —A-C—by- 1T - | (P-S)
subject to A >0,A is sparse and spatially localized

Estimating C, b, given A, B

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 6 of 37
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Video 3. Initialization procedure for the simulated data
in Figure 3. Top left: correlation image of the filtered
data. Red dots are centers of initialized neurons. Top
middle: candidate seed pixels (small red dots) for
initializing neurons on top of PNR image. The large red
dot indicates the current seed pixel. Top right: the
correlation image surrounding the selected seed pixel
or the spatial footprint of the initialized neuron.
Bottom: the filtered fluorescence trace at the seed
pixel or the initialized temporal activity (both raw and
denoised). MP4

DOI: https://doi.org/10.7554/eLife.28728.008
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Video 4. The results of CNMF-E in demixing simulated
data in Figure 4 (SNR reduction factor = 1). Top left:
the simulated fluorescence data. Bottom left: the
estimated background. Top middle: the residual of the
raw video (top left) after subtracting the estimated
background (bottom left). Bottom middle: the
denoised neural signals. Top right: the residual of the
raw video data (top right) after subtracting the
estimated background (bottom left) and denoised
neural signal (bottom middle). Bottom right: the
ground truth of neural signals in simulation. MP4

DOI: https://doi.org/10.7554/eLife.28728.010

Hesn Y —A-C—by-1" — B |- (P-T)
subject to  ¢;>0,5; >0
G<i)c,~ =s;,8;issparseVi=1...K
Estimating W, b, given A, C
minimize I
web,  |Y—A-C—by-1" — B3 (P-B)
subject to 1=0

For each of these subproblems, we are able to use well-established algorithms (e.g. solutions for
(P-S) and (P-T) are discussed in Friedrich et al., 2017a; Pnevmatikakis et al., 2016) or slight modifi-
cations thereof. By iteratively solving these three subproblems, we obtain tractable updates for all
model variables in problem (P-All). Furthermore, this strategy gives us the flexibility of further poten-
tial interventions (either automatic or semi-manual) in the optimization procedure, for example,
incorporating further prior information on neurons’ morphology, or merging/splitting/deleting spa-
tial components and detecting missed neurons from the residuals. These steps can significantly
improve the quality of the model fitting; this is an advantage compared with PCA/ICA, which offers
no easy option for incorporation of stronger prior information or manually guided improvements on
the estimates.

Full details on the algorithms for initializing and then solving these three subproblems are pro-
vided in the Materials and methods section.

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 7 of 37
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Figure 2. CNMF-E can accurately separate and recover the background fluctuations in simulated data. (A) An example frame of simulated
microendoscopic data formed by summing up the fluorescent signals from the multiple sources illustrated in Figure 1E. (B) A zoomed-in version of the
circle in (A). The green dot indicates the pixel of interest. The surrounding black pixels are its neighbors with a distance of 15 pixels. The red area
approximates the size of a typical neuron in the simulation. (C) Raw fluorescence traces of the selected pixel and some of its neighbors on the black
ring. Note the high correlation. (D) Fluorescence traces (raw data; true and estimated background; true and initial estimate of neural signal) from the
center pixel as selected in (B). Note that the background dominates the raw data in this pixel, but nonetheless we can accurately estimate the
background and subtract it away here. Scalebars: 10 seconds. Panels (E-G) show the cellular signals in the same frame as (A). (E) Ground truth neural
activity. (F) The residual of the raw frame after subtracting the background estimated with CNMF-E; note the close correspondence with E. (G) Same as
(F), but the background is estimated with rank-1 NMF. A video showing (E-G) for all frames can be found at Video 2. (H) The mean correlation
coefficient (over all pixels) between the true background fluctuations and the estimated background fluctuations. The rank of NMF varies and we run
randomly-initialized NMF for 10 times for each rank. The red line is the performance of CNMF-E, which requires no selection of the NMF rank. (I) The
performance of CNMF-E and rank-1 NMF in recovering the background fluctuations from the data superimposed with an increasing number of
background sources.

DOI: https://doi.org/10.7554/eLife.28728.004

Results

CNMF-E can reliably estimate large high-rank background fluctuations
We first use simulated data to illustrate the background model in CNMF-E and compare its perfor-
mance against the low-rank NMF model used in the basic CNMF approach (Pnevmatikakis et al.,
2016). We generated the observed fluorescence Y by summing up simulated fluorescent signals of
multiple sources as shown in Figure 1E plus additive Gaussian white noise (Figure 2A).

An example pixel (green dot, Figure 2A,B) was selected to illustrate the background model in
CNMF-E (Equation (6)), which assumes that each pixel's background activity can be reconstructed
using its neighboring pixels’ activities. The selected neighbors form a ring and their distances to the
center pixel are larger than a typical neuron size (Figure 2B). Figure 2C shows that the fluorescence
traces of the center pixel and its neighbors are highly correlated due to the shared large background
fluctuations. Here, for illustrative purposes, we fit the background by solving problem (P-B) directly

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 8 of 37
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while assuming AC = 0. This mistaken assumption should make the background estimation more
challenging (due to true neural components getting absorbed into the background), but nonetheless
in Figure 2 we see that the background fluctuation was well recovered (Figure 2D). Subtracting this
estimated background from the observed fluorescence in the center yields a good visualization of
the cellular signal (Figure 2D). Thus, this example shows that we can reconstruct a complicated
background trace while leaving the neural signal uncontaminated.

For the example frame in Figure 2A, the true cellular signals are sparse and weak (Figure 2E).
When we subtract the estimated background using CNMF-E from the raw data, we obtain a good
recovery of the true signal (Figure 2D,F). For comparison, we also estimate the background activity
by applying a rank-1 NMF model as used in basic CNMF; the resulting background-subtracted image
is still severely contaminated by the background (Figure 2G). This is easy to understand: the spatio-
temporal background signal in microendoscopic data typically has a rank higher than one, due to
the various signal sources indicated in Figure 1E), and therefore a rank-1 NMF background model is
insufficient.

A naive approach would be to simply increase the rank of the NMF background model.
Figure 2H demonstrates that this approach is ineffective: higher rank NMF does yield generally bet-
ter reconstruction performance, but with high variability and low reliability (due to randomness in
the initial conditions of NMF). Eventually as the NMF rank increases many single-neuronal signals of
interest are swallowed up in the estimated background signal (data not shown). In contrast, CNMF-E
recovers the background signal more accurately than any of the high-rank NMF models.

In real data analysis settings, the rank of NMF is an unknown and the selection of its value is a
nontrivial problem. We simulated data sets with different numbers of local background sources and
use a single parameter setting to run CNMF-E for reconstructing the background over multiple such
simulations. Figure 2I shows that the performance of CNMF-E does not degrade quickly as we have
more background sources, in contrast to rank-1 NMF. Therefore, CNMF-E can recover the back-
ground accurately across a diverse range of background sources, as desired.

CNMF-E accurately initializes single-neuronal spatial and temporal
components

Next, we used simulated data to validate our proposed initialization procedure (Figure 3A). In this
example, we simulated 200 neurons with strong spatial overlaps (Figure 3B). One of the first steps
in our initialization procedure is to apply a Gaussian spatial filter to the images to reduce the (spa-
tially coarser) background and boost the power of neuron-sized objects in the images. In Figure 3C,
we see that the local correlation image (Smith and Hausser, 2010) computed on the spatially fil-
tered data provides a good initial visualization of neuron locations; compare to Figure 1B, where
the correlation image computed on the raw data was highly corrupted by background signals.

We choose two example ROIs to illustrate how CNMF-E removes the background contamination
and demixes nearby neural signals for accurate initialization of neurons’ shapes and activity. In the
first example, we choose a well-isolated neuron
(green box, Figure 3A+B). We select three pixels
located in the center, the periphery, and the out-
side of the neuron and show the corresponding
fluorescence traces in both the raw data and the
spatially filtered data (Figure 3D). The raw traces
are noisy and highly correlated, but the filtered
True signals X 20 traces show relatively clean neural signals. This is

B because spatial filtering reduces the shared back-
ground activity and the remaining neural signals
dominate the filtered data. Similarly, Figure 3E is
an example showing how CNMF-E demixes two

overlapping neurons. The filtered traces in the

Haw aata (Raw-BG) X 20U HResidual X v

Background

Video 5. The results of CNMF-E in demixing the centers of the two neurons still preserve their
simulated data in Figure 4 (SNR reduction factor = ). own temporal activity.

Conventions as in previous video. MP4 After initializing the neurons’ traces using the
DOI: https://doi.org/10.7554/eLife.28728.011 spatially filtered data, we initialize our estimate of
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their spatial footprints. Note that simply initializ-
ing these spatial footprints with the
spatially filtered data does not work well (data
not shown), since the resulting shapes are dis-
torted by the spatial filtering process. We found
that it was more effective to initialize each spatial
footprint by regressing the initial neuron traces
onto the data (see
Materials and methods for details). The initial val-
ues already match the simulated ground truth
with fairly high fidelity (Figure 3D+E). In this sim-
ulated data, CNMF-E successfully identified all
200 neurons and initialized their spatial and tem-

raw movie

poral components (Figure 3F). We then evaluate
the quality of initialization using all neurons’ spa-
tial and temporal similarities with their counter-
parts in the ground truth data. Figure 3G shows
that all initialized neurons have high similarities
with the truth, indicating a good recovery and
demixing of all neuron sources.

Neuroscience

Raw data (Raw-BG) X 8

Residual X 8

Background Demixed

Video 6. The results of CNMF-E in demixing dorsal
striatum data. Top left: the recorded fluorescence data.
Bottom left: the estimated background. Top middle:
the residual of the raw video (top left) after subtracting
the estimated background (bottom left). Bottom
middle: the denoised neural signals. Top right: the
residual of the raw video data (top right) after
subtracting the estimated background (bottom left)
and denoised neural signal (bottom middle). Bottom

right: the denoised neural signals while all neurons’
activity are coded with pseudocolors. MP4
DOI: https://doi.org/10.7554/elife.28728.014

Thresholds on the minimum local correlation
and the minimum peak-to-noise ratio (PNR) for
detecting seed pixels are necessary for defining
the initial spatial components. To quantify the
sensitivity of choosing these two thresholds, we
plot the local correlations and the PNRs of all pix-

els chosen as the local maxima within an area of £ x {, where [ is the diameter of a typical neuron, in
the correlation image or the PNR image (Figure 3H). Pixels are classified into two classes according
to their locations relative to the closest neurons: neurons’ central areas and outside areas (see Mate-
rials and methods for full details). It is clear that the two classes are linearly well separated and the
thresholds can be chosen within a broad range of values (Figure 3H), indicating that the algorithm is
robust with respect to these threshold parameters here. In lower SNR settings, these boundaries
may be less clear, and an incremental approach (in which we choose the highest-SNR neurons first,
then estimate the background and examine the residual to select the lowest-SNR cells) may be pre-
ferred; this incremental approach is discussed in more depth in the Materials and methods section.

CNMF-E recovers the true neural activity and is robust to noise
contamination and neuronal correlations in simulated data

Using the same simulated dataset as in the previous section, we further refine the neuron shapes (A)
and the temporal traces (C) by iteratively fitting the CNMF-E model. We compare the final results
with  PCA/ICA analysis (Mukamel et al., 2009) the original CNMF method
(Pnevmatikakis et al., 2016).

After choosing the thresholds for seed pixels (Figure 3H), we run CNMF-E in full automatic
mode, without any manual interventions. Two open-source MATLAB packages, CellSort (https://
github.com/mukamel-lab/CellSort; Mukamel, 2016) and ca_source_extraction (https://github.com/
epnev/ca_source_extraction;  Pnevmatikakis, 2016), were wused to perform PCA/ICA
(Mukamel et al., 2009) and basic CNMF (Pnevmatikakis et al., 2016), respectively. Since the initiali-
zation algorithm in CNMF fails due to the large contaminations from the background fluctuations in
this setting (recall Figure 2), we use the ground truth as its initialization. As for the rank of the back-
ground model in CNMF, we tried all integer values between 1 and 16 and set it as 7 because it has
the best performance in matching the ground truth. We emphasize that including the CNMF
approach in this comparison is not fair for the other two approaches, because it uses the ground
truth heavily, while PCA/ICA and CNMF-E are blind to the ground truth. The purpose here is to
show the limitations of basic CNMF in modeling the background activity in microendoscopic data.

and
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Figure 3. CNMF-E accurately initializes individual neurons’ spatial and temporal components in simulated data. (A) An example frame of the simulated
data. Green and red squares will correspond to panels (D) and (E) below, respectively. (B) The temporal mean of the cellular activity in the simulation.
(C) The correlation image computed using the spatially filtered data. (D) An example of initializing an isolated neuron. Three selected pixels correspond
to the center, the periphery, and the outside of a neuron. The raw traces and the filtered traces are shown as well. The yellow dashed line is the true
neural signal of the selected neuron. Triangle markers highlight the spike times from the neuron. (E) Same as (D), but two neurons are spatially
overlapping in this example. Note that in both cases neural activity is clearly visible in the filtered traces, and the initial estimates of the spatial
footprints are already quite accurate (dashed lines are ground truth). (F) The contours of all initialized neurons on top of the correlation image as shown
in (D). Contour colors represent the rank of neurons’ SNR (SNR decreases from red to yellow). The blue dots are centers of the true neurons. (G) The
spatial and the temporal cosine similarities between each simulated neuron and its counterpart in the initialized neurons. (H) The local correlation and
the peak-to-noise ratio for pixels located in the central area of each neuron (blue) and other areas (green). The red lines are the thresholding
boundaries for screening seed pixels in our initialization step. A video showing the whole initialization step can be found at Video 3.

DOI: https://doi.org/10.7554/eLife.28728.007

We first pick three closeby neurons from the ground truth (Figure 4A, top) and see how well
these neurons’ activities are recovered. PCA/ICA fails to identify one neuron, and for the other two
identified neurons, it recovers temporal traces that are sufficiently noisy that small calcium transients
are submerged in the noise. As for CNMF, the neuron shapes remain more or less at the initial con-
dition (i.e. the ground truth spatial footprints), but clear contaminations in the temporal traces are
visible. This is because the pure NMF model in CNMF does not model the true background well and
the residuals in the background are mistakenly captured by neural components. In contrast, on this
example, CNMF-E recovers the true neural shapes and neural activity with high accuracy.
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We also compare the number of detected neurons: PCA/ICA detected 195 out of 200 neurons,
while CNMF-E detected all 200 neurons. We also quantitatively evaluated the performance of source
extraction by showing the spatial and temporal cosine similarities between detected neurons and
ground truth (Figure 4C); we find that the neurons detected using PCA/ICA have much lower simi-
larities with the ground truth (Figure 4C). We also note that the CNMF results are much worse than
those of CNMF-E here, despite the fact that CNMF is initialized at the ground truth parameter val-
ues. This result clarifies an important point: the improvements from CNMF-E are not simply due to
improvements in the initialization step. Furthermore, running the full iterative pipeline of CNMF-E
leads to improvements in both spatial and temporal similarities, compared with the results in the ini-
tialization step.

In many downstream analyses of calcium imaging data, pairwise correlations provide an important
metric to study coordinated network activity (Warp et al., 2012, Barbera et al., 2016;
Dombeck et al., 2009; Klaus et al., 2017). Since PCA/ICA seeks statistically independent compo-
nents, which forces the temporal traces to have near-zero correlation, the correlation structure is
badly corrupted in the raw PCA/ICA outputs (Figure 4D). We observed that a large proportion of
the independence comes from the noisy baselines in the extracted traces (data not shown), so we
postprocessed the PCA/ICA output by thresholding at the 3 standard deviation level. This recovers
some nonzero correlations, but the true correlation structure is not recovered accurately
(Figure 4D). By contrast, the CNMF-E results matched the ground truth very well due to accurate
extraction of individual neurons’ temporal activity (Figure 4D). As for CNMF, the estimated correla-
tions are slightly elevated relative to the true correlations. This is due to the shared (highly corre-
lated) background fluctuations that corrupt the recovered activity of nearby neurons.

Next, we compared the performance of the different methods under different SNR regimes.
Because of the above inferior results we skip comparisons to the basic CNMF here. Based on the
same simulation parameters as above, we vary the noise level £ by multiplying it with a SNR reduc-
tion factor. Figure 4E shows that CNMF-E detects all neurons over a wide SNR range, while PCA/
ICA fails to detect the majority of neurons when the SNR drops to sufficiently low levels. Moreover,
the detected neurons in CNMF-E preserve high spatial and temporal similarities with the ground
truth (Figure 4F-G). This high accuracy of extracting neurons’ temporal activity benefits from the
modeling of the calcium dynamics, which leads to significantly denoised neural activity. If we skip
the temporal denoising step in the algorithm, CNMF-E is less robust to noise, but still outperforms
PCA/ICA significantly (Figure 4G). When SNR is low, the improvements yielded by CNMF-E can be
crucial for detecting weak neuron events, as shown in Figure 4H.

Finally, we examine the ability of CNMF-E to demix correlated and overlapping neurons. Using
the two example neurons in Figure 3E, we ran multiple simulations at varying correlation levels and
extracted neural components using the CNMF-E pipeline and PCA/ICA analysis. The spatial foot-
prints in these simulations were fixed, but the temporal components were varied to have different
correlation levels (y) between calcium traces by tuning their shared component with the common
background fluctuations. For high correlation levels (y>0.7), the initialization procedure tends to first
initialize a component that explains the common activity between two neurons and then initialize
another component to account for the residual of one neuron. After iteratively refining the model
variables, CNMF-E successfully extracted the two neurons’ spatiotemporal activity even at very high
correlation levels (y = 0.95; Figure 5A,B). PCA/ICA was also often able to separate two neurons for
large correlation levels (y = 0.9, Figure 5B), but the extracted traces have problematic negative
spikes that serve to reduce their statistical dependences (Figure 4A).

Application to dorsal striatum data
We now turn to the analysis of large-scale microendoscopic datasets recorded from freely behaving
mice. We run both CNMF-E and PCA/ICA for all datasets and compare their performances in detail.
We begin by analyzing in vivo calcium imaging data of neurons expressing GCaMPéf in the
mouse dorsal striatum. (Full experimental details and algorithm parameter settings for this and the
following datasets appear in the Methods and Materials section.) CNMF-E extracted 692 putative
neural components from this dataset; PCA/ICA extracted 547 components (starting from 700 initial
components, and then automatically removing false positives using the same criterion as applied in
CNMF-E). Figure 6A shows how CNMF-E decomposes an example frame into four components: the
constant baselines that are invariant over time, the fluctuating background, the denoised neural
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ime: 0.07 second

Background

Time (sec.}

Video 8. Comparison of CNMF-E with PCA/ICA in
demixing overlapped neurons in Figure 7G. Top left:
the recorded fluorescence data. Bottom left: the
Video 7. The results of CNMF-E in demixing PFC data.  residual of the raw video (top left) after subtracting the
Conventions as in previous video. MP4 estimated background using CNMF-E. Top middle and
DOI: https://doi.org/10.7554/eLife.28728.016 top right: the spatiotemporal activity and temporal
traces of three neurons extracted using CNMF-E.
Bottom middle and bottom right: the spatiotemporal
activity and temporal traces of three neurons extracted
using PCA/ICA. MP4

DOI: https://doi.org/10.7554/eLife.28728.017

signals, and the residuals. We highlight an example neuron by drawing its ROl to demonstrate the
power of CNMF-E in isolating fluorescence signals of neurons from the background fluctuations. For
the selected neuron, we plot the mean fluorescence trace of the raw data and the estimated back-
ground (Figure 6B). These two traces are very similar, indicating that the background fluctuation
dominates the raw data. By subtracting this estimated background component from the raw data,
we acquire a clean trace that represents the neural signal.

To quantify the background effects further, we compute the contribution of each signal compo-
nent in explaining the variance in the raw data. For each pixel, we compute the variance of the raw
data first and then compute the variance of the background-subtracted data. Then the reduced vari-
ance is divided by the variance of the raw data, giving the proportion of variance explained by the
background. Figure 6C (blue) shows the distribution of the background-explained variance over all
pixels. The background accounts for around 90% of the variance on average. We further remove the
denoised neural signals and compute the variance reduction; Figure 6C shows that neural signals
account for less than 10% of the raw signal variance. This analysis is consistent with our observations
that background dominates the fluorescence signal and extracting high-quality neural signals
requires careful background signal removal.

The contours of the spatial footprints inferred by the two approaches (PCA/ICA and CNMF-E) are
depicted in Figure 6D, superimposed on the correlation image of the filtered raw data. The indi-
cated area was cropped from Figure 6A (left). In this case, most neurons inferred by PCA/ICA were
inferred by CNMF-E as well, with the exception of a few components that seemed to be false posi-
tives (judging by their spatial shapes and temporal traces and visual inspection of the raw data
movie; detailed data not shown). However, many realistic components were only detected by
CNMF-E (shown as the green areas in Figure 6D). In these plots, we rank the inferred components
according to their SNRs; the color indicates the relative rank (decaying from red to yellow). We see
that the components missed by PCA/ICA have low SNRs (green shaded areas with yellow contours).

Figure 6E shows the spatial and temporal components of 14 example neurons detected only by
CNMF-E. Here (and in the following figures), for illustrative purposes, we show the calcium traces
before the temporal denoising step. For neurons that are inferred by both methods, CNMF-E shows
significant improvements in the SNR of the extracted cellular signals (Figure 6F), even before the
temporal denoising step is applied. In panel G we randomly select 10 examples and examine their
spatial and temporal components. Compared with the CNMF-E results, PCA/ICA components have
much smaller size, often with negative dips surrounding the neuron (remember that ICA avoids spa-
tial overlaps in order to reduce nearby neurons’ statistical dependences, leading to some loss of sig-
nal strength; see (Pnevmatikakis et al., 2016) for further discussion). The activity traces extracted by
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CNMF-E are visually cleaner than the PCA/ICA
traces; this is important for reliable event detec-
tion, particularly in low SNR examples. See
Klaus et al., 2017) for additional examples of
CNMF-E applied to striatal data.

Raw data Residual X 3

(Raw-BG) X 3

e Application to data in prefrontal
cortex

We repeat a similar analysis on GCaMPés data

recorded from prefrontal cortex (PFC, Figure 7),

to quantify the performance of the algorithm in a

different brain area with a different calcium indi-

Video 9. The results of CNMF-E in demixing ventral cator. Again we find that CNMF-E successfully
hippocampus data. Conventions as in Video 6. MP4 extracts neural signals from a strong fluctuating
DOI: https://doi.org/10.7554/elife.28728.019 background (Figure 7A), which contributes a

large proportion of the variance in the raw data
(Figure 7B). Similarly as with the striatum data,
PCA/ICA analysis missed many components that
have very weak signals (33 missed components here). For the matched neurons, CNMF-E shows
strong improvements in the SNRs of the extracted traces (Figure 7D). Consistent with our observa-
tion in striatum (Figure 6G), the spatial footprints of PCA/ICA components are shrunk to promote
statistical independence between neurons, while the neurons inferred by CNMF-E have visually rea-
sonable morphologies (Figure 6E). As for calcium traces with high SNRs (Figure 7E, cell 1-6),
CNMF-E traces have smaller noise values, which is important for detecting small calcium transients
(Figure 7E, cell 4). For traces with low SNRs (Figure 7, cell 7-10), it is challenging to detect any cal-
cium events from the PCA/ICA traces due to the large noise variance; CNMF-E is able to visually
recover many of these weaker signals. For those cells missed by PCA/ICA, their traces extracted by
CNMF-E have reasonable morphologies and visible calcium events (Figure 7F).

The demixing performance of PCA/ICA analysis can be relatively weak because it is inherently a
linear demixing method (Pnevmatikakis et al., 2016). Since CNMF-E uses a more suitable nonlinear
matrix factorization method, it has a better capability of demixing spatially overlapping neurons. As
an example, Figure 7G shows three closeby neurons identified by both CNMF-E and PCA/ICA anal-
ysis. PCA/ICA forces its obtained filters to be spatially separated to reduce their dependence (thus
reducing the effective signal strength), while CNMF-E allows inferred spatial components to have
large overlaps (Figure 7G, left), retaining the full signal power. In the traces extracted by PCA/ICA,
the component labeled in green contains many negative ‘spikes,” which are highly correlated with
the spiking activity of the blue neuron (Figure 7G, yellow). In addition, the green PCA/ICA neuron
has significant crosstalk with the red neuron due to the failure of signal demixing (Figure 7G, cyan);
the CNMF-E traces shows no comparable negative ‘spikes’ or crosstalk. See also Video 8 for further
details.

Application to ventral hippocampus neurons

In the previous two examples, we analyzed data with densely packed neurons, in which the neuron
sizes are all similar. In the next example, we apply CNMF-E to a dataset with much sparser and more
heterogeneous neural signals. The data used here were recorded from amygdala-projecting neurons
expressing GCaMPéf in ventral hippocampus. In this dataset, some neurons that are slightly above
or below the focal plane were visible with prominent signals, though their spatial shapes are larger
than neurons in the focal plane.

This example is somewhat more challenging due to the large diversity of neuron sizes. It is possi-
ble to set multiple parameters to detect neurons of different sizes (or to e.g. differentially detect
somas versus smaller segments of axons or dendrites passing through the focal plane), but for illus-
trative purposes here we use a single neural size parameter to initialize all of the components. This
in turn splits some large neurons into multiple components. Following this crude initialization step,
we updated the background component and then picked the missing neurons from the residual
using a second greedy component initialization step. Next, we ran CNMF-E for three iterations of
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Figure 4. CNMF-E outperforms PCA/ICA analysis in extracting individual neurons’ activity from simulated data and is robust to low SNR. (A) The results
of PCA/ICA, CNMF, and CNMF-E in recovering the spatial footprints and temporal traces of three example neurons. The trace colors match the neuron
colors shown in the left. (B) The intermediate residual sum of squares (RSS) values (normalized by the final RSS value), during the CNMF-E model fitting.
The 'refine initialization’ step refers to the modification of the initialization results in the case of high temporal correlation (details in

Materials and methods). (C) The spatial and the temporal cosine similarities between the ground truth and the neurons detected using different
methods. (D) The pairwise correlations between the calcium activity traces extracted using different methods. (E-G) The performances of PCA/ICA and
CNMF-E under different noise levels: the number of missed neurons (E), and the spatial (F) and temporal (G) cosine similarities between the extracted
components and the ground truth. (H) The calcium traces of one example neuron: the ground truth (black), the PCA/ICA trace (blue), the CNMF-E trace
(red) and the CNMF-E trace without being denoised (cyan). The similarity values shown in the figure are computed as the cosine similarity between
each trace and the ground truth (black). Two videos showing the demixing results of the simulated data can be found in Video 4 (SNR reduction

factor = 1) and Video 5 (SNR reduction factor = 6).

DOV https://doi.org/10.7554/eLife.28728.009

updating the model variables A, C, and B. The first two iterations were performed automatically; we
included manual interventions (e.g. merging/deleting components) before the last iteration, leading
to improved source extraction results (see Video 10 for details on the manual merge and delete
interventions performed here). In this example, we detected 24 CNMF-E components and 24 PCA/
ICA components. The contours of these inferred neurons are shown in Figure 8A. In total we have
20 components detected by both methods (shown in the first three rows of Figure 8B+C); each
method detected extra components that are not detected by the other (the last rows of Figure 8B
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+C). Once again, the PCA/ICA filters contain
many negative pixels in an effort to reduce spa-
tial see components 3 and 5 in
Figure 8A-C, for example. All traces of the
inferred neurons are shown in Figure 8D+E. We
can see that the CNMF-E traces have much lower
noise level and cleaner neural signals in both high

overlaps;

and low SNR settings. Conversely, the calcium
traces of the three extra neurons identified by
PCA/ICA show noisy signals that are unlikely to
be neural responses.

pplication to footshock responses
|n t e bed nucleus of the stria
terminalis (BNST)
Identifying neurons and extracting their temporal
activity is typically just the first step in the analysis
of calcium imaging data; downstream analyses
rely heavily on the quality of this initial source
extraction. We showed above that, compared to
PCA/ICA, CNMF-E is better at extracting activity

Neuroscience
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Video 10. Extracted spatial and temporal components
of CNMF-E at different stages (ventral hippocampal
dataset). After initializing components, we ran matrix
updates and interventions in automatic mode, resulting

in 32 components in total. In the next iteration, we
manually deleted 6 components and automatically
merged neurons as well. In the last iterations, 4
neurons were merged into 2 neurons with manual
verifications. The correlation image in the top left panel
is computed from the background-subtracted data in
the final step. MP4

DOI: https://doi.org/10.7554/eLife.28728.020

dynamics, especially in regimes where neuronal
activities are correlated (c.f. Figure 4D). Using in
vivo electrophysiological recordings, we previ-
ously showed that neurons in the bed nucleus of
the stria terminalis (BNST) show strong responses
to unpredictable footshock stimuli
(Jennings et al., 2013). We therefore measured
calcium dynamics in CaMKll-expressing neurons
that were transfected with the calcium indicator
GCaMPés in the BNST and analyzed the synchro-
nous activity of multiple neurons in response to unpredictable footshock stimuli. We chose 12 exam-
ple neurons that were detected by both CNMF-E and PCA/ICA methods and show their spatial and
temporal components in Figure 9A-C. The activity around the onset of the repeated stimuli are
aligned and shown as pseudo-colored images in panel D. The median responses of CNMF-E neurons
display prominent responses to the footshock stimuli compared with the resting state before stimuli
onset. In comparison, the activity dynamics extracted by PCA/ICA have relatively low SNR, making it
more challenging to reliably extract footshock responses. Panel E summarizes the results of panel D;
we see that CNMF-E outputs significantly more easily detectable responses than does PCA/ICA.
This is an example in which downstream analyses of calcium imaging data can significantly benefit
from the improvements in the accuracy of source extraction offered by CNMF-E. (sheintuch2017-
tracking recently presented another such example, showing that more neurons can be tracked across
multiple days using CNMF-E outputs, compared to PCA/ICA.)

Conclusion

Microendoscopic calcium imaging offers unique advantages and has quickly become a critical
method for recording large neural populations during unrestrained behavior. However, previous
methods fail to adequately remove background contaminations when demixing single neuron activ-
ity from the raw data. Since strong background signals are largely inescapable in the context of one-
photon imaging, insufficient removal of the background could yield problematic conclusions in
downstream analysis. This has presented a severe and well-known bottleneck in the field. We have
delivered a solution for this critical problem, building on the constrained nonnegative matrix factori-
zation framework introduced in Pnevmatikakis et al., 2016 but significantly extending it in order to
more accurately and robustly remove these contaminating background components.
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Figure 5. CNMF-E is able to demix neurons with high temporal correlations. (A) An example simulation from the
experiments summarized in panel (B), where corr(cy, ¢2) is 0.9: green and red traces correspond to the
corresponding neuronal shapes in the left panels. The blue trace is the mean background fluorescence fluctuation
over the whole FOV. (B) The extraction accuracy of the spatial (a; and a,) and the temporal (c; and ¢;) components
of two close-by neurons, computed via the cosine similarity between the ground truth and the extraction results.
DOI: https://doi.org/10.7554/¢Life.28728.012

The proposed CNMF-E algorithm can be used in either automatic or semi-automatic mode, and
leads to significant improvements in the accuracy of source extraction compared with previous meth-
ods. In addition, CNMF-E requires very few parameters to be specified, and these parameters are
easily interpretable and can be selected within a broad range. We demonstrated the power of
CNMF-E using data from a wide diversity of brain areas (subcortical, cortical, and deep brain areas),
SNR regimes, calcium indicators, neuron sizes and densities, and hardware setups. Among all these
examples (and many others not shown here), CNMF-E performs well and improves significantly on
the standard PCA/ICA approach. Considering that source extraction is typically just the first step in
calcium imaging data analysis pipelines (Mohammed et al., 2016), these improvements should in
turn lead to more stable and interpretable results from downstream analyses. Further applications of
the CNMF-E approach appear in (Cameron et al., 2016, Donahue and Kreitzer, 2017,
Jimenez et al., 2016; Jimenez et al., 2018; Klaus et al., 2017, Lin et al., 2017, Murugan et al.,
2016; Murugan et al., 2017, Rodriguez-Romaguera et al., 2017; Tombaz et al., 2016; Ung et al.,
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Figure 6. Neurons expressing GCaMPéf recorded in vivo in mouse dorsal striatum area. (A) An example frame of the raw data and its four components
decomposed by CNMF-E. (B) The mean fluorescence traces of the raw data (black), the estimated background activity (blue), and the background-
subtracted data (red) within the segmented area (red) in (A). The variance of the black trace is about 2x the variance of the blue trace and 4x the
variance of the red trace. (C) The distributions of the variance explained by different components over all pixels; note that estimated background
signals dominate the total variance of the signal. (D) The contour plot of all neurons detected by CNMF-E and PCA/ICA superimposed on the
correlation image. Green areas represent the components that are only detected by CNMF-E. The components are sorted in decreasing order based
on their SNRs (from red to yellow). (E) The spatial and temporal components of 14 example neurons that are only detected by CNMF-E. These neurons
all correspond to green areas in (D). (F) The signal-to-noise ratios (SNRs) of all neurons detected by both methods. Colors match the example traces
shown in (G), which shows the spatial and temporal components of 10 example neurons detected by both methods. Scalebar: 10 s. See Video 6 for the
demixing results.

DOI: https://doi.org/10.7554/eLife.28728.013

2017; Yu et al., 2017, Mackevicius et al., 2017, Madangopal et al., 2017; Roberts et al., 2017,
Ryan et al., 2017; Roberts et al., 2017; Sheintuch et al., 2017).

We have released our MATLAB implementation of CNMF-E as open-source software (https://
github.com/zhoupc/CNMF_E (Zhou, 2017a)). A Python implementation has also been incorporated
into the CalmAn toolbox (Giovannucci et al., 2017b). We welcome additions or suggestions for
modifications of the code, and hope that the large and growing microendoscopic imaging commu-
nity finds CNMF-E to be a helpful tool in furthering neuroscience research.

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 18 of 37
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Materials and methods

Algorithm for solving problem (P-S)
In problem (P-S), by is unconstrained and can be updated in closed form: by = ly-A.C-B) L
By plugging this update into problem (P-S), we get a reduced problem

minimize - =9
A [Y=A-Cllp

A >0, Aislocal and sparse,

(P-5)

subject to

where Y=Y —B/ —1Y11" and C=C—1C11". We approach this problem using a version of “hierar-
chical alternating least squares’ (HALS; Cichocki et al., 2007), a standard algorithm for nonnegative
matrix factorization. (Friedrich et al., 2017b) modified the fastHALS algorithm (Cichocki and Phan,
2009) to estimate the nonnegative spatial components A,b and the nonnegative temporal activity
C.f in the CNMF model Y =A-C+bf" +E by including sparsity and localization constraints. We
solve a problem similar to the subproblem solved in Friedrich et al. (2017b):
mlni‘rnlze ||?7A . 6”%
A >0, Aislocal and sparse,

(P-S)

subject to

where P, denotes the the spatial patch constraining the nonzero pixels of the k-th neuron and
restricts the candidate spatial support of neuron k. This regularization reduces the number of free
parameters in A, leading to speed and accuracy improvements. The spatial patches can be deter-
mined using a mildly dilated version of the support of the previous
A (Pnevmatikakis et al., 2016; Friedrich et al., 2017a).

estimate of

Algorithms for solving problem (P-T)

In problem (P-T), the model variable C € R¥*T could be very large, making the direct solution of (P-
T) computationally expensive. Unlike problem (P-S), the problem (P-T) cannot be readily parallelized
because the constraints G)¢; > 0 couple the entries within each row of C, and the residual term cou-
ples entries across columns. Here, we follow the block coordinate-descent approach used in
(Pnevmatikakis et al., 2016) and propose an algorithm that sequentially updates each ¢; and by. For
each neuron, we start with a simple unconstrained estimate of ¢;, denoted as y;, that minimizes the
residual of the spatiotemporal data matrix while fixing other neurons’ spatiotemporal activity and
the baseline term by,

argmin al Yy

Ji= aerl ||Y —Ay-Cy—aiei—bo- 1T —B|;=¢+ o

—, 9
i i
where Y=Y —AC—bol" — B represents the
residual given the current estimate of the model
variables. Due to its unconstrained nature, y; is a

noisy estimate of ¢;, plus a constant baseline

(Raw-BG) X 3 Residual X 3

resulting from inaccurate estimation of by. Given
v, various deconvolution algorithms can be
applied to obtain the denoised trace ¢; and
deconvolved signal §;(Vogelstein et al., 2009,
Pnevmatikakis et al., 2013; Deneux et al.,
2016; Friedrich et al., 2017b; Jewell and Wit-
ten, 2017); in CNMF-E, we use the OASIS algo-
rithm from (Friedrich et al., 2017b). (Note that
the estimation of ¢; is not dependent on accurate
estimation of by, because the algorithm for esti-

Demixed
ime: 650.00 second

Background

Video 11. The results of CNMF-E in demixing BNST
data. Conventions as in Video 6. MP4
DOI: https://doi.org/10.7554/eLife.28728.022

mating ¢; will also automatically estimate the
baseline term in y,.) After the ¢;'s are updated,
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Figure 7. Neurons expressing GCaMPés recorded in vivo in mouse prefrontal cortex. (A-F) follow similar conventions as in the corresponding panels of
Figure 6. (G) Three example neurons that are close to each other and detected by both methods. Yellow shaded areas highlight the negative ‘spikes’
correlated with nearby activity, and the cyan shaded area highlights one crosstalk between nearby neurons. Scalebar: 20 s. See Video 7 for the
demixing results and Video 8 for the comparision of CNMF-E and PCA/ICA in the zoomed-in area of (G).

DOI: https://doi.org/10.7554/eLife.28728.015

we update by using the closed-form expression by =%(¥Y —A-C—B)- 1.

Estimating background by solving problem (P-B)

Next we discuss our algorithm for estimating the spatiotemporal background signal by solving prob-
lem (P-B) as a linear regression problem given A and C. Since B/ - 1 =0, we can easily estimate the

constant baselines for each pixel as
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Figure 8. Neurons expressing GCaMPéf recorded in vivo in mouse ventral hippocampus. (A) Contours of all neurons detected by CNMF-E (red) and
PCA/ICA method (green). The grayscale image is the local correlation image of the background-subtracted video data, with background estimated
using CNMF-E. (B) Spatial components of all neurons detected by CNMF-E. The neurons in the first three rows are also detected by PCA/ICA, while the
neurons in the last row are only detected by CNMF-E. (C) Spatial components of all neurons detected by PCA/ICA,; similar to (B), the neurons in the first
three rows are also detected by CNMF-E and the neurons in the last row are only detected by PCA/ICA method. (D) Temporal traces of all detected
components in (B). ‘Match’ indicates neurons in top three rows in panel (B); ‘Other’ indicates neurons in the fourth row. (E) Temporal traces of all
components in (C). Scalebars: 20 seconds. See Video 9 for demixing results.

DOI: https://doi.org/10.7554/eLife.28728.018

EO:?(YfAC)-l. (10)

Next we replace the by in (P-B) with this estimate and rewrite (P-B) as

minimize
W IX—w-X|Z, (P-W)

subject to Wy =0 if dist (x;,%))&[ln, [ + 1),

where X=Y —A-C—by1”. Given the optimized W, our estimation of the fluctuating background is
B =WX. The new optimization problem (P-W) can be readily parallelized into d linear regression
problems for each pixel separately. By estimating all row columns of W;., we are able to obtain the
whole background signal as

B=WX+bol”. (11)

In some cases, X might include large residuals from the inaccurate estimation of the neurons’
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spatiotemporal activity AC, for example, missing neurons in the estimation. These residuals act as
outliers and distort the estimation of B’ and by. To overcome this problem, we use robust least
squares regression (RLSR) via hard thresholding to avoid contaminations from the outliers
(Bhatia et al., 2015). Before solving the problem (P-W), we compute B~ = W(Y—A-C—EOIT) (the
current estimate of the fluctuating background) and then apply a simple clipping preprocessing step
to X:

clipped __
X it -

X; otherwise

Then we update the regression estimate using X“?7¢¢ instead of X, and iterate. Here, o; is the
standard deviation of the noise at x; and its value can be estimated using the power spectral density
(PSD) method (Pnevmatikakis et al., 2016). As for the first iteration of the model fitting, we set
each B; :Wl,\zjen[ 5(/-, as the mean of the 5(,—, for all j € Q;. The thresholding coefficient { can be speci-

fied by users, although we have found a fixed default works well across the datasets used here. This
preprocessing removes most calcium transients by replacing those frames with the previously esti-
mated background only. As a result, it increases the robustness to inaccurate estimation of AC, and
in turn leads to a better extraction of AC in the following iterations.

Initialization of model variables
Since problem (P-All) is not convex in all of its variables, a good initialization of model variables is
crucial for fast convergence and accurate extraction of all neurons’ spatiotemporal activity. Previous
methods assume the background component is relatively weak, allowing us to initialize A and C
while ignoring the background or simply initializing it with a constant baseline over time. However,
the noisy background in microendoscopic data fluctuates more strongly than the neural signals (c.f.
Figure 6C and Figure 7B), which makes previous methods less valid for the initialization of CNMF-E.
Here, we design a new algorithm to initialize A and C without estimating B. The whole procedure
is illustrated in Figure 10 and described in Algorithm 1. The key aim of our algorithm is to exploit
the relative spatial smoothness in the background compared to the single neuronal signals visible in
the focal plane. Thus, we can use spatial filtering to reduce the background in order to estimate sin-
gle neurons’ temporal activity, and then initialize each neuron’s spatial footprint given these tempo-
ral traces. Once we have initialized A and C, it is straightforward to initialize the constant baseline b,
and the fluctuating background B’ by solving problem (P-B).

Spatially filtering the data
We first filter the raw video data with a customized image kernel (Figure 10A). The kernel is gener-
ated from a Gaussian filter

2
h(x) —=exp <—2(|;L)2> . (13)

Here, we use h(x) to approximate a cell body; the factor of 1/4 in the Gaussian width is chosen to
match a Gaussian shape to a cell of width 1. Instead of using h(x) as the filtering kernel directly, we sub-
tract its spatial mean (computed over a region of width equal to I) and filter the raw data with
h(x) = h(x) — h(x). The filtered data is denoted as Z € R¥*T (Figure 10B). This spatial filtering step helps
accomplish two goals: (1) reducing the background B, so that Z is dominated by neural signals (albeit
somewhat spatially distorted) in the focal plane (see Figure 10B as an example); (2) performing a tem-
plate matching to detect cell bodies similar to the Gaussian kernel. Consequently, Z has large values near
the center of each cell body. (However, note that we can not simply e.g. apply CNMF to Z, because the
spatial components in a factorization of the matrix Z will typically no longer be nonnegative, and there-
fore NMF-based approaches can not be applied directly.) More importantly, the calcium traces near the
neuron center in the filtered data preserve the calcium activity of the corresponding neurons because the
filtering step results in a weighted average of cellular signals surrounding each pixel (Figure 10B). Thus,
the fluorescence traces in pixels close to neuron centers in Z can be used for initializing the neurons’
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temporal activity directly. These pixels are defined as seed pixels. We next propose a quantitative
method to rank all potential seed pixels.

Ranking seed pixels

A seed pixel x should have two main features: first, Z(x), which is the filtered trace at pixel x, should have
high peak-to-noise ratio (PNR) because it encodes the calcium concentration ¢; of one neuron; second, a
seed pixel should have high temporal correlations with its neighboring pixels (e.g. 4 nearest neighbors)
because they share the same ¢;. We computed two metrics for each of these two features:

P(x) :w, L(x) ! Z corr(Z(x), Z(x')). (14)

U(x) 4dist(x4,x’):l

Recall that o(x) is the standard deviation of the noise at pixel x; the function corr() refers to Pear-
son correlation here. In our implementation, we usually threshold Z(x) by 3o(x) before computing
L(x) to reduce the influence of the background residuals, noise, and spikes from nearby neurons.

Most pixels can be ignored when selecting seed pixels because their local correlations or PNR values
are too small. To avoid unnecessary searches of the pixels, we set thresholds for both P(x) and L(x), and
only pick pixels larger than the thresholds P, and L. It is empirically useful to combine both metrics
for screening seed pixels. For example, high PNR values could result from large noise, but these pixels
usually have small L(x) because the noise is not shared with neighboring pixels. On the other hand, insuffi-
cient removal of background during the spatial filtering leads to high L(x), but the corresponding P(x)
are usually small because most background fluctuations have been removed. So we create another matrix
R(x) = P(x) - L(x) that computes the pixelwise product of P(x) and L(x). We rank all R(x) in a descending
order and choose the pixel x* with the largest R(x) for initialization.

Algorithm 1. Initialize model variables A and C given the raw data

Require: data ¥ € RY7

,neuron size [, the minimum local correlation L,,;, and the minimum PNR P,,;, for selecting seed pixels.

1
: h + a truncated 2D Gaussian kernel of widthoy = oy = Z;h e R™ > 2D Gaussian kernel

: he—h—h;heR
. Z «— conv(Y,h); Z € R¥T

> mean — centered kernel for spatial filtering
> spatially filter the raw data

: L« local cross — correlation image of the filtered data Z; L € RY

: k—0
. while True do

1
2
3
4
5: P — PNR image of the filtered data Z; P € R?
6
7
8

> neuron number

if L(x) < Ly or P(x) < Py, for all pixel x then

9: break;
10:  else
11: k—k+1
12: i — 0:a € RY
13: x* «— argmax,(L(x) - P(x)) > select a seed pixel
14 Q «— {x|x is in the square box of length (21 + 1)surrounding pixel x*} > crop a small box near x*
15: r(x) — corr(Z(x,:), Z(x*,:)) for all x € Q;r € RI™
Z{x\r(x)SO.S} Y(x7 :) T . .
16: Yoo — —~———"T3Y5c € R > estimate the background signal
Z{x\r(x)gOB} 1
17: Cp — M;& eR’ > estimate neural signal
x>0} 1
18: (Alk(Qk),é(f),é(o) — argminavbm‘b(u) HYUA - (a . l:‘z- + b(f) 'ng + b(o) . IT)”%
19: @, — max(0,ay) > the spatial component of the k — th neuron
20: Y—Y—a ~£'[ > peel away the neuron’s spatiotemporal activity
21: update L(x) and P(x) locally given the new Y
22: AH[&I,dz,-'-,d/‘]_
23: C « [é],éz,-'-,ék]]

24: return A,C

Greedy initialization

Our initialization method greedily initializes neurons one by one. Every time we initialize a neuron,
we will remove its initialized spatiotemporal activity from the raw video data and initialize the next
neuron from the residual. For the same neuron, there are several seed pixels that could be used to
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initialize it. But once the neuron has been initialized from any of these seed pixels (and the spatio-
temporal residual matrix has been updated by peeling away the corresponding activity), the remain-
ing seed pixels related to this neuron have lowered PNR and local correlation. This helps avoid the
duplicate initialization of the same neuron. Also, P(x) and L(x) have to be updated after each neuron
is initialized, but since only a small area near the initialized neuron is affected, we can update these
quantities locally to reduce the computational cost. This procedure is repeated until the specified
number of neurons have been initialized or no more candidate seed pixels exist.

This initialization algorithm can greedily initialize the required number of neurons, but the sub-
problem of estimating a; given ¢; still has to deal with the large background activity in the residual
matrix. We developed a simple method to remove this background and accurately initialize neuron
shapes, described next. We first crop a (2/+ 1) x (2/+ 1) square centered at x* in the field of view
(Figure 10A-E). Then we compute the temporal correlation between the filtered traces of pixel x*
and all other pixels in the patch (Figure 10D). We choose those pixels with small temporal correla-
tions (e.g. 0.3) as the neighboring pixels that are outside of the neuron (the green contour in
Figure 10D). Next, we estimate the background fluctuations as the median values of these pixels for
each frame in the raw data (Figure 10E). We also select pixels that are within the neuron by select-
ing correlation coefficients larger than 0.7, then ¢; is refined by computing the mean filtered traces
of these pixels (Figure 10E). Finally, we regress the raw fluorescence signal in each pixel onto three
sources: the neuron signal (Figure 10E), the local background fluctuation (Figure 10F), and a con-
stant baseline. Our initial estimate of @; is given by the regression weights onto ¢; in Figure 10F.

Modifications for high temporal or spatial correlation

The above procedure works well in most experimental datasets as long as neurons are not highly
spatially overlapped and temporally correlated. However, in a few extreme cases, this initialization
may lead to bad local minima. We found that two practical modifications can lead to improved
results.

High temporal correlation, low spatial overlaps

The greedy initialization procedure assumes that closeby neurons are not highly correlated. If this
assumption fails, CNMF-E will first merge nearby neurons into one component for explaining the
shared fluctuations, and then the following initialized components will only capture the residual sig-
nals of each neuron. Our solution to this issue relies on our accurate background removal procedure,
after which we simply re-estimate each neural trace ¢; as a weighted fluorescence trace of the back-

ground-subtracted video (Y — B/ — by17),

al- (Y —B —byl")
al-a

) (15)

Ci =

where a; only selects pixels with large weights by thresholding the estimated a; with max(a;)/2 (this
reduces the contributions from smaller neighboring neurons). This strategy improves the extraction
of individual neurons’ traces in the high correlation scenarios and the spatial footprints can be cor-

rected in the following step of updating A. Figure 4B and Figure 5 illustrate this procedure.

High spatial overlaps, low temporal correlation

CNMF-E may initialize components with shared temporal traces because they have highly overlap-
ping areas. We solve this problem by de-correlating their traces (following a similar approach in
[Pnevmatikakis et al., 2016]). We start by assuming that neurons with high spatial overlap do not
fire spikes within the same frame. If so, only the inferred spiking trace with the largest value is kept
and the rest will be set to 0. Then we initialize each ¢; given these thresholded spiking traces and the
corresponding AR coefficients.

Interventions

We use iterative matrix updates to estimate model variables in CNMF-E. This strategy gives us the
flexibility of integrating prior information on neuron morphology and temporal activity during the
model fitting. The resulting interventions (which can in principle be performed either automatically
or under manual control) can in turn lead to faster convergence and more accurate source
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Figure 9. Neurons extracted by CNMF-E show more reproducible responses to footshock stimuli, with larger signal sizes relative to the across-trial
variability, compared to PCA/ICA. (A-C) Spatial components (A), spatial locations (B) and temporal components (C) of 12 example neurons detected by
both CNMF-E and PCA/ICA. (D) Calcium responses of all example neurons to footshock stimuli. Colormaps show trial-by-trial responses of each
neuron, extracted by CNMF-E (top, red) and PCA/ICA (bottom, green), aligned to the footshock time. The solid lines are medians of neural responses
over 11 trials and the shaded areas correpond to median +1median absolute deviation (MAD). Dashed lines indicate the shock timings. (E) Scatter plot
of peak-to-MAD ratios for all response curves in (D). For each neuron, Peak is corrected by subtracting the mean activity within 4 s prior to stimulus
onset and MAD is computed as the mean MAD values over all timebins shown in (D). The red line shows y = x. Scalebars: 10 s. See Video 11 for
demixing results.

DOI: https://doi.org/10.7554/eLife.28728.021
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Figure 10. lllustration of the initialization procedure. (A) Raw video data and the kernel for filtering the video data. (B) The spatially high-pass filtered
data. (C) The local correlation image and the peak-to-noise ratio (PNR) image calculated from the filtered data in (B). (D) The temporal correlation
coefficients between the filtered traces (B) of the selected seed pixel (the red cross) and all other pixels in the cropped area as shown in (A-C). The red
and green contour correspond to correlation coefficients equal to 0.7 and 0.3, respectively. (E) The estimated background fluctuation yz(f) (green) and
the initialized temporal trace ¢;(r) of the neuron (red). ygg(7) is computed as the median of the raw fluorescence traces of all pixels (green area) outside
of the green contour shown in (D) and ¢(f) is computed as the mean of the filtered fluorescence traces of all pixels inside the red contour. (F) The
decomposition of the raw video data within the cropped area. Each component is a rank-1 matrix and the related temporal traces are estimated in (E).
The spatial components are estimated by regressing the raw video data against these three traces. See Video 3 for an illustration of the initialization
procedure.

DOI: https://doi.org/10.7554/eLife.28728.023

extraction. We integrate 5 interventions in our CNMF-E implementation. Following these interven-
tions, we usually run one more iteration of matrix updates.

Merge existing components

When a single neuron is split mistakenly into multiple components, a merge step is necessary to
rejoin these components. If we can find all split components, we can superimpose all their spatio-
temporal activities and run rank-1 NMF to obtain the spatial and temporal activity of the merged
neuron. We automatically merge components for which the spatial and temporal components are
correlated above certain thresholds. Our code also provides methods to manually specify neurons to
be merged based on human judgment.

Split extracted components

When highly correlated neurons are mistakenly merged into one component, we need to use spatial
information to split into multiple components according to neurons’ morphology. Our current imple-
mentation of component splitting requires users to manually draw ROls for splitting the spatial foot-
print of the extracted component. Automatic methods for ROl segmentation (Apthorpe et al.,
2016; Pachitariu et al., 2013) could be added as an alternative in future implementations.
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Table 1. Variables used in the CNMF-E model and algorithm. R: real numbers; R : positive real
numbers; N: natural numbers; N : positive integers.

Name Description Domain
d number of pixels N,

T number of frames N;
K number of neurons N

Y motion corrected video data ROT
A spatial footprints of all neurons ROK
C temporal activities of all neurons REXT
B background activity RYT
E observation noise RIXT
w weight matrix to reconstruct B using neighboring pixels Réxd
by constant baseline for all pixels ]Ri
X; spatial location of the ith pixel N2
o standard deviation of the noise at pixel x; R,

DOV https://doi.org/10.7554/eLife.28728.006

Remove false positives

Some extracted components have spatial shapes that do not correspond to real neurons or temporal
traces that do not correspond to neural activity. These components might explain some neural sig-
nals or background activity mistakenly. Our source extraction can benefit from the removal of these
false positives. This can be done by manually examining all extracted components, or in principle
automatically by training a classifier for detecting real neurons. The current implementation relies on
visual inspection to exclude false positives. We also rank neurons based on their SNRs and set a cut-
off to discard all extracted components that fail to meet this cutoff. As with the splitting step,
removing false positives could also potentially use automated ROI detection algorithms in the future.
See Video 10 for an example involving manual merge and delete operations.

Pick undetected neurons from the residual

If all neural signals and background are accurately estimated, the residual of the CNMF-E model
Yies = Y — AC — B should be relatively spatially and temporally uncorrelated. However, the initializa-
tion might miss some neurons due to large background fluctuations and/or high neuron density.
After we estimate the background B and extract a majority of the neurons, those missed neurons
have prominent fluorescent signals left in the residual. To select these undetected neurons from the
residual Y,., we use the same algorithm as for initializing neurons from the raw video data, but typi-
cally now the task is easier because the background has been removed.

Post-process the spatial footprints

Each single neuron has localized spatial shapes and including this prior into the model fitting of
CNMF-E, as suggested in (Pnevmatikakis et al., 2016), leads to better extraction of spatial foot-
prints. In the model fitting step, we constrain A to be sparse and spatially localized. These con-
straints do give us compact neuron shapes in most cases, but in some cases there are still some
visually abnormal components detected. We include a heuristic automated post-processing step
after each iteration of updating spatial shapes (P-S). For each extracted neuron A(:, k), we first con-
vert it to a 2D image and perform morphological opening to remove isolated pixels resulting from
noise (Haralick et al., 1987). Next we label all connected components in the image and create a
mask to select the largest component. All pixels outside of the mask in A(:,i) are set to be. This
post-processing induces compact neuron shapes by removing extra pixels and helps avoid mistak-
enly explaining the fluorescence signals of the other neurons.
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Further algorithmic details
The simplest pipeline for running CNMF-E includes the following steps:

Initialize A, C using the proposed initialization procedure.

Solve problem (P-B) for updates of by and B'.

Iteratively solve problem (P-S) and (P-T) to update A, ~C and by.
If desired, apply interventions to intermediate results.

Repeat steps 2, 3, and 4 until the inferred components are stable.

aprwDd =

n practice, the estimation of the background B (step 2) often does not vary greatly from iteration
to iteration and so this step usually can be run with fewer iterations to save time. In practice, we also
use spatial and temporal decimation for improved speed, following (Friedrich et al., 2017a). We
first run the pipeline on decimated data to get good initializations, then we up-sample the results

A, C to the original resolution and run one iteration of steps (2-3) on the raw data. This strategy
improves on processing the raw data directly because downsampling increases the signal-to-noise
ratio and eliminates many false positives.

Step 4 provides a fast method for correcting abnormal components without redoing the whole
analysis. (This is an important improvement over the PCA/ICA pipeline, where if users encounter
poor estimated components it is necessary to repeat the whole analysis with new parameter values,
which may not necessarily yield improved cell segmentations.) The interventions described here
themselves can be independent tasks in calcium imaging analysis; with further work we expect many
of these steps can be automated. In our interface for performing manual interventions, the most fre-
quently used function is to remove false positives. Again, components can be rejected following
visual inspection in PCA/ICA analysis, but the performance of CNMF-E can be improved with further
iterations after removing false positives, while this is not currently an option for PCA/ICA.

We have also found a two-step initialization procedure useful for detecting neurons: we first start
from relatively high thresholds of P, and L,;, to initialize neurons with large activity from the raw
video data; then we estimate the background components by solving problem (P-B); finally we can
pick undetected neurons from the residual using smaller thresholds. We can terminate the model
iterations when the residual sum of squares (RSS) stabilizes (see Figure 4B), but this is seldom used
in practice because computing the RSS is time-consuming. Instead we usually automatically stop the
iterations after the number of detected neurons stabilizes. If manual interventions are performed, we
typically run one last iteration of updating B, A and C sequentially to further refine the results.

Parameter selection

Table 2 shows 5 key parameters used in CNMF-E. All of these parameters have interpretable mean-
ing and can be easily picked within a broad range. The parameter [ controls the size of the spatial fil-
ter in the initialization step and is chosen as the diameter of a typical neuron in the FOV. As long as [
is much smaller than local background sources, the filtered data can be used for detecting seed pix-
els and then initializing neural traces. The distance between each seed pixel and its selected neigh-
bors I, has to be larger than the neuron size [ and smaller than the spatial range of local background
sources; in practice, this range is fairly broad. We usually set [, as 2/. To determine the thresholds
Puin and Ly, we first compute the correlation image and PNR image and then visually select very
weak neurons from these two images. P, and L,,;, are determined to ensure that CNMF-E is able
to choose seed pixels from these weak neurons. Small P, and Ly, yield more false positive neu-
rons, but they can be removed in the intervention step. Finally, in practice, our results are not sensi-
tive to the selection of the outlier parameter ¢, thus we frequently set it as 10.

Complexity analysis

In step 1, the time cost is mainly determined by spatial filtering, resulting in O(dT) time. As for the
initialization of a single neuron given a seed pixel, it is only (O(T)). Considering the fact that the num-
ber of neurons is typically much smaller than the number of pixels in this data, the complexity for
step one remains O(dT). In step 2, the complexity of estimating by is O(dT) and estimating B scales
linearly with the number of pixels d. For each pixel, the computational complexity for estimating W;.
is O(T). Thus, the computational complexity in updating the background component is O(dT). In
step 3, the computational complexities of solving problems (P-S) and (P-T) have been discussed in
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Table 2. Optional user-specified parameters.

Name Description Default values Used in

l size of a typical neuron soma in the FOV 30um Algorithm 1

I, the distance between each pixel and its neighbors 60um Problem (P-B)
Pin the minimum peak-to-noise ratio of seed pixels 10 Algorithm 1
Luin the minimum local correlation of seed pixels 0.8 Algorithm 1
14 the ratio between the outlier threshold and the noise 10 Problem (P-B)

DOI: https://doi.org/10.7554/elife.28728.024

previous literature (Pnevmatikakis et al., 2016) and they scale linearly with pixel number d and time
T, that is, O(dT). For the interventions, the one with the largest computational cost is picking unde-
tected neurons from the residual, which is the same as the initialization step. Therefore, the compu-
tational cost for step 4 is O(dT). To summarize, the complexity for running CNMF-E is O(dT), that is,
the method scales linearly with both the number of pixels and the total recording time.

Implementations
Our MATLAB implementation supports running CNMF-E in three different modes that are optimized
for different datasets: single-mode, patch-mode and multi-batch-mode.

Single-mode is a naive implementation that loads data into memory and fits the model. It is fast
for processing small datasets (<1 GB).

For larger datasets, many computers have insufficient RAM for loading all data into memory and
storing intermediate results. Patch-mode CNMF-E divides the whole FOV into multiple small patches
and maps data to the hard drive (Giovannucci et al., 2017b). The data within each patch are loaded
only when we process that patch. This significantly reduces the memory consumption. More impor-
tantly, this mode allows running CNMF-E in parallel on multi-core CPUs, yielding a speed-up roughly
proportional to the number of available cores.

Multi-batch mode builds on patch-mode and is optimized for even larger datasets, especially
data collected over multiple sessions/days. This mode segments data into multiple batches tempo-
rally and assumes that the neuron footprints A are shared across all batches. We process each batch
using patch mode and perform partial weighted updates on A given the traces C obtained in each
batch.

All modes also include a logging system for keeping track of manual interventions and intermedi-
ate operations.

The Python implementation is similar; see Giovannucci et al., 2017b) for full details.

Running time

To provide a sense of the running time of the different steps of the algorithm, we timed the code on
the simulation data shown in Figure 4. This dataset is 253 x 316 pixels x2000 frames. The analyses
were performed on a desktop with Intel Xeon CPU E5-2650 v4 @2.20 GHz and 128 GB RAM running
Ubuntu 16.04. We used a parallel implementation for performing the CNMF-E analysis, with patch
size 64 x 64 pixels, using up to 12 cores. PCA/ICA took ~211 seconds to converge, using 250 PCs
and 220 ICs. CNMF-E spent 55 s for initialization, 1 s for merging and deleting components, 110 s
for the first round of the background estimation and 40 s in the following updates, 8 s for picking
neurons from the residual, and 10 s per iteration for updating spatial (A) and temporal (C) compo-
nents, resulting in a total of 258 s.

Finally, Table 3 shows the running time of processing the four experimental datasets.

Simulation experiments

Details of the simulated experiment of Figure 2

The field of view was 256 x 256, with 1000 frames. We simulated 50 neurons whose shapes were sim-
ulated as spherical 2-D Gaussian. The neuron centers were drawn uniformly from the whole FOV and
the Gaussian widths o, and o, for each neuron was also randomly drawn from N(ﬁ, (%%)2), where
1 = 12 pixels. Spikes were simulated from a Bernoulli process with probability of spiking per timebin

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 29 of 37



e LI F E Tools and resources Neuroscience

Table 3. Running time (sec) for processing the 4 experimental datasets.

PFC BNST
Dataset Striatum Hippocampus
Size (x X y x 1) 256 x 256 x 6000 175 x 184 x 9000 175 x 184 x 9000 175 x 184 x 9000
(# PCs, # ICs) (2000, 700) (275, 250) (100, 50) (200, 150)
PFC/ICA 986 181 174 52
CNMF-E 726 221 225 435

DOI: https://doi.org/10.7554/elife.28728.025

0.01 and then convolved with a temporal kernel g(r) = exp(—t/14) — exp(—1/7,), with fall time 1, =6
timebin and rise time 1, = 1 timebin. We simulated the spatial footprints of local backgrounds as 2-D
Gaussian as well, but the mean Gaussian width is 5 times larger than the neurons’ widths. As for the
spatial footprint of the blood vessel in Figure 2A, we simulated a cubic function and then convolved
it with a 2-D Gaussian (Gaussian width=3pixel). We use a random walk model to simulate the tempo-
ral fluctuations of local background and blood vessel. For the data used in Figure 2A-H, there were
23 local background sources; for Figure 2I, we varied the number of background sources.

We used the raw data to estimate the background in CNMF-E without subtracting the neural sig-
nals AC in problem (P-B). We set [, = 15 pixels and left the remaining parameters at their default val-
ues. The plain NMF was performed using the built-in MATLAB function nnmf, which utilizes random
initialization.

Details of the simulated experiment of Figure 3, Figure 4 and Figure 5

We used the same simulation settings for both Figure 3 and Figure 4. The field of view was 253 x
316 and the number of frames was 2000. We simulated 200 neurons using the same method as the
simulation in Figure 2, but for the background we used the spatiotemporal activity of the back-
ground extracted using CNMF-E from real experimental data (data not shown). The noise level £
was also estimated from the data. When we varied the SNR in Figure 4D-G, we multiplied X with an
SNR reduction factor.

We set [ = 12 pixels to create the spatial filtering kernel. As for the thresholds used for determin-
ing seed pixels, we varied them for different SNR settings by visually checking the corresponding
local correlation images and PNR images. The selected values were L, =[0.9,0.8,0.8,0.8,0.6,0.6]
and Py = [15,10, 10, 8,6, 6] for different SNR reduction factors [1,2,3,4,5,6]. For PCA/ICA analysis,
we set the number of PCs and ICs as 600 and 300, respectively.

The simulation in Figure 5 only includes two neurons (as seen in Figure 3E) using the same simu-
lation parameters. We replaced their temporal traces ¢; and ¢, with (1 —p)c; + pe; and
(1 — p)ca + pe3, where p is tuned to generate different correlation levels (y), and c; is simulated in the
same way as ¢; and ¢;. We also added a new background source whose temporal profile is ¢; to
increase the neuron-background correlation as p increases. CNMF-E was run as in Figure 4. We
used 20 PCs and ICs for PCA/ICA.

In vivo microendoscopic imaging and data analysis
For all experimental data used in this work, we ran both CNMF-E and PCA/ICA. For CNMF-E, we
chose parameters so that we initialized about 10-20% extra components, which were then merged
or deleted (some automatically, some under manual supervision) to obtain the final estimates. Exact
parameter settings are given for each dataset below. For PCA/ICA, the number of ICs were selected
to be slightly larger than our extracted components in CNMF-E (as we found this led to the best
results for this algorithm), and the number of PCs was selected to capture over 90% of the signal var-
iance. The weight of temporal information in spatiotemporal ICA was set as 0.1. After obtaining
PCA/ICA filters, we again manually removed components that were clearly not neurons based on
neuron morphology.

We computed the SNR of extracted cellular traces to quantitatively compare the performances of
two approaches. For each cellular trace y, we first computed its denoised trace ¢ using the selected
deconvolution algorithm (here, it is thresholded OASIS); then the SNR of y is
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For PCA/ICA results, the calcium signal y of each IC is the output of its corresponding spatial fil-
ter, while for CNMF-E results, it is the trace before applying temporal deconvolution, that is, 3; in
Equation (9). All the data can be freely accessed online (Zhou et al., 2017).

Dorsal striatum data

Expression of the genetically encoded calcium indicator GCaMP6f in neurons was achieved using a
recombinant adeno-associated virus (AAV) encoding the GCaMPé6f protein under transcriptional con-
trol of the synapsin promoter (AAV-Syn-GCaMPéf). This viral vector was packaged (Serotype 1) and
stored in undiluted aliquots at a working concentration of >1012 genomic copies per ml at —80°C
until intracranial injection. 500 ul of AAV1-Syn-GCaMP6f was injected unilaterally into dorsal striatum
(0.6 mm anterior to Bregma, 2.2mm lateral to Bregma, 2.5mm ventral to the surface of the brain). 1
week post-injection, a Imm gradient index of refraction (GRIN) lens was implanted into dorsal stria-
tum ~300um above the center of the viral injection. Three weeks after the implantation, the GRIN
lens was reversibly coupled to a miniature one-photon microscope with an integrated 475nm LED
(Inscopix). Using nVistaHD Acquisition software, images were acquired at 30 frames per second with
the LED transmitting ~0.1 to 0.2 mW of light while the mouse was freely moving in an open-field
arena. Images were down sampled to 10Hz and processed into TIFFs using Mosaic software. All
experimental manipulations were performed in accordance with protocols approved by the Harvard
Standing Committee on Animal Care following guidelines described in the US NIH Guide for the
Care and Use of Laboratory Animals.

The parameters used in running CNMF-E were: [ = 13 pixels, [, = 18 pixels, Ly, = 0.7, and Py, =
7.728 components were initialized from the raw data in the first pass before subtracting the back-
ground, and then additional components were initialized in a second pass. Highly correlated nearby
components were merged and false positives were removed using the automated approach
described above. In the end, we obtained 692 components.

Prefrontal cortex data
Cortical neurons were targeted by administering two microinjections of 300 ul of AAV-DJ-Camklla-
GCaMPés (titer: 5.3 x 1012, 1:6 dilution, UNC vector core) into the prefrontal cortex (PFC) (coordi-
nates relative to bregma; injection 1: +1.5 mm AP, 0.6 mm ML, —2.4 m| DV; injection 2: +2.15 AP,
0.43 mm ML, —2.4 mm DV) of an adult male wild type (WT) mice. Immediately following the virus
injection procedure, a 1 mm diameter GRIN lens implanted 300 um above the injection site (coordi-
nates relative to bregma: +1.87 mm AP, 0.5 mm ML, —2.1 ml DV). After sufficient time had been
allowed for the virus to express and the tissue to clear underneath the lens (3 weeks), a baseplate
was secured to the skull to interface the implanted GRIN lens with a miniature, integrated micro-
scope (nVista, 473 nm excitation LED, Inscopix) and subsequently permit the visualization of Ca2
+signals from the PFC of a freely behaving mouse. The activity of PFC neurons were recorded at 15
Hz over a 10 min period (nVista HD Acquisition Software, Inscopix) while the test subject freely
explored an empty novel chamber. Acquired data was spatially down sampled by a factor of 2,
motion corrected, and temporally down sampled to 15 Hz (Mosaic Analysis Software, Inscopix). All
procedures were approved by the University of North Carolina Institutional Animal Care and Use
Committee (UNC IACUQ).

The parameters used in running CNMF-E were: [ =13 pixels, [, = 18 pixels, Ly, =0.9, and
Puin = 15. There were 169 components initialized in the first pass and we obtained 225 components
after running the whole CNMF-E pipeline.

Ventral hippocampus data

The calcium indicator GCaMP6f was expressed in ventral hippocampal-amygdala projecting neurons
by injecting a retrograde canine adeno type 2-Cre virus (CAV2-Cre; from Larry Zweifel, University of
Washington) into the basal amydala (coordinates relative to bregma: —1.70 AP, 3.00 mm ML, and
—4.25 mm DV from brain tissue at site), and a Cre-dependent GCaMPéf adeno associated virus
(AAV1-flex-Synapsin-GCaMP6f, UPenn vector core) into ventral CA1 of the hippocampus
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(coordinates relative to bregma: —3.16 mm AP, 3.50 mm ML, and —3.50 mm DV from brain tissue at
site). A 0.5 mm diameter GRIN lens was then implanted over the vCA1 subregion and imaging
began 3 weeks after surgery to allow for sufficient viral expression. Mice were then imaged with
Inscopix miniaturized microscopes and nVistaHD Acquisition software as described above; images
were acquired at 15 frames per second, while mice explored an anxiogenic Elevated Plus Maze
arena. Videos were motion corrected and spatially downsampled using Mosaic software. All proce-
dures were performed in accordance with protocols approved by the New York State Psychiatric
Institutional Animal Care and Use Committee following guidelines described in the US NIH Guide
for the Care and Use of Laboratory Animals.

The parameters used in running CNMF-E were: [ = 15 pixels, I, = 30 pixels, { = 10, Ly, = 0.9, and
Puin = 15. We first temporally downsampled the data by 2. Then we applied CNMF-E to the down-
sampled data. There were 53 components initialized. After updating the background component,
the algorithm detected six more neurons from the residual. We merged most of these components
and deleted false positives. In the end, there were 24 components left. The intermediate results
before and after each manual intervention are shown in Video 10.

BNST data with footshock

Calcium indicator GCaMPé6s was expressed within CaMKII-expressing neurons in the BNST by inject-
ing the recombinant adeno-associated virus AAVdj-CaMKII-GCaMPés (packaged at UNC Vector
Core) into the anterior dorsal portion of BNST (coordinates relative to bregma: 0.10 mm AP, —0.95
mm ML, —4.30 mm DV). A 0.6 mm diameter GRIN lens was implanted above the injection site within
the BNST. As described above, images were acquired using a detachable miniature one-photon
microscope and nVistaHD Acquisition Software (Inscopix). Images were acquired at 20 frames per
second while the animal was freely moving inside a sound-attenuated chamber equipped with a
house light and a white noise generator (Med Associates). Unpredictable foot shocks were delivered
through metal bars in the floor as an aversive stimulus during a 10 min session. Each unpredictable
foot shock was 0.75 mA in intensity and 500 ms in duration on a variable interval (VI-60). As
described above, images were motion corrected, downsampled and processed into TIFFs using
Mosaic Software. These procedures were conducted in adult C57BL/6J mice (Jackson Laboratories)
and in accordance with the Guide for the Care and Use of Laboratory Animals, as adopted by the
NIH, and with approval from the Institutional Animal Care and Use Committee of the University of
North Carolina at Chapel Hill (UNC).

The parameters used in running CNMF-E were: | = 15 pixels, I, = 23 pixels, { = 10, Ly, = 0.9, and
Puin = 15. There were 149 components initialized and we detected 29 more components from the
residual after estimating the background. there were 127 components left after running the whole
pipeline.

Code availability
All analyses were performed with custom-written MATLAB code. MATLAB implementations of the
CNMF-E algorithm can be freely downloaded from https://github.com/zhoupc/CNMF_E
(Zhou, 2017a). We also implemented CNMF-E as part of the Python package CalmAn
(Giovannucci et al., 2017b), a computational analysis toolbox for large-scale calcium imaging and
behavioral data (https://github.com/simonsfoundation/CalmAn [Giovannucci et al., 2017al).

The scripts for generating all figures and the experimental data in this paper can be accessed
from https://github.com/zhoupc/elife_submission (Zhou, 2017b).
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