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Abstract In vivo calcium imaging through microendoscopic lenses enables imaging of previously

inaccessible neuronal populations deep within the brains of freely moving animals. However, it is

computationally challenging to extract single-neuronal activity from microendoscopic data, because

of the very large background fluctuations and high spatial overlaps intrinsic to this recording

modality. Here, we describe a new constrained matrix factorization approach to accurately

separate the background and then demix and denoise the neuronal signals of interest. We

compared the proposed method against previous independent components analysis and

constrained nonnegative matrix factorization approaches. On both simulated and experimental

data recorded from mice, our method substantially improved the quality of extracted cellular

signals and detected more well-isolated neural signals, especially in noisy data regimes. These
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advances can in turn significantly enhance the statistical power of downstream analyses, and

ultimately improve scientific conclusions derived from microendoscopic data.

DOI: https://doi.org/10.7554/eLife.28728.001

Introduction
Monitoring the activity of large-scale neuronal ensembles during complex behavioral states is funda-

mental to neuroscience research. Continued advances in optical imaging technology are greatly

expanding the size and depth of neuronal populations that can be visualized. Specifically, in vivo cal-

cium imaging through microendoscopic lenses and the development of miniaturized microscopes

have enabled deep brain imaging of previously inaccessible neuronal populations of freely moving

mice (Flusberg et al., 2008; Ghosh et al., 2011; Ziv and Ghosh, 2015). This technique has been

widely used to study the neural circuits in cortical, subcortical, and deep brain areas, such as hippo-

campus (Cai et al., 2016; Ziv et al., 2013; Jimenez et al., 2018; Rubin et al., 2015), entorhinal cor-

tex (Kitamura et al., 2015; Sun et al., 2015), hypothalamus (Jennings et al., 2015), prefrontal

cortex (PFC) (Pinto and Dan, 2015), premotor cortex (Markowitz et al., 2015), dorsal pons

(Cox et al., 2016), basal forebrain (Harrison et al., 2016), striatum (Barbera et al., 2016;

Carvalho Poyraz et al., 2016; Klaus et al., 2017), amygdala (Yu et al., 2017), and other brain

regions.

Although microendoscopy has potential applications across numerous neuroscience fields

(Ziv and Ghosh, 2015), methods for extracting cellular signals from this data are currently limited

and suboptimal. Most existing methods are specialized for two-photon or light-sheet microscopy.

However, these methods are not suitable for analyzing single-photon microendoscopic data because

of its distinct features: specifically, this data typically displays large, blurry background fluctuations

due to fluorescence contributions from neurons outside the focal plane. In Figure 1, we use a typical

microendoscopic dataset to illustrate these effects (see Video 1 for raw video). Figure 1A shows an

example frame of the selected data, which contains large signals additional to the neurons visible in

the focal plane. These extra fluorescence signals contribute as background that contaminates the

single-neuronal signals of interest. In turn, standard methods based on local correlations for visualiz-

ing cell outlines (Smith and Häusser, 2010) are not effective here, because the correlations in the

fluorescence of nearby pixels are dominated by background signals (Figure 1B). For some neurons

with strong visible signals, we can manually draw regions-of-interest (ROI) (Figure 1C). Following

(Barbera et al., 2016; Pinto and Dan, 2015), we used the mean fluorescence trace of the surround-

ing pixels (blue, Figure 1D) to roughly estimate this background fluctuation; subtracting it from the

raw trace in the neuron ROI yields a relatively good estimation of neuron signal (red, Figure 1D).

Figure 1D shows that the background (blue) has much larger variance than the relatively sparse neu-

ral signal (red); moreover, the background signal fluctuates on similar timescales as the single-neuro-

nal signal, so we can not simply temporally filter the background away after extraction of the mean

signal within the ROI. This large background signal is likely due to a combination of local fluctuations

resulting from out-of-focus fluorescence or neuropil activity, hemodynamics of blood vessels, and

global fluctuations shared more broadly across the field of view (photo-bleaching effects, drifts in z

of the focal plane, etc.), as illustrated schematically in Figure 1E.

The existing methods for extracting individual neural activity from microendoscopic data can be

divided into two classes: semi-manual ROI analysis (Barbera et al., 2016; Klaus et al., 2017;

Pinto and Dan, 2015) and PCA/ICA analysis (Mukamel et al., 2009). Unfortunately, both

approaches have well-known flaws (Resendez et al., 2016). For example, ROI analysis does not

effectively demix signals of spatially overlapping neurons, and drawing ROIs is laborious for large

population recordings. More importantly, in many cases, the background contaminations are not

adequately corrected, and thus the extracted signals are not sufficiently clean enough for down-

stream analyses. As for PCA/ICA analysis, it is a linear demixing method and therefore typically fails

when the neural components exhibit strong spatial overlaps (Pnevmatikakis et al., 2016), as is the

case in the microendoscopic setting.

Recently, constrained nonnegative matrix factorization (CNMF) approaches were proposed to

simultaneously denoise, deconvolve, and demix calcium imaging data (Pnevmatikakis et al., 2016).

However, current implementations of the CNMF approach were optimized for 2-photon and light-
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sheet microscopy, where the background has a simpler spatiotemporal structure. When applied to

microendoscopic data, CNMF often has poor performance because the background is not modeled

sufficiently accurately (Barbera et al., 2016).

In this paper, we significantly extend the CNMF framework to obtain a robust approach for

extracting single-neuronal signals from microendoscopic data. Specifically, our extended CNMF for

microendoscopic data (CNMF-E) approach utilizes a more accurate and flexible spatiotemporal

background model that is able to handle the properties of the strong background signal illustrated

in Figure 1, along with new specialized algorithms to initialize and fit the model components. After

a brief description of the model and algorithms, we first use simulated data to illustrate the power

of the new approach. Next, we compare CNMF-E with PCA/ICA analysis comprehensively on both

simulated data and four experimental datasets recorded in different brain areas. The results show

that CNMF-E outperforms PCA/ICA in terms of detecting more well-isolated neural signals, extract-

ing higher signal-to-noise ratio (SNR) cellular signals, and obtaining more robust results in low SNR

regimes. Finally, we show that downstream analyses of calcium imaging data can substantially bene-

fit from these improvements.

Figure 1. Microendoscopic data contain large background signals with rapid fluctuations due to multiple sources. (A) An example frame of

microendoscopic data recorded in dorsal striatum (see Materials and methods section for experimental details). (B) The local ‘correlation image’

(Smith and Häusser, 2010) computed from the raw video data. Note that it is difficult to discern neuronal shapes in this image due to the high

background spatial correlation level. (C) The mean-subtracted data within the cropped area (green) in (A). Two ROIs were selected and coded with

different colors. (D) The mean fluorescence traces of pixels within the two selected ROIs (magenta and blue) shown in (C) and the difference between

the two traces. (E) Cartoon illustration of various sources of fluorescence signals in microendoscopic data. ‘BG’ abbreviates ‘background’.

DOI: https://doi.org/10.7554/eLife.28728.002
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Model and model fitting
CNMF for microendoscope data (CNMF-E)
The recorded video data can be represented by a matrix Y 2 R

d�T
þ , where d is the number of pixels

in the field of view and T is the number of frames observed. In our model, each neuron i is character-

ized by its spatial ‘footprint’ vector ai 2 R
d
þ characterizing the cell’s shape and location, and ‘calcium

activity’ timeseries ci 2 R
T
þ, modeling (up to a multiplicative and additive constant) cell i’s mean fluo-

rescence signal at each frame. Here, both ai and ci are constrained to be nonnegative because of

their physical interpretations. The background fluctuation is represented by a matrix B 2 R
d�T
þ . If the

field of view contains a total number of K neurons, then the observed movie data is modeled as a

superposition of all neurons’ spatiotemporal activity, plus time-varying background and additive

noise:

Y ¼
XK
i¼1

ai � c
T
i þBþE¼ ACþBþE; (1)

where A¼ ½a1; . . . ;aK � and C¼ ½c1; . . . ;cK �
T . The noise term E 2Rd�T is modeled as Gaussian,

EðtÞ~Nð0;SÞ is a diagonal matrix, indicating that the noise is spatially and temporally uncorrelated.

Estimating the model parameters A;C in model (1) gives us all neurons’ spatial footprints and

their denoised temporal activity. This can be achieved by minimizing the residual sum of squares

(RSS), aka the Frobenius norm of the matrix Y � ðAC þ BÞ,

kY �ðACþBÞk2F ; (2)

while requiring the model variables A;C and B to follow the desired constraints, discussed below.

Constraints on neuronal spatial footprints A and neural temporal traces
C
Each spatial footprint ai should be spatially localized and sparse, since a given neuron will cover only

a small fraction of the field of view, and therefore most elements of ai will be zero. Thus, we need to

incorporate spatial locality and sparsity constraints on A (Pnevmatikakis et al., 2016). We discuss

details further below.

Similarly, the temporal components ci are highly structured, as they represent the cells’ fluores-

cence responses to sparse, nonnegative trains of action potentials. Following (Vogelstein et al.,

2010; Pnevmatikakis et al., 2016), we model the calcium dynamics of each neuron ci with a stable

autoregressive (AR) process of order p,

ciðtÞ ¼
Xp
j¼1

g
ðiÞ
j ciðt� jÞþ siðtÞ; (3)

where siðtÞ � 0 is the number of spikes that neuron fired at the t-th frame. (Note that there is no fur-

ther noise input into ciðtÞ beyond the spike signal siðtÞ.) The AR coefficients fg
ðiÞ
j g are different for

each neuron and they are estimated from the data. In practice, we usually pick p¼ 2, thus incorporat-

ing both a nonzero rise and decay time of calcium transients in response to a spike; then Equa-

tion (3) can be expressed in matrix form as

Gi � ci ¼ si; with Gi ¼

1 0 0 � � � 0

�g
ðiÞ
1

1 0 � � � 0

�g
ðiÞ
2
�g
ðiÞ
1

1 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � �g
ðiÞ
2
�g
ðiÞ
1

1

2
66666664

3
77777775
: (4)

The neural activity si is nonnegative and typically sparse; to enforce sparsity, we can penalize the

‘0 (Jewell and Witten, 2017) or ‘1 (Pnevmatikakis et al., 2016; Vogelstein et al., 2010) norm of si,

or limit the minimum size of nonzero spike counts (Friedrich et al., 2017b). When the rise time
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constant is small compared to the timebin width (low imaging frame rate), we typically use a simpler

AR(1) model (with an instantaneous rise following a spike) (Pnevmatikakis et al., 2016).

Constraints on background activity B
In the above we have largely followed previously described CNMF approaches

(Pnevmatikakis et al., 2016) for modeling calcium imaging signals. However, to accurately model

the background effects in microendoscopic data, we need to depart significantly from these previ-

ous approaches. Constraints on the background term B in Equation (1) are essential to the success

of CNMF-E, since clearly, if B is completely unconstrained we could just absorb the observed data Y

entirely into B, which would lead to recovery of no neural activity. At the same time, we need to pre-

vent the residual of the background term (i.e. B� B̂, where B̂ denotes the estimated spatiotemporal

background) from corrupting the estimated neural signals AC in model (1), since subsequently, the

extracted neuronal activity would be mixed with background fluctuations, leading to artificially high

correlations between nearby cells. This problem is even worse in the microendoscopic context

because the background fluctuation usually has significantly larger variance than the isolated cellular

signals of interest (Figure 1D), and therefore any small errors in the estimation of B can severely cor-

rupt the estimated neural signal AC.

In (Pnevmatikakis et al., 2016), B is modeled as a rank-1 nonnegative matrix B ¼ b � f T , where b 2

R
d
þ and f 2 R

T
þ. This model mainly captures the global fluctuations within the field of view (FOV). In

applications to two-photon or light-sheet data, this rank-1 model has been shown to be sufficient for

relatively small spatial regions; the simple low-rank model does not hold for larger fields of view,

and so we can simply divide large FOVs into smaller patches for largely parallel processing

(Pnevmatikakis et al., 2016; Giovannucci et al., 2017b). (See [Pachitariu et al., 2016] for an alter-

native approach.) However, as we will see below, the local rank-1 model fails in many microendo-

scopic datasets, where multiple large overlapping background sources exist even within

modestly sized FOVs.

Thus, we propose a new model to constrain the background term B. We first decompose the

background into two terms:

B¼ Bf þBc; (5)

Video 1. An example of typical microendoscopic data.

The video was recorded in dorsal striatum;

experimental details can be found above. MP4

DOI: https://doi.org/10.7554/eLife.28728.003

Video 2. Comparison of CNMF-E with rank-1 NMF in

estimating background fluctuation in simulated data.

Top left: the simulated fluorescence data in Figure 2.

Bottom left: the ground truth of neuron signals in the

simulation. Top middle: the estimated background

from the raw video data (top left) using CNMF-E.

Bottom middle: the residual of the raw video after

subtracting the background estimated with CNMF-E.

Top right and top bottom: same as top middle and

bottom middle, but the background is estimated with

rank-1 NMF. MP4

DOI: https://doi.org/10.7554/eLife.28728.005

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 5 of 37

Tools and resources Neuroscience



where Bf represents fluctuating activity and Bc ¼ b0 � 1
T models constant baselines (12RT denotes a

vector of T ones). To model Bf , we exploit the fact that background sources (largely due to blurred

out-of-focus fluorescence) are empirically much coarser spatially than the average neuron soma size

l. Thus, we model Bf at one pixel as a linear combination of the background fluorescence in pixels

which are chosen to be nearby but not nearest neighbors:

B
f
it ¼

X
j2�i

wij �B
f
jt; 8t¼ 1 . . .T; (6)

where �i ¼ fj j distðxi;xjÞ 2 ½ln; lnþ 1Þg, with distðxi;xjÞ the Euclidean distance between pixel i and j.

Thus, �i only selects the neighboring pixels with a distance of ln from the i-th pixel (the green dot

and black pixels in Figure 2B illustrate i and �i, respectively); here ln is a parameter that we choose

to be greater than l (the size of the typical soma in the FOV), e.g., ln ¼ 2l. This choice of ln ensures

that pixels i and j in Equation (6) share similar background fluctuations, but do not belong to the

same soma.

We can rewrite Equation (6) in matrix form:

Bf ¼WBf ; (7)

where Wij ¼ 0 if distðxi;xjÞ=2½ln; lnþ 1Þ. In practice, this hard constraint is difficult to enforce computa-

tionally and is overly stringent given the noisy observed data. We relax the model by replacing the

right-hand side Bf with the more convenient closed-form expression

Bf ¼W � ðY �AC� b0 � 1
TÞ: (8)

According to Equations (1) and (5), this change ignores the noise term E; since elements in E are

spatially uncorrelated, W �E contributes as a very small disturbance to B̂f in the left-hand side. We

found this substitution for B̂f led to significantly faster and more robust model fitting.

Fitting the CNMF-E model
Table 1 lists the variables in the proposed CNMF-E model. Now we can formulate the estimation of

all model variables as a single optimization meta-problem:

A;C;S;Bf ;W ;b0

minimize
kY �AC� b0 � 1

T �Bf k2F (P-All)

subject to A� 0; Ais sparse and spatially localized

ci � 0; si � 0; GðiÞci ¼ si; siissparse 8i¼ 1 . . .K

Bf � 1¼ 0

Bf ¼W � ðY �AC� b0 � 1
TÞ

Wij ¼ 0if distðxi;xjÞ=2½ln; lnþ 1Þ:

We call this a ‘meta-problem’ because we have not yet explicitly defined the sparsity and spatial

locality constraints on A and S¼ ½s1; . . . ; sK �
T ; these can be customized by users under different

assumptions (see details in Materials and methods). Also note that si is completely determined by ci

and GðiÞ, and Bf is not optimized explicitly but (as discussed above) can be estimated as

W � ðY �AC� b0 � 1
TÞ, so we optimize with respect to W instead.

The problem (P-All) optimizes all variables together and is non-convex but can be divided into

three simpler subproblems that we solve iteratively:

Estimating A; b0 given Ĉ; B̂f

A;b0
minimize

kY �A � Ĉ� b0 � 1
T � B̂f k2F (P-S)

subject to A� 0;A is sparse and spatially localized

Estimating C;b0 given Â; B̂f
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C;S;b0
minimize

kY � Â �C� b0 � 1
T � B̂f k2F (P-T)

subject to ci � 0; si � 0

GðiÞci ¼ si; si is sparse 8i¼ 1 . . .K

Estimating W ;b0 given Â; Ĉ

W ;Bf ;b0

minimize
kY � Â � Ĉ� b0 � 1

T �Bf k2F (P-B)

subject to Bf � 1¼ 0

Bf ¼W � ðY � Â � Ĉ� b0 � 1
TÞ:

Wij ¼ 0if distðxi;xjÞ=2½ln; lnþ 1Þ

For each of these subproblems, we are able to use well-established algorithms (e.g. solutions for

(P-S) and (P-T) are discussed in Friedrich et al., 2017a; Pnevmatikakis et al., 2016) or slight modifi-

cations thereof. By iteratively solving these three subproblems, we obtain tractable updates for all

model variables in problem (P-All). Furthermore, this strategy gives us the flexibility of further poten-

tial interventions (either automatic or semi-manual) in the optimization procedure, for example,

incorporating further prior information on neurons’ morphology, or merging/splitting/deleting spa-

tial components and detecting missed neurons from the residuals. These steps can significantly

improve the quality of the model fitting; this is an advantage compared with PCA/ICA, which offers

no easy option for incorporation of stronger prior information or manually guided improvements on

the estimates.

Full details on the algorithms for initializing and then solving these three subproblems are pro-

vided in the Materials and methods section.

Video 3. Initialization procedure for the simulated data

in Figure 3. Top left: correlation image of the filtered

data. Red dots are centers of initialized neurons. Top

middle: candidate seed pixels (small red dots) for

initializing neurons on top of PNR image. The large red

dot indicates the current seed pixel. Top right: the

correlation image surrounding the selected seed pixel

or the spatial footprint of the initialized neuron.

Bottom: the filtered fluorescence trace at the seed

pixel or the initialized temporal activity (both raw and

denoised). MP4

DOI: https://doi.org/10.7554/eLife.28728.008

Video 4. The results of CNMF-E in demixing simulated

data in Figure 4 (SNR reduction factor = 1). Top left:

the simulated fluorescence data. Bottom left: the

estimated background. Top middle: the residual of the

raw video (top left) after subtracting the estimated

background (bottom left). Bottom middle: the

denoised neural signals. Top right: the residual of the

raw video data (top right) after subtracting the

estimated background (bottom left) and denoised

neural signal (bottom middle). Bottom right: the

ground truth of neural signals in simulation. MP4

DOI: https://doi.org/10.7554/eLife.28728.010
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Results

CNMF-E can reliably estimate large high-rank background fluctuations
We first use simulated data to illustrate the background model in CNMF-E and compare its perfor-

mance against the low-rank NMF model used in the basic CNMF approach (Pnevmatikakis et al.,

2016). We generated the observed fluorescence Y by summing up simulated fluorescent signals of

multiple sources as shown in Figure 1E plus additive Gaussian white noise (Figure 2A).

An example pixel (green dot, Figure 2A,B) was selected to illustrate the background model in

CNMF-E (Equation (6)), which assumes that each pixel’s background activity can be reconstructed

using its neighboring pixels’ activities. The selected neighbors form a ring and their distances to the

center pixel are larger than a typical neuron size (Figure 2B). Figure 2C shows that the fluorescence

traces of the center pixel and its neighbors are highly correlated due to the shared large background

fluctuations. Here, for illustrative purposes, we fit the background by solving problem (P-B) directly

Figure 2. CNMF-E can accurately separate and recover the background fluctuations in simulated data. (A) An example frame of simulated

microendoscopic data formed by summing up the fluorescent signals from the multiple sources illustrated in Figure 1E. (B) A zoomed-in version of the

circle in (A). The green dot indicates the pixel of interest. The surrounding black pixels are its neighbors with a distance of 15 pixels. The red area

approximates the size of a typical neuron in the simulation. (C) Raw fluorescence traces of the selected pixel and some of its neighbors on the black

ring. Note the high correlation. (D) Fluorescence traces (raw data; true and estimated background; true and initial estimate of neural signal) from the

center pixel as selected in (B). Note that the background dominates the raw data in this pixel, but nonetheless we can accurately estimate the

background and subtract it away here. Scalebars: 10 seconds. Panels (E–G) show the cellular signals in the same frame as (A). (E) Ground truth neural

activity. (F) The residual of the raw frame after subtracting the background estimated with CNMF-E; note the close correspondence with E. (G) Same as

(F), but the background is estimated with rank-1 NMF. A video showing (E–G) for all frames can be found at Video 2. (H) The mean correlation

coefficient (over all pixels) between the true background fluctuations and the estimated background fluctuations. The rank of NMF varies and we run

randomly-initialized NMF for 10 times for each rank. The red line is the performance of CNMF-E, which requires no selection of the NMF rank. (I) The

performance of CNMF-E and rank-1 NMF in recovering the background fluctuations from the data superimposed with an increasing number of

background sources.

DOI: https://doi.org/10.7554/eLife.28728.004
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while assuming ÂĈ ¼ 0. This mistaken assumption should make the background estimation more

challenging (due to true neural components getting absorbed into the background), but nonetheless

in Figure 2 we see that the background fluctuation was well recovered (Figure 2D). Subtracting this

estimated background from the observed fluorescence in the center yields a good visualization of

the cellular signal (Figure 2D). Thus, this example shows that we can reconstruct a complicated

background trace while leaving the neural signal uncontaminated.

For the example frame in Figure 2A, the true cellular signals are sparse and weak (Figure 2E).

When we subtract the estimated background using CNMF-E from the raw data, we obtain a good

recovery of the true signal (Figure 2D,F). For comparison, we also estimate the background activity

by applying a rank-1 NMF model as used in basic CNMF; the resulting background-subtracted image

is still severely contaminated by the background (Figure 2G). This is easy to understand: the spatio-

temporal background signal in microendoscopic data typically has a rank higher than one, due to

the various signal sources indicated in Figure 1E), and therefore a rank-1 NMF background model is

insufficient.

A naive approach would be to simply increase the rank of the NMF background model.

Figure 2H demonstrates that this approach is ineffective: higher rank NMF does yield generally bet-

ter reconstruction performance, but with high variability and low reliability (due to randomness in

the initial conditions of NMF). Eventually as the NMF rank increases many single-neuronal signals of

interest are swallowed up in the estimated background signal (data not shown). In contrast, CNMF-E

recovers the background signal more accurately than any of the high-rank NMF models.

In real data analysis settings, the rank of NMF is an unknown and the selection of its value is a

nontrivial problem. We simulated data sets with different numbers of local background sources and

use a single parameter setting to run CNMF-E for reconstructing the background over multiple such

simulations. Figure 2I shows that the performance of CNMF-E does not degrade quickly as we have

more background sources, in contrast to rank-1 NMF. Therefore, CNMF-E can recover the back-

ground accurately across a diverse range of background sources, as desired.

CNMF-E accurately initializes single-neuronal spatial and temporal
components
Next, we used simulated data to validate our proposed initialization procedure (Figure 3A). In this

example, we simulated 200 neurons with strong spatial overlaps (Figure 3B). One of the first steps

in our initialization procedure is to apply a Gaussian spatial filter to the images to reduce the (spa-

tially coarser) background and boost the power of neuron-sized objects in the images. In Figure 3C,

we see that the local correlation image (Smith and Häusser, 2010) computed on the spatially fil-

tered data provides a good initial visualization of neuron locations; compare to Figure 1B, where

the correlation image computed on the raw data was highly corrupted by background signals.

We choose two example ROIs to illustrate how CNMF-E removes the background contamination

and demixes nearby neural signals for accurate initialization of neurons’ shapes and activity. In the

first example, we choose a well-isolated neuron

(green box, Figure 3A+B). We select three pixels

located in the center, the periphery, and the out-

side of the neuron and show the corresponding

fluorescence traces in both the raw data and the

spatially filtered data (Figure 3D). The raw traces

are noisy and highly correlated, but the filtered

traces show relatively clean neural signals. This is

because spatial filtering reduces the shared back-

ground activity and the remaining neural signals

dominate the filtered data. Similarly, Figure 3E is

an example showing how CNMF-E demixes two

overlapping neurons. The filtered traces in the

centers of the two neurons still preserve their

own temporal activity.

After initializing the neurons’ traces using the

spatially filtered data, we initialize our estimate of

Video 5. The results of CNMF-E in demixing the

simulated data in Figure 4 (SNR reduction factor = 6).

Conventions as in previous video. MP4

DOI: https://doi.org/10.7554/eLife.28728.011
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their spatial footprints. Note that simply initializ-

ing these spatial footprints with the

spatially filtered data does not work well (data

not shown), since the resulting shapes are dis-

torted by the spatial filtering process. We found

that it was more effective to initialize each spatial

footprint by regressing the initial neuron traces

onto the raw movie data (see

Materials and methods for details). The initial val-

ues already match the simulated ground truth

with fairly high fidelity (Figure 3D+E). In this sim-

ulated data, CNMF-E successfully identified all

200 neurons and initialized their spatial and tem-

poral components (Figure 3F). We then evaluate

the quality of initialization using all neurons’ spa-

tial and temporal similarities with their counter-

parts in the ground truth data. Figure 3G shows

that all initialized neurons have high similarities

with the truth, indicating a good recovery and

demixing of all neuron sources.

Thresholds on the minimum local correlation

and the minimum peak-to-noise ratio (PNR) for

detecting seed pixels are necessary for defining

the initial spatial components. To quantify the

sensitivity of choosing these two thresholds, we

plot the local correlations and the PNRs of all pix-

els chosen as the local maxima within an area of l
4
� l

4
, where l is the diameter of a typical neuron, in

the correlation image or the PNR image (Figure 3H). Pixels are classified into two classes according

to their locations relative to the closest neurons: neurons’ central areas and outside areas (see Mate-

rials and methods for full details). It is clear that the two classes are linearly well separated and the

thresholds can be chosen within a broad range of values (Figure 3H), indicating that the algorithm is

robust with respect to these threshold parameters here. In lower SNR settings, these boundaries

may be less clear, and an incremental approach (in which we choose the highest-SNR neurons first,

then estimate the background and examine the residual to select the lowest-SNR cells) may be pre-

ferred; this incremental approach is discussed in more depth in the Materials and methods section.

CNMF-E recovers the true neural activity and is robust to noise
contamination and neuronal correlations in simulated data
Using the same simulated dataset as in the previous section, we further refine the neuron shapes (A)

and the temporal traces (C) by iteratively fitting the CNMF-E model. We compare the final results

with PCA/ICA analysis (Mukamel et al., 2009) and the original CNMF method

(Pnevmatikakis et al., 2016).

After choosing the thresholds for seed pixels (Figure 3H), we run CNMF-E in full automatic

mode, without any manual interventions. Two open-source MATLAB packages, CellSort (https://

github.com/mukamel-lab/CellSort; Mukamel, 2016) and ca_source_extraction (https://github.com/

epnev/ca_source_extraction; Pnevmatikakis, 2016), were used to perform PCA/ICA

(Mukamel et al., 2009) and basic CNMF (Pnevmatikakis et al., 2016), respectively. Since the initiali-

zation algorithm in CNMF fails due to the large contaminations from the background fluctuations in

this setting (recall Figure 2), we use the ground truth as its initialization. As for the rank of the back-

ground model in CNMF, we tried all integer values between 1 and 16 and set it as 7 because it has

the best performance in matching the ground truth. We emphasize that including the CNMF

approach in this comparison is not fair for the other two approaches, because it uses the ground

truth heavily, while PCA/ICA and CNMF-E are blind to the ground truth. The purpose here is to

show the limitations of basic CNMF in modeling the background activity in microendoscopic data.

Video 6. The results of CNMF-E in demixing dorsal

striatum data. Top left: the recorded fluorescence data.

Bottom left: the estimated background. Top middle:

the residual of the raw video (top left) after subtracting

the estimated background (bottom left). Bottom

middle: the denoised neural signals. Top right: the

residual of the raw video data (top right) after

subtracting the estimated background (bottom left)

and denoised neural signal (bottom middle). Bottom

right: the denoised neural signals while all neurons’

activity are coded with pseudocolors. MP4

DOI: https://doi.org/10.7554/eLife.28728.014
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We first pick three closeby neurons from the ground truth (Figure 4A, top) and see how well

these neurons’ activities are recovered. PCA/ICA fails to identify one neuron, and for the other two

identified neurons, it recovers temporal traces that are sufficiently noisy that small calcium transients

are submerged in the noise. As for CNMF, the neuron shapes remain more or less at the initial con-

dition (i.e. the ground truth spatial footprints), but clear contaminations in the temporal traces are

visible. This is because the pure NMF model in CNMF does not model the true background well and

the residuals in the background are mistakenly captured by neural components. In contrast, on this

example, CNMF-E recovers the true neural shapes and neural activity with high accuracy.

Figure 3. CNMF-E accurately initializes individual neurons’ spatial and temporal components in simulated data. (A) An example frame of the simulated

data. Green and red squares will correspond to panels (D) and (E) below, respectively. (B) The temporal mean of the cellular activity in the simulation.

(C) The correlation image computed using the spatially filtered data. (D) An example of initializing an isolated neuron. Three selected pixels correspond

to the center, the periphery, and the outside of a neuron. The raw traces and the filtered traces are shown as well. The yellow dashed line is the true

neural signal of the selected neuron. Triangle markers highlight the spike times from the neuron. (E) Same as (D), but two neurons are spatially

overlapping in this example. Note that in both cases neural activity is clearly visible in the filtered traces, and the initial estimates of the spatial

footprints are already quite accurate (dashed lines are ground truth). (F) The contours of all initialized neurons on top of the correlation image as shown

in (D). Contour colors represent the rank of neurons’ SNR (SNR decreases from red to yellow). The blue dots are centers of the true neurons. (G) The

spatial and the temporal cosine similarities between each simulated neuron and its counterpart in the initialized neurons. (H) The local correlation and

the peak-to-noise ratio for pixels located in the central area of each neuron (blue) and other areas (green). The red lines are the thresholding

boundaries for screening seed pixels in our initialization step. A video showing the whole initialization step can be found at Video 3.

DOI: https://doi.org/10.7554/eLife.28728.007
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We also compare the number of detected neurons: PCA/ICA detected 195 out of 200 neurons,

while CNMF-E detected all 200 neurons. We also quantitatively evaluated the performance of source

extraction by showing the spatial and temporal cosine similarities between detected neurons and

ground truth (Figure 4C); we find that the neurons detected using PCA/ICA have much lower simi-

larities with the ground truth (Figure 4C). We also note that the CNMF results are much worse than

those of CNMF-E here, despite the fact that CNMF is initialized at the ground truth parameter val-

ues. This result clarifies an important point: the improvements from CNMF-E are not simply due to

improvements in the initialization step. Furthermore, running the full iterative pipeline of CNMF-E

leads to improvements in both spatial and temporal similarities, compared with the results in the ini-

tialization step.

In many downstream analyses of calcium imaging data, pairwise correlations provide an important

metric to study coordinated network activity (Warp et al., 2012; Barbera et al., 2016;

Dombeck et al., 2009; Klaus et al., 2017). Since PCA/ICA seeks statistically independent compo-

nents, which forces the temporal traces to have near-zero correlation, the correlation structure is

badly corrupted in the raw PCA/ICA outputs (Figure 4D). We observed that a large proportion of

the independence comes from the noisy baselines in the extracted traces (data not shown), so we

postprocessed the PCA/ICA output by thresholding at the 3 standard deviation level. This recovers

some nonzero correlations, but the true correlation structure is not recovered accurately

(Figure 4D). By contrast, the CNMF-E results matched the ground truth very well due to accurate

extraction of individual neurons’ temporal activity (Figure 4D). As for CNMF, the estimated correla-

tions are slightly elevated relative to the true correlations. This is due to the shared (highly corre-

lated) background fluctuations that corrupt the recovered activity of nearby neurons.

Next, we compared the performance of the different methods under different SNR regimes.

Because of the above inferior results we skip comparisons to the basic CNMF here. Based on the

same simulation parameters as above, we vary the noise level S by multiplying it with a SNR reduc-

tion factor. Figure 4E shows that CNMF-E detects all neurons over a wide SNR range, while PCA/

ICA fails to detect the majority of neurons when the SNR drops to sufficiently low levels. Moreover,

the detected neurons in CNMF-E preserve high spatial and temporal similarities with the ground

truth (Figure 4F–G). This high accuracy of extracting neurons’ temporal activity benefits from the

modeling of the calcium dynamics, which leads to significantly denoised neural activity. If we skip

the temporal denoising step in the algorithm, CNMF-E is less robust to noise, but still outperforms

PCA/ICA significantly (Figure 4G). When SNR is low, the improvements yielded by CNMF-E can be

crucial for detecting weak neuron events, as shown in Figure 4H.

Finally, we examine the ability of CNMF-E to demix correlated and overlapping neurons. Using

the two example neurons in Figure 3E, we ran multiple simulations at varying correlation levels and

extracted neural components using the CNMF-E pipeline and PCA/ICA analysis. The spatial foot-

prints in these simulations were fixed, but the temporal components were varied to have different

correlation levels (g) between calcium traces by tuning their shared component with the common

background fluctuations. For high correlation levels (g>0:7), the initialization procedure tends to first

initialize a component that explains the common activity between two neurons and then initialize

another component to account for the residual of one neuron. After iteratively refining the model

variables, CNMF-E successfully extracted the two neurons’ spatiotemporal activity even at very high

correlation levels (g ¼ 0:95; Figure 5A,B). PCA/ICA was also often able to separate two neurons for

large correlation levels (g ¼ 0:9, Figure 5B), but the extracted traces have problematic negative

spikes that serve to reduce their statistical dependences (Figure 4A).

Application to dorsal striatum data
We now turn to the analysis of large-scale microendoscopic datasets recorded from freely behaving

mice. We run both CNMF-E and PCA/ICA for all datasets and compare their performances in detail.

We begin by analyzing in vivo calcium imaging data of neurons expressing GCaMP6f in the

mouse dorsal striatum. (Full experimental details and algorithm parameter settings for this and the

following datasets appear in the Methods and Materials section.) CNMF-E extracted 692 putative

neural components from this dataset; PCA/ICA extracted 547 components (starting from 700 initial

components, and then automatically removing false positives using the same criterion as applied in

CNMF-E). Figure 6A shows how CNMF-E decomposes an example frame into four components: the

constant baselines that are invariant over time, the fluctuating background, the denoised neural

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 12 of 37
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signals, and the residuals. We highlight an example neuron by drawing its ROI to demonstrate the

power of CNMF-E in isolating fluorescence signals of neurons from the background fluctuations. For

the selected neuron, we plot the mean fluorescence trace of the raw data and the estimated back-

ground (Figure 6B). These two traces are very similar, indicating that the background fluctuation

dominates the raw data. By subtracting this estimated background component from the raw data,

we acquire a clean trace that represents the neural signal.

To quantify the background effects further, we compute the contribution of each signal compo-

nent in explaining the variance in the raw data. For each pixel, we compute the variance of the raw

data first and then compute the variance of the background-subtracted data. Then the reduced vari-

ance is divided by the variance of the raw data, giving the proportion of variance explained by the

background. Figure 6C (blue) shows the distribution of the background-explained variance over all

pixels. The background accounts for around 90% of the variance on average. We further remove the

denoised neural signals and compute the variance reduction; Figure 6C shows that neural signals

account for less than 10% of the raw signal variance. This analysis is consistent with our observations

that background dominates the fluorescence signal and extracting high-quality neural signals

requires careful background signal removal.

The contours of the spatial footprints inferred by the two approaches (PCA/ICA and CNMF-E) are

depicted in Figure 6D, superimposed on the correlation image of the filtered raw data. The indi-

cated area was cropped from Figure 6A (left). In this case, most neurons inferred by PCA/ICA were

inferred by CNMF-E as well, with the exception of a few components that seemed to be false posi-

tives (judging by their spatial shapes and temporal traces and visual inspection of the raw data

movie; detailed data not shown). However, many realistic components were only detected by

CNMF-E (shown as the green areas in Figure 6D). In these plots, we rank the inferred components

according to their SNRs; the color indicates the relative rank (decaying from red to yellow). We see

that the components missed by PCA/ICA have low SNRs (green shaded areas with yellow contours).

Figure 6E shows the spatial and temporal components of 14 example neurons detected only by

CNMF-E. Here (and in the following figures), for illustrative purposes, we show the calcium traces

before the temporal denoising step. For neurons that are inferred by both methods, CNMF-E shows

significant improvements in the SNR of the extracted cellular signals (Figure 6F), even before the

temporal denoising step is applied. In panel G we randomly select 10 examples and examine their

spatial and temporal components. Compared with the CNMF-E results, PCA/ICA components have

much smaller size, often with negative dips surrounding the neuron (remember that ICA avoids spa-

tial overlaps in order to reduce nearby neurons’ statistical dependences, leading to some loss of sig-

nal strength; see (Pnevmatikakis et al., 2016) for further discussion). The activity traces extracted by

Video 7. The results of CNMF-E in demixing PFC data.

Conventions as in previous video. MP4

DOI: https://doi.org/10.7554/eLife.28728.016

Video 8. Comparison of CNMF-E with PCA/ICA in

demixing overlapped neurons in Figure 7G. Top left:

the recorded fluorescence data. Bottom left: the

residual of the raw video (top left) after subtracting the

estimated background using CNMF-E. Top middle and

top right: the spatiotemporal activity and temporal

traces of three neurons extracted using CNMF-E.

Bottom middle and bottom right: the spatiotemporal

activity and temporal traces of three neurons extracted

using PCA/ICA. MP4

DOI: https://doi.org/10.7554/eLife.28728.017
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CNMF-E are visually cleaner than the PCA/ICA

traces; this is important for reliable event detec-

tion, particularly in low SNR examples. See

Klaus et al., 2017) for additional examples of

CNMF-E applied to striatal data.

Application to data in prefrontal
cortex
We repeat a similar analysis on GCaMP6s data

recorded from prefrontal cortex (PFC, Figure 7),

to quantify the performance of the algorithm in a

different brain area with a different calcium indi-

cator. Again we find that CNMF-E successfully

extracts neural signals from a strong fluctuating

background (Figure 7A), which contributes a

large proportion of the variance in the raw data

(Figure 7B). Similarly as with the striatum data,

PCA/ICA analysis missed many components that

have very weak signals (33 missed components here). For the matched neurons, CNMF-E shows

strong improvements in the SNRs of the extracted traces (Figure 7D). Consistent with our observa-

tion in striatum (Figure 6G), the spatial footprints of PCA/ICA components are shrunk to promote

statistical independence between neurons, while the neurons inferred by CNMF-E have visually rea-

sonable morphologies (Figure 6E). As for calcium traces with high SNRs (Figure 7E, cell 1-6),

CNMF-E traces have smaller noise values, which is important for detecting small calcium transients

(Figure 7E, cell 4). For traces with low SNRs (Figure 7, cell 7-10), it is challenging to detect any cal-

cium events from the PCA/ICA traces due to the large noise variance; CNMF-E is able to visually

recover many of these weaker signals. For those cells missed by PCA/ICA, their traces extracted by

CNMF-E have reasonable morphologies and visible calcium events (Figure 7F).

The demixing performance of PCA/ICA analysis can be relatively weak because it is inherently a

linear demixing method (Pnevmatikakis et al., 2016). Since CNMF-E uses a more suitable nonlinear

matrix factorization method, it has a better capability of demixing spatially overlapping neurons. As

an example, Figure 7G shows three closeby neurons identified by both CNMF-E and PCA/ICA anal-

ysis. PCA/ICA forces its obtained filters to be spatially separated to reduce their dependence (thus

reducing the effective signal strength), while CNMF-E allows inferred spatial components to have

large overlaps (Figure 7G, left), retaining the full signal power. In the traces extracted by PCA/ICA,

the component labeled in green contains many negative ‘spikes,’ which are highly correlated with

the spiking activity of the blue neuron (Figure 7G, yellow). In addition, the green PCA/ICA neuron

has significant crosstalk with the red neuron due to the failure of signal demixing (Figure 7G, cyan);

the CNMF-E traces shows no comparable negative ‘spikes’ or crosstalk. See also Video 8 for further

details.

Application to ventral hippocampus neurons
In the previous two examples, we analyzed data with densely packed neurons, in which the neuron

sizes are all similar. In the next example, we apply CNMF-E to a dataset with much sparser and more

heterogeneous neural signals. The data used here were recorded from amygdala-projecting neurons

expressing GCaMP6f in ventral hippocampus. In this dataset, some neurons that are slightly above

or below the focal plane were visible with prominent signals, though their spatial shapes are larger

than neurons in the focal plane.

This example is somewhat more challenging due to the large diversity of neuron sizes. It is possi-

ble to set multiple parameters to detect neurons of different sizes (or to e.g. differentially detect

somas versus smaller segments of axons or dendrites passing through the focal plane), but for illus-

trative purposes here we use a single neural size parameter to initialize all of the components. This

in turn splits some large neurons into multiple components. Following this crude initialization step,

we updated the background component and then picked the missing neurons from the residual

using a second greedy component initialization step. Next, we ran CNMF-E for three iterations of

Video 9. The results of CNMF-E in demixing ventral

hippocampus data. Conventions as in Video 6. MP4

DOI: https://doi.org/10.7554/eLife.28728.019
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updating the model variables A;C, and B. The first two iterations were performed automatically; we

included manual interventions (e.g. merging/deleting components) before the last iteration, leading

to improved source extraction results (see Video 10 for details on the manual merge and delete

interventions performed here). In this example, we detected 24 CNMF-E components and 24 PCA/

ICA components. The contours of these inferred neurons are shown in Figure 8A. In total we have

20 components detected by both methods (shown in the first three rows of Figure 8B+C); each

method detected extra components that are not detected by the other (the last rows of Figure 8B

Figure 4. CNMF-E outperforms PCA/ICA analysis in extracting individual neurons’ activity from simulated data and is robust to low SNR. (A) The results

of PCA/ICA, CNMF, and CNMF-E in recovering the spatial footprints and temporal traces of three example neurons. The trace colors match the neuron

colors shown in the left. (B) The intermediate residual sum of squares (RSS) values (normalized by the final RSS value), during the CNMF-E model fitting.

The ’refine initialization’ step refers to the modification of the initialization results in the case of high temporal correlation (details in

Materials and methods). (C) The spatial and the temporal cosine similarities between the ground truth and the neurons detected using different

methods. (D) The pairwise correlations between the calcium activity traces extracted using different methods. (E–G) The performances of PCA/ICA and

CNMF-E under different noise levels: the number of missed neurons (E), and the spatial (F) and temporal (G) cosine similarities between the extracted

components and the ground truth. (H) The calcium traces of one example neuron: the ground truth (black), the PCA/ICA trace (blue), the CNMF-E trace

(red) and the CNMF-E trace without being denoised (cyan). The similarity values shown in the figure are computed as the cosine similarity between

each trace and the ground truth (black). Two videos showing the demixing results of the simulated data can be found in Video 4 (SNR reduction

factor = 1) and Video 5 (SNR reduction factor = 6).

DOI: https://doi.org/10.7554/eLife.28728.009
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+C). Once again, the PCA/ICA filters contain

many negative pixels in an effort to reduce spa-

tial overlaps; see components 3 and 5 in

Figure 8A–C, for example. All traces of the

inferred neurons are shown in Figure 8D+E. We

can see that the CNMF-E traces have much lower

noise level and cleaner neural signals in both high

and low SNR settings. Conversely, the calcium

traces of the three extra neurons identified by

PCA/ICA show noisy signals that are unlikely to

be neural responses.

Application to footshock responses
in the bed nucleus of the stria
terminalis (BNST)
Identifying neurons and extracting their temporal

activity is typically just the first step in the analysis

of calcium imaging data; downstream analyses

rely heavily on the quality of this initial source

extraction. We showed above that, compared to

PCA/ICA, CNMF-E is better at extracting activity

dynamics, especially in regimes where neuronal

activities are correlated (c.f. Figure 4D). Using in

vivo electrophysiological recordings, we previ-

ously showed that neurons in the bed nucleus of

the stria terminalis (BNST) show strong responses

to unpredictable footshock stimuli

(Jennings et al., 2013). We therefore measured

calcium dynamics in CaMKII-expressing neurons

that were transfected with the calcium indicator

GCaMP6s in the BNST and analyzed the synchro-

nous activity of multiple neurons in response to unpredictable footshock stimuli. We chose 12 exam-

ple neurons that were detected by both CNMF-E and PCA/ICA methods and show their spatial and

temporal components in Figure 9A–C. The activity around the onset of the repeated stimuli are

aligned and shown as pseudo-colored images in panel D. The median responses of CNMF-E neurons

display prominent responses to the footshock stimuli compared with the resting state before stimuli

onset. In comparison, the activity dynamics extracted by PCA/ICA have relatively low SNR, making it

more challenging to reliably extract footshock responses. Panel E summarizes the results of panel D;

we see that CNMF-E outputs significantly more easily detectable responses than does PCA/ICA.

This is an example in which downstream analyses of calcium imaging data can significantly benefit

from the improvements in the accuracy of source extraction offered by CNMF-E. (sheintuch2017-

tracking recently presented another such example, showing that more neurons can be tracked across

multiple days using CNMF-E outputs, compared to PCA/ICA.)

Conclusion
Microendoscopic calcium imaging offers unique advantages and has quickly become a critical

method for recording large neural populations during unrestrained behavior. However, previous

methods fail to adequately remove background contaminations when demixing single neuron activ-

ity from the raw data. Since strong background signals are largely inescapable in the context of one-

photon imaging, insufficient removal of the background could yield problematic conclusions in

downstream analysis. This has presented a severe and well-known bottleneck in the field. We have

delivered a solution for this critical problem, building on the constrained nonnegative matrix factori-

zation framework introduced in Pnevmatikakis et al., 2016 but significantly extending it in order to

more accurately and robustly remove these contaminating background components.

Video 10. Extracted spatial and temporal components

of CNMF-E at different stages (ventral hippocampal

dataset). After initializing components, we ran matrix

updates and interventions in automatic mode, resulting

in 32 components in total. In the next iteration, we

manually deleted 6 components and automatically

merged neurons as well. In the last iterations, 4

neurons were merged into 2 neurons with manual

verifications. The correlation image in the top left panel

is computed from the background-subtracted data in

the final step. MP4

DOI: https://doi.org/10.7554/eLife.28728.020
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The proposed CNMF-E algorithm can be used in either automatic or semi-automatic mode, and

leads to significant improvements in the accuracy of source extraction compared with previous meth-

ods. In addition, CNMF-E requires very few parameters to be specified, and these parameters are

easily interpretable and can be selected within a broad range. We demonstrated the power of

CNMF-E using data from a wide diversity of brain areas (subcortical, cortical, and deep brain areas),

SNR regimes, calcium indicators, neuron sizes and densities, and hardware setups. Among all these

examples (and many others not shown here), CNMF-E performs well and improves significantly on

the standard PCA/ICA approach. Considering that source extraction is typically just the first step in

calcium imaging data analysis pipelines (Mohammed et al., 2016), these improvements should in

turn lead to more stable and interpretable results from downstream analyses. Further applications of

the CNMF-E approach appear in (Cameron et al., 2016; Donahue and Kreitzer, 2017;

Jimenez et al., 2016; Jimenez et al., 2018; Klaus et al., 2017; Lin et al., 2017; Murugan et al.,

2016; Murugan et al., 2017; Rodriguez-Romaguera et al., 2017; Tombaz et al., 2016; Ung et al.,

Figure 5. CNMF-E is able to demix neurons with high temporal correlations. (A) An example simulation from the

experiments summarized in panel (B), where corrðc1; c2Þ is 0.9: green and red traces correspond to the

corresponding neuronal shapes in the left panels. The blue trace is the mean background fluorescence fluctuation

over the whole FOV. (B) The extraction accuracy of the spatial (a1 and a2) and the temporal (c1 and c2) components

of two close-by neurons, computed via the cosine similarity between the ground truth and the extraction results.

DOI: https://doi.org/10.7554/eLife.28728.012
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2017; Yu et al., 2017; Mackevicius et al., 2017; Madangopal et al., 2017; Roberts et al., 2017;

Ryan et al., 2017; Roberts et al., 2017; Sheintuch et al., 2017).

We have released our MATLAB implementation of CNMF-E as open-source software (https://

github.com/zhoupc/CNMF_E (Zhou, 2017a)). A Python implementation has also been incorporated

into the CaImAn toolbox (Giovannucci et al., 2017b). We welcome additions or suggestions for

modifications of the code, and hope that the large and growing microendoscopic imaging commu-

nity finds CNMF-E to be a helpful tool in furthering neuroscience research.

Figure 6. Neurons expressing GCaMP6f recorded in vivo in mouse dorsal striatum area. (A) An example frame of the raw data and its four components

decomposed by CNMF-E. (B) The mean fluorescence traces of the raw data (black), the estimated background activity (blue), and the background-

subtracted data (red) within the segmented area (red) in (A). The variance of the black trace is about 2x the variance of the blue trace and 4x the

variance of the red trace. (C) The distributions of the variance explained by different components over all pixels; note that estimated background

signals dominate the total variance of the signal. (D) The contour plot of all neurons detected by CNMF-E and PCA/ICA superimposed on the

correlation image. Green areas represent the components that are only detected by CNMF-E. The components are sorted in decreasing order based

on their SNRs (from red to yellow). (E) The spatial and temporal components of 14 example neurons that are only detected by CNMF-E. These neurons

all correspond to green areas in (D). (F) The signal-to-noise ratios (SNRs) of all neurons detected by both methods. Colors match the example traces

shown in (G), which shows the spatial and temporal components of 10 example neurons detected by both methods. Scalebar: 10 s. See Video 6 for the

demixing results.

DOI: https://doi.org/10.7554/eLife.28728.013
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Materials and methods

Algorithm for solving problem (P-S)
In problem (P-S), b0 is unconstrained and can be updated in closed form: b̂0 ¼ 1

T
ð~Y � A � Ĉ � B̂f Þ � 1.

By plugging this update into problem (P-S), we get a reduced problem

A
minimize

k~Y �A � ~Ck2F (P-S’)

subject to A� 0; A is local and sparse;

where ~Y ¼ Y � B̂f � 1

T
Y11T and ~C¼ Ĉ� 1

T
Ĉ11T . We approach this problem using a version of ”hierar-

chical alternating least squares’ (HALS; Cichocki et al., 2007), a standard algorithm for nonnegative

matrix factorization. (Friedrich et al., 2017b) modified the fastHALS algorithm (Cichocki and Phan,

2009) to estimate the nonnegative spatial components A;b and the nonnegative temporal activity

C; f in the CNMF model Y ¼ A �Cþ bf T þE by including sparsity and localization constraints. We

solve a problem similar to the subproblem solved in Friedrich et al. (2017b):

A
minimize

k~Y �A � ~Ck2F (P-S’)

subject to A� 0; A is local and sparse;

where Pk denotes the the spatial patch constraining the nonzero pixels of the k-th neuron and

restricts the candidate spatial support of neuron k. This regularization reduces the number of free

parameters in A, leading to speed and accuracy improvements. The spatial patches can be deter-

mined using a mildly dilated version of the support of the previous estimate of

A (Pnevmatikakis et al., 2016; Friedrich et al., 2017a).

Algorithms for solving problem (P-T)
In problem (P-T), the model variable C 2 R

K�T could be very large, making the direct solution of (P-

T) computationally expensive. Unlike problem (P-S), the problem (P-T) cannot be readily parallelized

because the constraints GðiÞci � 0 couple the entries within each row of C, and the residual term cou-

ples entries across columns. Here, we follow the block coordinate-descent approach used in

(Pnevmatikakis et al., 2016) and propose an algorithm that sequentially updates each ci and b0. For

each neuron, we start with a simple unconstrained estimate of ci, denoted as ŷi, that minimizes the

residual of the spatiotemporal data matrix while fixing other neurons’ spatiotemporal activity and

the baseline term b0,

ŷi ¼ ci2R
T

argmin
kY � Âni � Ĉni� âici� b̂0 � 1

T � B̂f k2F ¼ ĉiþ
âTi �Yres

âTi âi
; (9)

where Yres ¼ Y � ÂĈ� b̂01
T �Bf represents the

residual given the current estimate of the model

variables. Due to its unconstrained nature, ŷi is a

noisy estimate of ci, plus a constant baseline

resulting from inaccurate estimation of b0. Given

ŷi, various deconvolution algorithms can be

applied to obtain the denoised trace ĉi and

deconvolved signal ŝi(Vogelstein et al., 2009;

Pnevmatikakis et al., 2013; Deneux et al.,

2016; Friedrich et al., 2017b; Jewell and Wit-

ten, 2017); in CNMF-E, we use the OASIS algo-

rithm from (Friedrich et al., 2017b). (Note that

the estimation of ci is not dependent on accurate

estimation of b0, because the algorithm for esti-

mating ci will also automatically estimate the

baseline term in ŷi.) After the ci’s are updated,

Video 11. The results of CNMF-E in demixing BNST

data. Conventions as in Video 6. MP4
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we update b0 using the closed-form expression b̂0 ¼ 1

T
ð~Y � Â � Ĉ� B̂f Þ � 1.

Estimating background by solving problem (P-B)
Next we discuss our algorithm for estimating the spatiotemporal background signal by solving prob-

lem (P-B) as a linear regression problem given Â and Ĉ. Since Bf � 1 ¼ 0, we can easily estimate the

constant baselines for each pixel as

Figure 7. Neurons expressing GCaMP6s recorded in vivo in mouse prefrontal cortex. (A–F) follow similar conventions as in the corresponding panels of

Figure 6. (G) Three example neurons that are close to each other and detected by both methods. Yellow shaded areas highlight the negative ‘spikes’

correlated with nearby activity, and the cyan shaded area highlights one crosstalk between nearby neurons. Scalebar: 20 s. See Video 7 for the

demixing results and Video 8 for the comparision of CNMF-E and PCA/ICA in the zoomed-in area of (G).

DOI: https://doi.org/10.7554/eLife.28728.015
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b̂0 ¼
1

T
ðY � Â � ĈÞ � 1: (10)

Next we replace the b0 in (P-B) with this estimate and rewrite (P-B) as

W
minimize

kX�W �Xk2F ; (P-W)

subject to Wij ¼ 0 if dist ðxi;xjÞ=2½ln; lnþ 1Þ;

where X ¼ Y � Â � Ĉ� b̂01
T . Given the optimized Ŵ, our estimation of the fluctuating background is

B̂f ¼ ŴX. The new optimization problem (P-W) can be readily parallelized into d linear regression

problems for each pixel separately. By estimating all row columns of Wi;:, we are able to obtain the

whole background signal as

B̂¼ ŴXþ b̂01
T : (11)

In some cases, X might include large residuals from the inaccurate estimation of the neurons’

Figure 8. Neurons expressing GCaMP6f recorded in vivo in mouse ventral hippocampus. (A) Contours of all neurons detected by CNMF-E (red) and

PCA/ICA method (green). The grayscale image is the local correlation image of the background-subtracted video data, with background estimated

using CNMF-E. (B) Spatial components of all neurons detected by CNMF-E. The neurons in the first three rows are also detected by PCA/ICA, while the

neurons in the last row are only detected by CNMF-E. (C) Spatial components of all neurons detected by PCA/ICA; similar to (B), the neurons in the first

three rows are also detected by CNMF-E and the neurons in the last row are only detected by PCA/ICA method. (D) Temporal traces of all detected

components in (B). ‘Match’ indicates neurons in top three rows in panel (B); ‘Other’ indicates neurons in the fourth row. (E) Temporal traces of all

components in (C). Scalebars: 20 seconds. See Video 9 for demixing results.

DOI: https://doi.org/10.7554/eLife.28728.018
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spatiotemporal activity AC, for example, missing neurons in the estimation. These residuals act as

outliers and distort the estimation of B̂f and b0. To overcome this problem, we use robust least

squares regression (RLSR) via hard thresholding to avoid contaminations from the outliers

(Bhatia et al., 2015). Before solving the problem (P-W), we compute B� ¼ ŴðY � Â � Ĉ� b̂01
TÞ (the

current estimate of the fluctuating background) and then apply a simple clipping preprocessing step

to X:

X
clipped
it ¼

B�it if Xit �B�it þ z �si

Xit otherwise

�
: (12)

Then we update the regression estimate using Xclipped instead of X, and iterate. Here, si is the

standard deviation of the noise at xi and its value can be estimated using the power spectral density

(PSD) method (Pnevmatikakis et al., 2016). As for the first iteration of the model fitting, we set

each B�it ¼
1

j�ij

P
j2�i

~Xjt as the mean of the ~Xjt for all j 2�i. The thresholding coefficient z can be speci-

fied by users, although we have found a fixed default works well across the datasets used here. This

preprocessing removes most calcium transients by replacing those frames with the previously esti-

mated background only. As a result, it increases the robustness to inaccurate estimation of AC, and

in turn leads to a better extraction of AC in the following iterations.

Initialization of model variables
Since problem (P-All) is not convex in all of its variables, a good initialization of model variables is

crucial for fast convergence and accurate extraction of all neurons’ spatiotemporal activity. Previous

methods assume the background component is relatively weak, allowing us to initialize Â and Ĉ

while ignoring the background or simply initializing it with a constant baseline over time. However,

the noisy background in microendoscopic data fluctuates more strongly than the neural signals (c.f.

Figure 6C and Figure 7B), which makes previous methods less valid for the initialization of CNMF-E.

Here, we design a new algorithm to initialize Â and Ĉ without estimating B̂. The whole procedure

is illustrated in Figure 10 and described in Algorithm 1. The key aim of our algorithm is to exploit

the relative spatial smoothness in the background compared to the single neuronal signals visible in

the focal plane. Thus, we can use spatial filtering to reduce the background in order to estimate sin-

gle neurons’ temporal activity, and then initialize each neuron’s spatial footprint given these tempo-

ral traces. Once we have initialized Â and Ĉ, it is straightforward to initialize the constant baseline b0

and the fluctuating background Bf by solving problem (P-B).

Spatially filtering the data
We first filter the raw video data with a customized image kernel (Figure 10A). The kernel is gener-

ated from a Gaussian filter

hðxÞ ¼ exp �
kxk2

2ðl=4Þ2

 !
: (13)

Here, we use hðxÞ to approximate a cell body; the factor of 1=4 in the Gaussian width is chosen to

match a Gaussian shape to a cell of width l. Instead of using hðxÞ as the filtering kernel directly, we sub-

tract its spatial mean (computed over a region of width equal to l) and filter the raw data with

~hðxÞ ¼ hðxÞ� �hðxÞ. The filtered data is denoted as Z 2Rd�T (Figure 10B). This spatial filtering step helps

accomplish two goals: (1) reducing the background B, so that Z is dominated by neural signals (albeit

somewhat spatially distorted) in the focal plane (see Figure 10B as an example); (2) performing a tem-

plate matching to detect cell bodies similar to the Gaussian kernel. Consequently, Z has large values near

the center of each cell body. (However, note that we can not simply e.g. apply CNMF to Z, because the

spatial components in a factorization of the matrix Z will typically no longer be nonnegative, and there-

fore NMF-based approaches can not be applied directly.) More importantly, the calcium traces near the

neuron center in the filtered data preserve the calcium activity of the corresponding neurons because the

filtering step results in a weighted average of cellular signals surrounding each pixel (Figure 10B). Thus,

the fluorescence traces in pixels close to neuron centers in Z can be used for initializing the neurons’
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temporal activity directly. These pixels are defined as seed pixels. We next propose a quantitative

method to rank all potential seed pixels.

Ranking seed pixels
A seed pixel x should have two main features: first, ZðxÞ, which is the filtered trace at pixel x, should have

high peak-to-noise ratio (PNR) because it encodes the calcium concentration ci of one neuron; second, a

seed pixel should have high temporal correlations with its neighboring pixels (e.g. 4 nearest neighbors)

because they share the same ci. We computed twometrics for each of these two features:

PðxÞ ¼
maxtðZðx; tÞÞ

sðxÞ
; LðxÞ ¼

1

4

X
distðx; x0Þ¼1

corr
�
ZðxÞ; Zðx0Þ

�
: (14)

Recall that sðxÞ is the standard deviation of the noise at pixel x; the function corrðÞ refers to Pear-

son correlation here. In our implementation, we usually threshold ZðxÞ by 3sðxÞ before computing

LðxÞ to reduce the influence of the background residuals, noise, and spikes from nearby neurons.

Most pixels can be ignored when selecting seed pixels because their local correlations or PNR values

are too small. To avoid unnecessary searches of the pixels, we set thresholds for both PðxÞ and LðxÞ, and

only pick pixels larger than the thresholds Pmin and Lmin. It is empirically useful to combine both metrics

for screening seed pixels. For example, high PNR values could result from large noise, but these pixels

usually have small LðxÞ because the noise is not shared with neighboring pixels. On the other hand, insuffi-

cient removal of background during the spatial filtering leads to high LðxÞ, but the corresponding PðxÞ

are usually small because most background fluctuations have been removed. So we create another matrix

RðxÞ ¼ PðxÞ � LðxÞ that computes the pixelwise product of PðxÞ and Lðx). We rank all RðxÞ in a descending

order and choose the pixel x� with the largest RðxÞ for initialization.

Algorithm 1. Initialize model variables A and C given the raw data

Require: data Y 2 R
d�T ; neuron size l; the minimum local correlationLmin and theminimum PNR Pmin for selecting seed pixels:

1: h a truncated 2D Gaussian kernel of widthsx ¼ sy ¼
l

4
; h 2 R

l�l . 2D Gaussian kernel

2: ~h h� �h; ~h 2 R
l�l . mean� centered kernel for spatial filtering

3: Z  convðY; hÞ; Z 2 R
d�T . spatially filter the raw data

4: L local cross� correlation image of the filtered data Z; L 2 R
d

5: P PNR image of the filtered data Z; P 2 R
d

6: k  0 . neuron number

7: while True do

8: if LðxÞ � Lmin or PðxÞ � Pmin for all pixel x then

9: break;

10: else

11: k  k þ 1

12: âk  0; a 2 R
d

13: x�  argmaxxðLðxÞ � PðxÞÞ . select a seed pixel

14: �k  fxjx is in the square box of length ð2lþ 1Þsurrounding pixel x�g . crop a small box near x�

15: rðxÞ  corrðZðx; :Þ;Zðx�; :ÞÞ for all x 2 �k ; r 2 R
j�k j

16: yBG  

P
fxjrðxÞ�0:3g Yðx; :ÞP
fxjrðxÞ�0:3g 1

; yBG 2 RT . estimate the background signal

17: ĉk  

P
fxjxðxÞ�0:7g Zðx; :ÞP
fxjrðxÞ�0:7g 1

; ĉk 2 RT . estimate neural signal

18: âkð�kÞ; b̂
ðf Þ; b̂ð0Þ  argmin

a;bðf Þ;bð0Þ kY�k
� ða � ĉTk þ bðf Þ � yTBG þ bð0Þ � 1T Þk2F

19: âk  maxð0; âkÞ . the spatial component of the k� th neuron

20: Y  Y � âk � ĉ
T
k . peel away the neuron0s spatiotemporal activity

21: update LðxÞ and PðxÞ locally given the new Y

22: A ½â1; â2; � � � ; âk�
23: C  ½ĉ1; ĉ2; � � � ; ĉk�

T

24: return A;C

Greedy initialization
Our initialization method greedily initializes neurons one by one. Every time we initialize a neuron,

we will remove its initialized spatiotemporal activity from the raw video data and initialize the next

neuron from the residual. For the same neuron, there are several seed pixels that could be used to
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initialize it. But once the neuron has been initialized from any of these seed pixels (and the spatio-

temporal residual matrix has been updated by peeling away the corresponding activity), the remain-

ing seed pixels related to this neuron have lowered PNR and local correlation. This helps avoid the

duplicate initialization of the same neuron. Also, PðxÞ and LðxÞ have to be updated after each neuron

is initialized, but since only a small area near the initialized neuron is affected, we can update these

quantities locally to reduce the computational cost. This procedure is repeated until the specified

number of neurons have been initialized or no more candidate seed pixels exist.

This initialization algorithm can greedily initialize the required number of neurons, but the sub-

problem of estimating âi given ĉi still has to deal with the large background activity in the residual

matrix. We developed a simple method to remove this background and accurately initialize neuron

shapes, described next. We first crop a ð2lþ 1Þ � ð2lþ 1Þ square centered at x� in the field of view

(Figure 10A–E). Then we compute the temporal correlation between the filtered traces of pixel x�

and all other pixels in the patch (Figure 10D). We choose those pixels with small temporal correla-

tions (e.g. 0.3) as the neighboring pixels that are outside of the neuron (the green contour in

Figure 10D). Next, we estimate the background fluctuations as the median values of these pixels for

each frame in the raw data (Figure 10E). We also select pixels that are within the neuron by select-

ing correlation coefficients larger than 0:7, then ĉi is refined by computing the mean filtered traces

of these pixels (Figure 10E). Finally, we regress the raw fluorescence signal in each pixel onto three

sources: the neuron signal (Figure 10E), the local background fluctuation (Figure 10F), and a con-

stant baseline. Our initial estimate of âi is given by the regression weights onto ĉi in Figure 10F.

Modifications for high temporal or spatial correlation
The above procedure works well in most experimental datasets as long as neurons are not highly

spatially overlapped and temporally correlated. However, in a few extreme cases, this initialization

may lead to bad local minima. We found that two practical modifications can lead to improved

results.

High temporal correlation, low spatial overlaps
The greedy initialization procedure assumes that closeby neurons are not highly correlated. If this

assumption fails, CNMF-E will first merge nearby neurons into one component for explaining the

shared fluctuations, and then the following initialized components will only capture the residual sig-

nals of each neuron. Our solution to this issue relies on our accurate background removal procedure,

after which we simply re-estimate each neural trace ci as a weighted fluorescence trace of the back-

ground-subtracted video ðY � B̂f � b̂01
TÞ,

ĉi ¼
~aT � ðY � B̂f � b̂01

TÞ

~aT � ~a
; (15)

where ~ai only selects pixels with large weights by thresholding the estimated âi with maxðâiÞ=2 (this

reduces the contributions from smaller neighboring neurons). This strategy improves the extraction

of individual neurons’ traces in the high correlation scenarios and the spatial footprints can be cor-

rected in the following step of updating Â. Figure 4B and Figure 5 illustrate this procedure.

High spatial overlaps, low temporal correlation
CNMF-E may initialize components with shared temporal traces because they have highly overlap-

ping areas. We solve this problem by de-correlating their traces (following a similar approach in

[Pnevmatikakis et al., 2016]). We start by assuming that neurons with high spatial overlap do not

fire spikes within the same frame. If so, only the inferred spiking trace with the largest value is kept

and the rest will be set to 0. Then we initialize each ci given these thresholded spiking traces and the

corresponding AR coefficients.

Interventions
We use iterative matrix updates to estimate model variables in CNMF-E. This strategy gives us the

flexibility of integrating prior information on neuron morphology and temporal activity during the

model fitting. The resulting interventions (which can in principle be performed either automatically

or under manual control) can in turn lead to faster convergence and more accurate source
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Figure 9. Neurons extracted by CNMF-E show more reproducible responses to footshock stimuli, with larger signal sizes relative to the across-trial

variability, compared to PCA/ICA. (A–C) Spatial components (A), spatial locations (B) and temporal components (C) of 12 example neurons detected by

both CNMF-E and PCA/ICA. (D) Calcium responses of all example neurons to footshock stimuli. Colormaps show trial-by-trial responses of each

neuron, extracted by CNMF-E (top, red) and PCA/ICA (bottom, green), aligned to the footshock time. The solid lines are medians of neural responses

over 11 trials and the shaded areas correpond to median 	1median absolute deviation (MAD). Dashed lines indicate the shock timings. (E) Scatter plot

of peak-to-MAD ratios for all response curves in (D). For each neuron, Peak is corrected by subtracting the mean activity within 4 s prior to stimulus

onset and MAD is computed as the mean MAD values over all timebins shown in (D). The red line shows y ¼ x. Scalebars: 10 s. See Video 11 for

demixing results.
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extraction. We integrate 5 interventions in our CNMF-E implementation. Following these interven-

tions, we usually run one more iteration of matrix updates.

Merge existing components
When a single neuron is split mistakenly into multiple components, a merge step is necessary to

rejoin these components. If we can find all split components, we can superimpose all their spatio-

temporal activities and run rank-1 NMF to obtain the spatial and temporal activity of the merged

neuron. We automatically merge components for which the spatial and temporal components are

correlated above certain thresholds. Our code also provides methods to manually specify neurons to

be merged based on human judgment.

Split extracted components
When highly correlated neurons are mistakenly merged into one component, we need to use spatial

information to split into multiple components according to neurons’ morphology. Our current imple-

mentation of component splitting requires users to manually draw ROIs for splitting the spatial foot-

print of the extracted component. Automatic methods for ROI segmentation (Apthorpe et al.,

2016; Pachitariu et al., 2013) could be added as an alternative in future implementations.

Figure 10. Illustration of the initialization procedure. (A) Raw video data and the kernel for filtering the video data. (B) The spatially high-pass filtered

data. (C) The local correlation image and the peak-to-noise ratio (PNR) image calculated from the filtered data in (B). (D) The temporal correlation

coefficients between the filtered traces (B) of the selected seed pixel (the red cross) and all other pixels in the cropped area as shown in (A–C). The red

and green contour correspond to correlation coefficients equal to 0.7 and 0.3, respectively. (E) The estimated background fluctuation yBGðtÞ (green) and

the initialized temporal trace ĉiðtÞ of the neuron (red). yBGðtÞ is computed as the median of the raw fluorescence traces of all pixels (green area) outside

of the green contour shown in (D) and ĉiðtÞ is computed as the mean of the filtered fluorescence traces of all pixels inside the red contour. (F) The

decomposition of the raw video data within the cropped area. Each component is a rank-1 matrix and the related temporal traces are estimated in (E).

The spatial components are estimated by regressing the raw video data against these three traces. See Video 3 for an illustration of the initialization

procedure.

DOI: https://doi.org/10.7554/eLife.28728.023
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Remove false positives
Some extracted components have spatial shapes that do not correspond to real neurons or temporal

traces that do not correspond to neural activity. These components might explain some neural sig-

nals or background activity mistakenly. Our source extraction can benefit from the removal of these

false positives. This can be done by manually examining all extracted components, or in principle

automatically by training a classifier for detecting real neurons. The current implementation relies on

visual inspection to exclude false positives. We also rank neurons based on their SNRs and set a cut-

off to discard all extracted components that fail to meet this cutoff. As with the splitting step,

removing false positives could also potentially use automated ROI detection algorithms in the future.

See Video 10 for an example involving manual merge and delete operations.

Pick undetected neurons from the residual
If all neural signals and background are accurately estimated, the residual of the CNMF-E model

Yres ¼ Y � ÂĈ � B̂ should be relatively spatially and temporally uncorrelated. However, the initializa-

tion might miss some neurons due to large background fluctuations and/or high neuron density.

After we estimate the background B̂ and extract a majority of the neurons, those missed neurons

have prominent fluorescent signals left in the residual. To select these undetected neurons from the

residual Yres, we use the same algorithm as for initializing neurons from the raw video data, but typi-

cally now the task is easier because the background has been removed.

Post-process the spatial footprints
Each single neuron has localized spatial shapes and including this prior into the model fitting of

CNMF-E, as suggested in (Pnevmatikakis et al., 2016), leads to better extraction of spatial foot-

prints. In the model fitting step, we constrain A to be sparse and spatially localized. These con-

straints do give us compact neuron shapes in most cases, but in some cases there are still some

visually abnormal components detected. We include a heuristic automated post-processing step

after each iteration of updating spatial shapes (P-S). For each extracted neuron Að:; kÞ, we first con-

vert it to a 2D image and perform morphological opening to remove isolated pixels resulting from

noise (Haralick et al., 1987). Next we label all connected components in the image and create a

mask to select the largest component. All pixels outside of the mask in Að:; iÞ are set to be. This

post-processing induces compact neuron shapes by removing extra pixels and helps avoid mistak-

enly explaining the fluorescence signals of the other neurons.

Table 1. Variables used in the CNMF-E model and algorithm. R: real numbers; Rþ: positive real

numbers; N: natural numbers; Nþ: positive integers.

Name Description Domain

d number of pixels Nþ

T number of frames Nþ

K number of neurons N

Y motion corrected video data R
d�T
þ

A spatial footprints of all neurons R
d�K
þ

C temporal activities of all neurons R
K�T
þ

B background activity R
d�T
þ

E observation noise R
d�T

W weight matrix to reconstruct B using neighboring pixels R
d�d

b0 constant baseline for all pixels R
d
þ

xi spatial location of the ith pixel N
2

si standard deviation of the noise at pixel xi Rþ
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Further algorithmic details
The simplest pipeline for running CNMF-E includes the following steps:

1. Initialize Â; Ĉ using the proposed initialization procedure.

2. Solve problem (P-B) for updates of b̂0 and B̂f .

3. Iteratively solve problem (P-S) and (P-T) to update Â; ~ Ĉ and b0.
4. If desired, apply interventions to intermediate results.
5. Repeat steps 2, 3, and 4 until the inferred components are stable.

In practice, the estimation of the background B (step 2) often does not vary greatly from iteration

to iteration and so this step usually can be run with fewer iterations to save time. In practice, we also

use spatial and temporal decimation for improved speed, following (Friedrich et al., 2017a). We

first run the pipeline on decimated data to get good initializations, then we up-sample the results

Â; Ĉ to the original resolution and run one iteration of steps (2-3) on the raw data. This strategy

improves on processing the raw data directly because downsampling increases the signal-to-noise

ratio and eliminates many false positives.

Step 4 provides a fast method for correcting abnormal components without redoing the whole

analysis. (This is an important improvement over the PCA/ICA pipeline, where if users encounter

poor estimated components it is necessary to repeat the whole analysis with new parameter values,

which may not necessarily yield improved cell segmentations.) The interventions described here

themselves can be independent tasks in calcium imaging analysis; with further work we expect many

of these steps can be automated. In our interface for performing manual interventions, the most fre-

quently used function is to remove false positives. Again, components can be rejected following

visual inspection in PCA/ICA analysis, but the performance of CNMF-E can be improved with further

iterations after removing false positives, while this is not currently an option for PCA/ICA.

We have also found a two-step initialization procedure useful for detecting neurons: we first start

from relatively high thresholds of Pmin and Lmin to initialize neurons with large activity from the raw

video data; then we estimate the background components by solving problem (P-B); finally we can

pick undetected neurons from the residual using smaller thresholds. We can terminate the model

iterations when the residual sum of squares (RSS) stabilizes (see Figure 4B), but this is seldom used

in practice because computing the RSS is time-consuming. Instead we usually automatically stop the

iterations after the number of detected neurons stabilizes. If manual interventions are performed, we

typically run one last iteration of updating B;A and C sequentially to further refine the results.

Parameter selection
Table 2 shows 5 key parameters used in CNMF-E. All of these parameters have interpretable mean-

ing and can be easily picked within a broad range. The parameter l controls the size of the spatial fil-

ter in the initialization step and is chosen as the diameter of a typical neuron in the FOV. As long as l

is much smaller than local background sources, the filtered data can be used for detecting seed pix-

els and then initializing neural traces. The distance between each seed pixel and its selected neigh-

bors ln has to be larger than the neuron size l and smaller than the spatial range of local background

sources; in practice, this range is fairly broad. We usually set ln as 2l. To determine the thresholds

Pmin and Lmin, we first compute the correlation image and PNR image and then visually select very

weak neurons from these two images. Pmin and Lmin are determined to ensure that CNMF-E is able

to choose seed pixels from these weak neurons. Small Pmin and Lmin yield more false positive neu-

rons, but they can be removed in the intervention step. Finally, in practice, our results are not sensi-

tive to the selection of the outlier parameter z, thus we frequently set it as 10.

Complexity analysis
In step 1, the time cost is mainly determined by spatial filtering, resulting in OðdTÞ time. As for the

initialization of a single neuron given a seed pixel, it is only (OðTÞ). Considering the fact that the num-

ber of neurons is typically much smaller than the number of pixels in this data, the complexity for

step one remains OðdTÞ. In step 2, the complexity of estimating b̂0 is OðdTÞ and estimating B̂f scales

linearly with the number of pixels d. For each pixel, the computational complexity for estimating Wi;:

is OðTÞ. Thus, the computational complexity in updating the background component is OðdTÞ. In

step 3, the computational complexities of solving problems (P-S) and (P-T) have been discussed in
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previous literature (Pnevmatikakis et al., 2016) and they scale linearly with pixel number d and time

T, that is, OðdTÞ. For the interventions, the one with the largest computational cost is picking unde-

tected neurons from the residual, which is the same as the initialization step. Therefore, the compu-

tational cost for step 4 is OðdTÞ. To summarize, the complexity for running CNMF-E is OðdTÞ, that is,

the method scales linearly with both the number of pixels and the total recording time.

Implementations
Our MATLAB implementation supports running CNMF-E in three different modes that are optimized

for different datasets: single-mode, patch-mode and multi-batch-mode.

Single-mode is a naive implementation that loads data into memory and fits the model. It is fast

for processing small datasets (<1 GB).

For larger datasets, many computers have insufficient RAM for loading all data into memory and

storing intermediate results. Patch-mode CNMF-E divides the whole FOV into multiple small patches

and maps data to the hard drive (Giovannucci et al., 2017b). The data within each patch are loaded

only when we process that patch. This significantly reduces the memory consumption. More impor-

tantly, this mode allows running CNMF-E in parallel on multi-core CPUs, yielding a speed-up roughly

proportional to the number of available cores.

Multi-batch mode builds on patch-mode and is optimized for even larger datasets, especially

data collected over multiple sessions/days. This mode segments data into multiple batches tempo-

rally and assumes that the neuron footprints A are shared across all batches. We process each batch

using patch mode and perform partial weighted updates on A given the traces C obtained in each

batch.

All modes also include a logging system for keeping track of manual interventions and intermedi-

ate operations.

The Python implementation is similar; see Giovannucci et al., 2017b) for full details.

Running time
To provide a sense of the running time of the different steps of the algorithm, we timed the code on

the simulation data shown in Figure 4. This dataset is 253� 316 pixels �2000 frames. The analyses

were performed on a desktop with Intel Xeon CPU E5-2650 v4 @2.20 GHz and 128 GB RAM running

Ubuntu 16.04. We used a parallel implementation for performing the CNMF-E analysis, with patch

size 64� 64 pixels, using up to 12 cores. PCA/ICA took ~ 211 seconds to converge, using 250 PCs

and 220 ICs. CNMF-E spent 55 s for initialization, 1 s for merging and deleting components, 110 s

for the first round of the background estimation and 40 s in the following updates, 8 s for picking

neurons from the residual, and 10 s per iteration for updating spatial (A) and temporal (C) compo-

nents, resulting in a total of 258 s.

Finally, Table 3 shows the running time of processing the four experimental datasets.

Simulation experiments
Details of the simulated experiment of Figure 2
The field of view was 256� 256, with 1000 frames. We simulated 50 neurons whose shapes were sim-

ulated as spherical 2-D Gaussian. The neuron centers were drawn uniformly from the whole FOV and

the Gaussian widths sx and sy for each neuron was also randomly drawn from N
�
l
4
; ð 1

10

l
4
Þ2
�
, where

l ¼ 12 pixels. Spikes were simulated from a Bernoulli process with probability of spiking per timebin

Table 2. Optional user-specified parameters.

Name Description Default values Used in

l size of a typical neuron soma in the FOV 30�m Algorithm 1

ln the distance between each pixel and its neighbors 60�m Problem (P-B)

Pmin the minimum peak-to-noise ratio of seed pixels 10 Algorithm 1

Lmin the minimum local correlation of seed pixels 0.8 Algorithm 1

z the ratio between the outlier threshold and the noise 10 Problem (P-B)

DOI: https://doi.org/10.7554/eLife.28728.024
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0:01 and then convolved with a temporal kernel gðtÞ ¼ expð�t=tdÞ � expð�t=trÞ, with fall time td ¼ 6

timebin and rise time tr ¼ 1 timebin. We simulated the spatial footprints of local backgrounds as 2-D

Gaussian as well, but the mean Gaussian width is 5 times larger than the neurons’ widths. As for the

spatial footprint of the blood vessel in Figure 2A, we simulated a cubic function and then convolved

it with a 2-D Gaussian (Gaussian width=3pixel). We use a random walk model to simulate the tempo-

ral fluctuations of local background and blood vessel. For the data used in Figure 2A–H, there were

23 local background sources; for Figure 2I, we varied the number of background sources.

We used the raw data to estimate the background in CNMF-E without subtracting the neural sig-

nals ÂĈ in problem (P-B). We set ln ¼ 15 pixels and left the remaining parameters at their default val-

ues. The plain NMF was performed using the built-in MATLAB function nnmf, which utilizes random

initialization.

Details of the simulated experiment of Figure 3, Figure 4 and Figure 5
We used the same simulation settings for both Figure 3 and Figure 4. The field of view was 253�

316 and the number of frames was 2000. We simulated 200 neurons using the same method as the

simulation in Figure 2, but for the background we used the spatiotemporal activity of the back-

ground extracted using CNMF-E from real experimental data (data not shown). The noise level S

was also estimated from the data. When we varied the SNR in Figure 4D–G, we multiplied S with an

SNR reduction factor.

We set l ¼ 12 pixels to create the spatial filtering kernel. As for the thresholds used for determin-

ing seed pixels, we varied them for different SNR settings by visually checking the corresponding

local correlation images and PNR images. The selected values were Lmin ¼ ½0:9; 0:8; 0:8; 0:8; 0:6; 0:6�

and Pmin ¼ ½15; 10; 10; 8; 6; 6� for different SNR reduction factors ½1; 2; 3; 4; 5; 6�. For PCA/ICA analysis,

we set the number of PCs and ICs as 600 and 300, respectively.

The simulation in Figure 5 only includes two neurons (as seen in Figure 3E) using the same simu-

lation parameters. We replaced their temporal traces c1 and c2 with ð1� �Þc1 þ �c3 and

ð1� �Þc2 þ �c3, where � is tuned to generate different correlation levels (g), and c3 is simulated in the

same way as c1 and c2. We also added a new background source whose temporal profile is c3 to

increase the neuron-background correlation as � increases. CNMF-E was run as in Figure 4. We

used 20 PCs and ICs for PCA/ICA.

In vivo microendoscopic imaging and data analysis
For all experimental data used in this work, we ran both CNMF-E and PCA/ICA. For CNMF-E, we

chose parameters so that we initialized about 10–20% extra components, which were then merged

or deleted (some automatically, some under manual supervision) to obtain the final estimates. Exact

parameter settings are given for each dataset below. For PCA/ICA, the number of ICs were selected

to be slightly larger than our extracted components in CNMF-E (as we found this led to the best

results for this algorithm), and the number of PCs was selected to capture over 90% of the signal var-

iance. The weight of temporal information in spatiotemporal ICA was set as 0.1. After obtaining

PCA/ICA filters, we again manually removed components that were clearly not neurons based on

neuron morphology.

We computed the SNR of extracted cellular traces to quantitatively compare the performances of

two approaches. For each cellular trace y, we first computed its denoised trace c using the selected

deconvolution algorithm (here, it is thresholded OASIS); then the SNR of y is

Table 3. Running time (sec) for processing the 4 experimental datasets.

Dataset Striatum
PFC

Hippocampus
BNST

Size (x � y � t) 256 � 256 � 6000 175 � 184 � 9000 175 � 184 � 9000 175 � 184 � 9000

(# PCs, # ICs) (2000, 700) (275, 250) (100, 50) (200, 150)

PFC/ICA 986 181 174 52

CNMF-E 726 221 225 435

DOI: https://doi.org/10.7554/eLife.28728.025

Zhou et al. eLife 2018;7:e28728. DOI: https://doi.org/10.7554/eLife.28728 30 of 37

Tools and resources Neuroscience



SNR¼
kck2

2

ky� ck2
2

: (16)

For PCA/ICA results, the calcium signal y of each IC is the output of its corresponding spatial fil-

ter, while for CNMF-E results, it is the trace before applying temporal deconvolution, that is, ŷi in

Equation (9). All the data can be freely accessed online (Zhou et al., 2017).

Dorsal striatum data
Expression of the genetically encoded calcium indicator GCaMP6f in neurons was achieved using a

recombinant adeno-associated virus (AAV) encoding the GCaMP6f protein under transcriptional con-

trol of the synapsin promoter (AAV-Syn-GCaMP6f). This viral vector was packaged (Serotype 1) and

stored in undiluted aliquots at a working concentration of >1012 genomic copies per ml at �80
C

until intracranial injection. 500 �l of AAV1-Syn-GCaMP6f was injected unilaterally into dorsal striatum

(0:6 mm anterior to Bregma, 2:2mm lateral to Bregma, 2:5mm ventral to the surface of the brain). 1

week post-injection, a 1mm gradient index of refraction (GRIN) lens was implanted into dorsal stria-

tum ~ 300�m above the center of the viral injection. Three weeks after the implantation, the GRIN

lens was reversibly coupled to a miniature one-photon microscope with an integrated 475nm LED

(Inscopix). Using nVistaHD Acquisition software, images were acquired at 30 frames per second with

the LED transmitting ~ 0:1 to 0:2 mW of light while the mouse was freely moving in an open-field

arena. Images were down sampled to 10Hz and processed into TIFFs using Mosaic software. All

experimental manipulations were performed in accordance with protocols approved by the Harvard

Standing Committee on Animal Care following guidelines described in the US NIH Guide for the

Care and Use of Laboratory Animals.

The parameters used in running CNMF-E were: l ¼ 13 pixels, ln ¼ 18 pixels, Lmin ¼ 0:7, and Pmin ¼

7:728 components were initialized from the raw data in the first pass before subtracting the back-

ground, and then additional components were initialized in a second pass. Highly correlated nearby

components were merged and false positives were removed using the automated approach

described above. In the end, we obtained 692 components.

Prefrontal cortex data
Cortical neurons were targeted by administering two microinjections of 300 ul of AAV-DJ-CamkIIa-

GCaMP6s (titer: 5.3 � 1012, 1:6 dilution, UNC vector core) into the prefrontal cortex (PFC) (coordi-

nates relative to bregma; injection 1: +1.5 mm AP, 0.6 mm ML, �2.4 ml DV; injection 2: +2.15 AP,

0.43 mm ML, �2.4 mm DV) of an adult male wild type (WT) mice. Immediately following the virus

injection procedure, a 1 mm diameter GRIN lens implanted 300 um above the injection site (coordi-

nates relative to bregma: +1.87 mm AP, 0.5 mm ML, �2.1 ml DV). After sufficient time had been

allowed for the virus to express and the tissue to clear underneath the lens (3 weeks), a baseplate

was secured to the skull to interface the implanted GRIN lens with a miniature, integrated micro-

scope (nVista, 473 nm excitation LED, Inscopix) and subsequently permit the visualization of Ca2

+signals from the PFC of a freely behaving mouse. The activity of PFC neurons were recorded at 15

Hz over a 10 min period (nVista HD Acquisition Software, Inscopix) while the test subject freely

explored an empty novel chamber. Acquired data was spatially down sampled by a factor of 2,

motion corrected, and temporally down sampled to 15 Hz (Mosaic Analysis Software, Inscopix). All

procedures were approved by the University of North Carolina Institutional Animal Care and Use

Committee (UNC IACUC).

The parameters used in running CNMF-E were: l ¼ 13 pixels, ln ¼ 18 pixels, Lmin ¼ 0:9, and

Pmin ¼ 15. There were 169 components initialized in the first pass and we obtained 225 components

after running the whole CNMF-E pipeline.

Ventral hippocampus data
The calcium indicator GCaMP6f was expressed in ventral hippocampal-amygdala projecting neurons

by injecting a retrograde canine adeno type 2-Cre virus (CAV2-Cre; from Larry Zweifel, University of

Washington) into the basal amydala (coordinates relative to bregma: �1.70 AP, 3.00 mm ML, and

�4.25 mm DV from brain tissue at site), and a Cre-dependent GCaMP6f adeno associated virus

(AAV1-flex-Synapsin-GCaMP6f, UPenn vector core) into ventral CA1 of the hippocampus
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(coordinates relative to bregma: �3.16 mm AP, 3.50 mm ML, and �3.50 mm DV from brain tissue at

site). A 0.5 mm diameter GRIN lens was then implanted over the vCA1 subregion and imaging

began 3 weeks after surgery to allow for sufficient viral expression. Mice were then imaged with

Inscopix miniaturized microscopes and nVistaHD Acquisition software as described above; images

were acquired at 15 frames per second, while mice explored an anxiogenic Elevated Plus Maze

arena. Videos were motion corrected and spatially downsampled using Mosaic software. All proce-

dures were performed in accordance with protocols approved by the New York State Psychiatric

Institutional Animal Care and Use Committee following guidelines described in the US NIH Guide

for the Care and Use of Laboratory Animals.

The parameters used in running CNMF-E were: l ¼ 15 pixels, ln ¼ 30 pixels, z ¼ 10, Lmin ¼ 0:9, and

Pmin ¼ 15. We first temporally downsampled the data by 2. Then we applied CNMF-E to the down-

sampled data. There were 53 components initialized. After updating the background component,

the algorithm detected six more neurons from the residual. We merged most of these components

and deleted false positives. In the end, there were 24 components left. The intermediate results

before and after each manual intervention are shown in Video 10.

BNST data with footshock
Calcium indicator GCaMP6s was expressed within CaMKII-expressing neurons in the BNST by inject-

ing the recombinant adeno-associated virus AAVdj-CaMKII-GCaMP6s (packaged at UNC Vector

Core) into the anterior dorsal portion of BNST (coordinates relative to bregma: 0.10 mm AP, �0.95

mm ML, �4.30 mm DV). A 0.6 mm diameter GRIN lens was implanted above the injection site within

the BNST. As described above, images were acquired using a detachable miniature one-photon

microscope and nVistaHD Acquisition Software (Inscopix). Images were acquired at 20 frames per

second while the animal was freely moving inside a sound-attenuated chamber equipped with a

house light and a white noise generator (Med Associates). Unpredictable foot shocks were delivered

through metal bars in the floor as an aversive stimulus during a 10 min session. Each unpredictable

foot shock was 0.75 mA in intensity and 500 ms in duration on a variable interval (VI-60). As

described above, images were motion corrected, downsampled and processed into TIFFs using

Mosaic Software. These procedures were conducted in adult C57BL/6J mice (Jackson Laboratories)

and in accordance with the Guide for the Care and Use of Laboratory Animals, as adopted by the

NIH, and with approval from the Institutional Animal Care and Use Committee of the University of

North Carolina at Chapel Hill (UNC).

The parameters used in running CNMF-E were: l ¼ 15 pixels, ln ¼ 23 pixels, z ¼ 10, Lmin ¼ 0:9, and

Pmin ¼ 15. There were 149 components initialized and we detected 29 more components from the

residual after estimating the background. there were 127 components left after running the whole

pipeline.

Code availability
All analyses were performed with custom-written MATLAB code. MATLAB implementations of the

CNMF-E algorithm can be freely downloaded from https://github.com/zhoupc/CNMF_E

(Zhou, 2017a). We also implemented CNMF-E as part of the Python package CaImAn

(Giovannucci et al., 2017b), a computational analysis toolbox for large-scale calcium imaging and

behavioral data (https://github.com/simonsfoundation/CaImAn [Giovannucci et al., 2017a]).

The scripts for generating all figures and the experimental data in this paper can be accessed

from https://github.com/zhoupc/eLife_submission (Zhou, 2017b).
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