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In Brief

Random connectivity from the olfactory
bulb to piriform implies that the
representation of odors will differ in
different cortices. Schaffer et al.
demonstrate in a model that consistent
agreement about odor quality occurs but
requires the full complement of piriform
neurons.
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SUMMARY

Neurons in piriform cortex receive input from a
random collection of glomeruli, resulting in odor rep-
resentations that lack the stereotypic organization of
the olfactory bulb. We have performed in vivo optical
imaging and mathematical modeling to demonstrate
that correlations are retained in the transformation
from bulb to piriform cortex, a feature essential for
generalization across odors. Random connectivity
also implies that the piriform representation of a
given odor will differ among different individuals
and across brain hemispheres in a single individual.
We show that these different representations can
nevertheless support consistent agreement about
odor quality across a range of odors. Our model
also demonstrates that, whereas odor discrimination
and categorization require far fewer neurons than
reside in piriform cortex, consistent generalization
may require the full complement of piriform neurons.

INTRODUCTION

Olfactory perception involves both odor discrimination and
generalization. Discrimination relies on the detection of differ-
ences between odors, whereas generalization requires the
identification of similarities and dissimilarities across odors.
The ability to generalize is vital to performance in any olfactory
task because natural variability implies that the same stimulus
is never experienced twice. Perceptual consistency across
odors requires that generalization be similar among individuals.
We thus explore whether the unstructured representation of
odors in piriform cortex can support consistent generalization.
Individual olfactory sensory neurons in the mouse express
one of 1,500 receptor genes (Buck and Axel, 1991; Godfrey
et al,, 2004; Zhang and Firestein, 2002). Neurons expressing
a given receptor project with precision to two spatially invariant
glomeruli within the olfactory bulb (Mombaerts et al., 1996; Re-
ssler et al., 1993, 1994; Vassar et al., 1993, 1994). Odors elicit
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distributed neural activity in the sensory epithelium that is
transformed in the olfactory bulb, where each odor evokes
a distinct spatial pattern of glomerular activity (Davison and
Katz, 2007; Igarashi and Mori, 2005; Ma et al., 2012; Meister
and Bonhoeffer, 2001; Soucy et al.,, 2009; Takahashi et al.,
2004). A second transformation occurs in the piriform cortex,
where individual odors activate unique ensembles of neurons
that lack discernable spatial patterning (lllig and Haberly,
2003; lurilli and Datta, 2017; Poo and Isaacson, 2009; Rennaker
et al., 2007; Stettler and Axel, 2009; Sugai et al., 2005; Zhan
and Luo, 2010). Representations of individual odors are distrib-
uted across the entire piriform with no apparent large-scale
(Stettler and Axel, 2009) or local spatial structure (Figure S1).
One model consistent with both the anatomy and the physi-
ology assumes that each piriform neuron samples a random
combination of glomerular inputs (Choi et al., 2011; Davison
and Ehlers, 2011; Ghosh et al., 2011; Miyamichi et al., 2011,
Sosulski et al., 2011). Random connectivity implies that the piri-
form representation of a given odor will differ among different
individuals and across brain hemispheres in a single individual.
Does random connectivity from the olfactory bulb to piriform
cortex support generalization and allow shared experiences
to “align” the perception of odor quality in different individuals
across a wide range of odors?

We have combined mathematical modeling with analysis of
in vivo optical imaging of odor responses in piriform cortex and
find that many properties of the piriform odor representation
are in good accord with predictions of a model with random
input. Consistent with previous models (Babadi and Sompolin-
sky, 2014; Barak et al., 2013; Cho and Saul, 2009; Litwin-Kumar
et al., 2017), we observe that piriform representations simulated
with random input are less correlated than the bulb representa-
tions but maintain sufficient correlation between odors to sup-
port generalization. We consider how individuals with different
piriform odor representations can agree consistently about
odor quality across a range of odors and how conflicts are
avoided between the two sides of a single individual’s brain.
Our model demonstrates that whereas odor discrimination and
categorization require far fewer neurons than reside in piriform
cortex (Babadi and Sompolinsky, 2014), consistent generaliza-
tion requires the full complement of piriform neurons.
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Figure 1. The Transformation from Model Bulb to Model Piriform
Partially Preserves Stimulus Similarity

(A) The representaticn cof a medel oder in the bulk is transfermed through
random connections to a representation in the piriform. Example model cdors
in the bulb (tocp) and piriform (bottom), with three different values of the excess
cverlap parameter f: nonclass cders (f = 0, black), slightly overlapping cdoers
(f = 0.3, blue), and very overlapping cdors (f = 0.7, green). For visual clarity,
just 50 glomeruli and 30 piriform neurcns are shown. Color scale is normalized;
white, max response; red, weak response; black, no response.

(B) Correlation in piriform representation versus correlation in glomerulus
representation. Each dot corresponds to the correlation coefficient between
twe cdors with the same level of overlap (f=0.3 or f = 0.7), color-coded
according to the conventions in (A). For reference, the full spectrum of values
cf f ranging from 0 to 1 is shown in gray. Distributicns of correlation in the
glomeruli and in piriform are shown along their respective axes.

(C) Observed prebability of a piriform cell responding to twe edersin the medel
versus the expected probability if odor representations were statistically in-
dependent (f = 0.0, f = 0.3, and f=0.7 shown in black, blue, and green,
respectively). In crder to recapitulate the variability in representation sparse-
ness chserved in vivo, model odors were generated with a range of sparseness
values from 5, =0.051t0 S, = 0.2.

(D) Same as (C), but for in vivo odor responses (average = SEM).

(B) Class selectivity of a neuron is quantified as the difference in that neuron’s
mean response tc class odors versus nonclass odors. Shown is the probability
distributicn cver the fraction of class (green) and nonclass (black) odors elic-
iting a response for model neurons in the 4'" percentile for class selectivity.
(F) Same as (E), but for a class defined by an arbitrary collecticn of odors not
necessarily activating similar glemeruli. Selected class members in gray and
nenglass members in black.

RESULTS

Piriform Responses to Odor Pairs Exhibit Correlations
Predicted by a Randomly Connected Model

Similar odors evoke correlated patterns of activity in the olfactory
bulb (Davison and Katz, 2007, Igarashi and Mori, 2005; Ma et al.,
2012; Meister and Bonhoeffer, 2001; Soucy et al., 2009; Takaha-
shi et al., 2004). Random wiring from the bulb to piriform might
suggest that these correlations would be absent in cortex. How-
ever, a number of theoretical studies have shown that corela-
tions in a set of inputs are reduced, but not eliminated, when
activity is transmitted through random synaptic connections (Ba-
badi and Sompolinsky, 2014; Barak et al., 2013; Cho and Saul,
2009). Indeed, piriform responses to pairs of odors activating
similar glomeruli can show considerable overlap (Figure 1D; oc-
tanal and hexanal, 24% overlap in piriform [Stettler and Axel,
2009]; 60%-70% overlap in bulb [Meister and Bonhoeffer,
2001; lgarashi and Mori 2005]; see also 26% in bulb [Ma
et al., 2012]).

To explore the implications of random connectivity, we con-
structed a model in which the connectivity between the olfactory
bulb and piriform cortex is random (STAR Methods). The model
has an input layer of Ny=1,000 glomeruli and a cortical layer
with N, neurons. Model odors activate a sparse ensemble of
SuN; glomeruli, with sparseness Sy = 0.1, unless otherwise
noted. Bulb activity both excites and inhibits the cortical layer
in a balanced manner, so that the average bulb-derived input
across the cortex is zero. Connectivity from bulb to piriform is
sparse (8. = 0.2), so each piriform neuron receives input from
S N, =200 random glomeruli, and approximately 20 of these
are activated by a given odor. Model piriform neuron responses
are a threshold-linear function of the sum of their inputs with the
threshold chosen so that, on average, S N, cortical neurons
respond to an odor with §, =0.06, matching the sparseness of
responses observed in vivo. Firing rates of the active glomeruli
are chosen from a lognormal distribution. We defined classes
of model odors with a mean shared fraction f of active glomeruli
(STAR Methods), and we focus our analysis on three sets of
odors (Figure 1A), defined by f =0 (nonclass), f = 0.3 (weak class),
and f =0.7 (strong class).

Correlations between simulated piriform activities for odor
pairs are related to but smaller than comelations of glomerular
activities (Figure 1B}, in agreement with previous results (Babadi
and Sompolinsky, 2014; Cho and Saul, 2009). The shape of this
curve follows from the observation that sparse activity patterns
can more faithfully preserve positive correlations than negative
correlations. Whereas input correlations close to 1 tend to be
largely preserved, negative input correlations are transformed
into piriform correlations near zero because uncorrelated sparse
representations have very little overlap, leaving minimal dynamic
range for further anticorrelation. Consequently, the curve relating
input correlation to output correlation has a shallow slope for low
input correlation.

Comparison of model results with data is facilitated by consid-
ering the fraction of neurons responding to pairs of odors, rather
than the correlation. The fraction of neurons responding to pairs
of simulated odors, drawn from all three classes, exceeds the
value expected from an uncorrelated odor representation
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Figure 2. Agreement between Readout Units Requires a Large
Piriform

(A) Respense of a readout unit versus the response of a second readout
connected fo an independent set of piriform neurons, either before training
(top) or after training to a single cdor (bottom), for a panel of odors with 70%,
with 30%, cor at chance levels of overlap with the trained odor, color coded as
in Figure 1. Gray boxes denote the regions in which the readouts do not agree
ford=05andf = 07.

(B) Scaling with N, of readout agreement (with 7 = 0) versus other measures of
readout performance: readout agreement with a threshold of 4= 0.5 (brown) or
#=0.9 (orange), readout correlation (black), SNR (gray), and accuracy
(magenta). All quantities except SNR are defined from 0tc 1 (Max[SNR] = 3.4).
We normalize SNR such that the minimum value is 0 and the maximum value
is 1 to enable comparison to other guantities.

(C) Comparison with experimental data from the Drosophifa mushroom body.
The correlation between twe model MBONs as a function of the number of
inputs they receive (black). Published data (Hige et al., 2015b) showing the
correlation across odoersin three conjugate pairs of MBONSs versus the number
of KCs that innervate each MBON (gray; mean + SEM).

(D) Readout agreement is smaller than readout correlation (top), while readout
accuracy is greater than normalized readcut SNR {bottom).

(E) Intuiticn for why readout agreement is smaller than readout correlation. As
the cerrelation between twe readouts grows, their joint probability distribution
becomes elongated (gray), but even when this distribution is very elongated,
an appreciable pertion remains in the off-diagonal quadrants (orange).

(Figure 1C). For independent representations, the fraction of
cells responding to both odor A and odor B would be papg,
where p, and pg are the probabilities for responses to A or B
alone. For simulated odors that activate shared sets of glomeruli
(Figure 1C), this is a direct result of input-derived correlations
maintained despite random connectivity (Babadi and Sompolin-
sky, 2014; Cho and Saul, 2009). In addition, more neurons than
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expected for independent representations respond to odor pairs
that do not share active glomeruli (Figure 1C). This correlation
arises from common glomerular inputs that occur by chance
despite random connectivity (see also Litwin-Kumar et al., 2017).

The model results make two predictions about correlations in
the piriform representations of odor pairs. First, the average
comrelation between molecularly unrelated odor pairs should be
positive, not zero. Second, odors that activate similar sets of
glomeruli should evoke correlated representations in piriform,
but these correlations should be smaller than in the bulb. Two-
photon calcium imaging of layer 2 of piriform cortex (STAR
Methods) reveals that the fractions of neurons responding to
odor pairs (Figure 1D) are consistent with the model (Figure 1C).
Most pairs produce larger fractional responses than would be
expected for statistically independent activity (p < 0.02, Wil-
coxon signed-rank test). In our model, correlations in the bulb
are the major source of correlations in piriform. Adequate data
from imaging of the response to the same odor pairs in both
bulb and piriform are unavailable. Therefore, we cannot at pre-
sent experimentally compare correlations across these two ol-
factory areas.

Random Connectivity Can Produce Odor-Class

Selective Piriform Neurons

We next asked whether piriform neurons that respond selectively
to a set of similar odors can arise from random input wiring. We
define class selectivity as the difference between the mean re-
sponses of a neuron to class and nonclass odors and then
ranked the neurons in our model according to this selectivity.
We illustrate the results by showing the probability distribution
over the fraction of odors eliciting a response for model neurons
in the 4™ percentile for class selectivity (Figures 1E and 1F). On
average, these neurons respond near chance levels (S, =6%)
to nonclass odors, but they respond to 40% of class odors (Fig-
ure 1E). We show that this selectivity reflects overlap in the bulb
by constructing a nonsensical class defined as a random collec-
tion of 1,000 odors with # = 0. Neurons in the 4™ percentile of
selectivity to this artificial class respond near chance levels
to both class and nonclass odors (Figure 1F). Thus, even a
randomly connected piriform will have some cells with selectivity
to a class of similar odors.

Learning Single-Odor Associations Can Align Population
Readouts from Different Piriform Representations

Given the randomness of the input to piriform, the same odor will
be represented differently in different brains. We now consider
how these individuals can nevertheless align the qualities they
assign across a wide range of odors. A similar problem arises
in considering the alignment of odor qualities inferred from the
two sides of a single individual’s brain. To define an odor quality
in our model, we introduce a linear readout that characterizes the
output of an entire population of piriform neurons. The readout
is a weighted sum of piriform activities z = > ",wiy;, where y; is
the activity of piriform neuron i and w; is its weight. Initially, the
readout weights are chosen randomly, and we examine the
resulting readout responses from two different randomly wired
maodel piriform cortices (Figure 2A, top). Readout responses ob-
tained from two different model piriform cortices using the same



weights are uncorrelated (correlation coefficient = 0.03, —0.03,
and 0.005, for odors with f= 0.7, 0.3, and Q, respec-
tively) because the two piriform representations are completely
different.

We next asked whether shared training to a single odor in two
different individuals results in readouts that agree across a wide
range of odors. In this simulation, we set the weights for each
readout equal to the activity produced by the odor being learned
in the comesponding piriform (W; = ¥/, where the piriform
response to the trained odor is yi; STAR Methods). This imple-
ments a form of Hebbian learning (Oja, 1982). This single shared
experience, corresponding to associative learning with a com-
mon odor, does an excellent job of aligning the two readouts in
response to other odors (Figure 2A, bottom). Simulated odors
sharing either 30% or 70% of activated glomeruli with the trained
odor evoke significantly larger responses in the readouts than all
nonclass odors. Two readouts not only distinguish class from
nonclass, but can also rank the similarity of a panel of odors
extremely well, even if the odors are not similar to one another
or to the trained odor (the f =0 case). Moreover, the responses
of the two readouts across all simulated odors are well correlated
(correlation coefficient = 0.98, 0.97, and 0.86, for f = 0.7, 0.3,
and 0, respectively). It is worth emphasizing that the observation
that this works for all odors implies that the identity of the training
odor is inconsequential. Thus, after training with a single exem-
plar odor, two readouts can generalize in a similar way across
other odors.

The degree of comelation between two readouts due to single-
odor learning depends on the number of piriform neurcns. This is
of interest because of the observation that the number of piriform
neurcns exceeds the number required for efficient categorization
(Babadi and Sompolinsky, 2014). The readout correlation in-
creases and saturates as a function of the number of piriform
neurcns (Figures 2B and S52). The correlation coefficient between
readouts modified by a shared training experience provides a
measure of consistency. The ability of a single readout to catego-
rize odors, on the other hand, is characterized by its signal-to-
noise ratio (SNR; Babadi and Sompolinsky, 2014; Litwin-Kumar
et al., 2017). As a function of the number of piriform neurons, the
SNR saturates (Babadi and Sompolinsky, 2014, Litwin-Kumar
et al.,, 2017), and in our model, this saturation occurs when
roughly 100,000 piriform neurons provide input to the readout.
It has been noted that this is an order of magnitude less than
the actual number of piriform neurons (Babadi and Sompolinsky,
2014). The curve showing the correlation coefficient for two
readouts (black curve in Figure 2B) overlaps with the curve for
the SNR scaled so that its maximum value is 1 (gray curve in Fig-
ure 2B). We discuss the reasons for this overlap in the STAR
Methods.

To provide a test of our calculation of readout alignment,
we exploit experimental data from the Drosophila mushroom
body. The fly affords an opportunity to examine genstically
defined neurons that readout from the two different mushroom
bodies in the two hemispheres of the fly brain. In Drosophila, pro-
jection neurons connect glomeruli in the antennal lobe (the insect
analog of the olfactory bulb) to Kenyon cells (KCs) that form the
mushroom body (the piriform analog) (Marin et al., 2002; Wong
et al., 2002). As in the piriform, glomerular inputs to the KCs

show no apparent structure (Caron et al., 2013; Gruntman and
Turner, 2013; Murthy et al., 2008). Further support for the random
nature of these connections is provided by electron microscopy
(EM) data from a Drosophila larva (Eichler et al., 201 7), indicating
that input connections to the KCs are not only unstructured, but
are also completely different on the two sides of the brain.
KCs synapse onto mushroom body output neurons (MBONSs)
that are analogous to the model readout we have introduced.
Learned associations are established by modifying the strength
of the KC to MBON synapses (Aso and Rubin, 20186; Hige et al,,
2015a; Séjourné et al., 2011). Thus, homologous MBONs on the
two sides of the brain of a single fly should exhibit the response
alignment that we have discussed. Correlations were deter-
mined for three MBON types that receive different numbers of
KC inputs (Hige et al., 2015b). This allows us to test not only
the values of the correlations we computed, but also their depen-
dence on the number of neurons driving the readout.

We constructed a fly analog of our piriform model, adjusting
the numbers of neurcns and synapses appropriately (STAR
Methods). The corelation coefficient between two model
MBONSs as a function of the number of inputs (Figure 2C) resem-
bles the piriform correlation curve in Figure 2B. The fly model
correlation saturates at a value of roughly 2,000 KC inputs, the
actual number of KCs in the mushroom body. Hige et al.
(2015b) have analyzed the responses of left-right pairs of
MBONSs that receive different numbers of KC inputs to a panel
of odorants. The correlation coefficient between MBON pairs
determined experimentally shows a striking match with the
predictions of the model (Figure 2C).

Readout of a Sufficiently Large Piriform Population
Supports Gonsistent Choice

Odor-guided behavior typically involves making a binary choice;
for example, to act or not to act. We have described a readout
that provides a continuous measure of the piriform response.
We now model choices by comparing this readout value to a
threshold. Readout values greater than the threshold are inter-
preted as a choice to act; those below threshold as a choice
not to act. This allows us to compute the accuracy with which
a trained readout can guide choice (Figure 2B; accuracy is
defined as fraction correct). Accuracy is an increasing function
of the SNR that saturates before the SNR reaches its maximum
(Figure 2D, top). As a result, accuracy saturates at a lower num-
ber of piriform neurons than does the SNR (Figure 2B}, further
emphasizing the disparity between the actual number of piriform
neurons and the number needed to support categorization and
choice.

The threshold we have introduced allows us to investigate the
consistency of choice across individuals or brain hemispheres.
We trained two readouts, each connected to an independent
model piriform cortex (108 neurons), on a single odor. We then
compared the readouts to a threshold and examined the choice
agreement across a large number of nonclass odors. Good
agreement between readouts is substantially more difficult to
obtain than is accuracy in a typical categorization task such as
distinguishing class from nonclass odors. We characterize the
value of the threshold with a parameter 4 that is equal to the frac-
tion of odors that produce a subthreshold readout response. Ata
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threshold for which odors are equally divided between supra-
and subthreshold (# = 0.5), 95% of the choices are the same
for two trained readouts, but agreement is at chance levels
(~50%) for two untrained readouts (Figure 2A). Note that this
consistency is observed for odors that are both similar to and
different from the trained odor. Thus, readouts receiving input
from different piriform representations can support consistent
choices after a single shared training experience.

We next asked how the consistency of choices depends on
the number of neurcns in piriform. For this purpose, we introduce
a quantity A called the agreement. In defining the agreement,
we correct for the bias introduced by thresholds different from
0.5 by subtracting the fraction of choices due to chance from
the fraction of choices that agree. Normalizing the resulting
guantity to a maximum value of 1 yields our measure of agree-
ment A; (STAR Methods).

Whereas accuracy is determined by SNR, agreement is a func-
tion of the readout correlation coefficient and is always the smaller
quantity (Figure 20, bottom). A, saturates at higher numbers of
piriform neurons than the accuracy, SNR, or readout correlation
coefficient (Figures 2B). This is illustrated graphically in Figure 2E.
As the number of piriform neurons grows, the values of the two
readouts become more correlated and fall in an increasingly elon-
gated elliptical distribution (Figure 2E, gray). For # = 0.5, readout
agreement corresponds to the fraction of the distribution not in
the off-diagonal quadrants (Figure 2E, orange). Even when the
distribution is very elongated (high corelation), an appreciable
portion remains in these guadrants. The slow increase of A; as
a function of the number of piriform neurons is a general property
that is relatively insensitive to the threshold used because A; has
been corrected for bias and normalized.

Qur conclusions concerning the agreement between two
readouts hold when we extend our analysis to multiple readouts.
We introduce an additional parameter to specify the fraction of
similarly responding readouts required to say that the ensemble
“agrees” (STAR Methods). For small values of this parameter,
the many readout case looks very similar to the two-readout
case; for large values, maximal agreement requires at least
an order of magnitude more inputs from piriform (Figure S2).
Furthermore, the number of piriform inputs required for maximal
readout agreement reduces only slightly for odors that more
densely activate the olfactory bulb (Figure S2). Thus, a single piri-
form cortex can support accurate categorization and choice with
fewer than 10% neurons, an order of magnitude less than the
actual number. However, 10° piriforms are required for choice
agreement between different individuals or across the two sides
of the brain. This may provide a rationale for the large number of
piriform neurons.

DISCUSSION

Neurons in piriform cortex receive input from arandom collection
of glomeruli, resulting in an odor representation that lacks the
stereotypy of the olfactory bulb. Random connectivity implies
that each piriform cortex is unique, posing the problem as to
how different individuals generalize consistently across stimuli.
Generalization implies that different individuals, after learning a
conditioned response to odor A, will generate the learned
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behavior in response to odors with glomerular representations
similar to A, but not to odors that activate different glomeruli.
Consistent generalization is also necessary across the two differ-
ently wired piriform cortices of a single individual if inter-hemi-
spheric conflicts are to be avoided. Our model demonstrates
that readouts from two different randomly wired cortices can
be highly correlated after a single shared experience. In this
manner, perceptual consistency will not require individuals to
have lived identical lives. The degree of correlation between
model readouts depends on the number of randomly wired neu-
rons, generating predictions that are in excellent agreement with
data from the mushroom body output neurons of the fly. More-
over, the ability of the model piriform to support consistent
choices across individuals requires that the piriform cortex
contain a large number of neurcons, a number in accord with
that observed in the mouse. Modeling studies using more
traditional performance measures such as dimensionality and
readout SNR have suggested that piriform has an excess of neu-
rons (Babadi and Sompolinsky, 2014). We find that consistent
decision-making may require the full complement of piriform
neurons.

The model we have considered is based on an assumption of
random wiring. We investigated this assumption further by exam-
ining in vivo data for evidence of structure. We could detect no
local spatial structure, no periodic structure, and no clustering
across the piriform surface. We did find positive correlations in
the responses of individual neurons to odor pairs, but these are
consistent with expectations given random wiring from the bulb
to piriform. The fact that piriform odor representations generated
by random connectivity can “inherit” correlations from bulb rep-
resentations is essential for generalization across odors.

A number of studies have examined the impact of random
connectivity on the ability of a sensory representation to support
categorization (Babadi and Sompolinsky, 2014; Barak et al.,
2013; Cortes and Vapnik, 1995; Litwin-Kumar et al., 2017,
Marr, 1969; Rigotti et al., 2013). In these studies, categorization
consists of dividing stimuli {odors) into two classes based on
arbitrarily assigned valences. This type of categorization task
emphasizes the importance of decorrelation because correla-
tions in piriform responses have a negative impact. In our model,
associations are learned for a small subset of odors and behav-
ioral decisions are made on the basis of generalization. In this
task, correlations between piriform responses to odors are
essential for assessing odor similarity, and similarity provides
the basis for generalization. Correlations are also essential for
the consistency of generalization across individuals and be-
tween brain hemispheres despite the presence of different rep-
resentations in different cortices. Lastly, in tasks in which struc-
ture in the stimulus space can be exploited, plasticity on the
random layer itself can further aid the ability to categorize (Ba-
badi and Sompolinsky, 2014; Litwin-Kumar et al., 2017; Pehle-
van and Chklovskii, 2014).

Correlations between odor representations in the bulb reflect
comelations between the binding of odors to receptors in the
nose. These correlations are retained in the piriform despite
the random connectivity from the bulb. Since individuals in a
species express similar repertoires of receptors, correlations
will be preserved across neurcnal populations in different



piriform cortices, but the neurons responsible for these correla-
tions will be different. In our model, individuals with different piri-
form cortices can nevertheless consistently assess the similarity
of odors. In this manner, “a rose by any other name would smell
as sweet” (Shakespeare, 2015).
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited Data

Calcium imaging data of odor responses in mouse Stettler and Axel, 2002 N/A
piriform cortex

Calcium imaging and electrophysiological data of odor Hige et al.,, 2015b N/A
responses in Drosophita mushroom body output neurons

Software and Algorithms

Algorithms for calculation of readout comrelation and agreement This paper https:/github.com/schafferEvan/
coherentGeneralization

CONTACT FOR REAGENT AND RESOURCE SHARING

Further requests for resources should be directed to and will be fulfiled by the Lead Contact, Evan S. Schaffer (ess2129@
columbia.edu).

METHOD DETAILS

Piriform Model

Our network model has feedforward connectivity and consists of three layers that we refer to as the glomerular layer, cortical layer,
and readout layer, respectively, as shown in Figure 1. A fraction 8, of the N, neurons in the glomerular layer are activated by a given
odor. Glomerular representations of class odors with excess overlap f are chosen such that all such odors activate a common set of
N8y glomeruli and an additional randomly selected (1 — f)N,.S, glomeruli. The case with no glomeruli designated as shared (f =0)
corresponds to independent or nonclass odors. Response magnitudes of glomeruli whose responses are nonzero are chosen from
an N,-dimensional multivariate lognormal distribution, exp(A (u,, )}, where the diagonal elements of the covariance matrix =y all
equal cré, and off-diagonal elements equal In[f(exp[cré] — 1) + 1], and N, is the number of class odors. This yields response magni-
tudes whose average cross-odor correlation is f.

Eachof N, cortical neurons receives S..Ny excitatory and SyN, inhibitory synaptic inputs from a random selection of glomeruli with
weights, represented by matrix elements Jy, set to 1 and S, /S, respectively. The response of each cortical neuron is a threshold-
linear function of the sum of its inputs, y; = &3 Jpg — 6], where 8(x)=x if x>0, and &(x) = 0 otherwise. The threshold # is chosen
such that an average of 6.2% of piriform neurons are activated by each odor, matching our imaging data. For the parameters chosen,
this results in an excess of 9.2 excitatory inputs being required, on average, for a piriform neuron to be activated, i.e.,
8=9.2 « explu, + (05/2)]. Finally, the readout unit receives a weighted input from every piriform neuron, z = 3 ;Wy;, where
W, =y after training, where the piriform response to the trained odor is y;'. Before training, W; is chosen randomly with the same sta-
tistics as y. For all simulation results shown, N, = 1000, g = 01,9, = 05,5, = 01,85, = 02,5, = 04,8 = 11.9.

In all quantities computed from the performance of one or multiple trained readout units, a single odor is trained, and the readout is
tested with a panel of unrelated odors. Thus, readout accuracy is calculated as the fraction of novel odors correctly rejected as
different from the trained odor. A more symmetric task in which the stimulus test set also includes noisy presentations of the trained
odor, to which the readout should respond with the same output as the trained odor, gives qualitatively similar results.

Fly Model

Cur fly model differs from our piriform model in the following parameters: N, = 50, 8§, =0.2 (see Wang et al., 2003), 8;, =7 /50 (see
Caronetal.,20183), 8. =1 (see Papadopoulou et al., 2011). The only other difference between these models is that in our fly model, the
readout plasticity is anti-Hebbian (rather than Hebbian}, so that synapses from KCs responsive to the trained odor are set to zero, and
synapses from KCs not responsive to the trained odor remain strong. This feature is not essential for our results but is motivated by
the experimental observation that KC-MBON synapses depress upon pairing of an odor with an unconditioned stimulus (Aso and
Rubin, 20186; Hige et al., 2015a; Séjourné et al., 2011).

Similar Scaling of the SNR and Two-readout Correlation Coefficient as a Function of the Number of Piriform Neurons

As seenin Figure 2B, the signal-to-noise ratio (SNR) of a single readout and the correlation coefficient (CC) between two readouts, all
trained by a Hebbian rule, have virtually identical scaling as a function of the number of piriform neurons supporting the readout. We
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denote the response of the single readout to odor a by z, and the valence of this odor by v,. Similarly, the responses of the two read-
outs are denoted by zg) and zézj. The signal-to-noise ratio for the single readout is given by

_ (vaZals
R =)

where the average in the numerator is over odors and the denominator is the variance across odors. The correlation coefficient be-
tween two readouts is
)
a

(Var(&" var (z2))F

The numerators of these two expressions depend only weakly (as O(1) + O(Ny”g)) on the number of piriform neurons when this
number is significantly greater than 1. The dependences of the denominators on this number thus determine the scaling we are dis-
cussing. Because the single readout z, and the pair of readouts 2" and ) all have the same statistics, Var(z{" Var(z{?') = Var(z,)®
and thus the denominators of SNR and CC are identical. These two facts explain their similar scaling.

CC =

Agreement for Two Readouts

Agreement A, is calculated by subtracting the chance probability of agreement g from the raw fraction of similarly-responding read-
outs, «, and then normalizing to one, sothat Ay = (e — 8)/(1 — 8), where 8 = & + (1 — 8)°. Therelationship between A; and @ can be
seen more easily in the Gaussian approximation of A, , which makes explicit the dependence on the comrelation o,

Fauss 1 // 1 2
A ‘“(wm gy VP (57— ) 0 — 20047

Agreement for a Population of Many Readouts
Although the case of two readouts is of particular interest because of the application to modeling opposing hemispheres of the same
brain, the agreement between more than two readouts is also of interest, with applications to readouts in multiple brain areas or in
multiple individuals. We define the agreement of a population of N. readouts, Ag” N: with a threshold criterion ¢ on the fraction of
readouts giving the same response (either 1 or 0); in other words, a “yes” choice results when the fraction of readouts with supra-
threshold values is greater than a number ¢. Cur original definition of A, in the two-readout case can be seen as population agree-
ment with ¢ = 1. As in the two-readout case, we subtract the probability of agreement occurring by chance and normalize to a
maximum of 1. More precisely, we subtract the chance probability of agreement g from the raw fraction of similarly-responding read-
outs, «, and then normalizing to one, so thatA?Nz = {a— 8)/{1 - 8), where 3 is the sum of binomial cumulative density functions, 8 =
T NN — ™+ e L NDE (1 — 6 L For N,=2and ¢ = 1, this reduces to § = ¢ + (1 — 8)°.

To properly compare the required piriform resources for readout populations of varying size, we examine population agreement as
a function of the total number of piriform neurons — the number of piriform inputs per readout, multiplied by the number of readout
units. This is an assumption of nonoverlapping inputs to the readouts. Population agreement, Ag’Nz , forarange of ¢ values with £=0.5
and a population of 10 readouts is qualitatively similar to the original As curves (Figure S2A, left); independent of the value of the
choice threshold ¢, Agjgo requires in excess of 10 million piriform inputs for performance to saturate. With a larger readout population
(N> = 50), a dependence on the value of the choice threshold ¢ emerges, such thatAgjgo looks very similar to A; when ¢ =0.55 but
requires several orders of magnitude more piriform neurons when ¢ = 0.95 (Figure S2A, right). Intuitively, the appearance of an effect
of choice threshold when the readout population is large is a consequence of the ability of a large readout population to detect smaller
deviations from chance: low values of the choice threshold ¢ make the population agree more often and therefore require less piri-
form inputs, but it also makes the chance probability of agreement higher. Only a sufficiently large readout population can distinguish
between real and chance agreement and take advantage of this lower threshold. Most importantly, even in this case, performance
does not saturate until the number of piriform inputs reaches ~1 million, suggesting that the importance of a large piriform cortex is
general.

Piriform Data Analysis

Our analyses are based aggregated data from calcium imaging of layer 2 of piriform cortex expressing GCaMP3, GCaMP5, and Or-
egon Green 488 BAPTA-1 AM (Stettler and Axel, 2009). The responses of thousands of neurons to odor delivery in freely-breathing
anesthetized animals were compared to assess response selectivity. Approximately 6% of piriform neurons respond selectively to
odors at concentrations of 1-10 ppm. A small fraction of the neurons (less than 1%) respond to most or all presented odors. These
cells may represent a separate functional class and have been excluded from further analyses. Cells responsive to a given odor are
found across the piriform with no spatial preference, and the representations of different odors exhibit considerable spatial overlap, in
agreement with prior work {lllig and Haberly, 20083; lurilliand Datta, 2017, Stettler and Axel, 2008). Cells responsive to the sethologically
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relevant odors TMT and mouse urine were also found to be distributed without spatial preference (lllig and Haberly, 2003; Stettler and
Axel, 2009). Cells and odor responses were identified and quantified using custom software written in MATLAB as previously
described (Stettler and Axel, 2009).

Nearest-neighbor statistics were calculated using the distance from each cell responsive to a specific odor within a field to the
nearest other cell responsive to that odor. We then compared the distribution of these values with the distribution derived from Monte
Carlo simulations in which responsive cells were drawn randomly from all the cells in the field, and nearest-neighbor statistics for
each cell were then computed in the same manner. In Figure S1F, 5" and 95" percentiles of the Monte Carlo-derived distribution
were computed separately for each distance bin.

If responsive cells were clustered, they would tend to have smaller nearest-neighbor separations than randomly distributed cells.
At a representative imaging site, the in vivo nearest neighbor distances closely match randomly generated distances (Figure S1F).
The site-averaged nearest neighbor distances in observed and randomly shuffled data are closely matched across allimaging sites
and odors (Wilcoxon signed-rank test, p > 0.3; Figure 51G), providing no evidence for clustering. We also inspected in vivo piriform
odor representations for local patterning by analyzing their spatial wavelengths. The spatial power spectra of in vivo response pat-
terns were compared to spectra from simulations for the same sites. No significant discrepancies between the irn vivo and randomly
generated spectra are apparent for any spatial period across the sites (Figure S1H).

QUANTIFICATION AND STATISTICAL ANALYSIS

Results for readout accuracy, SNR, correlation, and agreement are averaged over input patterns and over instantiations of the
network architecture.

DATA AND SOFTWARE AVAILABILITY

Software was written in MATLAB (https://www.mathworks.com/). Code used to compute quantities presented in this study is avail-
able at: https://github.com/schafferEvan/coherentGeneralization.
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