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Improved Broadband Matching Bound
Ding Nie, Member, IEEE, and Bertrand M. Hochwald, Fellow, IEEE

Abstract—In radio-frequency systems where a load is driven
by a source through a passive impedance matching circuit, the
bandwidth over which match can be attained is limited. The
Bode-Fano upper bound is often invoked to find this limit.
We show that the bound is loose for some loads, and hence
cannot be attained by any network. We present a simple method
to improve the bound, and give conditions under which the
improved bound is tight. The improved bound requires no
additional assumptions or conditions beyond what is used for
the Bode-Fano bound. Applications to analytical and numerical
load models are demonstrated.

Index Terms—Bandwidth, Bode-Fano bounds, lossless match-
ing networks, Rouché’s Theorem

I. INTRODUCTION

When a radio-frequency (RF) source is used to drive a
load whose impedance varies with frequency, an impedance
matching network is generally used to facilitate power transfer
between the two. However, a close match can generally be
attained only over a limited bandwidth. One measure of the
maximum achievable bandwidth is given by the Bode-Fano
upper bound [1], [2]. This bound is calculated using the
frequency characteristics of the load, and gives us the highest
bandwidth achievable by any passive matching network.

Since the introduction of the Bode-Fano bound, it has
been extended in many ways, including for sources with
frequency-dependent impedances [3]–[5], and for multiport
systems where multiple loads are driven by multiple sources
[6]–[9]. Recently, [10] showed that tighter bound than the
original Bode-Fano bound can be obtained for some loads.

Various methods are available to design two-port match-
ing networks that have wide bandwidth, such as by using
Chebyshev networks [2], [11]–[14] and numerical methods
[15]–[22]. However, no method is guaranteed to achieve the
bound. In fact, for some loads the bound is loose and cannot
be achieved by any passive network.

We extend the work in [10] and present a method to
determine when the bound is loose. We then show how
it may be improved (tightened), and give conditions under
which this bound is tight. We employ a tool from complex
analysis—Rouché’s Theorem [23]. The reader may see the
improved bound statement and steps for how to compute it
in Sections III-C and III-D. The improved bound requires no
additional assumptions or conditions beyond what is used for
the Bode-Fano bound.
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We illustrate the improved bound in two ways. First, we
apply it to an analytical load model of a two-stage resistor-
capacitor (RC) load. This load is a simple extension of the
classical RC load that is commonly used to illustrate the Bode-
Fano bound. We show that the Bode-Fano bound is loose in
this example, and that the improved bound is actually one-
third of the original bound. An example matching scheme is
also presented to show that the improved bound is tight.

Second, we apply the improved bound to a realistic load
that is described numerically by its impedance as a function
of frequency. The process of applying the bound to such a
load requires fitting an equivalent circuit or rational model.
The amount of improvement then depends on details of the
resulting rational model.

Section II summarizes the Bode-Fano bound, presents the
conditions for achieving the bounds, and shows how to de-
termine if the bound is loose. In Section III, we present the
improved bound; the crux of the method is to apply Rouché’s
Theorem to show that one of the conditions for achieving the
bound cannot be met in some cases. Analytical and numerical
examples are presented in Section IV. Section V concludes.

II. BODE-FANO BOUND

A. System description
We consider the RF system shown in Figure 1, where a

dissipative load is driven by a source with real impedance Z0,
the characteristic impedance of the system. Let SL(s) be the
reflection coefficient of the load as a rational function of the
complex frequency s = σ+jω, where σ and ω are real. SL(s)
is obtained by extending the reflection coefficient of the load
SL(jω) as a function of the radian frequency ω to the whole
complex plane. Mathematically, SL(s) can be thought of as the
transfer function between the incident and reflected waves aest

and best to and from the load (see Figure 1), which may have
an exponentially increasing or decreasing component, where
t represents time. Therefore, we have b(s) = SL(s)a(s). The
impedance ZL(s) of the loads can be obtained by ZL(s) =
Z0(1 + SL(s))/(1− SL(s)).

Many antenna and distributed-element loads do not have
rational descriptions of their S-parameters for all frequency.
In such cases, the non-rational description of the load must be
approximated by a rational SL(s) over a frequency range of
interest. We do not discuss the issue of rational approximation
or calculation of the error tolerance herein since they are
addressed extensively elsewhere. An early example is [24],
and a summary of some practical techniques can be found
in [25]. Other fields such as control engineering use rational
fitting extensively [26]. We assume herein that a rational SL(s)
has been chosen to adequately describe the load.

A lossless two-port matching network is inserted to match
the impedances between the source and the load, as indicated
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Fig. 1. An RF system where a source with characteristic impedance Z0 drives
a load with reflection coefficient SL through a lossless two-port matching
network with 2×2 S-matrix S (the complex-frequency argument s is omitted).
Let a and b be the incident and reflected waves to and from the load. The
reflection coefficients seen from the input and output ports of the matching
network are denoted as Γ and SG, respectively.

in Figure 1. We use S(s) to denote the 2 × 2 S-matrix of
the matching network as a function of s, whose entries are
Sij(s) where i, j = 1, 2. Let Γ(s) be the reflection coefficient
of the cascade of S(s) and SL(s), and SG(s) be the reflection
coefficient seen from the output port of the matching network.
It follows that SG(s) = S22(s), and

Γ(s) = S11(s) +
S12(s)SL(s)S21(s)

I − SG(s)SL(s)
. (1)

Since the matching network is lossless, the incident power
to the network is either transferred to the load or reflected
back to the source. The matching between source and load at
s = jω can therefore be measured by the return loss |Γ(jω)|.
By definition, 0 ≤ |Γ(jω)| ≤ 1 where values close to zero
indicate that little power is being reflected and most of the
source power is being delivered to the loads. Generally, values
close to zero over a wide range of ω are preferred.

We use LHP to denote the left-half complex plane (Re{s} <
0) and RHP to denote the right-half (Re{s} > 0). The jω axis
is not included in either the LHP or the RHP. Because the load
is dissipative and the matching network is lossless, SL(s) and
S(s) are real-rational, Hurwitzian, bounded, and S(s) is para-
unitary; the definitions of these terms may be found readily in
[27]–[29].

As a result of these properties, SL(s) and SG(s) are rational
functions of s, their poles are in the LHP, their poles and zeros
are in complex conjugate pairs, and |SL(s)| < 1, |SG(s)| < 1
for Re{s} > 0. This latter property is especially important in
our discussion. The poles and zeros of SL(s) are denoted pL,i
and zL,i, i = 1, 2, . . ..

B. Bode-Fano bound statement

For a load SL(s), we assume that there exists an s0 with
Re{s0} ≥ 0 or s0 =∞ such that

SL(−s0)SL(s0) = 1. (2)

Then [2] proves that the following inequality holds for any
lossless matching network:∫ ∞

0

f(ω) log
1

|Γ(jω)|
dω ≤ B, (3)

where the functional forms of f(ω) > 0 and B > 0 depend
on s0; see Table I. Equality in (3) holds if and only if the
following Conditions are satisfied simultaneously:

TABLE I
FORMS OF f(ω), B AND g(z) FOR DIFFERENT LOCATIONS OF s0 .

s 0
=
jω

0 f(ω) = 1
2

[(ω0 − ω)−2 + (ω0 + ω)−2]

B = −π
2

[∑
i(pL,i − jω0)−1 +

∑
i(zL,i + jω0)−1

]
g(z) = −π

2

[
(z − jω0)−1 + (z + jω0)−1

]

R
e{
s 0
}>

0 f(ω) = 1
2

Re[(s0 − jω)−1 + (s0 + jω)−1]

B = −π
2

log
∣∣∣detSL(s0) ·

∏
i(s0+zL,i)∏
i(s0−zL,i)

∣∣∣
g(z) = −π

4
log
∣∣∣ (s0+z)(s0+z∗)(s0−z)(s0−z∗)

∣∣∣

s 0
=
∞

f(ω) = 1

B = −π
2

(∑
i pL,i +

∑
i zL,i

)
g(z) = −πz

1) SL(s0)SG(s0) 6= 1
2) SL(s)− SG(−s) has no zeros in the LHP

These Conditions are discussed in detail in Section III.
The physical meaning of the assumption (2) is most eas-

ily understood when s0 = jω0 (Re{s0} = 0). Because
SL(−jω0) = S∗L(jω0), where ∗ represents complex conju-
gation, it follows from (2) that |SL(s0)| = 1. Thus, s0 is a
frequency where the load reflects all incident energy. There
may be multiple such s0. We simply assume there is at least
one.

C. Discussion of bound

As shown in [2], the Bode-Fano bound is the result of the
inequality∫ ∞

0

f(ω) log
1

|Γ(jω)|
dω ≤ B −

∑
i

g(zi), (4)

where zi, i = 1, 2, . . . are the LHP zeros of SL(s)−SG(−s),
and g(z) > 0 is given in Table I. Equality in (4) holds if and
only if SL(s0)SG(s0) 6= 1.

Since g(zi) depends on zi, which depends on the matching
network, the right hand side of (4) depends on the choice
of network. Setting

∑
i g(zi) = 0 yields (3), which is inde-

pendent of the matching network and therefore holds for any
network.

The bound requires a rational SL(s). To apply the bound to
loads whose frequency response is obtained from either mea-
surements or simulations, a rational function approximation is
needed. This approximation can be obtained as follows:

a) Measure or simulate the S-parameter of the load in some
frequency range ω ∈ [ω1, ω2]. Denote the response as
S′L(jω).

b) Find a passive rational SL(s) such that |S′L(jω)−SL(s)|
is within an error tolerance for s = jω and ω ∈ [ω1, ω2].

Step a) can be done with standard modeling software such as
Ansys HFSS in the case of simulations, or a network analyzer
in the case of measurements. Step b) can be accomplished by
finding rational approximations to S′L(jω) using, for instance,
the Matrix Fitting Toolbox [30]–[34] in MATLAB. A study
of the accuracy of approximation and its effect on the bound
calculation can be found in [9], and is omitted here.
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Fig. 2. (a) Classical circuit-model of a load consisting of a capacitor C
in parallel with the characteristic impedance Z0. (b) Simple extension of the
load in (a) to two cascaded RC stages.

D. Canonical application

We briefly describe a canonical application of the bound
that we carry forward to the next section and the improved
bound. For a load that is a perfect reflector at s0 =∞, taking
f(ω) = 1 from Table I (third row) and calculating (3) obtains∫ ∞

0

log
1

|Γ(jω)|
dω ≤ B = −π

2

(∑
i

pL,i +
∑
i

zL,i

)
. (5)

It is typically desired to create a matching network operating
over some band ω ∈ [ω1, ω2]. Since 0 ≤ |Γ(jω)| ≤ 1,
and therefore f(ω) log(1/|Γ(jω)|) ≥ 0, then constraining the
range of integration in (5) gives∫ ω2

ω1

log
1

|Γ(jω)|
dω ≤ B (6)

For a matching circuit where |Γ(jω)| ≤ τ for ω ∈ [ω1, ω2],
where τ is typically a small value that represents the maximum
desired reflection in the band of interest, (6) yields

ω2 − ω1 ≤
−π2 (

∑
i pL,i +

∑
i zL,i)

log(1/τ)
.

For s0 6= ∞, other bandwidth bounds can be obtained using
(3). We refer the reader to [2].

A circuit-model load often used to exemplify the bound is
shown in Figure 2(a) consisting of a capacitor C in parallel
with the characteristic impedance Z0. From this model, the
impedance of the load is ZL(s) = Z0/(Z0Cs+ 1). Therefore

SL(s) =
ZL(s)− Z0

ZL(s) + Z0
=
−Z0Cs

Z0Cs+ 2
. (7)

Following the steps for calculating the bound, we obtain s0 =
∞, pL,1 = −2/(Z0C) and zL,1 = 0. Hence, the bound for
the single-stage RC load is

B1 =
π

Z0C
. (8)

(We use the subscript “1” to refer to the single-stage.)
We contrast this result with the load shown in Figure

2(b) comprising two cascaded identical RC structures. The
reflection coefficient of the load is

SL(s) =
−Z2

0C
2s2 − 2Z0Cs+ 1

Z2
0C

2s2 + 4Z0Cs+ 3
. (9)

Similarly to the load in Figure 2(a), this load satisfies (2) at
s0 =∞. Solving for the poles and zeros of SL(s) yields

pL,1 = − 3

Z0C
, pL,2 = − 1

Z0C
, zL,1, zL,2 =

−1±
√

2

Z0C

The bound for this load is then

B2 =
3π

Z0C
. (10)

Because (10) is three times larger than (8), it would appear
that the bandwidth achievable with the load model in Figure
2(b) is three times larger than Figure 2(a). As we show,
however, their achievable bandwidths are actually equal, and
the improved bound reveals this.

III. IMPROVED BOUND

The derivation of the Bode-Fano bound in (3) relies on
replacing the non-negative term

∑
i g(zi) in (4) that depends

on the matching network with zero. An improved bound that
applies to all matching networks can therefore, in principle, be
obtained by replacing

∑
i g(zi) instead with a positive value,

provided that this value is also independent of the matching
network. We find such a value by a careful examination of the
conditions for achieving equality in (3).

A. Condition 1 for equality can always be met

Condition 1 is a “non-degenerate” condition described in
detail in [2]. It turns out that Condition 1 is superfluous when
Re{s0} > 0 because SL(s) and SG(s) are bounded functions;
hence SL(s)SG(s) is also bounded and |SL(s0)SG(s0)| < 1
for Re{s0} > 0. However, for other values of s0, this condition
needs to be checked.

In the RC example in Figure 2(a), SL(s) is reflective at
s0 = ∞ because the load is capacitive relative to ground
and presents a short circuit as the frequency tends to infinity
(SL(∞) = −1). In order for Condition 1 to hold, we need
to make sure that SG(∞) 6= −1. Because SG(s) represents
the reflection coefficient seen from the output of the matching
network (see Figure 1), Condition 1 is satisfied if the output
port of the matching network is not also a short at s = ∞.
Since this is a constraint on the matching network at a single
frequency, it can generally be met with little effort.

For example, setting SG(s) = 0 (direct connection of source
and load without intervening matching network), achieves
Condition 1. As we show in the next section, SG(s) = 0 also
achieves Condition 2 for the circuit in Figure 2(a). However,
this is not the case for the circuit in Figure 2(b).

B. Condition 2 for equality cannot always be met

Condition 2 is referred to as a “minimum-phase” condition
[35] because if there are no LHP zeros of SL(s) − SG(−s),
then there are no RHP zeros of SL(−s)−SG(s), which implies
that there are no RHP zeros in the lossless equivalent circuit
of the load; see [9]. Compared with Condition 1, the physical
meaning of Condition 2 is less clear and designing matching
networks to satisfy this condition is not trivial.

For the load in Figure 2(a), from (7) we see that SL(s)
has a single zero at zL,1 = 0, and no zeros in the LHP.
Hence, Condition 2 is trivially satisfied for SG(s) = 0. Thus,
Conditions 1 and 2 are satisfied and equality in (8) can be
achieved without a matching network. However, if desired,
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Fig. 3. For the two-stage RC load in Figure 2(b) with SL(s) in (9), the
|SL(s)| = 1 curves are plotted over the s-plane and the |SL(s)| < 1 regions
are filled with green. The set of points inside the closed |SL(s)| = 1 contour
in the LHP is denoted as Ω1. The poles and zeros of SL(s) are marked
respectively by crosses and circles; among them, zL,1 is located in Ω1. A
pentagram is used to denote ẑ1 defined in (14).

matching networks such as Chebyshev networks [2], [11]–
[14], can be used to shape the frequency response of the load
and still achieve equality.

For the load in Figure 2(b), the situation changes, and
Condition 2 cannot be met by any lossless matching network.
We use Rouché’s Theorem [23] to explain why. This theorem
says that if functions f1(s) and f2(s) are analytic on some
region Ω of the complex plane whose boundary contour is ∂Ω,
with |f2(s)| < |f1(s)| on ∂Ω, then f1(s) and f1(s) + f2(s)
have the same number of zeros in Ω, where each zero is
counted as many times as its multiplicity.

Let f1(s) = SL(s) and f2(s) = −SG(−s). For the circuit-
model of Figure 2(b), Figure 3 plots |SL(s)| = 1 contours
for (9) over the s-plane. We see that there exists a single
closed |SL(s)| = 1 contour contained in the LHP, denoted ∂Ω1

and whose interior is denoted Ω1. Moreover, zL,1 = −(1 +√
2)/(Z0C) is in Ω1. Since SG(s) is a bounded function, we

have |f2(s)| < 1 for s in the LHP, and since ∂Ω1 is contained
in the LHP, |f2(s)| < 1 for s ∈ {Ω1∪∂Ω1}. Hence, |f2(s)| <
|f1(s)| = 1 for s ∈ ∂Ω1, and Rouché’s Theorem indicates
that f1(s) + f2(s) = SL(s) − SG(−s) has the same number
of zeros for s ∈ Ω1 as f1(s) = SL(s). Since SL(s) has one
such zero, this means SL(s)−SG(−s) also has a zero in Ω1,
no matter what SG(s) is. Therefore, Condition 2 cannot be
met for any lossless matching network.

This example shows not only that SL(s)− SG(−s) always
has a zero in the LHP, but this zero must lie in Ω1. We may
extend and generalize this analysis for any load to improve
the original Bode-Fano bound.

C. Improved bound statement

Let SL(s) denote the reflection coefficient of the load as a
rational function of complex frequency s. Assume that there

exists an s0 with Re{s0} ≥ 0 or s0 =∞ such that

SL(−s0)SL(s0) = 1. (11)

Denote ∂Ω as any closed contour (with interior Ω) that is
obtained by solving |SL(s)| = 1 and is contained entirely
in the LHP. Let zL,i be a zero of SL(s) that is contained in
some Ωi, and enumerate all such zeros zL,1, . . . , zL,` and their
corresponding Ω1, . . . ,Ω`. Then∫ ∞

0

f(ω) log
1

|Γ(jω)|
dω ≤ B′ (12)

where

B′ = B −
∑̀
i=1

g(ẑi) (13)

ẑi = arg min
z∈Ωi

Re{g(z)}, (14)

Γ(jω) is the reflection coefficient of the cascaded matching
network and load defined in (1), and f(ω), B, and g(z) are
calculated using Table I.

Since B and ẑi depend only on SL(s), (12) applies to any
matching network. Equality in (12) holds if and only if the
following two Conditions hold:

1) SL(s0)SG(s0) 6= 1
2′) SL(s)− SG(−s) has ` LHP zeros ẑ1, . . . , ẑ`.

Condition 1 and (11) are similar to requirements needed for the
Bode-Fano bound in Section II-B. Condition 2′ differs from
Condition 2 for the original bound.

D. Discussion of improved bound

The minima in (14) can be readily computed be-
cause Ω1, . . . ,Ω` are surrounded by the closed contours
∂Ω1, . . . , ∂Ω` in the LHP, and either analytical or numerical
methods can be used.

The complete steps for computing the bound are summa-
rized as follows:

1) Find an s0 where (11) is satisfied for SL(s).
2) Calculate the poles and zeros pL,i, zL,i of SL(s), and B

from Table I.
3) Find all LHP closed contours where |SL(s)| = 1. Denote

any that contain zL,i as ∂Ωi. If there are no such ∂Ωi
then B′ = B.

4) Otherwise calculate ẑi and g(ẑi) using (14).
5) Calculate the improved bound B′ in (13).

Steps 1 and 2 are used to calculate the original bound in
(3), while Steps 3 and 4 improve the bound. Step 3 can be
done graphically by drawing the contours |SL(s)| = 1 and
examining if any zeros of SL(s) are enclosed.

E. Derivation of bound

We generalize the analysis of Section III-B by noting
that |SL(s)| = 1 is possible only for Re{s} ≤ 0 because
|SL(s)| < 1 for all s in the RHP (this is a consequence
of the bounded Hurwitzian properties of these functions). By
applying Rouché’s Theorem to each zL,i and Ωi, we conclude
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t h at S L (s ) − S G (− s ) h as at l e ast L H P z er os, d e n ot e d b y
z 1 , . . . , z , t h at s atisf y z i ∈ Ω i .

We c a n n o w r e pl a c e t h e t er m i = 1 g (z i ) i n ( 4) wit h a
p ositi v e v al u e t h at is i n d e p e n d e nt of t h e m at c hi n g n et w or k.
Si n c e z i ar e i n c o nj u g at e p airs a n d g (z i ) i n Ta bl e I s atis fi es
g (z ∗

i ) = ( g (z i ))
∗ , t h e n g (z i ) + g (z ∗

i ) = 2 R e (g (z i )) ≥
mi n z ∈ Ω i 2 R e (g (z )) ≥ 0 . T his yi el ds ( 1 2) –( 1 4).

F. Ot h er B o d e- F a n o i n e q u aliti es

O ur b o u n d a n al ysis r e q uir es t h e ass u m pti o n ( 1 1). If t his
ass u m pti o n is str e n gt h e n e d s u c h t h at 1 − S L (− s )S L (s ) h as a
z er o at s = s 0 of m ulti pli cit y m gr e at er t h a n o n e, t h e n [ 2]
s h o ws t h at i n e q u aliti es ot h er t h a n ( 4) c a n als o b e d eri v e d.

F or e x a m pl e, if m ≥ 3 at s 0 = ∞ , t h e n t h e f oll o wi n g
i n e q u alit y als o h ol ds

∞

0

ω 2 l o g
1

|Γ( j ω )|
d ω ≤

π

6
i

p 3
L, i +

i

z 3
L, i −

π

3
i

z 3
i ,

( 1 5)

w h er e z i , i = 1 , 2 , . . . ar e t h e L H P z er os of S L (s ) − S G (− s ).
E q u alit y i n ( 1 5) h ol ds if a n d o nl y if S L (∞ )S G (∞ ) = 1 .
Alt h o u g h R e { z i } < 0 , w e c a n n ot d et er mi n e t h e si g n of
R e { z 3

i } wit h o ut k n o wi n g t h e i m a gi n ar y c o m p o n e nts of z i .
H e n c e, w e c a n n ot d eri v e a n u p p er b o u n d fr o m ( 1 5) t h at is
i n d e p e n d e nt of t h e m at c hi n g n et w or k. We t h er ef or e d o n ot
p urs u e ( 1 5) a n y f urt h er.

I V. E X A M P L E A P P L I C A T I O N S

We ill ustr at e a p pli c ati o ns of t h e i m pr o v e d b o u n d usi n g
a n al yti c al a n d n u m eri c al e x a m pl es.

A. A n al yti c al e x a m pl e

We bri e fl y r e visit t h e o n e-st a g e R C e x a m pl e i n Fi g ur e 2( a).
St e ps 1 a n d 2 i n S e cti o n III- D h a v e alr e a d y b e e n d o n e usi n g
( 7). T h e o nl y z er o is z L, 1 = 0 , s o it is n ot p ossi bl e f or z L, 1 t o
b e c o nt ai n e d i nsi d e a n y ∂ Ω 1 t h at is i n t h e L H P. T h er ef or e, St e p
3 yi el ds n o c o nt o urs a n d B 1 = B 1 . B ut w e alr e a d y k n o w t h e
B o d e- F a n o b o u n d ( 8) is ti g ht i n t his e x a m pl e s o t his c o n cl usi o n
is u ns ur prisi n g.

F or t h e t w o-st a g e R C e x a m pl e i n Fi g ur e 2( b), St e ps 1 a n d
2 h a v e alr e a d y b e e n d o n e usi n g ( 9). F or St e p 3, Fi g ur e 3 pl ots
t h e |S L (s )| = 1 c ur v es a n d t h e z er os of S L (s ), w h er e S L (s )
is gi v e n i n ( 9). Fr o m Fi g ur e 3, z L, 1 = − ( 1 +

√
2) / (Z 0 C ) is i n

Ω 1 . B e c a us e s 0 = ∞ , Ta bl e I i n di c at es t h at g (z i ) = − π z i . T o
fi n d ẑ 1 i n St e p 4, g ( ẑ 1 ) is mi ni mi z e d b y t h e cl os est p oi nt t o t h e
i m a gi n ar y a xis i n Ω 1 . T his p oi nt is m ar k e d b y a p e nt a gr a m
i n Fi g ur e 3, w hi c h is l o c at e d o n t h e r e al a xis a n d s atis fi es
S L ( ẑ 1 ) = − 1 . S ol vi n g t his gi v es ẑ 1 = − 2 / (Z 0 C ). T h er ef or e,
t h e i m pr o v e d b o u n d is o bt ai n e d b y s u btr a cti n g g ( ẑ 1 ) fr o m ( 1 0)
a n d g etti n g

B 2 =
π

Z 0 C
. ( 1 6)

w hi c h is o n e-t hir d of t h e B o d e- F a n o b o u n d i n ( 1 0), a n d
c oi n ci d es wit h B 1 i n ( 8).

B o u n d ( 1 6) is ti g ht i n t h at it c a n b e a p pr o a c h e d b y c h o osi n g
a m at c hi n g n et w or k s u c h t h at S G (s ) = − 1 + ε , w h er e ε >

( a)

( b)
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|Γ
(ω

)| 
(d
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R C l o a d

T w o −st a g e R C l o a d

0

Fi g. 4. ( a) F or t h e R C l o a d i n Fi g ur e 2( a), w h er e Z 0 = 5 0 Ω a n d C = 2 0
p F, a fift h- or d er C h e b ys h e v n et w or k t h at m at c h es t h e l o a d b et w e e n 2. 5 6 G H z
a n d 2. 8 3 G H z is s h o w n. ( b) W h e n t h e n et w or k i n ( a) is us e d t o m at c h b ot h
t h e si n gl e-st a g e a n d t w o-st a g e R C l o a d i n Fi g ur e 2, t h e r es ulti n g |Γ ( j ω ) | is
pl ott e d v ers us fr e q u e n c y.

is ar bitr aril y s m all. F or t his S G (s ), t h e L H P z er o of S L (s ) −

S G (− s ) is at z 1 = − 2 + (
√

1 + ε 2 − 1 ) / ε
Z 0 C , a n d t h e a c hi e v e d i nt e gr al

i n ( 1 6) is π − π (
√

1 + ε 2 − 1 ) / ε
Z 0 C ≈ π ( 1 − ε / 2 )

Z 0 C . Cl e arl y, t h e s m all er ε
is, t h e cl os er z 1 is t o ẑ 1 = − 2 / (Z 0 C ), a n d t h e cl os er t h e
a c hi e v e d i nt e gr al is t o b o u n d ( 1 6). H e n c e, C o n diti o n 2 c a n
b e as y m pt oti c all y s atis fi e d as ε → 0 , a n d b o u n d ( 1 6) is ti g ht.
H o w e v er, ε c a n n ot b e z er o b e c a us e C o n diti o n 1 is vi ol at e d b y
S G (s ) = − 1 si n c e S L (s 0 )S G (s 0 ) = 1

F or e x a m pl e, if w e l et ε = 0 .0 1 , w e o bt ai n S G (s ) = − 0 .9 9
a n d z 1 = − 2 .0 0 5 / (Z 0 C ). T h e a c hi e v e d i nt e gr al i n ( 1 6) is
t h er ef or e 0 .9 9 5 π / (Z 0 C ). T his S G (s ) c a n b e r e ali z e d b y a
m at c hi n g n et w or k c o nsisti n g of a si n gl e i d e al tr a nsf or m er
w h os e i n p ut t o o ut p ut t ur n r ati o is 1 4 .1 1 : 1 . T h e i m p e d a n c e
s e e n at t h e o ut p ut p ort of t his m at c hi n g n et w or k is a c o nst a nt
r esist a n c e 0 .0 0 5 Z 0 .

Si n c e B 2 = B 1 , it is c o n c ei v a bl e t h at a si n gl e m at c hi n g
cir c uit c a n b e us e d f or eit h er l o a d t o a c hi e v e c o m p ar a bl e b a n d-
wi dt h. We ill ustr at e t h at t his is i n d e e d s o wit h t h e m at c hi n g
n et w or k i n Fi g ur e 4( a), c h os e n f or Z 0 = 5 0 Ω a n d C = 2 0
p F i n Fi g ur e 2. Fi g ur e 4( a) r e pr es e nts a fift h- or d er C h e b ys h e v
m at c hi n g n et w or k d esi g n e d usi n g m et h o ds pr es e nt e d i n [ 2],
[ 1 4].

W h e n a p pli e d t o t h e si n gl e-st a g e R C l o a d, t h e m at c hi n g
n et w or k pr es e nts a n e q u al-ri p pl e |Γ( j ω )| fr e q u e n c y r es p o ns e
b et w e e n 2. 5 6 G H z a n d 2. 8 3 G H z ( b a n d wi dt h of 2 6 6 M H z),
w h er e |Γ( j ω )| f or t h e R C l o a d is s h o w n b y t h e bl u e d as h e d
c ur v e i n Fi g ur e 4( b), a n d t h e m a xi m u m r et ur n l oss i n t h e
p ass b a n d is - 1 4 d B. T h e C h e b ys h e v n et w or k a c hi e v es t h e
b o u n d B 1 = π

Z 0 C = 3 .1 4 × 1 0 9 f or t h e R C l o a d.

F or t h e t w o-st a g e R C l o a d i n Fi g ur e 2( b), t h e m at c hi n g
n et w or k pr es e nts a |Γ( j ω )| s h o w n b y t h e r e d s oli d c ur v e
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Fig. 5. (a) A dipole that is half-wavelength at 2.4 GHz. (b) For the dipole
in (a), the magnitude and phase of the reflection coefficient are plotted in
1–5 GHz. Also shown are the error magnitude of the rational model. The
magnitudes refer to the left y-axis and the phase refers to the right.

TABLE II
VALUES OF pL,i AND zL,i FOR THE TWO SL(s) MODELS IN (17).

i pL,i zL,i

1, 2 (−3.01± 9.36j)× 109 (−3.01± 9.42j)× 109

3, 4 (−0.26± 1.25j)× 1010 (−0.05± 1.34j)× 1010

5, 6 (−0.34± 2.57j)× 1010 (−0.35± 2.59j)× 1010

7, 8 (−0.45± 3.30j)× 1010 (−0.54± 3.38j)× 1010

9 −4.91× 1010 2.14× 1011

in Figure 4(b). The passband for the two-stage RC load is
approximately the same as that for the single-stage RC load.

It is perhaps surprising that B′2 = B1, but an intuitive
explanation proceeds as follows. We know that (8) is tight and
can be achieved by connecting the source directly to the load.
Clearly, at high frequencies, the capacitor in Figure 2(a) makes
the impedance of the parallel circuit small and reactive. The
same is true of the circuit in Figure 2(b). For high frequencies,
SL(s) in (7) approximately equals SL(s− 2

Z0C
) in (9). Hence,

if the frequency range [ω1, ω2] is supported by the circuit
Figure 2(a), then the same range can be achieved in Figure
2(b), but offset by 2/(Z0C). A transformer is used in the
matching circuit for Figure 2(b) to lower the impedance of the
source and, hence, shift the match towards high frequencies. It
follows that the transformer used to achieve B′2 also achieves
B1.

We next present a numerical example of the improved
bound.

B. Numerical example using realistic load

A dipole antenna is shown in Figure 5(a), which is half-
wavelength at 2.4 GHz. To apply the bound, we first simulate
the frequency response of the dipole in 1–5 GHz using Ansys
HFSS, and then model the reflection coefficient as a rational
function. During the modeling process, we can specify the
degree of the rational function. Typically, the higher degree we
use, the better precision we get from the model. However, there
is the risk of “over-fitting”, and some guidelines for choosing
the degree are found in [9].

We model the reflection coefficient of the dipole using a
rational function with degree nine, which has the following

Re{s}

Im
{s

}
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Fig. 6. For the dipole in Figure 5(a) described by (17), |SL(s)| = 1 curves
are drawn over the s-plane, and |SL(s)| < 1 regions are filled with green.
The zoomed-in plot shows Ω1, zL,1 and ẑ1; Ω2, zL,2 and ẑ2 are at the
complex conjugate locations (not shown).

form:

SL(s) = k ·
∏9
i=1(s− pL,i)∏9
i=1(s− zL,i)

, (17)

where k = −0.19, and pL,i, zL,i are listed in Table II. The
simulated reflection coefficient of the dipole is shown in Figure
5(b), where the solid and dashed lines represent the magnitude
and phase, respectively. The magnitude of the error between
the model and the simulation is also plotted in Figure 5(b). The
maximum error is −59.4 dB and the average error is −68.8
dB.

The model in (17) satisfies (2) at s0 = 0. We apply the
Bode-Fano bound to the model to obtain:∫ ω2

ω1

ω−2 log
1

|Γ(jω)|
dω ≤ 3.37× 10−10, (18)

where ω1 = 2π × 109 rad/s and ω2 = π × 1010 rad/s.
We then follow the steps to compute the improved bound

(18). The curves of |SL(s)| = 1 are plotted in Figure 6,
together with the poles and zeros of SL(s). Observing Figure
6, we find zL,1, zL,2 = (−3.01 ± 9.36j) × 109 are inside
simple closed contours of |SL(s)| = 1 in the LHP. For
example, the zoomed-in plot in Figure 6 shows the location of
zL,1; Ω1 is defined as the green region containing zL,1. Note
zL,2 and Ω2 are the complex conjugate of zL,1 and Ω1, and
are not shown. Then ẑ1,2 can be found by optimizing (14)
numerically, where g(zi) = −π/zi (see Table I). The result is
ẑ1,2 = (−2.95± 9.50j)× 109. Finally, the improved bound is
obtained as∫ ∞

0

ω−2 log
1

|Γ(jω)|
dω ≤ 1.50× 10−10. (19)

Clearly (19) is more than 50% tighter than (18).
Generally, the amount of improvement in the bound depends

on the degree of the rational function approximation—higher
degrees tend to allow more improvement.
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V. CONCLUSIONS

We have presented a method to identify when the Bode-
Fano bound cannot be achieved, and presented a technique
for tightening the bound. The improved bound can be applied
in all cases where the original bound applies, and requires no
additional assumptions on the load structure or behavior. Only
a few additional mathematical steps are needed. We presented
analytical and numerical examples to illustrate its application,
and showed that the improvement can be dramatic.

The Bode-Fano bound is applied in practical matching
problems in many ways: to guide the design of broadband
antennas; to judge whether a prescribed matching bandwidth is
realizable; to determine if a matching network is near-optimal.
Since our method tightens the bound without imposing any
additional conditions or assumptions, it applies just as readily
to these same problems.

Whether the improved bound is tight depends on the
characteristics of the load and the degree of its rational
approximation. We do not know a systematic way to tell this
in all cases, and we think this would be an interesting research
problem to examine. We also believe a multiport version of
this improved bound would be of great interest. Recent results
in multiport bounds [8], [9] might be amenable to the analysis
presented herein.
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