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Bandwidth Analysis of Multiport Radio-Frequency
Systems—Part II
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Abstract—We analyze the bandwidth over which power can
be transferred from multiple radio-frequency sources to multiple
loads through a passive multiport matching network. This is the
second part of a two-part paper. In the first part we introduce
broadband multiport matching upper bounds and apply them to
determine the bandwidth of loads and network structures whose
scattering parameters can be expressed analytically with rational
functions. In this second part, we apply the bounds to loads,
such as antennas, whose scattering parameters are obtained by
measurement or simulation. We focus on the effects of coupling
on bandwidth. Since the bounds require frequency responses
that are rational functions, we provide guidelines on how to
obtain rational approximations for arbitrary loads. Complete
derivations of the bounds are also provided.

Index Terms—Bandwidth, Bode-Fano bounds, broadband
matching bounds, non-reciprocal networks, passive matching
networks, radio-frequency coupling

I. INTRODUCTION

We analyze the bandwidth over which power can be trans-
ferred from M sources through a passive matching network
to N loads in radio-frequency (RF) systems. Our principal
tools include broadband matching upper bounds, which are
presented in Part I of this paper [1], and briefly repeated herein
for easy reference. These bounds extend the classical Bode-
Fano results [2], [3], which apply to a single source and load.
The bounds depend only on the scattering matrix (S-matrix)
of the loads. The loads may be electromagnetically coupled to
each other.

In this part, we apply the bounds to loads whose S-matrix is
expressed numerically, found through either measurements or
simulations. The bounds require rational models of the loads
that can be obtained through fitting of the numerical data.
We provide guidelines for assessing the accuracy of a rational
model.

Of particular interest is the effect of coupling on the
bandwidth of multiple antennas. One example demonstrates
that the bandwidth bound of a pair of dipoles fluctuates non-
monotonically with the distance between them, and, with the
right amount of coupling, can be significantly greater than for
decoupled dipoles. We focus on the “input bandwidth” of the
loads, and are not concerned with how efficiently the loads
use their input power.

We also include complete derivations of the bounds. These
derivations are not needed to apply the bounds but are of use
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in understanding how the conditions for equality in the bound
apply.

The notations and definitions are identical to those in
Part I. We assume M decoupled sources with characteristic
impedance Z0 drive N loads that have a frequency-dependent
N × N S-matrix SL(s), where s = σ + jω is the extension
of frequency jω to the whole complex plane (WCP). An
(M + N)-port passive matching network is inserted between
the sources and loads. Our measure of the quality of matching
is the power loss ratio r2(ω) ∈ [0, 1], defined as the ratio
between the total power lost, including insertion and return
losses, and the total incident power from the sources at
frequency ω. The insertion loss is the power dissipated in the
matching network; the return loss is the power reflected to the
sources. Since the loads are potentially coupled, the quantity
r2(ω) captures the possibility that incident power from one
source can reflect back to itself or to other sources. We then
define the bandwidth ωBW(τ, ωd) as the frequency range for
which r(ω) (the positive square root of r2(ω)) is no greater
than a threshold τ > 0 in the vicinity of a design frequency
ωd. The mathematical definitions of r(ω) and ωBW(τ, ωd) can
be found in Part I.

We generally employ the properties of S-matrices of passive
real networks to prove the bounds; these properties include
real-rational, Hurwitzian and bounded. We also use the defi-
nitions of poles and zeros of rational matrices. We use LHP
to denote the left-half complex plane (Re{s} < 0) and RHP
to denote the right-half (Re{s} > 0).

A. Summary of bounds

There are three bounds which are summarized as follows.
If

STL (−s0)SL(s0) = I (1)

is satisfied for some Re{s0} ≥ 0, then the following inequality
holds for any passive matching network:∫ ∞

0

f(ω) log
1

r(ω)
dω ≤ B, (2)

where f(ω) and B depend on the location of s0 and are given
in Table I. To compute the bound B, the poles and zeros of
SL(s), denoted as pL,i, zL,i, are also needed. We refer to rows
1, 2, and 3 in Table I as Bounds 1, 2, and 3.

The bounds depend on the poles and zeros of the real-
rational matrix SL(s), which we explain how to obtain in
Section II. We focus on the steps needed to fit realistic loads
with rational models. Bandwidth analyses of various loads are
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TABLE I
FORMS OF f(jω) AND B IN (2) FOR DIFFERENT LOCATIONS OF s0 ,

WHERE pL,i, zL,i ARE THE POLES AND ZEROS OF SL(s).

s0 = jω0
f(ω) = 1

2
[(ω0 − ω)−2 + (ω0 + ω)−2]

B = −π
2M

[∑
i(pL,i − jω0)−1 +

∑
i(zL,i + jω0)−1

]
Re{s0} > 0

f(ω) = 1
2

Re[(s0 − jω)−1 + (s0 + jω)−1]

B = −π
2M

log
∣∣∣detSL(s0) · ∏i(s0+zL,i)∏

i(s0−zL,i)

∣∣∣
s0 =∞

f(ω) = 1

B = −π
2M

(∑
i pL,i +

∑
i zL,i

)

then presented in Section III. The bounds are corollaries of
Theorems 2 and 3, which are presented in Section IV. We
conclude in Section V.

II. OBTAINING SL(s) AND ITS POLES AND ZEROS

The matrix SL(s) = (ZL(s) + Z0I)−1(ZL(s) − Z0I) is
uniquely determined if the impedance matrix of the loads
ZL(s) is known analytically. For many realistic loads, this
is generally impossible. Instead, either ZL(jω) or SL(jω)
is often obtained as the result of a numerical simulation or
measurement, where ω is contained to some frequency range
of interest. The next section gives an example of how to use
the results of simulation to find SL(s).

A. Finding SL(s) from numerical simulations of loads

The following steps can be used to find SL(s):
a) Measure or simulate the loads in the frequency range of

interest [ω1, ω2]. Denote the measured response S′L(jω).
b) Find a passive rational SL(s) such that SL(jω) is “close

enough” to S′L(jω) for ω ∈ [ω1, ω2].
Step a) can be done with standard modeling software such as
Ansys HFSS in the case of simulations, or a network analyzer
in the case of measurements. Step b) can be accomplished by
fitting rational functions to the individual entries of S′L(jω)
using, for instance, the Matrix Fitting Toolbox [4]–[8] in
MATLAB. We have more to say about this fitting in the next
section.

To compute the right-hand side of (2):
c) Find an s0 where (1) is satisfied for the computed SL(s).
d) Calculate the poles and zeros pL,i, zL,i of SL(s).

Step c) requires us to solve STL (−s0)SL(s0) = I . For
s0 = jω0, we can instead solve | detSL(jω0)| = 1. For Step
d), pL,i, zL,i can be obtained from the definitions of poles
and zeros of matrices. In some cases the poles and zeros of
SL(s) coincide with the poles and zeros of detSL(s). One
way of checking this is presented in [9], which we do not
repeat here. Then pL,i, zL,i can be obtained by applying root-
finding algorithms to 1/ detSL(s) = 0 and detSL(s) = 0,
respectively. The examples shown in Sections III-B–III-E use
this approach.

Multiple rational models may exist within the error toler-
ance of S′L(jω) for ω ∈ [ω1, ω2]. Each model could satisfy
(1) for different s0, and generate different bounds. When these
models yield consistent results, one can build confidence that

the bounds and models are physically meaningful. When these
models contradict each other, further investigation is needed
to determine the source of the inconsistency. An example of
multiple models is shown in Section III-C.

B. Analysis of distributed-element loads using rational models

Since SL(s) is a real-rational matrix, accurate modeling
of lumped-circuit loads is straightforward and can be done
without error. However, many loads such as antennas, trans-
mission lines, and other distributed-element systems include
time-delays, stubs, and other structures that are often modeled
using non-rational functions of s. A real-rational SL(s) is then
needed that “approximates” the loads with sufficient accuracy
to obtain a meaningful bandwidth bound.

The numerical and analytical approximation of distributed-
element circuits by lumped circuits over a fixed bandwidth is a
topic that has been studied in many contexts. An early example
is [10]. A summary of some practical techniques can be found
in [11]. Recent advances in antenna modeling include [12].
Other fields such as control engineering use rational fitting
extensively [13].

The mathematical problem of rational approximation and
modeling is addressed by Runge’s theorem in complex analy-
sis [14], which states that any analytical function on a subset of
the complex plane can be fit arbitrarily precisely with rational
functions. For example, the Padé approximation [15], [16] is
often used to model time delays using rational functions over
a frequency band of interest.

We are interested in obtaining an upper bound on∫ ω2

ω1

f(ω) log
1

r′(ω)
dω, (3)

where r′(ω) is the loss experienced when the matching
network is used with the actual loads S′L(jω). The process
outlined in Section II-A creates a rational approximation
SL(jω) for ω ∈ [ω1, ω2]. For an arbitrary matching network,
(2) gives∫ ω2

ω1

f(ω) log
1

r(ω)
dω ≤

∫ ∞
0

f(ω) log
1

r(ω)
dω ≤ B, (4)

where B is computed from SL(s) and r(ω) is the power
loss ratio experienced with the loads SL(s). The difference
between the left-hand sides of (3) and (4) is∫ ω2

ω1

f(ω) log
r(ω)

r′(ω)
dω,

and represents the error in the integral introduced by the
approximation of S′L(jω). Then choosing SL(s) such that∫ ω2

ω1

f(ω) log
r(ω)

r′(ω)
dω ≤ δB (5)

for some desired tolerance δB > 0 yields the bound∫ ω2

ω1

f(ω) log
1

r′(ω)
dω ≤ B + δB. (6)

The following theorem provides a first-order approximation
of δB for SL(s) that is close to S′L(jω) in the frequency band
of interest.
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Theorem 1: Let δSL(jω) = SL(jω)− S′L(jω) and define

ρ(ω) =
2σδ,max(ω)

1− σ′2L,max(ω)
·

√
1 +

σ′2L,max(ω)− σ′2L,min(ω)

(1− σ′L,max(ω))2
, (7)

where σδ,max(ω) is the maximum singular value of δSL(jω),
and 0 ≤ σ′L,min(ω) < σ′L,max(ω) < 1 are the minimum and the
maximum singular values of S′L(jω), respectively. Then

δB →
∫ ω2

ω1

f(ω)

2
log

(
1 +

1− r′2(ω)

r′2(ω)
· ρ(ω)

)
dω (8)

as ‖δSL(jω)‖F → 0 for ω ∈ [ω1, ω2].
Proof: See Appendix A.

In (8), f(ω) is given in Table I, and ρ(ω) is determined
by S′L(jω) and δSL(jω). The notation ‖ · ‖F refers to the
Frobenius norm (sum of squared magnitude of entries) of a
matrix. In the limit of a perfect model when δSL(jω) = 0,
then ρ(ω) = 0 and δB = 0. In general, δB depends on r′(ω),
which depends on the matching network. To eliminate the
dependence of δB on r′(ω), we choose the desired goal of
r′(ω) ≈ τ for ω ∈ [ω1, ω2], whence

δB ≈
∫ ω2

ω1

f(ω)

2
log

(
1 +

1− τ2

τ2
· ρ(ω).

)
dω. (9)

Note that even if r′(ω) does not achieve τ for ω ∈ [ω1, ω2],
(9) is still a useful quantity because it upper-bounds δB.

The steps for evaluating goodness-of-fit are then:
e) Compute δB in (9) numerically.
f) Evaluate if the desired tolerance on δB/B is met.

If the desired tolerance is not met, a smaller δSL(jω) is
needed. Finally,

g) Compute the bound (6).
Theorem 1 can also be used to examine cases where

the rational fit may fail to generate an accurate bound. For
example, if σ′L,max(ω) ≈ 1 in the neighborhood of some ω,
meaning S′L(jω) is very reflective, (7) indicates that ρ(ω)
becomes large. Any attempt to make r′(ω) small around this ω
could then potentially make δB in (8) large. Thus, attempting
to match a load where it is naturally very reflective may lead
to a loose bound.

C. Hazard of over-fitting

In attempting to make δB/B small, care should be taken not
to “over-fit” the loads. Over-fitting or over-modeling occurs
when the degrees of the polynomials in the numerator and
denominator of the rational functions in SL(s) are larger than
needed to obtain the desired accuracy. As the polynomial
degrees are increased, the relative error δB/B is decreased
since δB is decreased. But there is also the hazard that B
is made unnecessarily large because of the excessive number
of poles and zeros in SL(s). As a result, (6) becomes loose
and Condition 4 for achieving B cannot be satisfied. There is
a tension between making the rational model accurate while
still having a small number of poles and zeros.

One approach to determine if the system is over-fitted is to
examine the poles and zeros of the entries of SL(s). Any poles
and zeros that nearly cancel can have a small effect on δB but

(a) (b)
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Fig. 1. (a) Geometry of a dipole that is half-wavelength at 2.4 GHz. (b) Two
decoupled dipoles are matched by the structure shown in Figure 2. Matching
Network 1 handles 2–3 GHz and Network 2 handles 3–4 GHz; their resulting
r(ω)’s are given in the blue dashed and red dash-dot curves, respectively. The
overall system r(ω) is shown by the solid curve.

a large effect on B; they should be removed and δB/B re-
checked. Simpler models yield tighter bounds, and thus there is
an incentive to find the minimal model that adequately captures
the frequency response of the loads in the band of interest.
A detailed discussion of modeling poles is found in [17]. A
discussion of the sensitivity of poles and zeros to perturbations
of the data is found in [18].

In the remainder, we use the notation r(ω) when we are
considering the rational model, and we use r′(ω) when we
are considering the actual loads. In Section III-D, we present
an example where time delay in a circuit is modeled using
rational functions. Section III-E computes (6) for four realistic
coupled antennas.

III. BANDWIDTH ANALYSIS OF ANTENNAS

We now calculate broadband matching bounds for five
examples, all involving amplifiers driving antennas. Aspects of
coupling and rational approximation are emphasized. The first
three examples assume that the rational models are accurate
and therefore compute only (2), while the last two examples
incorporate the effects of rational fitting and therefore compute
(6). We begin with two identical decoupled dipoles whose
rational models are taken from [9].

A. Two decoupled dipoles

We design a broadband network of the type in Figure 5(b)
in Part I for two decoupled dipoles (N = 2) with one source
(M = 1). From Theorem 1 in Part I, the bound for two
decoupled dipoles is twice as large as for a single dipole when
there is only one source. The geometry of a dipole is shown in
Figure 1(a), which is half-wavelength at 2.4 GHz. In [9], the
same dipole is simulated in the range 1–5 GHz, and is modeled
using an S-parameter model Sl(s) normalized by characteristic
impedance Z0 = 50 Ω that satisfies Sl(∞) = −1. We apply
the model here, and write the S-matrix of two such dipoles as
SL(s) = diag(Sl(s), Sl(s)).
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Clearly, SL(∞) = −I , and (1) is satisfied at s0 =∞. The
poles and zeros of Sl(s) are listed in Table III in [9], and
Bound 3, using (2), for M = 1 gives∫ ω2

ω1

log
1

r(ω)
dω ≤

∫ ∞
0

log
1

r(ω)
dω ≤ 4.93× 1010, (10)

where ω1 = 2π × 109 and ω2 = 10π × 109 are the lower and
upper modeling frequencies.

We are interested in matching the decoupled dipoles to one
source in the 2–4 GHz range. The structure in Figure 2 is
employed, where Matching Network 1 is tuned for the 2–3
GHz band and Matching Network 2 is tuned for the 3–4 GHz
band and one circulator is used. These two-port networks are
designed using the Real Frequency Technique [19], followed
by a realization using Darlington synthesis [20]. In Figure 1(b),
the dashed and dash-dot curves show r(ω) of each network
when connected by itself to a dipole (typically through a balun
that is not shown). The r(ω) of the entire system, including
circulator, is the product of the r(ω) achieved by each, and
is shown as the solid curve. We seek a power reflection ratio
of r(ω) ≤ 0.2 (−14 dB). From the figure, we see that the
bandwidth achievable is ωBW(0.2, 3 GHz) = 2.35 GHz. The
achieved integral is∫ ω2

ω1

log
1

r(ω)
dω = 4.58× 1010. (11)

There is only a 3.51×109 gap between (10) and (11), which
is due entirely to shaping loss defined in Part I, Section III-C.
We therefore achieve excellent performance for one source
and two dipoles with this non-reciprocal network. According
to Theorem 3 in Part I, since M < N , using a reciprocal
splitter or coupler as part of the network would not perform
as well.

An experimental measurement of the effectiveness of the
matching network in Figure 2 would require standard S-
parameter measurements by a network analyzer at the input
port of the circulator. Since there is only one source, no
averaging is needed over phase differences, as described in
Part I, Section II-C. By the definition of r(ω), and because
the network is (theoretically) lossless, small values of r(ω)
in 2–4 GHz imply that the power from the source is being
accepted by the antennas.

We also note that for two sources (M = 2), we would be
able to achieve only half the bandwidth for the same −14
dB threshold. Clearly, the matching network for two sources
would differ considerably from the one presented in Figure
2 and could be reciprocal. We do not design such a network
here.

B. Two coupled dipoles

To illustrate the effect of coupling between two parallel
dipoles, we examine their bandwidth as a function of the
distance between them. We assume each dipole has the same
2.4 GHz half-wavelength structure as Figure 1(a). The center
feeding points of the parallel dipoles are at the same vertical
level, and the distance between them is d, as measured at any
place along their lengths. For each value of d, we apply the
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Fig. 2. Matching network of the type in Figure 5(b) in Part I is used to
connect a source (on the left) to two decoupled dipoles (connected on the
right, typically through baluns that are not shown). Matching networks 1
and 2 are designed using the Real Frequency Technique [19], followed by
realizations using Darlington synthesis [20].
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Fig. 3. Bound 3 for two parallel dipoles versus spacing d, for d between
0.03λ and 1.5λ (λ =125 mm is the wavelength at 2.4 GHz). Each dipole has
the structure shown in Figure 1(a), the center feeding points of the dipoles are
at the same vertical level, and the distance d is maintained along their lengths.
The horizontal dotted lines indicate Bound 3 for two decoupled dipoles. Also
shown are the even- and odd-mode beamforming bounds.

modeling recipe for the S-matrix SL(jω) detailed in Section II
in the range 1–5 GHz. Since we wish to compare the bounds
for coupled dipoles with (10), we model their S-matrices using
six poles and six zeros, and enforce SL(∞) = −I . Then the
resulting model SL(s) satisfies (1) at s0 =∞ for every d, and
Bound 3 can be applied to compare with (10).

We let d range from 0.03λ to 1.5λ, with step size 0.01λ,
where λ = 125 mm is the wavelength at 2.4 GHz. The poles
and zeros pL,i, zL,i are computed from SL(s), and Bound 3 is
computed for each d. For M = 1 and M = 2, the bounds are
shown in Figure 3 by the black and blue curves. The black
curve values are twice the blue curve. Horizontal dotted lines
indicate the bounds for decoupled dipoles.

Figure 3 shows oscillatory behavior and suggests that cou-
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Fig. 4. For one source and two parallel dipoles with spacing d, Bound 3
(left y-axis) is compared with Bound 1 (right y-axis). Bound 3 is the same
as the black curve shown in Figure 3. The dotted horizontal line indicates the
limiting values for decoupled dipoles.

pled dipoles can have large bandwidths at certain distances
from each other. The maxima appear near 0.24λ and are 20%
larger than their decoupled-dipole counterparts. As d increases,
the bounds approach the decoupled-dipole limits. On the other
hand, when d approaches zero, the two dipoles merge into a
single dipole, and the bounds in Figure 3 approach the bounds
where M sources drive a single dipole.

We already know from Part I, Section V-A, that using
these dipoles in a beamformer configuration with M = 1
generally cannot achieve the bound for any d. But the beam-
former configuration is still worth analyzing briefly. There
are two beamformers that are of special interest: even-mode
and odd-mode, corresponding to ~v(s) = [1/

√
2, 1/
√

2]T and
[1/
√

2,−1/
√

2]T in (25) in Part I. Since the dipoles are
reciprocal and have a symmetric structure, the resulting SL(s)
is symmetric circulant, and both even and odd ~v(s) are real
constant unit eigenvectors of SL(s). Thus Theorem 5 in Part I
applies.

Figure 3 shows the results. Both even and odd-mode bounds
are strictly smaller than the bound for M = 1, as expected.
Their sum, however, equals the M = 1 bound because
the incident and reflected waves to and from the loads are
orthogonal for the two modes. Therefore, the modes can be
treated as decoupled loads, each with its own equivalent S-
parameter and bound.

C. Multiple models for the same loads

For a set of loads with a measured S′L(jω), more than one
model SL(s) may be created within a given error tolerance.
To illustrate this, we take the parallel dipoles in Section III-B
with S′L(jω) measured in 1–5 GHz as examples. For each d,
we model the S-matrix using the Matrix Fitting Toolbox with
six poles and six zeros and enforce SL(0) = I . The resulting
SL(s) then satisfies (1) at s0 = 0, and Bound 1 is applied
to the coupled dipoles. We contrast the results with Section
III-B, where SL(∞) = −I is enforced and Bound 3 applies.

50 Ω

20 pF

50 pF

50 pF

50 Ω
0.5 ns D

Fig. 5. Two capacitively coupled loads. The coupling includes an ideal delay
component of 0.5 ns.

TABLE II
VALUES OF pL,i AND zL,i FOR SL(s) MODEL FOR THE COUPLED LOADS

IN FIGURE 5. TABLE (A) SHOWS pL,i AND zL,i WHEN THE PADÉ
APPROXIMATION IS APPLIED, AND TABLE (B) SHOWS pL,i AND zL,i WHEN

THE LOADS ARE FITTED WITH RATIONAL MATRICES WITHOUT THE PADÉ
APPROXIMATION.

(a)
i pL,i zL,i

1 −6.71× 108 0
2, 3 (−0.05± 3.37j)× 109 ±3.38j × 109

4, 5 (−0.00± 1.33j)× 1010 ±1.33j × 1010

6 −4.35× 108 0
7, 8 (−0.16± 1.25j)× 109 ±1.32j × 109

9, 10 (−0.02± 6.81j)× 109 ±6.81j × 109

(b)
i pL,i zL,i

1 −6.71× 108 0
2, 3 (−0.05± 3.37j)× 109 ±3.38j × 109

4, 5 (−0.00± 1.01j)× 1010 ±1.01j × 1010

6 −4.35× 108 0
7, 8 (−0.16± 1.25j)× 109 ±1.32j × 109

9, 10 (−0.02± 6.76j)× 109 ±6.76j × 109

For M = 1, Figure 4 compares Bound 1 (left y-axis) with
Bound 3 (right y-axis) for the parallel dipoles when d varies
from 0.03λ to 1.5λ. The horizontal dotted line indicates the
limiting values as the dipoles become decoupled. Both curves
show similar trends when the dipoles are closely spaced, and
suggest a bandwidth peak at 0.24λ. For d > 0.32λ, the curves
seem out of phase with each other. Further exploration is
needed to see if there is any physical significance to this.

D. Rational approximation of time delays

Any characterization of physically separated antennas
should account for the time of propagation of the signal be-
tween the antennas. Time delays associated with this distance
can be modeled as a non-rational (exponential) function of s.

A simple idealized analytical model of time delay is shown
in Figure 5, which consist of two RC loads and a coupling
branch between them. The coupling is capacitive and includes
a delay component. We examine our ability to match to this
load in the 100–400 MHz band. As a reference value, without
the time delay (zero delay), the S-matrix of the loads is real-
rational and satisfies SL(∞) = −I , has two poles at −8.00×
108 and −4.44 × 108, and has a zero at 0 with multiplicity
two. We apply Bound 3 and obtain B = 9.77× 108.

In order to apply the broadband bounds to Figure 5, we
need to approximate the delay using a rational function. We
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consider two ways of doing this. The first way models the time
delay term e−5×10

−10s using the Padé approximation. We use
the fraction

s4−2×1010s3+1.8×1020s2−8.4×1029s+1.68×1039

s4+2×1010s3+1.8×1020s2+8.4×1029s+1.68×1039 .

This fraction is then inserted in place of the time delay, thus
making the rational matrix SL(s) that satisfies SL(∞) = −I ,
and has poles and zeros shown in Table II(a). (We omit the
expression of SL(s) because of its complexity.) Compared
with the true S-matrix of the loads, the rational S-matrix has
an average error of −119 dB in its entries between 100 MHz
and 400 MHz. We apply Bound 3 and obtain 1.24×109. Using
(9) with τ = 0.2, we obtain δB ≈ 9.64 × 107, which is 8%
of the bound. Hence (6) is∫ 4×108

1×108
log

1

r′(ω)
dω ≤ 1.34× 109. (12)

This bound is larger than without the delay.
A second way to model delay is to avoid the analytical

Padé step, and directly fit numerical simulations using rational
matrices. To illustrate this, we treat the loads in Figure 5 as a
black box, obtain a numerical frequency response, and use the
Matrix Fitting Toolbox to fit this response. We use ten poles
and ten zeros to fit the loads in 100–400 MHz, and enforce
SL(∞) = −I . The resulting SL(s) has poles and zeros shown
in Table II(b); the average error between the entries true S-
matrix of the loads and entries of SL(s) is −150 dB. Bound
3 is applied to the fitted rational model, which yields B =
1.24× 109, and δB ≈ 1.75× 107, which is 1% of the bound.
The total is B + δB = 1.26 × 109. This numerically fitted
model result is similar to the Padé approximation result (12),
illustrating the robustness of this approach.

In the next section, we further illustrate the numerical
method by fitting loads that include sections of realistic
transmission lines. No analytical modeling is needed.

E. Four commercial 2.5 GHz antennas

We consider a system where M = N = 4, and the
loads consist of two pairs of Skycross iMAT-1115 commercial
antennas designed for 2.5 GHz. The antennas are shown in
Figure 6(a), numbered 1 through 4 from left to right. These an-
tennas are simulated using Ansys HFSS in 2–4 GHz, and their
de-embedded S-matrix S′L(jω) entries are plotted in Figure
6(b). The de-embedding removes the effect of the grounded
coplanar feed lines that drive the antennas in the simulation.
Each antenna in Figure 6(a) is one-tenth of a wavelength
away from its neighbor at 2.5 GHz and the antennas therefore
couple. From Figure 6(b), we see that antennas 1 and 2 are
decoupled at 2.5 GHz, but not at other frequencies; antennas
2 and 3 have significant coupling near 2.5 GHz. We wish to
examine the achievable bandwidth performance of these four
antennas.

We apply the modeling method in Section II to the simulated
S′L(jω). Figure 6(b) compares the simulated S′L(jω) with
the SL(s); the expressions for SL(s) are not shown. The
maximum of any element of SL(jω) − S′L(jω) in 2–4 GHz
is -38 dB, and the average over the frequency band is -53

(b)

(a)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

x 109

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

[SL]11 [SL]12 [SL]13
[SL]14 [SL]22 [SL]23

Fig. 6. (a) Geometries of two pairs of Skycross iMAT-1115 antennas. (b) The
simulated and modeled S-matrix elements of the antennas versus frequency
in 2–4 GHz. The HFSS simulated result S′L(jω) is shown in blue, and
are compared with SL(jω) in red. Different elements are distinguished by
different markers in the plot; only some of the elements in the S-matrix are
shown because of the symmetry in the structure of the antennas.

TABLE III
VALUES OF pL,i AND zL,i FOR THE S-MATRIX OF THE ANTENNAS IN

FIGURE 6(A).

i pL,i zL,i

1 −1.54× 108 1.64× 108

2 −7.74× 109 3.67× 1010

3, 4 (−0.43± 1.37j)× 1010 (−0.23± 2.23j)× 1010

5, 6 (−0.15± 1.60j)× 1010 (−0.22± 1.69j)× 1010

7, 8 (−0.08± 1.69j)× 1010 (0.04± 1.70j)× 1010

9, 10 (−0.75± 2.40j)× 1010 (2.65± 3.46j)× 1010

11, 12 (−0.40± 3.14j)× 1010 (0.03± 1.63j)× 1010

dB. The pL,i, zL,i for the antennas are listed in Table III. It
is readily checked that detSL(0) = 1, and (1) is satisfied at
s0 = 0. Bound 1 yields∫ ω2

ω1

ω−2 log
1

r(ω)
dω ≤ 2.31× 10−10, (13)

where ω1 = 4π × 109 and ω2 = 8π × 109.
We apply the steps in Section II-B to estimate δB for τ =

0.2. The integral in (9) with f(ω) = 1/ω2 yields δB ≈ 7.88×
10−11, which is equal to 34% of the bound in (13), and which
we accept. Therefore,∫ ω2

ω1

ω−2 log
1

r′(ω)
dω ≤ B + δB = 3.10× 10−10 (14)

is our bound for the four antennas.
The right-hand side of (14) is compared with the achieved

bandwidth of two different matching networks. The first net-
work is shown in Figure 7(a) for a single antenna; this network
is duplicated four times, one for each antenna, and does not
account for any antenna coupling. The second network, shown
in Figure 7(b), is a decoupling network at 2.5 GHz designed
using Method 4 in [21]. The achieved integral for the two
networks are 6.98 × 10−12 and 2.49 × 10−11, respectively.
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c25 0.42 pF c56 0.07 pF
c26 0.54 pF c57 0.10 pF
c33 20.46 nH c58 0.004 pF
c35 0.05 pF c66 12.02 nH
c36 6.44 nH c67 39.76 nH
c37 0.77 pF c68 0.10 pF
c44 5.62 nH c77 2.62 nH
c45 19.98 nH c78 0.07 pF
c46 122.24 nH c88 3.49 nH
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Fig. 7. (a) A two-port matching network for a single Skycross iMAT-1115
antenna (duplicated four times) that does not account for antenna coupling.
(b) A decoupling network at 2.5 GHz designed using Method 4 in [21], where
each line represents a capacitor or inductor, and each port is grounded through
a component not drawn in figure. The capacitance and inductance values are
listed in the table to the right; cii i = 1, . . . , 8 are the components connecting
port i to ground, and cij i 6= j = 1, . . . , 8 are the components connecting
port i and j. (c) The r(ω) for networks (a) and (b) are shown in 2–4 GHz.
Also plotted is r(ω) for (b) when the reactive components have Q factors 10,
30 and 100.

Although the decoupling network has a better bandwidth
performance than the network in Figure 7(a), there still exists
a significant gap between the achieved integrals and (14),
indicating that much better bandwidth performance with these
antennas is still possible. The r′(ω) for both networks is
plotted in Figure 7(c), where we see narrow bandwidth for
both networks. Neither network comes close to achieving the
desired threshold of τ = 0.2 (power reflection ratio −14 dB)
over 2–4 GHz, which should be possible according to (14).
The design of a network to achieve (14) remains an open
problem.

The reactive components in Figure 7(b) are ideal in that
they have no resistive properties. To illustrate the bandwidth
lost when the components have finite Q factors, we let the
reactive components behave as ideal reactive components in
parallel with resistances. All of the components in Figure 7(b)
are assumed to have the same Q factors for all frequency,
where Q is defined as the ratio between the susceptance and
the conductance of the components. Figure 7(c) shows the
r′(ω) for different Q factors.

Finally, we show that the grounded coplanar waveguide feed
lines used for these antennas have minimal effect on the bound.
We modify the S-matrix generated by Ansys HFSS by not de-
embedding it from the transmission lines, thus including them
in the frequency analysis. This S-matrix is then subjected to
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Fig. 8. An RF system where M uncorrelated sources drive N loads having S-
matrix SL through a passive (M+N)-port matching network S (the complex-
frequency argument s is omitted). The N loads are shown in the dashed box
using their equivalent Darlington representation, which consists of a lossless
2N -port network Sb connected with N characteristic impedances Z0. Sc is
the (M + N) × (M + N) S-matrix of the concatenated network of S and
Sb. SLM , SG and SGM are the S-matrices as seen at different ports of the
system.

standard rational fitting: We employ the Matrix Fitting Toolbox
to fit the antennas using a rational matrix with 15 poles and
zeros, and enforce (1) at s0 = 0. We omit the details, but
the result of Bound 1 is B = 2.74× 10−10. From (9), δB ≈
3.61×10−11, and the result is B+δB = 3.10×10−10, which
coincides with (14). Hence, the feed lines in this example
do not affect the bandwidth, likely because they are equal in
length and have minimal coupling between them.

We now provide derivations of the bounds used in both Parts
of this paper.

IV. DERIVATIONS OF BROADBAND MATCHING BOUNDS

The bounds are corollaries of Theorems 2 and 3, which are
presented in Section IV-B. The presentation of the theorems
requires the Darlington representation for multiport loads,
which is itself presented in Section IV-A. The bounds are
derived in Section IV-C.

A. Darlington equivalent network

We consider the RF system shown in Figure 8, where M
uncorrelated sources drive N loads through a passive (M +
N)-port matching network. The network has an (M + N) ×
(M +N) S-matrix S(s) partitioned as

S(s) =

( M N

M S11(s) S12(s)

N S21(s) S22(s)

)
.

In Figure 8, we transform the N dissipative real loads SL(s)
into an equivalent lossless real 2N -port network Sb(s) ter-
minated by N isolated characteristic impedances Z0. In [20],
Darlington first verified that such an equivalent transformation
is possible for N = 1. The extension to N > 1 is shown in
[23]–[26]. The fact that I−STL (−s)SL(s) has full normal rank
ensures that there are N resistors in the Darlington network
[25, III.3.1].
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We partition the 2N × 2N S-matrix Sb(s) as

Sb(s) =

[
Sb11(s) Sb12(s)
Sb21(s) Sb22(s)

]
,

where Sbij(s) are N×N submatrices. Then the necessary and
sufficient condition for Sb(s) being a Darlington equivalent
network for a real-rational SL(s) is that Sb(s) is real-rational,
Hurwitzian, bounded and para-unitary, and Sb11(s) = SL(s).
We do not need to know the exact form of the rest of Sb(s),
only its existence is needed.

In Figure 8, let Sc(s) be the (M +N)× (M +N) S-matrix
of the concatenated network of S(s) and Sb(s), partitioned as

Sc(s) =

( M N

M Sc11(s) Sc12(s)

N Sc21(s) Sc22(s)

)
.

Let SGM (s) be the N × N S-matrix seen from the output
ports of Sb(s), and SG(s) be the N ×N S-matrix seen from
the output ports of S(s). It follows that SG(s) = S22(s),
SGM (s) = Sc22(s), and

SGM (s) = Sb22(s)

+ Sb21(s)SG(s)(I − SL(s)SG(s))−1Sb12(s). (15)

We use the notation p×,i and z×,i, i = 1, 2, . . . to represent
the poles and zeros over the WCP of S×(s), where S× is
any of the S-matrices or submatrices shown in Figure 8. In
addition, we use the subscript “+” to denote the zeros or poles
that are in the RHP, and “−” to denote those in the LHP.

In Figure 8, let ~a3(s) and ~b3(s) be the N × 1 incident
and reflected signal to and from the isolated impedances Z0.
Because Sb(s) is lossless, the amount of power delivered to
the loads equals the power delivered to the resistive part of the
Darlington network. Since ~b3(jω) = 0, the power delivered at
jω is ‖~a3(jω)‖2, where ~a3(jω) = Sc21(jω)~a1(jω). So the
total power lost to reflection and dissipation can be written
as ‖~a1(jω)‖2 − ‖~a3(jω)‖2, and the power loss ratio of the
matching network and the loads becomes

r2(ω) = 1− 1

M
tr{SHc21(jω)Sc21(jω)}. (16)

In the rest of the presentation, we use a particular Darlington
network, which is given in the following lemma in [9].

Lemma 1: There exists a Darlington network Sb(s) such
that

zb22+,i = −zL−,i. (17)

For such Sb(s), the RHP zeros of SGM (s) are identical to the
RHP zeros of STL (−s)− SG(s).

B. Integral log-determinant of SGM (jω)

We now present the theorems on the integral of logarithm of
detSGM (jω). We assume that I−STL (−s)SL(s) is full normal
rank. We also assume (1) is satisfied for some Re{s0} ≥ 0,
and choose positive integer m such that

I − STL (−s)SL(s) = Am(s− s0)m +Am+1(s− s0)m+1

+ . . . (18)

if s0 is finite, or

I − STL (−s)SL(s) = Ams
−m +Am+1s

−(m+1) + . . . (19)

if s0 = ∞. In (18) and (19), Am 6= 0 is defined such that
the entries of I − STL (−s)SL(s) have a zero at s = s0 with
multiplicity at least m. When s0 = jω0, it is shown in Lemma
4 in Appendix C that m is even; when s0 = ∞, m is also
even since the left-hand side of (19) is an even function. The
general broadband matching theorems are as follows:

Theorem 2: Let SL(s) satisfy (18) for some Re{s0} ≥ 0.
Then for any passive network S(s) such that I−SL(s0)SG(s0)
is non-singular, we have∫ ∞

0

Re[(s0 − jω)−1 + (s0 + jω)−1] log | detSGM (jω)|dω

= π log
∣∣∣ detSL(s0) ·

∏
i(s0 + zL,i)

∏
i(s0 + zGM+,i)∏

i(s0 − zL,i)
∏
i(s0 − zGM+,i)

∣∣∣,
(20)

and ∫ ∞
0

[(s0 − jω)−(k+1) + (s0 + jω)−(k+1)]×

log | detSGM (jω)|dω =
(−1)kπ

k

[∑
i

(pL,i − s0)−k

−
∑
i

(−zL,i − s0)−k +
(∑

i

(zGM+,i − s0)−k

−
∑
i

(−zGM+,i − s0)−k
)]

(21)

for k = 1, . . . ,m − 1, where ±s0, ±s∗0 are excluded in pL,i,
zL,i in (21). If I−SL(s0)SG(s0) is singular, then Re{s0} = 0,
(20) holds, and (21) holds for k = 1, . . . ,m−2; for k = m−1,
we let s0 = jω0, and then have∫ ∞

0

[(ω0 − ω)−m + (ω0 + ω)−m] log | detSGM (jω)|dω

≥ (−1)
m−2

2 π

m− 1

[∑
i

(pL,i − jω0)−(m−1)

−
∑
i

(−zL,i − jω0)−(m−1) +
(∑

i

(zGM+,i − jω0)−(m−1)

−
∑
i

(−zGM+,i − jω0)−(m−1)
)]
. (22)

Theorem 3: Let SL(s) satisfy (19). Then∫ ∞
0

ωk−1 log | detSGM (jω)|dω

≥ (−1)
k−1
2 π

2k

[∑
i

pkL,i +
∑
i

zkL,i + 2
∑
i

zkGM+,i

]
(23)

for k = 1, 3, . . . ,m− 1. Equality in (23) holds if k 6= m− 1
or I − SL(s)SG(s) is non-singular at s =∞.

In Theorem 2, although (18) holds, s0 may still be a zero
of SL(s) when Re{s0} > 0. This happens if and only if
SL(s) has a pole at −s0, which cancels the zero at s0 in
(18). Hence, the poles and zeros of SL(s) at ±s0, ±s∗0 are
excluded in the sums in (21). The proof of Theorem 2 appears
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in Appendix D; the proof uses several preliminary lemmas
which are introduced in Appendices B and C.

Theorem 3 is adapted from Theorem 1 in [9], which is
proven with detSLM (jω) in place of detSGM (jω) in (23).
Note SLM (s) is the M × M S-matrix seen from the input
ports of S(s) (see Figure 8). Although it is assumed in [9]
that M = N , and that the matching network is lossless and
reciprocal, and the loads are also reciprocal, these assumptions
can be relaxed. In fact, Theorem 1 in [9] applies without
change to non-reciprocal networks and loads; the reciprocity
of the networks and loads is an unnecessary restriction in the
model. Our version is needed to handle lossy networks, which
are not handled in [9]. The proof of (23) follows the same
arguments used in the proof of Theorem 2 and is omitted.

C. Proof of bounds

We relate detSGM (jω) to r(ω) in (16) using the arithmetic-
geometric mean inequality:

r2(ω) =
1

M
tr{I − SHc21(jω)Sc21(jω)}

≥ det(I − Sc21(jω)SHc21(jω))1/M

≥ det(SGM (jω)SHGM (jω))1/M = | detSGM (jω)|2/M .

The first equality holds if and only if the eigenvalues of
I − SHc21(jω)Sc21(jω) are all equal; this is equivalent to
SH21(I − SGSL)−H(I − SHL SL)(I − SGSL)−1S21 having
equal singular values for all jω, which is Condition 2 for
equality in [1]. The second equality holds if and only if S(s)
satisfies Sc21(s)STc21(−s) + SGM (s)STGM (−s) = I . Since
Sb(s) is para-unitary, this is equivalent to S21(s)ST21(−s) +
SG(s)STG(−s) = I , which is Condition 1.

Taking the logarithm on both sides of the inequality yields

log r(ω) ≥ (1/M) log | detSGM (jω)|. (24)

When s0 = jω0, we apply (24) to (21) and (22) for k = 1, and
omit

∑
i(zGM+,i− jω0)−1−

∑
i(−zGM+,i− jω0)−1 since it

is non-negative. From Lemma 1, the RHP zeros of SGM (s)
are identical to the RHP zeros of STL (−s) − SG(s); thus
Condition 4 is necessary and one of the sufficient conditions.
This finishes the proof of Bound 1.

When Re{s0} > 0, we apply (24) to (20), and then omit∏
i(s0+zGM+,i)∏
i(s0−zGM+,i)

since it has modulus no smaller than one. Note
Re[(s0 − jω)−1 + (s0 + jω)−1] in (20) is positive for any
Re{s0} > 0 and ω. The result is Bound 2.

We combine (24) and (23) for k = 1, and then omit∑
i zGM+,i since it is non-negative. The result is Bound 3.

V. CONCLUSIONS AND FUTURE WORK

We have presented a bandwidth analysis for multiport
matching that applies to an arbitrary number of sources
and coupled loads, using broadband matching bounds on the
integral of a power loss ratio. Part I presented the definitions
and bounds and applied them to settings where the loads could
be described analytically using rational functions. Conditions
were given for when the bounds could be met with equality.

Part II focused on realistic loads, including antennas, and the
rational fitting needed for accurate bandwidth calculations.
Proofs of all results were also presented.

Part I demonstrated that the bound scales generally as N/M
for M sources and N loads. This scaling is not affected
by coupling as long as it is not “too strong”. Hence, large
bandwidth is possible even if the loads are coupled or closely-
spaced. Some realistic examples in Part II showed how large
bandwidths can be attained in practice. Although we touched
upon techniques to attain the bounds, the general practical
design problem remains open.

For loads, such as antennas, whose frequency responses
are available numerically through simulation, rational fitting
of the S-matrix is required to apply the bounds. We showed
how the rational matrix is then used to find a bandwidth
bound for the system being fitted. Increasing the polynomial
orders of the numerators and denominators of the rational
functions in the S-matrix generally improves the accuracy
of the system approximation, but can cause the problem of
over-fitting, which results in a loose bound. Over-fitting is an
important issue that deserves further attention.

Our examples included antennas that are matched near their
resonant frequency. It would be interesting to see how the
bounds characterize the bandwidth for electrically small an-
tennas, which are being used below their resonant frequencies
and are generally considered narrowband. The classical Chu
bound [28] and some recent advances [29]–[31] provide other
methods to describe the bandwidth for small antennas. One
future area of study could be to reconcile these methods with
bandwidth results calculated using the modeling techniques
and bounds contained herein.

The communication-theoretic implications of using broad-
band multiport networks in wireless systems need study. We
have been concerned primarily with the aspects of network
design that ensure efficient power delivery to loads such as
an array of multiple coupled antennas. However, the choice of
network can also affect the radiation efficiency and far-field
pattern of an antenna array. Hence, a complete system design
should consider total power transfer from the transmitter
amplifiers to a far-field receiver. We also did not examine
the implications of using the wideband matching networks for
antennas that are intended for both transmission and reception.

Although we have treated the case where uncorrelated
sources are driving coupled loads, the reverse situation where
coupled sources are driving decoupled loads needs separate
analysis. Such a system could arise when the sources are
closely-spaced receiver antennas connected to isolated low-
noise amplifiers. The noise figures of the amplifiers would
play a role in the criterion for determining bandwidth.

Maximizing the data rate attainable with a prescribed set
of N antennas is a potentially interesting problem. Conven-
tional narrowband Shannon theory says that MIMO, with
M independent data streams (sources) in a rich scattering
environment, achieves rates linear in N when M = N [32].
But, as we have seen, the bandwidth attainable for M = N
is only 1/N of that attainable for M = 1. Thus, MIMO
with N streams achieves 1/N the bandwidth of MIMO with
a single stream. Since the transmission data rate is directly
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proportional to bandwidth, one could therefore conjecture
that, with N antennas, one stream is as good as N . This
bandwidth/multiplexing trade-off needs further study.
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APPENDIX

Theorem 1 is proven in Appendix A. We prove Theorem
2 in Appendix D using several preliminary lemmas that are
introduced in Appendices B and C.

A. Proof of Theorem 1

Let ε(ω) = r2(ω)− r′2(ω). Then∫ ω2

ω1

f(ω) log
r(ω)

r′(ω)
dω =

∫ ω2

ω1

f(ω)

2
log

(
1 +

ε(ω)

r′2(ω)

)
dω

=

∫ ω2

ω1

f(ω)

2
log

(
1 +

1− r′2(ω)

r′2(ω)
· ε(ω)

1− r′2(ω)

)
dω.

We show that ε(ω)/(1− r′2(ω)) ≤ ρ(ω).
From (5) in Part I,

r2(ω) = 1−
tr{SH21(I − SGSL)−H(I − SHL SL)(I − SGSL)−1S21}

M
,

and a similar relation between r′2(ω) and S′L(jω) holds. For
simplicity of the presentation, we omit the argument jω for
the S-matrices in the remainder of the proof. We perturb
SL(jω) = S′L(jω) + δSL(jω); a first-order expansion yields

ε(ω) = r2(ω)− r′2(ω) ≈

− 1

M
tr{SH21(I − SGS′L)−HA1(I − SGS′L)−1S21},

where A1 is the Hermitian matrix

A1 =δSHL (I − S′LSG)−H(SHG − S′L)

+ (SG − S′HL )(I − S′LSG)−1δSL.

Because A1 is Hermitian, the matrix SH21(I−SGS′L)−HA1(I−
SGS

′
L)−1S21 is also Hermitian. Some manipulations of the

trace give us

ε(ω) ≤ σ1,max

M
tr{SH21(I − SGS′L)−H(I − SGS′L)−1S21},

where σ1,max is the maximum singular value of A1. Similarly,

1− r′2(ω)

=
1

M
tr{SH21(I − SGS′L)−H(I − S′HL S′L)(I − SGS′L)−1S21}

≥
1− σ′2L,max(ω)

M
tr{SH21(I − SGS′L)−H(I − SGS′L)−1S21}.

Hence,

ε(ω)

1− r′2(ω)
≤ σ1,max

1− σ′2L,max(ω)
.

We now seek an upper bound on σ1,max, which depends on
the maximum singular values of both δSL and (SG−S′HL )(I−
S′LSG)−1. The maximum singular value of δSL is σδ,max(ω).
To obtain the maximum singular value of (SG − S′HL )(I −
S′LSG)−1, we try to prove that

I + (σ′2L,max(ω)− σ′2L,min(ω))(I − S′LSG)−H(I − S′LSG)−1

− (I − S′LSG)−H(SHG − S′L)(SG − S′HL )(I − S′LSG)−1

(25)

is a positive semidefinite matrix, which means the maximum
eigenvalue of the positive definite matrix I + (σ′2L,max(ω) −
σ′2L,min(ω))(I−S′LSG)−H(I−S′LSG)−1 is larger than or equal
to the maximum eigenvalue of the positive semidefinite matrix
(I−S′LSG)−H(SHG −S′L)(SG−S′HL )(I−S′LSG)−1. Then the
square root of the maximum eigenvalue of I + (σ′2L,max(ω) −
σ′2L,min(ω))(I−S′LSG)−H(I−S′LSG)−1 is larger than or equal
to the maximum singular value of (SG−S′HL )(I −S′LSG)−1.

To prove that (25) is positive semidefinite, we simplify it

I + (σ′2L,max(ω)− σ′2L,min(ω))(I − S′LSG)−H(I − S′LSG)−1

− (I − S′LSG)−H(SHG − S′L)(SG − S′HL )(I − S′LSG)−1

= (I − S′LSG)−HA2(I − S′LSG)−1,

where

A2 = (σ′2L,max(ω)− σ′2L,min(ω))I + (I − S′LS′HL )

− SHG (I − S′HL S′L)SG.

A2 is a positive semidefinite matrix because the singu-
lar values of S′L and SG are no larger than one, and
therefore the minimum eigenvalue of the positive definite
matrix (σ′2L,max(ω) − σ′2L,min(ω))I + (I − S′LS

′H
L ) is larger

than or equal to the maximum eigenvalue of the positive
semidefinite matrix SHG (I − S′HL S′L)SG. Therefore, we have
proven that the square root of the maximum eigenvalue of
I + (σ′2L,max(ω) − σ′2L,min(ω))(I − S′LSG)−H(I − S′LSG)−1

is larger than or equal to the maximum singular value of
(SG − S′HL )(I − S′LSG)−1. The maximum eigenvalue of
I + (σ′2L,max(ω) − σ′2L,min(ω))(I − S′LSG)−H(I − S′LSG)−1

is smaller than or equal to 1 +
σ′2L,max(ω)−σ

′2
L,min(ω)

(1−σ′L,max(ω))
2 . Therefore,

the maximum singular value of (SG − S′HL )(I − S′LSG)−1 is

smaller than or equal to
√

1 +
σ′2L,max(ω)−σ′2L,min(ω)

(1−σ′L,max(ω))
2 . We conclude

σ1,max ≤ 2σδ,max(ω)

√
1 +

σ′2L,max(ω)− σ′2L,min(ω)

(1− σ′L,max(ω))2
,

which yields ε(ω)/(1 − r′2(ω)) ≤ ρ(ω). This finishes the
proof.



11

B. Preliminary lemmas on real-rational functions

Lemma 2: Let f(s) be a real-rational function with f(s0) =
c 6= 0. Then the series expansion of log f(s) around s = s0
can be written as

log f(s) = log c+ a1(s− s0) + a2(s− s0)2 + . . .

+ a`(s− s0)` + . . . , (26)

where

a` =
1

`

(∑
i

(pi − s0)−` −
∑
i

(zi − s0)−`

)
(27)

for ` = 1, 2, . . ., where pi, zi are the poles and zeros of f(s).
Proof: Since f(s0) 6= 0 is finite, log f(s0) = log c is

finite. So the expansion of log f(s) around s = s0 can be
obtained using Taylor series expansion. The result is (27).

Lemma 3: Let f(s) be a real-rational function. For any
Re{s0} ≥ 0, if f(s0) is finite, non-zero, and 1 − f(−s)f(s)
has a zero at s = s0 with multiplicity m, then∫ ∞

0

Re[(s0 − jω)−1 + (s0 + jω)−1] log |f(jω)|dω

= π log

∣∣∣∣f(s0)

∏
i(s0 − p+,i)

∏
i(s0 + z+,i)∏

i(s0 + p+,i)
∏
i(s0 − z+,i)

∣∣∣∣ , (28)

and∫ ∞
0

[(s0 − jω)−(k+1) + (s0 + jω)−(k+1)] log |f(jω)|dω

=
(−1)kπ

k

[∑
i

(pi − s0)−k −
∑
i

(zi − s0)−k

−
(∑

i

(p+,i − s0)−k −
∑
i

(−p+,i − s0)−k
)

+
(∑

i

(z+,i − s0)−k −
∑
i

(−z+,i − s0)−k
)]

(29)

for k = 1, . . . ,m − 1, where pi, zi are the poles and zeros
of f(s) in the WCP, and p+,i, z+,i are the poles and zeros of
f(s) in the RHP.

Proof: Since f(s0) 6= 0, we begin by applying Lemma
2 to write the expansion of log f(s) as (26) and (27). For
convenience, we define another real-rational function f̂(s) as

f̂(s) = f(s)

∏
i(s− p+,i)∏
i(s+ p+,i)

∏
i(s+ z+,i)∏
i(s− z+,i)

, (30)

where p+,i and z+,i are the poles and zeros of f(s) in the RHP.
Then f̂(s) has no poles or zeros in the RHP, and satisfies
f̂(−s)f̂(s) = f(−s)f(s) and |f̂(jω)| = |f(jω)|. We apply
Lemma 2 to f̂(s) and get

log f̂(s) = log ĉ+ â1(s− s0) + â2(s− s0)2 + . . .

+ â`(s− s0)` + . . . , (31)

where

ĉ = f̂(s0) = f(s0)

∏
i(s0 − p+,i)∏
i(s0 + p+,i)

∏
i(s0 + z+,i)∏
i(s0 − z+,i)

, (32)

and

â` = a` −
1

`

(∑
i

(p+,i − s0)−` −
∑
i

(−p+,i − s0)−`

)
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Fig. 9. The contours for the integrals (35), (37), (39) and (41) are shown in
(a)–(d), respectively. The contours are in the clockwise direction. The sections
of the contours are labeled C1, C2, . . . and their detailed descriptions are given
in the proof of Lemma 3.

+
1

`

(∑
i

(z+,i − s0)−` −
∑
i

(−z+,i − s0)−`

)
. (33)

We can expand log f(s) and log f̂(s) at s = s∗0 in similar
forms as (26) and (31). Since f(s) and f̂(s) are real-rational,
the coefficients for the expansion of log f(s) and log f̂(s) at
s = s∗0 are a∗` and â∗` , respectively.

The next step is to separate our discussions into four cases:
s0 = 0, jω0, σ0, σ0 + jω0. Since the cases are similar to one
another, we elaborate more on the s0 = 0 case than the others.

1) s0 = 0: Since 1 − f(−s)f(s) is an even real-rational
function and has a zero of multiplicity m at s0 = 0, m must
be an even integer. We take the logarithm of f̂(−s)f̂(s) =
f(−s)f(s) = 1 +O(sm) and use the expansion (31) at s0 =
0. Because f̂(s) is real-rational, the coefficients in (33) for
s0 = 0 are real. We therefore obtain |ĉ| = 1, â2 = â4 = . . . =
âm−2 = 0 and Im{â1} = Im{â3} = . . . = Im{âm−1} = 0.

For s0 = 0, (28) is trivial since both sides are zero. Because
â2 = â4 = . . . = âm−2 = 0, (29) is also trivial for k =
2, 4, . . . ,m − 2. We show (29) for k = 1, 3, . . . ,m − 1 by
taking the contour integral of the function

s−(k+1) log f̂(s) (34)

along the closed curve shown in Figure 9(a). This function
is analytic in the RHP; it is also analytic on the imaginary
axis except the origin and possible zeros and poles of f̂(s) on
the imaginary axis, which we denote as jω`. Therefore, the
following contour integral is zero:∫

C1+C2+C3+C4
s−(k+1) log f̂(s)ds = 0, (35)
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where C1 is the line segment between −jR and jR excluding
[−ε, ε] and [j(ω` − ε), j(ω` + ε)]; C2 is the right semicircle
with radius R centered at the origin; C3 is the right semicircle
with radius ε centered at the origin; and C4 includes the right
semicircles with radius ε centered at jω`. We evaluate the
integral of (34) as follows:∫
C1
s−(k+1) log f̂(s)ds

= (−1)
k+1
2 j

∫ R

−R
ω−(k+1) log |f(jω)|dω − (−1)

k+1
2 2 arg(ĉ)

kεk

+O(R−k),

where the integral from −R to R excludes the intervals [−ε, ε]
and [ω` − ε, ω` + ε]. Furthermore,∫
C2
s−(k+1) log f̂(s)ds =

∫ −π/2
π/2

j(Rejθ)−k log f̂(Rejθ)dθ

= O

(
logR

R

)
.

∫
C3
s−(k+1) log f̂(s)ds =

∫ π/2

−π/2
j(εejθ)−k log f̂(εejθ)dθ

= jπâk +
(−1)

k+1
2 2 arg(ĉ)

kεk
+O(εm−k).

∫
C4
s−(k+1) log f̂(s)ds =

∑
`

∫ π/2

−π/2
(jω` + εejθ)−(k+1)

× log f̂(jω` + εejθ)jεejθdθ = O(ε log ε).

Combining these path integrals and letting R → ∞, ε → 0,
we have∫ ∞

−∞
ω−(k+1) log |f(jω)|dω = (−1)

k−1
2 πâk.

Since f(s) is real-rational, |f(−jω)| = |f∗(jω)| = |f(jω)|,
we have ω−(k+1) log |f(jω)| is an even function for k =
1, 3, . . . ,m−1. Using (33), we get (29) for k = 1, 3, . . . ,m−1.
This finishes the proof for s0 = 0.

2) s0 = jω0: Since 1 − f(−s)f(s) is a real-rational
function and has a zero of multiplicity m at s = jω0, it
also has a zero of multiplicity m at s = −jω0. We take the
logarithm of f̂(−s)f̂(s) = f(−s)f(s) = 1 + O((s− jω0)m)
and use the expansion (31) at s0 = jω0. We therefore obtain
|ĉ| = 1, Im{a1} = Im{a3} = . . . = Im{ak} = 0 for odd k
and k < m, and Re{a2} = Re{a4} = . . . = Re{ak} = 0 for
even k and k < m.

For s0 = jω0, (28) is trivial since both sides are zero. We
show (29) by taking the contour integral of the function

[(jω0 − s)−(k+1) + (jω0 + s)−(k+1)] log f̂(s) (36)

along the closed curve shown in Figure 9(b). This function
is analytic in the RHP; it is also analytic on the imaginary
axis except ±jω0 and possible zeros and poles of f̂(s) on the
imaginary axis, which we denote as jω`. Therefore,∫

C1+C2+C3+C4
[(jω0 − s)−(k+1) + (jω0 + s)−(k+1)]

× log f̂(s)ds = 0, (37)

where C1 is the line segment between −jR and jR excluding
[j(ω0 − ε), j(ω0 + ε)], [j(−ω0 − ε), j(−ω0 + ε)] and [j(ω` −
ε), j(ω`+ε)]; C2 is the right semicircle with radius R centered
at the origin; C3 includes the right semicircles with radius
ε centered at the jω0 and −jω0; and C4 includes the right
semicircles with radius ε centered at jω`.

By evaluating the integral paths in (37), and letting R→∞,
ε→ 0, we obtain∫ ∞

−∞
[(ω0 − ω)−(k+1) + (ω0 + ω)−(k+1)] log |f(jω)|dω

= (−1)kjk+12πâk.

We have [(ω0 − ω)−(k+1) + (ω0 + ω)−(k+1)] log |f(jω)| is
an even function, and using (33) we get (29) for k =
1, 2, . . . ,m− 1. This finishes the proof for s0 = jω0.

3) s0 = σ0: Since f(s) is a real-rational function,
Im{â1} = Im{â2} = . . . = Im{âm−1} = 0. For s0 = σ0,
we show (28) and (29) by taking the contour integral of the
function

[(σ0 − s)−(k+1) + (σ0 + s)−(k+1)] log f̂(s) (38)

along the close curve shown in Figure 9(c). This function
is analytic in the RHP except σ0; it is also analytic on the
imaginary axis except possible zeros and poles of f̂(s) on
the imaginary axis, which we denote as jω`. Therefore, the
following contour integral is zero for k = 0, 1, 2, . . . ,m− 1:∫

C1+C2+C3+C4
[(σ0 − s)−(k+1) + (σ0 + s)−(k+1)]

× log f̂(s)ds = 0, (39)

where C1 is the line segment between −jR and jR excluding
[j(ω`− ε), j(ω`+ ε)]; C2 is the right semicircle with radius R
centered at the origin; C3 is the circle with radius ε centered
at the σ0; and C4 includes the right semicircles with radius ε
centered at jω`.

To show (28), we evaluate the integral paths in (39) for
k = 0, and let R→∞, ε→ 0. The result is∫ ∞

−∞
[(σ0 − jω)−1 + (σ0 + jω)−1] log |f(jω)|dω

= 2π log |ĉ|.

We have [(σ0 − jω)−1 + (σ0 + jω)−1] log |f(jω)| is an even
function, and using (32) we get (28).

To show (29), we evaluate the integral paths in (39) for
k = 1, 2, . . . ,m− 1, and let R→∞, ε→ 0. The result is∫ ∞
−∞

[(σ0 − jω)−(k+1) + (σ0 + jω)−(k+1)] log |f(jω)|dω

= (−1)k2πâk.

We have [(σ0 − jω)−(k+1) + (σ0 + jω)−(k+1)] log |f(jω)|
is an even function, and using (33) we get (29) for k =
1, 2, . . . ,m− 1. This finishes the proof for s0 = σ0.
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4) s0 = σ0 + jω0: For s0 = σ0 + jω0, we show (28) and
(29) by taking the contour integral of the following functions

[(s0 − s)−(k+1) + (s0 + s)−(k+1) + (s∗0 − s)−(k+1)

+ (s∗0 + s)−(k+1)] log f̂(s) (40a)

[(s0 − s)−(k+1) + (s0 + s)−(k+1) − (s∗0 − s)−(k+1)

− (s∗0 + s)−(k+1)] log f̂(s) (40b)

along the close curve shown in Figure 9(d). These functions
are analytic in the RHP except s0 and s∗0; they are also analytic
on the imaginary axis except possible zeros and poles of f̂(s)
on the imaginary axis, which we denote as jω`. Therefore, the
following contour integral is zero for k = 0, 1, 2, . . . ,m− 1:∫
C1+C2+C3+C4

[(s0 − s)−(k+1) + (s0 + s)−(k+1)

+ (s∗0 − s)−(k+1) + (s∗0 + s)−(k+1)] log f̂(s)ds = 0, (41a)∫
C1+C2+C3+C4

[(s0 − s)−(k+1) + (s0 + s)−(k+1)

− (s∗0 − s)−(k+1) − (s∗0 + s)−(k+1)] log f̂(s)ds = 0, (41b)

where C1 is the line segment between −jR and jR excluding
[j(ω` − ε), j(ω` + ε)]; C2 is the right semicircle with radius
R centered at the origin; C3 includes the circles with radius ε
centered at the s0 and s∗0; and C4 includes the right semicircles
with radius ε centered at jω`.

To show (28), we evaluate the integral paths in (41a) for
k = 0, and let R→∞, ε→ 0. The result is∫ ∞

−∞
Re[(s0 − jω)−1 + (s0 + jω)−1] log |f(jω)|dω

= 2π log |ĉ|.

We have Re[(s0−jω)−1 +(s0 +jω)−1] log |f(jω)| is an even
function, and using (32) we get (28).

To show (29), we first evaluate the integral paths in (41) for
k = 1, 2, . . . ,m− 1, and let R→∞, ε→ 0. The result is∫ ∞

−∞
[(s0 − jω)−(k+1) + (s0 + jω)−(k+1)] log |f(jω)|dω

= (−1)k2πâk.

We have [(s0 − jω)−(k+1) + (s0 + jω)−(k+1)] log |f(jω)| is
an even function, and using (33) we get (29). This finishes the
proof for s0 = σ0 + jω0.

5) Remark on lemma 3: Because the formulas (28), (29)
subtract or divide poles from zeros in equal quantity, when we
apply Lemma 3 to f(s) = detA(s), (28), (29) still hold if the
poles and zeros of the determinant are replaced by the poles
and zeros of the matrix A(s).

C. Preliminary lemmas on S-matrices

Lemma 4: If Re{s0} > 0 and the Darlington network given
in Lemma 1 is used, then

detSGM (s0) = detSb22(s0) 6= 0, (42)

and (∑
i

(pGM,i − s0)−` −
∑
i

(zGM,i − s0)−`

)

=

(∑
i

(pb22,i − s0)−` −
∑
i

(zb22,i − s0)−`

)
(43)

for ` = 1, . . . ,m− 1.
If Re{s0} = 0, then m is even, (42) holds, and (43) holds

for ` = 1, . . . ,m− 2.
If Re{s0} = 0 and I − SL(s0)SG(s0) is non-singular then

(43) holds for ` = m− 1.
If Re{s0} = 0 and I − SL(s0)SG(s0) is singular then

(−1)
m
2 ×(∑

i

(pGM,i − s0)−(m−1) −
∑
i

(zGM,i − s0)−(m−1)

)
≤ (−1)

m
2 ×(∑

i

(pb22,i − s0)−(m−1) −
∑
i

(zb22,i − s0)−(m−1)

)
.

(44)

Proof: We separate our discussion into two possibilities:
Re{s0} > 0 and Re{s0} = 0.

1) Re{s0} > 0: Because the Darlington network in Lemma
1 is assumed, Sb22(s) has no zeros at s = s0, for otherwise
SL(s) would have zeros at s = −s0, and therefore have poles
at s = s0 in order to satisfy (18). This contradicts SL(s) being
Hurwitzian. Hence, detSb22(s0) 6= 0, and SL(s) has no zeros
at s = −s0.

Since Sb(s) is lossless and therefore STb (−s)Sb(s) = I , we
get Sb12(s) = −S−TL (−s)STb21(−s)Sb22(s). We manipulate
(15) to get

SGM (s) = [I − Sb21(s)SG(s)(I − SL(s)SG(s))−1

× S−TL (−s)STb21(−s)]Sb22(s).

Taking determinant on both sides yields

detSGM (s) = detSb22(s) det[I − Sb21(s)SG(s)

× (I − SL(s)SG(s))−1S−TL (−s)STb21(−s)]
= detSb22(s) det[I − STb21(−s)Sb21(s)SG(s)

× (I − SL(s)SG(s))−1S−TL (−s)].
Since SL(s) and SG(s) are bounded, SL(s)SG(s) is also
bounded and I−SL(s0)SG(s0) is non-singular for Re{s0} >
0 [24, 7.22]. Hence, STb21(−s)Sb21(s) = I −STL (−s)SL(s) =
O((s− s0)m), and SL(−s0) and I − SL(s0)SG(s0) are non-
singular. We then have

detSGM (s) = detSb22(s)[1 +O((s− s0)m)].

Thus detSb22(s0) = detSGM (s0) 6= 0, and (42) holds for
Re{s0} > 0.

To show (43), we apply Lemma 2 to detSb22(s) and
detSGM (s):

log detSGM (s) = a0 + a1(s− s0) + . . .

+ am−1(s− s0)m−1 + . . .

log detSb22(s) = b0 + b1(s− s0) + . . .

+ bm−1(s− s0)m−1 + . . . ,

(45)

where a` and b` have the form (27). Because detSGM (s) =
detSb22(s) +O((s− s0)m), a` = b` for ` = 0, 1, . . . ,m− 1.
Writing a` and b` in the form of (27) yields (43).
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2) Re{s0} = 0: Let s0 = jω0. Since Sb(s) is lossless and
(18) is satisfied, SHL (jω0)SL(jω0) = SHb22(jω0)Sb22(jω0) =
I . Hence, detSb22(jω0) 6= 0.

We begin by showing that m is even. We substitute s =
j(ω0 ± ε) into (18):

I − STL (−j(ω0 ± ε))SL(j(ω0 ± ε))
= I − SHL (j(ω0 ± ε))SL(j(ω0 ± ε)) = Am(±jε)m + . . . .

Since SL(s) is bounded, the Am(±jε)m is positive semidefi-
nite. With Am 6= 0, it is possible only when m is even.

If I−SL(jω0)SG(jω0) is non-singular, we follow a method
similar to the Re{s0} > 0 case to get detSGM (s) =
detSb22(s) + O((s − jω0)m). Thus (42) and (43) hold for
` = 1, 2, . . . ,m− 1.

If I − SL(jω0)SG(jω0) is singular, (44) can be proven in
a manner similar to the proof of Lemma 5 in [9]. These steps
are omitted. This finishes the proof of Lemma 4.

D. Proof of Theorem 2

We use the Darlington network in Lemma 1. Then
Lemma 4 gives detSb22(s0) = detSGM (s0) 6= 0. Because
Sb(s) is para-unitary, (18) implies det(STb22(−s)Sb22(s)) =
det(STL (−s)SL(s)) = 1 + O((s − s0)m). Hence, detSb22(s)
satisfies the conditions of Lemma 3.

From Lemma 4, detSGM (s) = detSb22(s)+O((s−s0)m)
for Re{s0} > 0, and detSGM (s) = detSb22(s) + O((s −
s0)m−1) for Re{s0} = 0. When Re{s0} = 0, we let s0 = jω0

and consider s = j(ω0 ± ε) for ε > 0:

det[STGM (−j(ω0 ± ε))SGM (j(ω0 ± ε))]
= det[SHGM (j(ω0 ± ε))SGM (j(ω0 ± ε))]
= 1 + bm−1(±jε)m−1 +O(εm) ≤ 1.

The inequality is because SGM (s) is bounded. Since m−1 is
odd, bm−1 = 0. Hence, det(STGM (−s)SGM (s)) = 1+O((s−
s0)m), and detSGM (s) satisfies the conditions of Lemma 3.

Unfortunately, Lemma 3 does not apply to detSL(s) since
there are possible zeros of SL(s) at s = s0 when Re{s0} > 0.
From (18), if SL(s) has zeros at s0, it also has zeros at s∗0
and poles at −s0,−s∗0; the multiplicities of these poles or
zeros are equal. We therefore construct a function d̂etSL(s)
by removing the poles at −s0,−s∗0 and zeros at s0, s∗0 from
detSL(s), such that |d̂etSL(jω)| = | detSL(jω)|. This
function satisfies d̂etSL(−s)d̂etSL(s) = 1 + O((s − s0)m)

and d̂etSL(s0) 6= 0, thus the conditions of Lemma 3.
Since Sb(s) is para-unitary, | detSL(jω)| = | detSb22(jω)|.

It follows that

| detSL(jω)| = |d̂etSL(jω)| = | detSb22(jω)|. (46)

We first apply (28):∫ ∞
0

Re[(s0 − jω)−1 + (s0 + jω)−1] log | detSGM (jω)|dω

= π log

∣∣∣∣detSGM (s0) ·
∏
i(s0 + zGM+,i)∏
i(s0 − zGM+,i)

∣∣∣∣ (47a)∫ ∞
0

Re[(s0 − jω)−1 + (s0 + jω)−1] log | detSb22(jω)|dω

= π log

∣∣∣∣detSb22(s0) ·
∏
i(s0 + zb22+,i)∏
i(s0 − zb22+,i)

∣∣∣∣ (47b)∫ ∞
0

Re[(s0 − jω)−1 + (s0 + jω)−1] log |d̂etSL(jω)|dω

= π log

∣∣∣∣d̂etSL(s0) ·
∏
i(s0 + zL+,i)∏
i(s0 − zL+,i)

∣∣∣∣ . (47c)

Note s0 and s∗0 are excluded in zL+,i in (47c). From the
definition of d̂etSL(s), we can rewrite (47c) as∫ ∞

0

Re[(s0 − jω)−1 + (s0 + jω)−1] log |d̂etSL(jω)|dω

= π log

∣∣∣∣detSL(s0) ·
∏
i(s0 + zL+,i)∏
i(s0 − zL+,i)

∣∣∣∣ , (48)

with s0 and s∗0 included in zL+,i. Because of (46), the
integral in (47b) is the same if we replace | detSb22(jω)| with
|d̂etSL(jω)|. Hence, the right-hand sides of (47b) and (48) are
equal. We now apply (42) in Lemma 4 to the right-hand sides
of (47a) and (47b), and (17) in Lemma 1 to the right-hand
side of (47b). The result is (20).

We then apply (29):∫ ∞
0

[(s0 − jω)−(k+1) + (s0 + jω)−(k+1)]

× log | detSGM (jω)|dω

=
(−1)kπ

k

[∑
i

(pGM,i − s0)−k −
∑
i

(zGM,i − s0)−k

+
(∑

i

(zGM+,i − s0)−k −
∑
i

(−zGM+,i − s0)−k
)]

(49a)∫ ∞
0

[(s0 − jω)−(k+1) + (s0 + jω)−(k+1)]

× log | detSb22(jω)|dω

=
(−1)kπ

k

[∑
i

(pb22,i − s0)−k −
∑
i

(zb22,i − s0)−k

+
(∑

i

(zb22+,i − s0)−k −
∑
i

(−zb22+,i − s0)−k
)]

(49b)∫ ∞
0

[(s0 − jω)−(k+1) + (s0 + jω)−(k+1)]

× log |d̂etSL(jω)|dω

=
(−1)kπ

k

[∑
i

(pL,i − s0)−k −
∑
i

(zL,i − s0)−k

+
(∑

i

(zL+,i − s0)−k −
∑
i

(−zL+,i − s0)−k
)]
, (49c)

where k = 1, 2, . . . ,m − 1. Note −s0 and −s∗0 are excluded
in pL,i, and s0 and s∗0 are excluded in zL,i and zL+,i in (49c).
Because of (46), the integral in (49b) is the same if we replace
| detSb22(jω)| with |d̂etSL(jω)|. Hence, the right-hand sides
of (49b) and (49c) are equal.

When k 6= m− 1 or I −SL(s0)SG(s0) is non-singular, we
apply (43) in Lemma 4 to the right-hand sides of (49a) and
(49b), and (17) in Lemma 1 to the right-hand side of (49b).
The result is (21).
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When k = m − 1 and I − SL(s0)SG(s0) is singular, we
apply (44) instead of (43) to the right-hand sides of (49a) and
(49b). The result is (22).
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