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Bandwidth Analysis of Multiport Radio-Frequency
Systems—Part I

Ding Nie, Student Member, IEEE, and Bertrand M. Hochwald, Fellow, IEEE

Abstract—When multiple radio-frequency sources are con-
nected to multiple loads through a passive multiport matching
network, perfect power transfer to the loads across all frequencies
is generally impossible. In this two-part paper, we provide
analyses of bandwidth over which power transfer is possible.
Our principal tools include broadband multiport matching upper
bounds, presented herein, on the integral over all frequency of
the logarithm of a suitably defined power loss ratio. In general,
the larger the integral, the larger the bandwidth over which
power transfer can be accomplished. We apply these bounds in
several ways: We show how the number of sources and loads,
and the coupling between loads, affect achievable bandwidth. We
analyze the bandwidth of networks constrained to have certain
architectures. We characterize systems whose bandwidths scale
as the ratio between the numbers of loads and sources.

The first part of the paper presents the bounds and uses them
to analyze loads whose frequency responses can be represented by
analytical circuit models. The second part analyzes the bandwidth
of realistic loads whose frequency responses are available numer-
ically. We provide applications to wireless transmitters where the
loads are antennas being driven by amplifiers. The derivations
of the bounds are also included.

Index Terms—Bandwidth, Bode-Fano bounds, broadband
matching bounds, non-reciprocal networks, passive matching
networks, radio-frequency coupling

I. INTRODUCTION

Analyses of the bandwidth over which power can be
transferred in radio-frequency (RF) systems are often limited
to a single source and load because of the complexity in
manipulating multiport matching networks and multiple loads.
Factors that contribute to the complexity include defining
appropriate measures of bandwidth when there are many
sources and loads, and the difficulty of analyzing coupling
between loads. We propose methods of analysis that utilize
broadband performance bounds applicable to a wide class
of passive networks and an arbitrary number of sources and
dissipative loads.

The ability to transfer power from sources to loads relies,
in part, on the ability to match the impedance of the sources
to the frequency-dependent impedance ZL(jω) of the loads
over a broad frequency range. Bandwidth upper bounds are
of great help in determining the best achievable bandwidth
performance for a given load. Classical Bode-Fano results [1],
[2] on the integral of the logarithm of the reflection coefficient
can be used for such bounds when there is a single source
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and load. When there are multiple loads, analyses are often
limited to special cases. For example, bandwidth bounds for
loads with some specific structures are discussed in [3]–[6],
and examples of analyses of multiport systems include [7], [8].
Often, multiple reflection coefficients are defined and analyzed
separately using scalar Bode-Fano theory. However, as shown
in [9], a physically-meaningful single reflection coefficient can
be defined and analyzed when there are N arbitrarily coupled
loads driven by N sources (N > 1).

In this two-part paper, we present a bandwidth analysis
of matched multiport RF systems that builds on bandwidth
bounds in [9]. The first part presents the bounds and applies
them to systems that can be expressed in closed form. The
second part provides proofs of the bounds and applies them
to systems whose scattering parameters are expressed numer-
ically. The bounds in [9] apply to loads that are modeled as
perfect reflectors as ω → ∞. We extend these results, and
present bounds that apply to loads that are reflectors at any
frequency, including ω = 0. We allow the matching network
and loads to be non-reciprocal. The network can also be lossy.
We permit the number of sources and loads to be unequal.

By applying bandwidth bounds, we demonstrate how the
number of sources, loads, and the coupling between loads
affect the achievable bandwidth of a matched multiport system.
We prove that bandwidth bounds generally scale as N/M ,
where M is the number of sources and N is the number of
loads. This result also holds in the presence of coupling, as
long as it is not “too strong”. This suggests that unlimited
bandwidth is theoretically achievable by simply adding more
loads for a fixed number of sources. As is shown, both the
loads and the network architecture play an important role in
achieving linear-in-N performance of the overall system, for
a given M .

We also propose a bandwidth analysis for situations where a
portion of the network is constrained to have a certain structure
while other portions are unconstrained. This situation occurs in
beamforming applications since a beamforming antenna array
can be thought of as N loads driven with prescribed amplitude
and phase relationships by a single source.

The basic premise of broadband matching is that when
a source and load are connected to each other, even if the
reflection coefficient is made small at a design frequency
ω = ωd, it is generally not small for all ω [10]. When there
are multiple sources and loads, there is no single reflection
coefficient since power sent from source i may, through
coupling, return to source j 6= i. In [9], a definition of a
multiport reflection coefficient that takes this phenomenon
into account is used to derive bounds on the ability to match
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multiple sources and loads over all ω with a lossless network.
We expand this definition to include lossy networks.

Of particular interest is the application to loads that are
closely-spaced antennas, such as may be found in multiple-
input multiple-output (MIMO) communication systems. The
“densification” of portable wireless communication devices,
including cellular telephones, with multiple transmitter and
receiver chains in close proximity, makes coupling difficult
to avoid. Furthermore, there are situations where there are
more antennas than RF chains [11]. Our analysis methods
quantify the bandwidth attainable in the transmitters of these
MIMO systems, where the RF amplifiers are treated as sources
and the coupled antennas are the loads. Part II, in particular,
shows how realistic antennas are modeled to obtain accurate
bandwidth results.

We consider an RF system where M sources drive N
loads through an arbitrary passive (M + N)-port matching
network. The M input ports on the multiport network connect
to the sources, and N output ports connect to the loads.
No relationship between M and N is assumed. Our goal
is to transfer maximum power from sources with known
characteristic impedances to loads with known frequency-
dependent impedances. The loads are dissipative and poten-
tially non-reciprocal; the network can be lossy and also non-
reciprocal. The quality of match between the sources and the
loads at a frequency ω is then determined by the power lost
either because it is returned to the sources or because it is
dissipated in the network. We derive and utilize bounds on
this quality metric when an arbitrary passive (M + N)-port
network is used. Our bounds can readily be calculated from
the frequency-dependent S-matrix of the loads.

We do not consider noise in our analysis, and hence our
methods apply more to transmitters driving loads than to
receivers, where the noise figures of the input amplifiers play
an important role. We are interested in the “input bandwidth”
of the loads and do not evaluate the ability of the loads to use
their input power efficiently.

When the loads are coupled, there is only a nominal
association of source i with load i for i = 1, . . . , N since
source i potentially also stimulates load j 6= i if the two
loads are coupled. In minimizing the amount of lost power,
a matching network between the sources and loads there-
fore could connect any source with any of the loads, and
conversely; examples include decoupling networks [12]–[15],
which ensure all power from the sources is delivered to the
loads at a design frequency. An effective network prevents
reflection by decoupling the loads from each other over as
wide a frequency range as possible. Generally, for a given
design frequency ωd, there are frequencies ω1 < ωd and
ω2 > ωd, where the fractional power delivered to the loads
falls below some prescribed threshold. The larger ω2 − ω1 is,
the larger the bandwidth.

Techniques involving active non-Foster circuits [16], [17]
and adaptive matching [18]–[21] are not discussed. Non-Foster
circuits such as those used to realize negative capacitance
and inductance values can theoretically cancel the reactive
Foster behavior in the loads, and achieve an impedance match
between the sources and the loads over a wider frequency
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Fig. 1. An RF system where M uncorrelated sources drive N loads having S-
matrix SL through a passive (M+N)-port matching network S (the complex-
frequency argument s is omitted). We use SLM to denote the S-matrix as
seen at the input of the network, and SG = S22 to denote the S-matrix as
seen at the output.

band than passive networks. Adaptive matching uses tunable
capacitors and inductors to match antennas whose impedance
is affected by the environment or carrier frequency.

The basic model assumptions are given in Section II. The
definitions and notations we use are similar to those in [9]. The
principal bounds we use are presented in Section III. Details
on the mechanics of how to apply these bounds are provided
within the subsections of Section III. Analytical applications
of the results appear in Section IV, where scaling laws are
derived and network architectures are analyzed. Section VI
concludes.

The results presented herein assume the loads can be accu-
rately modeled by rational functions of frequency. Since not
all loads are necessarily rational, Part II examines how rational
functions can be used as approximations for arbitrary loads.
We present examples of how to use the bounds in practice.
Proofs of all the results are also given.

II. PROBLEM DEFINITION AND NOTATIONS

A. System description

Figure 1 shows an RF system where N dissipative loads
are driven by M decoupled sources with real impedance Z0,
the characteristic impedance of the system. Let SL(s) be the
N ×N S-matrix of the dissipative loads as a function of the
complex frequency s = σ+jω, where σ and ω are real. SL(s)
is obtained by extending the S-matrix of the loads SL(jω) as
a function of the angular frequency ω to the whole complex
plane (WCP). Mathematically, SL(s) can be thought of as the
transfer function between the N × 1 incident and reflected
waves ~a2e

st and ~b2est, where t represents time. Therefore,
we have ~b2(s) = SL(s)~a2(s). If the loads are reciprocal then
SL(s) is symmetric. If the loads are coupled, at least one off-
diagonal entry of SL(s) is non-zero. The impedance matrix
ZL(jω) of the loads can be obtained by ZL(jω) = Z0(I +
SL(jω))(I − SL(jω))−1.

The M sources and N loads are matched by inserting a
passive (M +N)-port network between them, as indicated in
Figure 1. The M input ports of the network are connected
to the sources, and the N output ports are connected to the
loads. The network is not necessarily lossless or reciprocal, so
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we allow standard passive capacitive and inductive elements as
well as non-reciprocal ferromagnetic components in its design.

Let S(s) be the (M + N) × (M + N) S-matrix of the
multiport network as a function of s, partitioned as in Figure 1

S(s) =

( M N

M S11(s) S12(s)

N S21(s) S22(s)

)
. (1)

Let SLM (s) denote the M ×M S-matrix of the cascade of
the network and the loads, and SG(s) be the N ×N S-matrix
seen from the output ports of the network. Since the input
to the network is terminated by sources with characteristic
impedance Z0, it follows that SG(s) = S22(s), and

SLM (s)=S11(s) + S12(s)SL(s)(I − SG(s)SL(s))−1S21(s).
(2)

As in Figure 1, let M × 1 vector ~a1(s) be the incident
wave to the network. Then the reflected wave is ~b1(s) =
SLM (s)~a1(s). Since the network is potentially lossy, the
incident power may be reflected to the sources (return loss),
or dissipated in the network (insertion loss). We now define a
measure of performance that includes both of these effects.

B. Power loss ratio

Our measure of performance of a matching network be-
tween the sources and loads is given by the fraction of source
power that is not transferred to the loads, as a function of
frequency. At frequency s = jω, the total instantaneous power
from the M sources is ‖~a1(jω)‖2, and the total instantaneous
power delivered to the N loads is ‖~a2(jω)‖2−‖~b2(jω)‖2 ≥ 0.
The power lost due to dissipation and reflection is therefore
‖~a1(jω)‖2 − (‖~a2(jω)‖2 − ‖~b2(jω)‖2).

Definition 1: The power loss ratio at frequency jω is the
ratio between the expected power loss and the expected total
incident power at jω:

r2(ω) =
E [‖~a1(jω)‖2 − (‖~a2(jω)‖2 − ‖~b2(jω)‖2)]

E ‖~a1(jω)‖2
, (3)

where the expectation is over the random input signals.
By convention, when we use r(ω) we mean the positive

square root of (3), and by construction, 0 ≤ r(ω) ≤ 1 where
values close to zero indicate that little source power is being
lost and therefore most of it is being delivered to the loads.
Values close to one indicate most of the power is lost to
dissipation or reflection. We note that r(ω) = 0 means that the
loads are perfectly matched and decoupled from one another.
When the matching network S(s) is lossless, the power loss
ratio is equivalent to the power reflection ratio defined in [9].
By considering power dissipation in the network in addition
to power reflection by the network, we handle situations that
appear favorable because the reflected energy is low, but are
actually unfavorable because the network (rather than the load)
is dissipating the incident power. This issue is raised in [22].

C. Experimental measurement of r(ω)

Because (3) includes an expectation, we devote a few words
to the measurement of r(ω) in practice. The incident signals
from the sources are assumed to have independent random
phases and instantaneous powers at each frequency, and the
expectation is taken over all such uncorrelated incident signals.
Nevertheless, the expectation is unnecessary when M = 1
since the amplitude and phase of a single source does not affect
the power loss ratio. In this case, 1−r2(ω) is equivalent to the
standard transducer power gain [8], [23], and the expectations
in the numerator and denominator of (3) may be dropped.

When M > 1 the expectations play the important role
of averaging over all amplitude and phase combinations of
the input signals. Its importance can be demonstrated by
examining M = 2, where it is well known that even-mode
(in-phase) and odd-mode (out-of-phase) signals can elicit very
different reflective responses from a two-port system. Since the
sources are uncorrelated, no preference is given to even or odd
mode signals, and the expectation eliminates mode dependence
by averaging over both of them. Hence, r(ω) can be thought of
as an “average loss” experienced when the loads are stimulated
by uncorrelated sources.

The value of r2(ω) can be experimentally measured by
forming the sample average of the numerator ‖~a1(jω)‖2 −
(‖~a2(jω)‖2 − ‖~b2(jω)‖2) for a variety of inputs ~a1(jω), and
taking the ratio of this average to the sample average of the
denominator ‖~a1(jω)‖2. This ratio of averages converges to
r2(ω) as more measurements are taken with all possible source
phase and amplitude combinations.

D. Definition of bandwidth

The network S(s) should be constructed to make r(ω) as
small as possible over a prescribed bandwidth, or make the
bandwidth as wide as possible for a prescribed threshold.
Usually, bandwidth is measured in the vicinity of a design
frequency, which we denote as ωd. A decoupling network [15]
enforces r(ω) = 0 at ω = ωd. We can define the bandwidth
of the combined network and loads using (3).

Definition 2: The bandwidth is the frequency range for
which r(ω) is no greater than a threshold τ > 0 in the vicinity
of a design frequency ωd:

ωBW(τ, ωd) = max
ω1≤ωd≤ω2

r(ω)≤τ,∀ω∈[ω1,ω2]

ω2 − ω1. (4)

Let the elements of ~a1(jω), representing the incident signal
from M decoupled sources at frequency jω, have equal
expected square-magnitude over all frequency, and have uni-
formly distributed random phases in [0, 2π) that are indepen-
dent of the amplitudes and each other. Then (3) yields

r2(ω) = 1− E tr{~aH2 (jω)(I − SHL (jω)SL(jω))~a2(jω)}
E tr{~aH1 (jω)~a1(jω)}

.

Because the phases are independent and uniformly distributed,
E [~a1(jω)~aH1 (jω)] is a multiple of the identity matrix. We
apply ~a2(jω) = (I − SG(jω)SL(jω))−1S21(jω)~a1(jω) to
obtain

r2(ω) = 1−
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tr{SH21(I − SGSL)−H(I − SHL SL)(I − SGSL)−1S21}
M

, (5)

where tr(·) denotes trace, H denotes Hermitian transpose; the
frequency argument jω is omitted on the right-hand side of
(5).

When M > N , r2(ω) ≥ 1 − N/M since the matrix
inside the trace on the right-hand side of (5) is a rank-N
positive semidefinite matrix whose eigenvalues are less than
or equal to one. Hence, a certain fraction of the source power
is always reflected or absorbed, and letting τ <

√
1−N/M

in (4) always obtains zero bandwidth. We therefore assume√
1−N/M < τ < 1 for M > N ; for M ≤ N , we have

0 < τ < 1.
Note that “ganging” amplifiers through couplers to attain

high output power with a single load appears to be an example
where M > N . But such ganged sources are correlated
since each carries the same signal, possibly differing only
in a constant relative phase or amplitude. Since we assume
uncorrelated sources, ganged amplifiers (and other correlated
sources) should be considered as a single source to apply our
results.

Although the incident signals from the sources are assumed
to be uncorrelated, the output of the matching network will
have correlated components when M < N since any network
driving all N loads will necessarily derive its signals from the
M sources. As an extreme example, a simple beamformer can
be modeled as M = 1 source driving N > 1 loads in a fixed
phase relationship. We consider beamforming in Section V-A.

E. Properties of S-matrices

We briefly summarize some properties of S-matrices since
they play an important role. Passive real networks have S-
matrices that are real-rational, Hurwitzian, and bounded; this
applies, for example, to SL(s) and S(s). The definitions
of these terms can be found in [23]–[25]. We also employ
definitions of poles and zeros of rational matrices that are
widely used in multivariable control theory [26]. For an
arbitrary rational matrix A(s):
• Poles: are the roots of the pole polynomial of A(s), where

this polynomial is the monic least common multiple of
the denominators of all minors of all dimensions of A(s).

• Zeros: are the roots of the zero polynomial of A(s),
where this polynomial is the monic greatest common
divisor of the numerators of all minors of dimension L,
and L is the normal rank of A(s). It is assumed that these
minors have the pole polynomial as their denominators.

The normal rank of a matrix is its maximum rank among
all s ∈ C; the use of “normal” refers to the rank almost
everywhere in the complex plane [24, A.70]. We use LHP
to denote the left-half complex plane (Re{s} < 0) and RHP
to denote the right-half (Re{s} > 0). Throughout, we use pL,i
and zL,i, i = 1, 2, . . . to represent the poles and zeros over
the WCP (whole complex plane) of SL(s). Since SL(s) is
Hurwitzian, it has no RHP poles.

We assume I − STL (−s)SL(s) is full normal rank. This is
satisfied if the loads are strictly dissipative, so that there is no
combination of load signals that is completely reflected for all

s. On the other hand, we also assume that there exists an s0

with Re{s0} ≥ 0 such that

STL (−s0)SL(s0) = I. (6)

In general, s0 is arbitrary and can be infinite.
When s0 is purely imaginary s0 = jω0, (6) has the

interpretation of modeling the loads as perfect reflectors at
frequency ω0 since STL (−jω) = SHL (jω) and therefore the
singular values of SL(jω0) are all unity. Because SL(s) is a
bounded matrix, (6) is equivalent to | detSL(jω0)| = 1.

When s0 has positive real part, the physical interpretation
of (6) is elusive but we still use the terminology “perfect
reflector” at s0. Examples of load structures with such an s0

are given in Section IV-B2.
For any s0, (6) must also hold if we replace s0 with
−s0. Therefore, without loss of generality, we only consider
Re{s0} ≥ 0. If there are multiple distinct values of s0 for
which (6) holds then the bounds presented herein apply to each
value separately. We therefore consider only a single distinct
s0.

III. BROADBAND MATCHING BOUNDS

We present the principal bounds used in this paper. They are
derived in detail in Part II, but knowledge of the derivations
is not needed to apply the bounds. A description of how to
use these bounds appears in Section III-B. Conditions for
achieving equality are presented in Section III-C. The bounds
depend on zeros and poles of SL(s), and techniques to obtain
these are discussed in Section III-D and Part II.

A. Principal bounds

Bound 1: For s0 = jω0,∫ ∞
0

(ω0 − ω)−2 + (ω0 + ω)−2

2
log

1

r(ω)
dω

≤ −π
2M

[∑
i

(pL,i − jω0)−1 +
∑
i

(zL,i + jω0)−1
]
. (7)

Bound 2: For Re{s0} > 0,∫ ∞
0

Re[(s0 − jω)−1 + (s0 + jω)−1]

2
log

1

r(ω)
dω

≤ −π
2M

log

∣∣∣∣detSL(s0) ·
∏
i(s0 + zL,i)∏
i(s0 − zL,i)

∣∣∣∣ . (8)

Bound 3: For s0 =∞,∫ ∞
0

log
1

r(ω)
dω ≤ −π

2M

(∑
i

pL,i +
∑
i

zL,i

)
. (9)

Bound 1 is useful for loads that are modeled as electrically
open or short at some frequency jω0. For example, some
antennas are capacitive relative to ground when they are
“electrically small” compared to the signal wavelength. Thus,
they are effectively an open circuit at s0 = 0; equivalently
SL(0) = I .

Bound 2 applies to loads that are modeled as a mixture of
resistive and reactive components [27]. An example of this is
given in Section IV-B2.
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TABLE I
FORMS OF f(jω) AND B IN (10) FOR DIFFERENT LOCATIONS OF s0 ,

WHERE pL,i, zL,i ARE THE POLES AND ZEROS OF SL(s).

s0 = jω0
f(ω) = 1

2
[(ω0 − ω)−2 + (ω0 + ω)−2]

B = −π
2M

[∑
i(pL,i − jω0)−1 +

∑
i(zL,i + jω0)−1

]
Re{s0} > 0

f(ω) = 1
2

Re[(s0 − jω)−1 + (s0 + jω)−1]

B = −π
2M

log
∣∣∣detSL(s0) · ∏i(s0+zL,i)∏

i(s0−zL,i)

∣∣∣
s0 =∞

f(ω) = 1

B = −π
2M

(∑
i pL,i +

∑
i zL,i

)

Bound 3 applies to loads that are modeled as open or short
circuits at infinite frequency. The classical model of a parallel
resistive and capacitive load used to demonstrate the Bode-
Fano bound falls into this category. A bound similar to (9) is
presented in [9]; however, the bound in [9] requires M = N
and the matching network to be lossless.

In all three cases, the bounds have the form∫ ∞
0

f(ω) log
1

r(ω)
dω ≤ B, (10)

where f(ω) ≥ 0. The form of f(ω) depends on the location
of s0, and the computation of B depends also on the poles
and zeros of SL(s). Because 0 ≤ r(ω) ≤ 1, we have
log(1/r(ω)) ≥ 0. Hence, f(ω) log(1/r(ω)) ≥ 0 for any ω.
Clearly, B must be positive as well. We use (10) to generically
indicate any of (7)–(9). The number of sources appears as M
in the denominators of all three bounds. The forms of f(ω)
and B are summarized in Table I.

B. How to use bounds

Suppose that we wish to assess the achievable bandwidth
[ω1, ω2] of a set of loads, where ω1 < ω2. Our measure of
achievability is that for some threshold τ > 0, the overall
system should obey r(ω) ≤ τ for ω ∈ [ω1, ω2]. Hence the
combined multiport network and loads reflects (or absorbs)
no more than τ within the passband. We assume that SL(s)
is available to us (we have more to say about this in Section
III-D) and we would like to know ωBW(τ, ωd) defined in (4).

Suppose the loads obey STL (0)SL(0) = I so that Bound 1
(first row of Table I) with ω0 = 0 applies to any passive
network used for these loads. Let the right-hand side of (7) be
denoted B1 > 0, which depends only on SL(s). Then

B1 ≥
∫ ∞

0

ω−2 log
1

r(ω)
dω ≥ log

1

τ

∫ ω2

ω1

ω−2 dω

= log
1

τ

(
1

ω1
− 1

ω2

)
.

The first inequality applies to any network, while the second
inequality applies to a network with the desired passband
characteristics. Hence,

1

ω1
− 1

ω2
≤ B1

log(1/τ)
. (11)

Clearly, this inequality imposes a constraint on (ω1, ω2) pairs.

Bounds 2 and 3 can be applied in a similar fashion. If
SHL (∞)SL(∞) = I , (9) gives

ω2 − ω1 ≤
B3

log(1/τ)
, (12)

where B3 is the right-hand side of (9). This gives us a direct
bound on the bandwidth ωBW(τ, ωd) achievable for all ωd.
Equations (11) and (12) are complementary in that both can
be in force simultaneously.

We now discuss conditions under which these bounds can
be achieved.

C. Conditions for equality

We distinguish between conditions for equality in (7)–(9)
and conditions for equality in (11), (12). The former apply
to any passive real network and the latter apply to networks
with particular passband characteristics. Bounds (7)–(9) have
a common set of conditions for achieving equality:

1) S21(s)ST21(−s) + SG(s)STG(−s) = I for all s
2) The M ×M matrix

SH21(I − SGSL)−H(I − SHL SL)(I − SGSL)−1S21 (13)

has equal singular values for all s = jω
3) I − SL(s0)SG(s0) is non-singular
4) STL (−s)− SG(s) has no zeros in the RHP

where s0 is defined in (6). These four conditions correspond to
four possible impediments to achieving the bounds. Meeting
all the conditions is sufficient to attain equality in the bounds,
but Conditions 1, 2 and 4 are also necessary. The N × N
matrix SG(s) (see Figure 1) plays a prominent role in these
conditions and can be readily measured or modeled by con-
necting pairs of output ports of the matching network to a
network analyzer while terminating its remaining ports with
characteristic impedances.

These conditions have physical interpretations. Condition 1
is satisfied for lossless networks since we are guaranteed that
S21(s)ST21(−s) + S22(s)ST22(−s) = I for all s because S(s)
is a para-unitary matrix, and SG(s) = S22(s).

Condition 2 requires the singular values of (13) to be equal
for all s = jω. When this is satisfied, the total dissipated
power at the loads depends only on the total incident power
‖~a1(jω)‖2, and not the “direction” of ~a1(jω).

Condition 3 is a “non-degenerate” condition that we illus-
trate with an example: Suppose the loads are capacitive to
ground, and hence are reflective with SL(∞) = −I . If the
output impedance of the matching network is also capacitive,
then SG(∞) = −I and Condition 3 is violated. Hence, in
this example, a matching network that wants to achieve high
bandwidth should avoid capacitive output impedance. It turns
out that Condition 3 is superfluous in Bound 2 because SL(s)
and SG(s) are bounded matrices; hence SL(s)SG(s) is also
bounded and I − SL(s0)SG(s0) is always non-singular for
Re{s0} > 0 [24, 7.22]. Additional details on Condition 3 can
be found in [9].

Condition 4 is a “minimum-phase” condition since the RHP
zeros of STL (−s) − SG(s) are the same as the RHP zeros of
SGM (s), which involves a “Darlington equivalent” network
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representation of the loads [28], [29] as described in Part II.
However, knowledge of the Darlington equivalent network is
not needed to check this condition. We have more to say
about network architectures that cannot meet this condition
in Section IV-C.

Assuming Conditions 1–4 are met by the matching network,
we obtain equality in (11), (12) if the network also achieves
the ideal response r(ω) = τ for ω ∈ [ω1, ω2] and r(ω) = 1
elsewhere. Any network such that r(ω) < 1 for ω 6∈ [ω1, ω2]
sustains a non-negative “shaping loss” which is the difference
between the integral over all ω of the left-hand sides of (7)–(9)
versus the integral over [ω1, ω2]:

shaping loss =∫ ∞
0

f(ω) log
1

r(ω)
dω −

∫ ω2

ω1

f(ω) log
1

r(ω)
dω. (14)

For a network whose shaping loss is positive, some perfor-
mance is lost in the band of interest because either ω2 −
ω1 could potentially be made larger, or τ could be made
smaller, by redesigning the network to have larger r(ω) for
ω 6∈ [ω1, ω2]. We provide an example of the shaping loss
computation in Part II, Section III-A.

D. How to obtain SL(s) and its poles and zeros

If analytical circuit models for the loads are known, SL(s)
is uniquely determined by the standard Laplace transform rep-
resentations of the model impedance or admittance matrix and
using the formula SL(s) = (ZL(s) + Z0I)−1(ZL(s) − Z0I).
Examples of this are presented in Section IV-B.

Absent an analytical model, numerical methods that model
the SL(s) of the loads are needed to extract its poles and
zeros. The modeling methods are discussed and illustrated by
example in Part II.

IV. BANDWIDTH ANALYSIS

The bounds yield a variety of conclusions when they are
applied to various system configurations. We first examine
decoupled loads in Section IV-A and then coupled loads in
IV-B. We then identify network architectures that can achieve
the bounds in Section IV-C.

A. Decoupled loads

Let SL(s) = Sl(s)I where Sl(s) is a scalar and I is an N×
N identity matrix. Thus, there are N decoupled identical loads.
Let Sl(s) satisfy (6) for some s0, and let Bl be computed using
Table I applied to Sl(s) for M = 1. Then SL(s) satisfies (6)
at the same s0, and has poles and zeros at the same locations
as Sl(s), each with multiplicity N . It follows from Table I
that the bound for N loads is N times the bound for a single
load. We have proven the following theorem.

Theorem 1: For N identical decoupled loads driven by M
sources ∫ ∞

0

f(ω) log
1

r(ω)
dω ≤ N

M
Bl. (15)

If N = M , (15) is simply Bl. This is not surprising because
we have assumed the sources and loads are decoupled and

therefore we are essentially examining N identical isolated
systems, each with bound Bl. However, (15) scales linearly
with N for a fixed M . This formula suggests that N identical
decoupled loads can achieve N times the bandwidth of one
load as long as the matching network is designed properly.

Matching network architectures can be thought of in terms
of their ability to achieve linear-in-N bandwidth behavior
when used with a set of loads with linear-in-N behavior.
In Section IV-C we show that certain network architectures
provably have linear-in-N behavior, while others do not. As
shown in the next section, this linear-in-N behavior extends
to coupled loads under some conditions.

B. Circulantly-coupled loads

Loads with circulant SL(s) are especially easy to manipu-
late mathematically because, while the eigenvalues of SL(s)
depend on s, its eigenvectors do not. This makes computing
pL,i and zL,i straightforward. Load structures that lead to sym-
metric circulant SL(s) are identical, and the coupling between
load i and neighbor j depends on min{|i− j|, N − |i− j|}.

Two identical loads automatically have circulant symmetry,
as long as they have reciprocal coupling. Three or more loads
can be placed in a circular or spherical arrangement to yield
circulant SL(s).

1) Loads exemplifying Bound 1: Figure 2(a) illustrates N
circulantly-coupled loads. The loads consist of an N -port
inductive network with impedance matrix sZl and an N -port
series LC network with impedance matrix s2/ω2

0+1
2s Zlc resonat-

ing at jω0. These networks are connected in parallel to each
other, and terminated by isolated characteristic impedances Z0.
The parallel N -port networks are shown in Figure 2(b,c); the
inductive network has each port grounded through L0 and
every pair of ports i and j is connected through L`, where
` = min{|i− j|, N −|i− j|} is the “distance” between ports i
and j. The series LC network has each port grounded through
L′0 and C ′0, and every pair of ports i and j is connected through
L′` and C ′`, where

√
L′0C

′
0 =

√
L′`C

′
` = 1/ω2

0 . The N × N
matrices Zl and Zlc are circulant symmetric.

Since circulant matrices have eigenvectors that are columns
of a discrete Fourier transform (DFT) matrix, we obtain the
following eigenvalue decompositions:

Zl = WΛlW
H , Zlc = WΛlcW

H ,

where

W =
1√
N


1 1 · · · 1

1 e−
j2π
N · · · e−

j2π(N−1)
N

...
...

. . .
...

1 e−
j2π(N−1)

N · · · e−
j2π(N−1)2

N

 (16)

is the N × N unitary DFT matrix, and Λl and Λlc are real
positive diagonal matrices representing the eigenvalues of Zl
and Zlc, respectively.

The impedance matrix of the loads is

ZL(s) =

(
1

s
Z−1
l +

2s

s2/ω2
0 + 1

Z−1
lc +

1

Z0
I

)−1

.
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. . .
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Fig. 2. (a) N circulantly-coupled loads consisting of an inductive network
and an LC network in parallel, terminated in a set of characteristic impedances
Z0. The inductive and the LC portions of the network are shown in (b,c), and
have impedance matrices sZl and s2/ω2

0+1

2s
Zlc, respectively. The loads are

coupled to ground through L0 and series L′0 and C′0, and every load pair is
coupled through L` and series L′` and C′`, where ` is the “distance” between
the pair.

Then SL(s) can be obtained from SL(s) = (ZL(s) +
Z0I)−1(ZL(s)− Z0I), which is

SL(s) = W
−Z0[(2Λ−1

lc ω
2
0+Λ−1

l )s2+Λ−1
l ω2

0 ]

2s3+Z0(2Λ−1
lc ω

2
0+Λ−1

l )s2+2ω2
0s+Z0Λ−1

l ω2
0

WH .

(17)

Note, we write (·)−1 as 1
(·) when we take inverses of diag-

onal matrices. Because SL(s) is a circulant matrix, only its
eigenvalues depend on s and the poles and zeros of SL(s) are
therefore the poles and zeros of the individual eigenvalues.

All N loads present short circuits to ground at s0 = 0
and jω0, where the loads become perfect reflectors. Hence,
SL(0) = SL(jω0) = −I , and (6) is satisfied. We can then
obtain two distinct bounds by applying Bound 1 for s0 = 0
and jω0. Using pL,i, zL,i calculated from (17), Bound 1 yields

∫ ∞
0

ω−2 log
1

r(ω)
dω ≤ −π

2M

∑
i

−2λl,i
Z0

=
π · trZl
MZ0

, (18a)∫ ∞
0

(ω0 − ω)−2 + (ω0 + ω)−2

2
log

1

r(ω)
dω

≤ −π
2M

∑
i

−2λlc,i
Z0ω2

0

=
2π · trZlc
MZ0ω2

0

. (18b)

The ith diagonal element of Zl represents the inductance
relative to ground of port i of the inductive network in
Figure 2(b), measured with the remaining ports open. Because
Zl is circulant its diagonal elements are all equal. Hence
(1/N)trZl = Leq,N , where Leq,N is the inductance of any
port relative to ground. A similar conclusion holds for the
LC network in Figure 2(c). Let the equivalent series LC
branch of any port relative to ground have inductance L′eq,N
and capacitance C ′eq,N , where L′eq,NC

′
eq,N = 1/ω2

0 . Then
(1/N)trZlc = ω2

0L
′
eq,N + 1/C ′eq,N . We can rewrite (18) as

∫ ∞
0

ω−2 log
1

r(ω)
dω ≤

NπLeq,N

MZ0
, (19a)∫ ∞

0

(ω0 − ω)−2 + (ω0 + ω)−2

2
log

1

r(ω)
dω

≤ Nπ

MZ0

(
L′eq,N +

1

ω2
0C
′
eq,N

)
, (19b)

Let Leq,N , L′eq,N and C ′eq,N approach respective limits Leq, L′eq
and C ′eq as N →∞. We have proven the following theorem.

Theorem 2: The linear-in-N behavior shown in Theorem
1 for decoupled loads extends to circulantly-coupled loads
provided Leq > 0 and L′eq > 0 (or C ′eq <∞).

The conditions Leq > 0 and L′eq > 0 (or C ′eq < ∞) are
equivalent to ensuring that the inductance (or capacitance) of
any port relative to ground does not go to zero (or infinity) as
N → ∞, and hence there are not “too many” parallel paths
to ground from any port. This is equivalent to imposing a
condition that the coupling between loads not be “too strong”.

For a given N and M , the bounds in (19) for Figure 2
increase as inductive and capacitive coupling components are
removed, since Leq,N increases and approaches L0 as all cross-
inductive elements are removed; similarly L′eq,N increases to
L′0 and C ′eq,N decreases to C ′0 because Leq,N , L′eq,N and C ′eq,N
are obtained as L0, L′0 and C ′0 in parallel with the remaining
parts of the networks.

However, we cannot conclude that coupling always has a
negative effect on bandwidth. In fact, Part II of this paper
shows that coupling between dipole antennas has a non-
monotonic effect on the bandwidth bound. This dichotomy
in behavior between the model in Figure 2 and the dipoles in
Part II is not contradictory because there is no requirement
that dipoles should be modeled by fixed L0, L′0, and C ′0 as
the coupling between them changes.

2) Loads exemplifying Bound 2: Figure 3 illustrates N
resistors Z0 terminated with two parallel N -port networks:
one is resistive with N × N circulant impedance matrix Zr,
and the other is capacitive with N × N circulant impedance
matrix 1

sZc. The impedance matrix of the loads ZL(s) is

ZL(s) = Z0I + (Z−1
r + sZ−1

c )−1.

Let Λr and Λc be the eigenvalue matrices of Zr and Zc. Then
SL(s) is

SL(s) = W
ΛrΛc

2Z0Λrs+ 2Z0Λc + ΛrΛc
WH (20)

where W is given in (16).
We note that

I−STL (−s)SL(s)=W
−4Z2

0Λ2
rs

2 + 4Z0(Z0I + Λr)Λ
2
c

−4Z2
0Λ2

rs
2 + (2Z0I + Λr)2Λ2

c

WH .

Let the component values satisfy Λc
√
Z0(Z0I+Λr)

Z0Λr
= σ0I for

some σ0 > 0. Then (6) is satisfied for s0 = σ0. We substitute
Λc = Z0Λrσ0√

Z0(Z0I+Λr)
into (20), and apply (8) to yield∫ ∞

0

σ0

σ2
0 + ω2

log
1

r(ω)
dω
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Fig. 3. (a) N circulantly-coupled loads consisting of N resistors Z0 in series
with a parallel resistive network Zr and a parallel capacitive network 1

s
Zc.

The resistive and the capacitive portions of the network are shown in (b,c),
and have respective impedance matrices Zr and 1

s
Zc. The loads are coupled

to ground through R0 and C0, and every load pair is coupled through R`
and C`, where ` is the “distance” between the pair.

≤ −π
2M

log det
Λr

2Z0 + Λr + 2
√
Z0(Z0 + Λr)

=
π

2M

N∑
i=1

log
2Z0 + λr,i + 2

√
Z0(Z0 + λr,i)

λr,i
, (21)

where λr,i are the diagonal elements of Λr. The linear-in-N
behavior of these loads depends on λr,1, . . . , λr,N ; we do not
pursue this analysis any further here.

C. Ability of network architecture to achieve bounds

Matching network architectures that cannot achieve equality
in the bounds should be identified whenever possible and
removed from consideration in large-bandwidth applications.
The following theorem shows how SG(s) defined in Figure 1
can be compared with SL(s) to identify such networks. We
thereby make Condition 4 in Section III-C more physically
tangible.

Theorem 3: For matching networks satisfying Condition 3,
if SG(s) has an eigenvector in common with SL(s), and the
associated eigenvalue λG(s) satisfies |λG(jω)| = 1 for all ω,
then Condition 4 cannot be satisfied and therefore the bounds
cannot be achieved.

Proof: See the Appendix.
Theorem 3 can be applied to the example of decoupled loads

in Section IV-A. We assume 1 ≤M < N and Condition 3 is
satisfied. Since SL(s) = Sl(s)I , any vector is an eigenvector
of SL(s). Theorem 3 then implies that any SG(s) that has
|λG(jω)| = 1 cannot achieve equality in (15).

For example, networks where SG(s) is a real symmetric
matrix cannot achieve equality. This follows because even if
the network is lossless and Condition 1 is satisfied, implying
that S21(s)ST21(−s) + SG(s)STG(−s) = I for all s, then
because S21(s) is an N ×M matrix and SG(s) is an N ×N
matrix, SG(s) has at least N −M unit singular values. Since

0Z Prescribed 
(N+1)-port 
matching 
network S

LMS

N-port 
loads S

.

.

. LS

1a

1b


2a

2b


Two-port 
matching 
network S

0a

0b


0S1S

,eqLS LSGS

Fig. 4. An RF system where one source drives N loads having S-
matrix SL through a constrained matching network consisting of a prescribed
(N+1)-port network S0 and an arbitrary network S1 (the complex-frequency
argument s is omitted). We use SL,eq to denote the S-parameter seen from
the input of S0.

the moduli of the eigenvalues of a real symmetric matrix are
equal to its singular values, at least one eigenvalue satisfies
|λG(jω)| = 1. We conclude that reciprocal broadband splitters
or couplers that yield real symmetric SG(s) cannot be used
to achieve equality in (15) when M < N and the loads are
decoupled. We see an example of this in the next section.

V. ONE SOURCE AND MULTIPLE LOADS

We probe the special case of one source more deeply
with some examples in this section. We analyze constrained
networks in Section V-A. One source with many loads is
examined in Sections V-B and V-C, leading to a class of non-
reciprocal networks called “determinant” networks.

A. Constrained matching network

Let a portion of the network be constrained or prescribed
to have a particular structure. For example, the constrained
portion might include ideal circulators or power splitters.
The prescribed portion and loads then together constitute an
“equivalent load” and the achievable bandwidth is determined
by the characteristics of this load.

Figure 4 illustrates an example of such a structure for M =
1, where a prescribed (N + 1)-port network is combined with
the loads and forms an equivalent one-port load. Let the S-
matrix of the prescribed network be

S0(s) =

( 1 N

1 S0,11(s) S0,12(s)

N S0,21(s) S0,22(s)

)
.

Then the S-parameter of the equivalent load is

SL,eq(s) = S0,11(s)

+ S0,12(s)SL(s)(I − S0,22(s)SL(s))−1S0,21(s). (22)

The remaining unspecified portion of the network S1(s) is
connected to the input port of SL,eq(s), and we may ask what
bandwidth is attainable by S1(s).

Generally, we cannot apply the bounds directly to SL,eq(s).
Unlike SL(s) where power is either dissipated or reflected
by the loads, power in SL,eq(s) can also be absorbed by the
constrained portion of the network when S0(s) is lossy. Let
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η(ω) denote the ratio between the power dissipated by SL(s)
and the power delivered to SL,eq(s), defined as

η(ω) =
‖~a2(jω)‖2 − ‖~b2(jω)‖2

‖a0(jω)‖2 − ‖b0(jω)‖2
,

where (~a2(jω), ~b2(jω)) and (a0(jω), b0(jω)) are the (inci-
dent, reflected) signals from SL(s) and SL,eq(s), respectively.
Then 0 ≤ η(ω) ≤ 1 and

η(ω) =

SH0,21(I − S0,22SL)−H(I − SHL SL)(I − S0,22SL)−1S0,21

1− SHL,eqSL,eq
,

(23)

which depends only on the prescribed network and the loads.
We assume SL,eq(s) satisfies (6) for some s0; this does

not require SL(s) to satisfy (6) for the same s0. Then (10)
becomes the following bound.

Theorem 4: For loads matched by a constrained network,∫ ∞
0

f(ω) log

√
η(ω)

r2(ω) + η(ω)− 1
dω ≤ Beq (24)

where Beq is the right-hand side of (10) applied to SL,eq(s).
Proof: Using Figure 4, we define

r2
eq(ω) = 1− ‖a0(jω)‖2 − ‖b0(jω)‖2

‖a1(jω)‖2

as the ratio between power not delivered to SL,eq(s) and the
incident power from the source. Then it follows that

r2(ω) = 1− ‖~a2(jω)‖2 − ‖~b2(jω)‖2

‖a1(jω)‖2

= 1− ‖a0(jω)‖2 − ‖b0(jω)‖2

‖a1(jω)‖2
· ‖~a2(jω)‖2 − ‖~b2(jω)‖2

‖a0(jω)‖2 − ‖b0(jω)‖2
= 1− (1− r2

eq(ω)) · η(ω).

Equivalently, we have req(ω) =
√

r2(ω)+η(ω)−1
η(ω) .

We apply (10) to the equivalent load SL,eq(s). The result is
an inequality on req(ω):∫ ∞

0

f(ω) log
1

req(ω)
dω ≤ Beq,

where Beq is the right-hand side of (10) applied to SL,eq(s).

Replacing req(ω) with
√

r2(ω)+η(ω)−1
η(ω) gives us (24).

We use beamforming as an example application. Let the
desired amplitude and phase relationship of the antennas be
denoted by the N×1 unit real-rational vector ~v(s) for s = jω.
Then

S0(s) =

[
0 ~vT (s)

~v(s) 0

]
(25)

denotes the S-matrix of a reciprocal one-to-N power divider
that constrains the incident signal ~a2(jω) to be aligned
with ~v(jω). We are not concerned with the so-called gain-
bandwidth product of a phased array [30] which measures its
ability to maintain far-field gain across a range of frequencies.

Theorem 5: Let the beamforming vector ~v(s) be a real
constant unit eigenvector of SL(s). Then∫ ∞

0

f(ω) log
1

r(ω)
dω ≤ Beq, (26)

where Beq is calculated using SL,eq(s) = ~vT (s)SL(s)~v(s).
Proof: We substitute (25) into (22) and (23), where

S0,11 = 0, S0,12 = ~vT (s), S0,21 = ~v(s) and S0,22 = 0.
Then (22) yields

SL,eq(s) = ~vT (s)SL(s)~v(s),

and (23) yields

η(ω) =
~vH(I − SHL SL)~v

1− SHL,eqSL,eq
=

~vH~v − ~vHSHL SL~v
1− ~vHSHL ~v∗~vTSL~v

.

Because ~v(s) is a real unit eigenvector of SL(s), it is readily
verified that η(ω) = 1. The result then follows by applying
Theorem 4.

Section III-B in Part II of this paper provides an example
where Beq in (26) varies with the choice of ~v(s).

We note that η(ω) = 1 is obtained for any lossless S0(s),
in which case (26) also applies. When η(ω) = 1 and SL(s)
satisfies (6) for some s0, then SL,eq(s) also satisfies (6) for
the same s0; the converse is not true.

Compared with (10), (26) is smaller for N > 1. To see
this more explicitly, let the loads be decoupled as in Section
IV-A, whence SL(s) = Sl(s)I . Then any real constant unit
vector ~v(s) satisfies η(ω) = 1, and the equivalent load satisfies
SL,eq(s) = Sl(s). Then Theorem 5 yields∫ ∞

0

f(ω) log
1

r(ω)
dω ≤ Bl, (27)

where Bl is the right-hand side of (10) applied to Sl(s) for
M = 1, Clearly, Bl < NBl, which is the bound obtained in
(15) for M = 1. We conclude that linear-in-N behavior is not
generally achieved for the beamforming structure (25). This
conclusion is consistent with Theorem 3.

B. Decoupled loads

Section IV-C says that full bandwidth cannot be achieved
when reciprocal broadband splitters are used to drive N > 1
loads when M = 1. We instead consider a matching network
consisting of non-reciprocal couplers in Figure 5(a) where an
(N + 1)-port network comprising N − 1 circulators as the
constrained part of the network is displayed. The resulting
(N + 1)× (N + 1) S-matrix is

S0(s) =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 0 · · · 0
... 0

. . . . . .
...

0 · · · 0 1 0

 .
The lower right N × N block of this matrix, which cor-
responds to SG(s), has N zero eigenvalues and therefore
does not satisfy the conditions of Theorem 3. Let SL,eq(s)
be the S-matrix of the equivalent one-port load seen at the
input of the circulators. Because the circulators are lossless,
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Fig. 5. (a) N − 1 circulators are used to match N decoupled loads to
M = 1 source, and achieve linear-in-N behavior. We use SL,eq(s) to denote
the S-parameter of the equivalent one-port load seen at the input of the
circulators. (b) N decoupled loads are driven by M = 1 source through
N two-port networks and N−1 broadband circulators. Each of the two-ports
matches 1/N of the total bandwidth; network i passes band i and reflects the
remaining portions. The circulators combine all N passbands and achieve a
total bandwidth N times of the bandwidth of each two-port network.

η(ω) = 1 in this constrained network. It is readily calculated
that SL,eq(s) = [Sl(s)]

N , which has poles and zeros at the
same locations as Sl(s), each with multiplicity N . Therefore,
according to (10), the bandwidth achievable with this equiv-
alent SL,eq(s) is N times that achievable by Sl(s). Hence,
linear-in-N network behavior for N decoupled loads can be
achieved by ideal circulators.

This circulator-based network architecture presents “multi-
ple opportunities” for the energy that is reflected from any
one load to be forwarded to the next for another attempt at
transmission. We are ignoring the insertion losses associated
with cascading circulators in such an arrangement.

Figure 5(b) has a structure similar to Figure 5(a) but matches
1/N of the total bandwidth in an orderly fashion. The first
network passes the lowest portion of the band and reflects
all the remaining portions, which are passed to the next
circulator which matches the next portion, and so on. This
structure resembles a channelizer [31] in the sense that there
are multiple output ports where each port contains a portion of
the total bandwidth. Although we have drawn these networks
as having near-ideal flat frequency responses, this aspect is not
crucial. An explicit example of this type of network for a pair
of dipoles is presented in Section III-A in Part II.

C. Circulantly-coupled loads: Determinant networks

The previous section gave a circulator-based architecture
for achieving linear-in-N bandwidth for N uncoupled loads.
We now show how to handle circulantly coupled loads such
as examined in Section IV-B, by demonstrating a network
architecture that converts the multiport system with S-matrix
SL(s) into a single-port system with S-parameter SL,eq(s) =
detSL(s). Since detSL(s) has the same poles and zeros as
SL(s) if SL(s) has no cancelling poles and zeros, SL,eq(s) has
the same bound as SL(s). We denote any network that converts

SL(s) into detSL(s) a “determinant network”. Determinant
networks are linear-in-N .

Let W be defined as in (16) and have columns ~w1, . . . ~wN .
Define W1 = [~w2 ~w3 · · · ~wN ~0] and the (N + 1)× (N + 1)
matrix

S0(s) =

[
0 ~wHN
~w1 W1W

H

]
. (28)

Notice that W1 is missing the column ~w1. Then S0(s) is
constant and lossless. The following theorem says that it is
also a determinant network.

Theorem 6: Let the network described by (28) have its N
outputs connected to any circulantly-coupled set of loads with
S-matrix SL(s). Then its input has equivalent S-parameter
SL,eq(s) = detSL(s).

Proof: We let L = WHW1 and use the eigen-
value decomposition SL(s) = WΛ(s)WH where Λ(s) =
diag(λ1(s), . . . , λN (s)) is a diagonal matrix of eigenvalues.
Then (22) yields

SL,eq(s) = ~wHNSL(s)(I −W1W
HSL(s))−1 ~w1

= ~wHNWΛ(s)WH(I −WLΛ(s)WH)−1 ~w1

=
[

0 · · · 0 λN (s)
]

(I − LΛ(s))−1

×
[

1 0 · · · 0
]T
,

where

I − LΛ(s) =


1 0 · · · 0

−λ1(s) 1 0 · · · 0
0 −λ2(s) 1 0
...

. . . . . .
...

0 · · · 0 −λN−1(s) 1

 .
It follows that SL,eq(s) is λN (s) times the (N, 1) entry of
(I − LΛ(s))−1. This gives SL,eq(s) =

∏N
n=1 λn(s).

An intuitive explanation of the operation of the network
is as follows. The network (28) orients the power from the
source along the first eigenvector ~w1. Energy is then reflected
by the loads with amplitude λ1(s) along ~w1, at which point
the determinant network reflects it entirely back to the loads,
but with orientation ~w2. This is reflected by the loads with
amplitude λ2(s) which is returned by the network to the
loads reoriented along ~w3, and so on. The last eigenvector
~wN reflected by the loads is returned to the source. The result
is an overall S-parameter with value

∏N
n=1 λn(s), which is

the determinant of SL(s). This description also explains why
a determinant network is not unique.

For example, for N = 2,

S0(s) =

 0 1√
2
− 1√

2
1√
2

1
2

1
2

1√
2
− 1

2 − 1
2

 . (29)

As can by seen by this S-matrix, the network works by first
exciting the even mode of the coupled loads. Any reflected
power, which is also in an even mode, is then converted into
an odd-mode excitation.

One possible realization of (29) is given in Figure 6, which
utilizes an ideal transformer and gyrator. A gyrator with
resistance Z0 is transparent to forward propagating waves but
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Fig. 6. Realization of the network (29) that includes a transformer and
non-reciprocal gyrator connected to two coupled antennas.

behaves as a π phase shift for reverse waves. The network
in Figure 6 converts the wave incident on the transformer
primary into an even-mode excitation for the loads on its
secondaries. Any power reflected by the loads, which is also in
an even mode, is converted into an odd mode by the gyrator.
The secondaries of the transformer acts like an open circuit
to this odd-mode signal. The signal is therefore reflected by
the transformer back to the loads as an odd-mode excitation.
Finally, any odd-mode excitation reflected by the antennas is
then converted by the gyrator into an even-mode signal and
passed by the transformer back to the source.

The network in Figure 6 can achieve the bound in (10) for
a single source and two identical loads that are reciprocally
coupled. This network would also work well for the decoupled
loads in Section IV-A since decoupled loads are trivially recip-
rocal. Note that the circulator structure proposed in Figure 5
is a determinant network when the loads are decoupled but is
otherwise not. Hence, the network in Figure 6 generalizes the
networks in Figure 5 for N = 2.

VI. CONCLUSIONS

We have presented bandwidth analyses for multiport RF
systems using bandwidth upper bounds that apply to an
arbitrary number of sources and loads, and allows arbitrary
coupling between the loads. Conditions for achieving equality
in the bounds were discussed. We demonstrated that the
bandwidth bounds scale generally as N/M for M sources
and N loads. We focused on loads whose scattering matrices
can be expressed analytically with rational functions.

In Part II of this paper, we apply the upper bounds to
realistic loads whose scattering parameters are expressed nu-
merically and therefore need to be approximated by rational
functions. The accuracy needed of such approximations is
analyzed. Some of the effects of coupling are examined
in detail, and complete derivations of the bounds are also
provided.

APPENDIX
PROOF OF THEOREM 3

Let ~v(s) be the eigenvector of SL(s) and SG(s) associated
with eigenvalues λL(s) and λG(s). Because SL(s), SG(s)
are bounded matrices, λL(s), λG(s) are bounded functions.
Since |λG(jω)| = 1, λG(s) is an all-pass function with all
poles in the LHP and zeros in the RHP. Moreover, because
I − STL (−s)SL(s) is full normal rank and SL(s) satisfies
(6), λL(s) is non-constant and satisfies λL(−s0)λL(s0) = 1

where s0 is defined in (6). Thus, |λL(s)| < 1 for Re{s} > 0,
|λG(s)| ≥ 1 for Re{s} < 0 and |λG(s)| ≤ 1 for Re{s} > 0;
the equalities holds if λG(s) is a constant.

We start by showing ~vH(jω)SG(jω) = λG(jω)~vH(jω).
Since λG(jω) and ~v(jω) are an eigenvalue-eigenvector pair
of SG(jω),

~vH(jω)(SG(jω)− λG(jω)I)~v(jω) = 0.

Suppose ~uH(jω) = ~vH(jω)(SG(jω) − λG(jω)I) 6= 0, then
~u(jω)⊥~v(jω), and

‖~vH(jω)SG(jω)‖ = ‖λG(jω)~vH(jω) + ~uH(jω)‖
> ‖λG(jω)~vH(jω)‖ = ‖~vH(jω)‖.

But because SG(s) is bounded, all singular values of SG(jω)
are no greater than one. This contradicts with the inequality
above. Hence, ~uH(jω) = 0, and we have ~vH(jω)SG(jω) =
λG(jω)~vH(jω).

Let ~v′(s) be the extension of ~v∗(jω) to the WCP. We then
show that Condition 4 cannot be achieved when Condition
3 is satisfied. We need to show ~v′T (s)(STL (−s) − SG(s)) =
(λL(−s)−λG(s))~v′T (s) = 0 for some s in the RHP. It suffices
to show λL(−s)− λG(s) = 0.

Since |λL(−s)| < 1 and |λG(s)| ≥ 1 for Re{s} < 0, all
zeros of λL(−s) − λG(s) = 0 must locate in Re{s} ≥ 0.
Both λL(s) and λG(s) are rational functions, so we let their
degrees be n1 and n2, respectively. Since all the poles of
λL(s) and λG(s) are in the LHP, the poles of λL(−s) and
λG(s) do not coincide. Hence λL(−s) − λG(s) has degree
n1 + n2. Moreover, |λL(jω)| = 1 has at most n1 solutions;
this is because 1 − λL(−s)λL(s) has degree at most 2n1,
and any zeros of 1 − λL(−s)λL(s) on the imaginary axis
have multiplicity at least two. Since |λG(jω)| = 1 for all ω,
λL(−s)− λG(s) has at most n1 zeros on the imaginary axis.
This leaves at least n2 zeros in the RHP, and we have proven
the theorem when n2 ≥ 1.

When n2 = 0, we prove by contradiction. Suppose all n1

zeros of λL(−s)−λG(s) are on the imaginary axis. Then the
zeros of 1−λL(−s)λL(s) are at the same locations as the zeros
of λL(−s)−λG(s). Because we assume λL(−s0)λL(s0) = 1
for some s0, s0 must be one of the zeros of λL(−s)−λG(s).
Thus, we have λG(s0) = λL(−s0), and 1− λG(s0)λL(s0) =
0. This contradicts Condition 3. Hence, λL(−s)− λG(s) has
zeros in the RHP when n2 = 0. Thus, Condition 4 is not met,
and since this condition is necessary for achieving the bounds,
the bounds cannot be met with equality.
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