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SUMMARY

Primate motor cortex projects to spinal interneurons
and motoneurons, suggesting that motor cortex ac-
tivity may be dominated by muscle-like commands.
Observations during reaching lend support to this
view, but evidence remains ambiguous and much
debated. To provide a different perspective, we em-
ployed a novel behavioral paradigm that facilitates
comparison between time-evolving neural and mus-
cle activity. We found that single motor cortex neu-
rons displayed many muscle-like properties, but the
structure of population activity was not muscle-like.
Unlike muscle activity, neural activity was structured
to avoid “tangling”: moments where similar activity
patterns led to dissimilar future patterns. Avoidance
of tangling was present across tasks and species.
Network models revealed a potential reason for this
consistent feature: low tangling confers noise robust-
ness. Finally, we were able to predict motor cortex
activity from muscle activity by leveraging the hy-
pothesis that muscle-like commands are embedded
in additional structure that yields low tangling.

INTRODUCTION

For 50 years, a central question in motor physiology has been
whether motor cortex activity resembles muscle activity, and,
if not, why not (Evarts, 1968)7 Primate motor cortex is as close
as one synapse to the motoneurons (Rathelot and Strick,
2009), and single action potentials in corticospinal neurons

can measurably impact muscle activity (Cheney and Fetz,
1980; Schieber and Rivlis, 2007), suggesting that motor cortex
may encode muscle-like commands {Ajemian et al., 2008; Herter
et al., 2009; Morrow et al., 2009; Sergio et al., 2005; Todorov,
2000). Yet motor cortical responses often differ from patterns
of muscle force, motivating the hypothesis that motor cortex
might primarily encode movement velocity or direction (Georgo-
poulos et al.,, 1986; Moran and Schwartz, 1999b; Schwartz,
1994, 2007). Alternatively, it has been proposed that non-mus-
cle-like response features reflect network or feedback dynamics
{Churchland and Cunningham, 2014; Churchland et al., 2012;
Kaufman et al., 2016; Lilicrap and Scott, 2013; Maier et al.,
2005; Michaels et al., 2016; Rokniand Sompolinsky, 2012; Seely
et al, 2016; Shenoy et al., 2013; Sussillo et al.,, 2015).
Many studies, largely focused on reaching, have produced little
consensus (Aflalo and Graziano, 2007; Fetz, 1992; Georgopou-
los et al., 2007; Moran and Schwartz, 2000; Mussa-Ivaldi,
1988; Reimer and Hatsopoulos, 2009; Scott, 2008).

The ubiquity of reaching tasks has naturally promoted analysis
of directional tuning (e.g., Ajemian et al., 2008; Georgopoulos
et al.,, 1982; Kakei et al., 1999; Lillicrap and Scott, 2013; Scott
and Kalaska, 1997), the interpretation of which remains debated
{Georgopoulos et al., 2007; Moran and Schwartz, 2000; Mussa-
Ivaldi, 1988; Sanger, 1994). More generally, reaching tasks tend
to inspire hypotheses where neurons encode parameters rele-
vant to reaching (Burnod et al,, 1992; Georgopoulos et al.,
1982, 1986; Moran and Schwartz, 1999b) or reflect reach-appro-
priate dynamics (Churchland and Cunningham, 2014; Church-
land et al., 2012). A few studies (Hatsopoulos et al., 2007; Moran
and Schwartz, 1999a; Schwartz et al., 2004) examined primate
motor cortex during extended drawing or tracing movements
but also focused largely on directional properties (although see
Fitzsimmons et al., 2009; Foster et al., 2014). Given that the
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Figure 1. Behavioral and Physiological Re-
sponses during Cycling

(A) Schematic of the task during forward cycling.
A green landscape indicated that virtual progress
required cycling forward.

(B) An crange landscape indicated that progress
reguired cycling backward.

(C) Behavioral data and spikes from cne neurcn
during an example session. Data are for a single
conditicn: forward/seven-cycle/bottom-start (mon-
key C). Trials are aligned to movement onset and
ordered from fastest to slowest.

(D) Behavioral data and raw firapezius EMG
for one condition: backward/seven-cycle/bottom-
start (meonkey D).

(E) Data from (C) after temporal scaling to align
trials.

(F) Data from (D) after temporal scaling.

(G) Trial-averaged and filtered neural activity for
the example neurcon in (C) and (E). Envelopes show
the standard error of the mean (SEM), which was
often within the frace widih. Shading tracks
vertical hand positicn: lightest at top and darkest
at bottom. Small tick marks indicate each cycle's
completion.

(H) Rectified, filtered, and trial-averaged EMG for
the example in (D) and (F).

defining feature of movement is change with time, progress may
benefit from more detailed comparisons of time-evolving pat-
terns of neural and muscle activity. To afford such comparisons,
an ideal task would achieve the traditional goal of dissociating
kinematics from muscle activity (Kakei et al., 1999; Scott and
Kalaska, 1997), but in the temporal rather than spatial domain.
This has been achieved during reaches (Churchland and
Shenoy, 2007; Sergio et al., 2005), but more extended move-
ments could improve the power of such comparisons.

Unlike in sensory systems where responses strongly reflect
incoming stimuli, time-evolving responses in the motor system
may reflect computations performed by internal and feedback
dynamics. A growing body of work seeks to understand neural
responses in terms of signals that a recurrent or feedback-driven
neural network would need to perform the relevant task (Henne-
quin et al., 2014; Li et al., 2016; Lillicrap and Scott, 2013; Mante
et al.,, 2013; Michaels et al., 2016; Sussillo and Barak, 2013).
Although multiple network solutions are typically possible, broad
principles can still apply. For example, the simple constraint of
a smooth dynamical flow-field explains aspects of neural dy-
namics during reaching (Sussillo et al., 2015).

Here, we leverage a “cycling” task that evoked extended move-
ments with simple kinematics driven by temporally complex pat-
ternsof muscle activity. We found that single neurons and muscles
shared many temporal response properties. Yet the neural popu-
lation as a whole was dominated by signals that were not muscle-
like and were not explained by velocity/direction coding. Seeking
an alternative explanation, we focused on a basic principle of
recurrent and feedback-driven networks: the present network
state strongly influences the future state. Thus, two similar pat-
terns of activity, observed at different moments, should not lead
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to highly dissimilar patterns in the near future. We refer to violations
ofthis principle as “trajectory tangling.” Moments of high tangling
imply either a potential instability in network dynamics or a
moment when the system must rely on external commands.

Tangling was often high for muscle population trajectories. This
was expected: muscles reflect descending commands and need
not avoid tangling. In contrast, tangling was very low for motor
cortex population trajectories. This was found not only during
cycling, but also during a reaching task, and in rodent during
reach-to-grasp and locomotion. However, low tangling was
anatomically specific and was not observed for primary visual or
somatosensory cortex. We found that the dominant signals in mo-
tor cortex were those that naturally reduced tangling. Using an
optimization approach, we could quantitatively predict the neural
population response based on only two principles: the need to
encode muscle-like commands and the need to ensure low
tangling. Network simulations confirm that low trajectory tangling
is computationally beneficial. Networks with lower tangling are
more noise robust. In summary, our data reveal a potentially gen-
eral property of motor cortex: muscle-like signals are present but
are relatively modest “ripples™ riding on top of larger signals that
confer minimal tangling. Thus, the dominant signals in motor cor-
tex may serve not a representational function—encoding specific
variables — but rather a computational function: ensuring that out-
going commands can be generated reliably.

RESULTS
Task and Behavior

We trained two rhesus macaque monkeys to grasp a hand-
pedal and cycle for juice reward. Cycling produced movement
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Figure 2. Kinematics and Muscle Activity

(A) Vertical hand velocity, averaged across trials
from a typical session {monkey C). Format as in
Figure 1G. Left and right columns show data for

forward and backward seven-cycle movements.
Data for top- and bottom-start movements are

shifted to align hand position {light shading
indicates cycle apex).
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on muscles that moved the shoulder and
elbow and to a lesser degree the wrist

500 ms

through a virtual landscape. Landscape color indicated whether
forward virtual motion required “forward” cycling (Figure 1A) or
“backward” cycling (Figure 1B). During each trial, the monkey
progressed from one stationary target to another. Target acqui-
sition required a stationary pedal with the target “under” the first
person perspective (Figures 1A and 1B). The first target was
acquired with a pedal orientation either straight up (“top-start”)
or straight down (“bottom-start”). Inter-target distance deter-
mined the required number of revolutions: 0.5, 1, 2, 4, or 7 cy-
cles. Monkeys performed all combinations of two cycling
directions, two starting orientations, and five distances. Cycling
required overcoming simulated inertia and viscosity while coun-
tering the weight of an arm extended in front of the body. These
requirements differ from those during locomotion and had to be
learned.

Behavior was highly stereotyped; note similarity of virtual-world-
position traces across trials in Figures 1C and 1D. Nevertheless,
small trial-to-trial variations in cycling speed caused accumulating
misalignment of kinematics with time. We thus temporally scaled
trials so that virtual-world-position traces were closely matched.
Doing so revealed considerable temporal structure in neural and
electromyographic (EMG) responses (Figures 1E and 1F). To sum-
marize such structure, we computed average firing rate (Figure 1G)
or muscle activation (Figure 1H) across trials. We used a narrow
filter (25-ms Gaussian kernel) relative to the timescale of behavior
(~500-ms cycling period) to preserve fine temporal features.
We similarly computed trial-averaged responses for key kinematic

(which had limited mobility given the pedal

design). Muscle activity (Figures 2C-2E)

generally followed intuitions from biome-
chanics. For example, the triceps muscle extends the elbow,
moving the hand away from the body. Accordingly, triceps activ-
ity (Figure 2D) peaked near each cycle’s apex (white shading)
when cycling forward and near its bottom (dark shading)
when cycling backward. Some muscle responses were roughly
sinusoidal and resembled kinematics, yet deviations from sinu-
soidal were common (e.g., Figure 2E).

Single-Neuron Responses
Well-isolated single neurons (103 and 109, monkeys D and C)
were sequentially recorded from motor cortex, including sulcal
and surface primary motor cortex and the immediately adjacent
aspect of dorsal premotor cortex (potential differences within
this population are explored later). Recordings were localized
to the region where microstimulation activated muscles from
which we recorded. Cycling evoked strong responses; nearly
all neurons that could be isolated were task modulated.
Peak firing rates ranged from 16 to 184 spikes/s (monkey D,
mean: 69 spikes/s) and 16 to 185 spikes/s (monkey C, mean:
76 spikes/s). Neurons displayed a variety of intricate response
pattems (Figure 3). These patterns were statistically reliable:
SEMs were small and the same pattern could be seen repeatedly
across middle cycles for both top- and bottom-start conditions.
Inspection revealed three features shared between muscles
and neurons. First, responses often deviated from the sinusoidal
profile of kinematics (e.g., Figure 2E, backward; Figure 3A, for-
ward). Second, responses during initial/terminal cycles often
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Figure 3. Responses of Six Example Motor
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displayed differences in amplitude or temporal profile compared
to middle cycles (e.g., Figure 2D, forward; Figure 3D, forward;
Figure 3E, backward). This effect presumably relates to the
unique force patterns required to start and stop. Third, re-
sponses could differ between forward and backward cycling in
both amplitude (e.g., Figures 2C and 3C) and structure (e.g., Fig-
ures 2E, 3A, and 3F).

Consistent with these shared features, muscle responses
could be successfully decoded from the neural population using
a linear model {leave-one-out-cross-validated A% = 0.80 and
0.78) consistent with prior studies (Griffin et al., 2008; Morrow
etal., 2009; Schieber and Rivlis, 2007). This is potentially impres-
sive, given that a linear model is almost certainly too simplistic.
This finding might suggest that motor cortex activity primarily re-
flects muscle-like commands. However, decoding neural activity
from muscle activity was less successful (leave-one-out-cross-
validated R? = 0.54 and 0.50). This discrepancy in fit quality
was not simply due to neural recordings having higher
sampling error than muscle recordings. The same discrepancy

4 Neuron 97, 1-14, February 21, 2018
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trajectory (Figure 4C). Each point on the
trajectory (e.g., the orange dot in Fig-
ure 4C) corresponds to the neural state
at one moment (dashed line in Figures
4A and 4B). A two-dimensional trajectory
provides only a partial summary of the
neural state, but the resulting visualization can still be informative
and inspire hypotheses.

Neural trajectories for monkey D are shown during both
forward and backward cycling (Figure 4E, top and bottom
subpanels). Top-start and bottom-start trajectories are superim-
posed. For monkey C, trajectories during forward and backward
cycling are also superimposed {Figure 4H). For illustrative pur-
poses, data are shown only for seven-cycle conditions (as in Fig-
ures 1, 2, and 3). Middle cycles {3-5) are highlighted in color.
Neural trajectories followed repeating orbits throughout the
middle cycles. Rotating orbits are expected during cycling, in
contrast to reaching (Churchland et al., 2012), and simply reflect
what can be observed in single neurons: middle-cycle responses
tend to repeat. Muscle trajectories also followed repeating orbits
{Figures 4D and 4G). Despite this basic similarity, neural and
muscle trajectories behaved differently. Muscle trajectories
counter-rotated: they orbited in opposing directions for forward
and backward cycling. Counter-rotation is expected given the
reversal of required force patterns. For example, forward cycling
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requires lifting before pushing and backward cycling requires
pushing before lifting. In contrast, neural trajectories co-rotated:
they orbited in the same direction for forward and backward
cycling. Furthermore, muscle trajectories tended to depart
from circular: the orbit often possessed a kidney- or saddle-
like shape. In contrast, neural trajectories were more circular or
elliptical. Thus, the dominant signals in the neural population
differ from those in the muscle population.

Potential Explanations and Caveats

A potential explanation for non-muscle-like patterns in motor
cortex is that they encode directional signals such as hand
velocity (e.g., Moran and Schwartz, 1999b). This explanation
initially seems appealing given the present data. For example,
the neural trajectory during backward cycling for monkey D (Fig-
ure 4E, bottom) visually resembles the corresponding velocity
trajectory (Figure 4F, bottom). However, velocity trajectories
necessarily counter-rotate between forward and backward
cycling (the same would be true of hand direction or position).
The dominant signals in the neural data do just the opposite.
Combined with the fact that single-neuron response profiles
typically do not resemble hand velocity or position traces, it
seems unlikely that a simple representation of kinematic param-
eters can explain the dominant neural signals.

Figure 4. Visualization of Population Struc-
ture via PCA

(A) PCA cperates on a population of responses
6 of 103 neurcns are shown). Green traces
highlight the middle cycles used tofind the PCs for
this visualization (subseguent analyses consider
all times). PCs were computed based on cycling in
both directions and both starting positicns. Data
are plotted only for the forward, bottom-start
condition.

(B) Projections onto the PCs. The neural state at a
given time (orange line) can be summarized by the
values of the projecticns at that time.

(C) Corresponding neural trajectory. The projec-
ticn ente the second PC is plotied against that
cnto the first (~35% of variance is captured in
these dimensions). Orange dot shows the neural
state at the same time as in (A) and (B).

(D) Muscle trajectories captured by projecting
the muscle population response cntoe its first two
PCs (monkey D). Trajecteries are shown for for-
ward and backward cycling, using the same PCs.
Trajectories for top- and bottom-start conditions
{lighter and darker colored traces, respectively)
are overlaid.

(E) Corresponding neural trajectories.

(F) Correspending hand-velecity trajectories, pro-
duced by applying PCA tc herizental and vertical
velecity across mulliple sessicns. This is similar
(but for a change of axes) to plotting average
vertical versus horizontal velocity.

(G-l) PCA-based muscle, neural, and velocity
trajecteries for monkey G. Same fermat as (D)HF),
but trajecteries for foerward and backward cycling
are overlaid.

An alternative explanation is that the dominant neural signals
may constitute descending commands to the muscles, yet may
look non-muscle-like because they will be heavily modified by spi-
nal circuitry. Cortical commands are likely integrated/low-pass
fittered by the spinal cord (Shalit et al., 2012) and may encode
muscle synergies rather than individual-muscle activations (Hart
and Giszter, 2010). However, any commands related to force are
almost certain to reverse between forward and backward cycling
due to the reversal of required force patterns. Thus, the dominant
signals inthe neuraldata are not readily explained interms of either
muscle-command encoding or kinematic encoding. Of course,
this does not rule out the possibility that muscle-like commands
{or kinematic commands) are encoded in dimensions beyond
the top two PCs. Indeed, we will suggest below that muscle-like
commands likely are encoded. Yet, one is tempted to question
the assumption that the dominant signals encode commands of
any sort. Might there exist an alternative explanation?

Smooth Dynamics Predict Low Trajectory Tangling

Recent physiological and theoretical investigations suggest
that the neural state in motor cortex obeys smooth dynamics
{Churchland et al., 2012; Hall et al., 2014; Michaels et al., 2016;
Seely et al., 2016; Sussillo et al., 2015). Smooth dynamics imply
that neural trajectories should not be tangled: similar neural

Neuron 97, 1-14, February 21, 2018 5
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Figure 5. lllustration of the Trajectory Tangling Metric

(A) Muscle trajectories during the middle five cycles (of seven) for ferward and
backward cycling (bottom-start). Arrows illustrate a pair of states and their
derivative (the trajectory direction). Time f resulted in a large Qg (t}. Time t'is
the “associated time" that resulted in that tangling value —i.e., that maximizes
1% = % || 2/ |1%: — x# || + . In this example, t and # occur during different
conditions (forward versus backward). Tangling was computed in eight di-
mensicns.

(B) Cerresponding neural trajectories. Time [ is the same as in A, and time ¢ is
the associated time that resulted in Queurai(t}.

(C) Corresponding trajectories frem an artificial recurrent network, trained to
produce the middle-cycle activity of all muscles.

(D) Scatterplot of network- versus muscle-trajectory tangling. One point per
time/conditicn.

(E) Summary of tangling across 463 netwoerks, each trained to produce the
pattern of muscle activity frem menkey D (red) or C (blue). For each network,
we computed the 90™ percentile tangling value across times/conditions. This
distribution (acress networks) can be compared to 90™ percentile tangling for
the empirical muscle populaticns (vertical lines).

states, either during different movements or at different times for

the same movement, should not be associated with different de-

rivatives. We quantified trajectory tangling using
| — % || *

Q{t) = max
® v th—xt'\|2+e’

(Equation 1)
where x; is the neural state at time £ {i.e., a vector containing
the neural responses at that time), X; is the temporal derivative
of the neural state, ||- || is the Euclidean norm, and ¢ is a small
constant that prevents division by zero (STAR Methods). Q(f)
becomes high if there exists a state at a different time, ¢, that
is similar but associated with a dissimilar derivative. We take
the maximum to ask whether the state at time t ever becomes
tangled with any other state. This maximum is taken with ¢’ index-
ing across time during all conditions. Q{f) can be analogously
assessed for muscle trajectories.

We chose tangling as a straightforward measure of whether a
given trajectory could have been produced by a smooth dynam-
ical flow-field. Given limits on how non-smooth dynamics can be,
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moments of very high tangling are incompatible with a fixed
flow-field. Furthermore, even moderately high tangling implies
potential instabilities in the underlying flow-field (STAR Methods;
Figure S1). High tangling thus implies either that the system
must rely on external commands rather than internal dynamics,
or that the system is fliting with instability. Although other
metrics are possible, tangling has the practical benefit that it
can be computed directly from the empirical trajectories without
needing to know {or fit) a flow-field.

For the reasons above, a network that relies heavily on intrinsic
dynamics should avoid tangling. In contrast, when population ac-
tivity primarily reflects external commands (as for the muscles or
a population of sensory neurens) high tangling is both benign and
potentially necessary. For example, co-contraction of the biceps
and triceps at one moment might need to be quickly followed by
biceps activation and triceps relaxation. At a later moment or
during a different movement, co-contraction might instead
need to be followed by biceps relaxation and triceps activation.
This would constitute an instance of tangling because the same
state (co-contraction) is followed by different subsequent states.
Do such moments of high tangling indeed occur for the muscles?
If so, are they mirrored or avoided in the neural responses?

The state at a given time is a location on a state-space
trajectory. The derivative is the direction in which the trajectory
is headed. Two states are thus tangled if they are nearby but
associated with different trajectory directions. For visualization,
we consider a subset of the data: the middle five cycles of
seven-cycle movements projected onto two dimensions (Fig-
ures 5A and 5B). Of course, two-dimensional projections only
partially reflect the true population state; activity spans multiple
dimensions. As a practical choice, we computed tangling in eight
dimensions (results were robust with respect to this choice —see
below). Muscle trajectories (Figure 5A) show three features sug-
gestive of high tangling. First, muscle trajectories counter-rotate
when cycling forward versus backward, yielding opposing deriv-
atives for similar states. Second, muscle trajectories often cross
themselves at right angles, resulting in similar states with very
different derivatives. Third, non-circular trajectories sometimes
yield nearby muscle states that move in different directions.
These features indeed produced occasional moments of high
tangling. For example, the gray arrow shows the muscle state
and its derivative at a chosen time t. At time ¥, there exists
another state at a similar location in state space but with a very
different derivative (black armow).

Neural trajectories (Figure SB) appear potentially less tangled.
Co-rotation prevents trajectories from continuously opposing
one another between forward and backward cycling. Evenwithin
a condition, trajectories are closer to circular with fewer sharp
bends. There are moments when trajectories cross in these
two dimensions, but this did not result in high tangling because
trajectories were separated in other dimensions. Notably, at
moments when muscle trajectories became highly tangled,
neural trajectories did not. For example, the muscle state at
time t was strongly tangled, while the neural state at that same
time was much less tangled.

Before comparing tangling across all times/conditions, we
wished to confirm that the tangling metric behaves as intended
when the ground truth is known. We examined trajectories
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D) 31 versus muscle trajectery tangling.

E) Motor cortex versus muscle trajectory tangling during reaching (monkey A).

@) Motor cortex versus muscle trajectory tangling in three mice (black, blue, and green symbols). (llustraticn by E. Daubert).
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values. Motor cortex data are from the cycling task as in (A) and (8). SEMs were computed via bootstrap: the distribution of tangling values was resampled

(
(
(F) Same but for monkey B.
(
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200 times, producing a sampling distribution of 90" percentile tangling values.
See also Figures $2 and S3.

from a simulated recurrent neural network trained to produce
muscle activity for the subset of data plotted in Figure 5A. The
network output closely resembled those muscle signals, yet
the dominant signals internal to the network did not (cf. Figure 5C
with Figure 5A). To compare tangling, we plotted Quetwork(f)
versus Qewg(t) for every time during both simulated conditions
(Figure 5D). Network-trajectory tangling was consistently lower
than muscle-trajectory tangling, despite producing muscle tra-
jectories as an output. We repeated this analysis for multiple
simulated networks, using different weight initializations and
meta-parameters. The degree of network-trajectory tangling
was variable (distributions in Figure 5E) but was nearly always
lower than muscle-trajectory tangling.

Neural- versus Muscle-Trajectery Tangling
For motor cortex, we compared Quewa @nd Qpug for all times
across all twenty conditions. At least four results are possible.

First, if motor cortex activity is a straightforward code for muscle
activity, Queura and Qe should have a linear relationship with a
slope near unity. Second, if motor cortex reflects unknown vari-
ables, and/or if tangling captures nothing fundamental, Queural
and Qgyg may show no clear relationship. Third, if neural activity
is more complex, intricate, or “noisier” than muscle activity,
Qneural Could tend to be greater than Q. Finally, Queurar could
be systematically reduced relative to Qemg, as was the case for
the simulated networks.

The data obeyed the final prediction (Figures 8A and 6B).
The neural state was less tangled than the corresponding muscle
state in 99.9% and 96.6% of cases (monkey D and C). The rare
exceptions occurred when tangling was low for both. Strikingly,
muscle-trajectory tangling could be quite high with no accom-
panying increase in neural-trajectory tangling. Statistically, dis-
tributions of Quewar and Qewe were indeed different (paired
t test, p < 10 '° for each monkey). The difference in tangling
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was robust to analysis choices: it did not depend on the use
of PCA versus “raw” data (Figure 52), on the number of PCs
analyzed (Figure 53), on whether we matched dimensionality
or variance explained (Figure S3), or on the relative number of
neurons versus muscles (Figure S3). The large difference be-
tween Quawral and Qeng is striking given that visual inspection
does not readily reveal whether individual recordings are neural
or muscular {cf. Figure 3 with Figure 2). Yet the tangling metric
readily distinguished between even small populations of neurcns
versus muscles (Figure 6C).

Tangling across Tasks, Species, and Areas

Is low neural- versus muscle-trajectory tangling specific to
cycling or a more general property of motor cortex? We lever-
aged recently collected data (Elsayed et al., 2016) from two
monkeys performing a center-out reach task. Again, Queural
was greatly reduced relative to Qgug (Figures 6E and 6F). We
also compared Quewral and Qg in mice during an experiment
with two behaviors: reaching to pull a joystick and walking on a
treadmill {Miri et al., 2017). We observed a slightly weaker yet
similar effect (Figure 6G) to that seen in primates. Thus, low tra-
jectory tangling in motor cortex appears to be a general property.

We also examined responses in the proprioceptive region
(area 3a) of primary somatosensory cortex (S1) during cycling.
This region is immediately adjacent to motor cortex, and individ-
ual-neuron responses (Figure S4) are surprisingly similar to those
in motor cortex. Yet tangling was not as consistently low in 31
(Figure 6D) as it was in motor cortex (Figure 6A, same task and
monkey). At moments where the muscle state became highly
tangled, the S1 state often also became quite tangled. All three
tangling distributions were significantly different: p < 10 '
comparing muscle and S1 populations; p < 10 '° comparing
31 and motor cortex populations {(paired t test).

We also considered a primary visual cortex (V1) population
responding to natural-scene movies. V1 ftrajectories were
much more tangled than motor cortex trajectories (Figure 6H;
p<10 "and p <10 9 two-sample t test comparing V1 with
motor cortex for monkey D and C). Across datasets (motor cor-
tex, muscles, S1, V1), there was no clear relationship between
dimensionality and tangling (Figure S5). Instead, tangling was
highest for those populations {(muscles and sensory areas) where
driving inputs are expected to have the largest impact. This
agrees with the fact that driving inputs, unless they can be pre-
dicted from outgoing commands, can readily cause the same
state to be followed by different future states. For example, no
constraint prevents image A from being followed by image B
on one occasion, and by image C on another occasion.

Noise-Robust Networks Display Low Tangling

For a recurrent or feedback-driven network, it is intuitive that
high tangling must be avoided. If the flow-field has some degree
of smoothness, nearby states cannot be associated with very
different derivatives. Thus, moments of high tangling cannot be
produced without relying on disambiguating external inputs.
Yet motor cortex trajectories avoided even moderate tangling.
This is not strictly necessary even in the idealized case of a fully
autonomous dynamical system. For example, some recurrent
networks did show moderate tangling (right tail of the distribution
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in Figure 5E) yet still functioned. Might the very low empirical
tangling confer some computational advantage? Formal consid-
erations suggest so: even moderate tangling implies potential
dynamical instabilities (STAR Methods).

To explore potential advantages of low tangling, we consid-
ered neural networks trained to generate a simple idealized
output: cos f for one muscle and sin 2t for a second muscle (Fig-
ure 7A, top). The output trajectory was thus a figure eight (left
subpanel). It is not possible for a network’s internal trajectory
to follow a pure figure eight; the center-most state is very highly
tangled. Tangling can be reduced by employing a third dimen-
sion such that the trajectory is [cost; sin 2t; Bsinf]. Even a
modest value of B reduces tangling enough {(middle subpanel)
that the trajectory can be produced. As the network follows
that three-dimensional trajectory, the figure-eight pattern can
still be “read out” via projection, with the third dimension falling
in the null space of the readout (Druckmann and Chklovskii,
2012; Kaufman et al., 2014). Are further decreases in tangling
{right subpanel) advantageous? We examined noise tolerance
across networks with internal trajectories [cos t; sin 2t; psin{|
and different values of §. This necessitated the unusual step of
training networks not only to produce a desired output, but to
follow a specified internal trajectory (STAR Methods).

Networks with high trajectory tangling failed to produce the
figure-eight output in the presence of even small amounts of
noise (Figure 7B). Networks with low trajectory tangling were
much more noise robust. We performed a similar analysis with
trajectories that encoded the empirical muscle trajectories, but
with varying degrees of tangling (found using the optimization
approach in the next section). Again, low tangling provided noise
robustness (Figure S6). This was true both for networks that
generated a single internal trajectory, and networks that gener-
ated different forward and backward trajectories based on
inputs. Intuitively, when tangling is low, noise is less likely to
perturb the network onto a nearby but inappropriate part of the
trajectory. More formally, low tangling aids local stability (Fig-
ure 51; STAR Methods).

While the example in Figures 7A and 7B is simplified, it illus-
trates a feature that may help interpret the empirical neural
trajectories. Setting =1 yields a weakly tangled trajectory that
encodes the desired figure-eight output in one projection and
is a circle in another projection (Figure 7A, right subpanel). This
is a natural shape to introduce: a circle is the least-tangled
rhythmic trajectory.

Hypothesis-Based Prediction of Neural Responses

The results above suggest a hypothesis: motor cortex may
embed outgoing commands (which, if muscle-like, would be quite
tangled) in a larger trajectory such that the full orbit is minimally
tangled. Inspired by optimizations that predicted V1 responses
{Olshausen and Field, 1996), we employed an optimization
approach to predict the dominant patterns of motor cortex activ-
ity. Optimization found a predicted neural population response,
)?, that could be linearly decoded to produce the empirical muscle
activity Z, yet was minimally tangled. Specifically:

o . o + 2 .
X= arg;nln(HZ XX \|F+AZQX(t)), (Equation 2)
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(A) lllustraticn of hew an cutput can be embedded in a larger trajectory with varying degrees of tangling. Top traces: a hypothetical twe-dimensional output
[cos ¢; sin 21]. Plotted in state space, that output trajectory is a figure eight and contains a highly tangled central point. Adding a third dimension {Bsin #) reduces
tangling.

(B) Noise robustness of recurrent networks trained to follow the internal trajectory [cos t; sin 2t; psint]. By varying B, we trained a set of networks that could all
produce the same output but had varying degrees of trajectory tangling. Noise tolerance (mean and SEM across initializations) is plotted versus network trajectory
tangling for each value of B.

(C) Similarity of the predicted and empirical moter cortex pepulation respenses (monkey D). Blue trace: prediction yielded by optimizing the cost function in
Equation 2. Gyan dot indicates similarity at initializaticn; i.e., the similarity of empirical neural and muscle trajectories. This also provides a lower benchmark
(orange dashed line). Gray traces: same as blue trace but with Gaussian ncise added during initialization. Multiple initializations yielded a family of
predictions. Black dashed line shows upper benchmark as described in the text, with a 95% confidence interval computed across random divisions of the

population.
(D) Same but for monkey C.

(B) Projection of a representative predicted population respense onto the top twe PCs. Prediction based on EMG frem menkey D. Green/red traces show

trajectories for three cycles of forward/backward cycling.
(F) Same but for monkey C.
See also Figures 856 and $7.

where each column of the matrix Z describes the muscle popu-
lation response for one time and condition. The first term of the
cost function ensures that neural activity “encodes” muscle ac-
tivity; ZX1X is the optimal linear reconstruction of Z from X (7 in-
dicates the pseudo-inverse; £ indicates the Frobenius norm).
This formulation should not be taken to imply that the true neural-
to-muscle mapping is linear, merely that the predicted neural ac-
tivity should yield a reasonabile linear readout of muscle activity,
consistent with empirical findings (Griffin et al., 2008; Mormow
et al., 2009; Schieber and Rivlis, 2007). The second term of the
cost function encourages low trajectory tangling. The predicted
neural population response thus balances optimal encoding of
muscle activity with minimal tangling.

We applied optimization using muscle data during three mid-
dle cycles of forward cycling and three middle cycles of back-
ward cycling. Thus, we are attempting to simultaneously predict
two “steady-state™ neural trajectories. We used canonical corre-
lation to assess similarity between predicted and actual neural

responses. Canonical correlation finds linear transformations of
two datasets such that they are maximally correlated. We em-
ployed a variant of canonical correlation that enforces ortho-
normal transformations. Unity similarity thus indicates two data-
sets are the same but for a rotation, isotropic scaling, or offset.
We initialized optimization with )A(,-n,-t:Z, corresponding to the
baseline hypothesis that neural activity is a “pure” code for
muscle activity. This yielded reasonably high initial similarity (Fig-
ures 7C and 7D, cyan dot) because muscle activity shares many
basic features with neural activity (e.g., the same fundamental
frequency).

During optimization, we insisted that the predicted neural pop-
ulationresponse, )?, have the same dimensionality as the muscle
population response, Z (both were ten dimensional). Matching
dimensionality is a conservative choice that aids interpretation.
When optimization cannot add dimensions, some muscle-like
features must be lost in order to gain features that reduce
tangling. Similarity will therefore increase only if the features
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gained during optimization are more realistic/prominent than the
features that are lost.

Similarity between predicted and empirical populations
increased with optimization (Figures 7C and 7D, blue), reaching
a similarity roughly halfway between the “pure muscle encod-
ing™ hypothesis and perfect similarity. To provide a rough bench-
mark of good similarity, we computed the average similarity
between two random halves of the empirical neural population
(black dashed trace with 95% confidence intervals). Similarity
approached this benchmark for both monkeys. To assess this
result’s consistency, we repeated optimization, each time initial-
izing with the empirical patterns of muscle activity plus tempo-
rally smooth noise in each of the ten dimensions. Similarity to
the data always increased during optimization (gray traces).
This analysis also revealed that adding random structure de-
creases initial similarity (gray traces start below the blue trace).
This underscores that similarity increased during optimization
due to the introduction of structure matching that in the neural
data, and not simply any arbitrary structure.

Each initialization resulted in a slightly different solution (the
optimized )?). We were thus able to ask which solutions were
common and whether the nature of those solutions explains
the increased similarity with the empirical data. For all 200 solu-
tions (100 per monkey), optimization produced near-circular tra-
jectories. When comparing between forward and backward, two
classes of solutions emerged. The less common (31/100 for
monkey D and 13/100 for monkey C) involved dominant circular
trajectories in planes that were nearly orthogonal {first principal
angle >85°) for forward and backward. The most common
(69/100 and 87/100 for monkey D and C) involved at least
some overlap between these planes. In such cases, trajectories
were almost always co-rotational (67/69 and 85/87 for monkey D
and C) in the top two PCs. Two typical solutions are shown in
Figures 7E and 7F. Co-rotations dominate because, when trajec-
tories exist in a common subspace, tangling is lowest if they
co-rotate (if they exist in orthogonal planes, co-rotation versus
counter-rotation is not defined). Similar structure was seen
for the empirical data: the planes that best captured neural
trajectories during forward and backward cycling overlapped
(principal angles were 72° and 61° for monkey D, and 73° and
40° for monkey C) and showed co-rotation in the top two PCs
(as in Figures 4E and 4H). Thus, optimization based on Equation 2
not only increased quantitative similarity, it reproduced the
dominant features of the neural data: nearly circular trajectories
that exist in distinct but overlapping planes, and that co-rotate in
the projection capturing the most variance.

Alternative Predictions
We performed a variety of optimizations corresponding to cost
functions embodying other hypotheses (Figure S7). Optimizations
that soughtto reduce the norm of activity orto increase sparseness
(standard forms of regularization) decreased similarity. Cptimizing
for local smoothness (one aspect of low tangling) increased simi-
larity but not as effectively as optimizing for low tangling itself.
Thus, similarity increased only when optimization reduced tangling
and increased most when low tangling was directly optimized.
However, low tangling per se was not sufficient to increase
similarity. We created simulated populations where the response
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of each unit was either the response of a muscle or the derivative
of that response. This reflects the hypothesis that neurons
might represent both muscle activity and the change in muscle
activity (Evarts, 1968). By construction, these simulated popula-
tions had fairly low tangling (Figure S8A). Yet, they did not partic-
ularly resemble the neural population. Quantitatively, similarity
increased modestly for monkey D (roughly half as much as
when optimizing for low tangling directly) and decreased for
monkey C. The dominant signals in these simulated populations
did not show the same dominant circular structure seen in the
neural data (Figure S8B). The mismatch can be understood by
noting that differentiation increases the prevalence of high-fre-
quency features. This does not lead to a match with the dominant
circular structure at the fundamental frequency in the empirical
data. In summary, optimizing directly for low tangling introduced
features that were both particularly effective in reducing tangling
and matched features in the data. Reducing tangling in a more
“incidental” fashion did not produce these realistic features.

Signals Intreduced by Optimization Yield Incidental
Correlations
The optimization based on Equation 2 added structure that
reduced tangling. That structure is unconnected to kinematics—
of which optimization had no knowledge. Nevertheless, the
predicted neural population response appeared to encode kine-
matics to a greater degree than would a pure code for muscle ac-
tivity. We used linear regression to decode a set of kinematic pa-
rameters (horizontal and vertical position and velocity) from the
activity of the muscle population. Fits were reasonable (R® =
0.86 and 0.88 for monkey D and C) but improved (R® = 0.97 and
0.94) when we instead decoded kinematics from the predicted
neural populationresponse. This performance was nearly identical
to that observed when decoding kinematics from the empirical
neural population (R? = 0.98 and 0.93). The ability to decods
horizontal and vertical velocity might initially seem surprising: the
dominant signals in the neural data co-rotated in the top two
PCs—inconsistent with a velocity representation. However, the
presence of more than two dimensions with sinusoidal structure
ensured that velocity could be read out reasonably accurately.
Despite these excellent decodes, generalization performance
was poor: generalization R was near-zero {or even negative)
when fitting kinematics for one direction and predicting for the
other. This was true whether decoding was based on the pre-
dicted or empirical neural response. While poor generalization
does not exclude the possibility that the empirical population
encodes kinematic signals, we saw no direct evidence for this
hypothesis. As noted above, we also rarely observed neurons
whose firing rates resembled kinematic parameters.

Muscle-like Signals Are Embedded in Trajectories with
Low Tangling

The success of optimization based on Equation 2 suggests
a hypothesis: the dominant population-level signals in motor
cortex may function to yield low tangling, with muscle-like
signals encoded by relatively modest “ripples” in dimensions
that point off the plane of dominant circular structure. A rough
analogy would be a phonograph, where the direction encoding
the temporally complex output is orthogonal to the dominant
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motion of the record. Can such structure be viewed in the
empirical data? We projected the neural population response
onto triplets of dimensions (Figure 8). The first and second di-
mensions were always the first two PCs. The third was based
on the readout direction of a particular muscle, defined by the
set of weights found via linear regression. The third dimension
was then the vector that was both orthogonal to the first two
PCs and allowed the three dimensions to span the readout
direction. Consider first a triplet of dimensions spanning the
trapezius readout direction (Figure 8A). Trajectories trace out
circular paths in the top PCs. Ripples in a third dimension pro-

vide the fine temporal structure that matches trapezius activity
Figure 8B). The overall trajectory thus has the joint properties
of encoding trapezius activity while exhibiting low tangling.
Similar structure was observed for other muscles (Figures 8C
and 8E; data for monkey C are shown in Figure S9).

The dimensions that encode muscle activity captured only
modest variance. In the examples in Figure 8, each muscle-
readout dimension captured ~10% as much variance as the
average of the top two PCs. The vertical dimensions in Figures
8A, 8C, and 8E are thus shown on an expanded scale for visual-
ization. A similar structure was present for the network model in
Figure 5C and also for the predicted population responses in Fig-
ures 7E and 7F: the activity of each encoded muscle constituted
a set of ripples upon dominant circular structure that yielded low
tangling.

In addition to dimensions from which muscle-like signals
can be read out, there exist other dimensions (not visible in Fig-
ure 8) that provide separation between neural trajectories during
forward and backward cycling. Low tangling may require such
separation—otherwise forward and backward trajectories would
need to encode very different patterns of muscle activity despite
following similar paths. Indeed, forward and backward neural
trajectories were on average much better separated than the
corresponding muscle trajectories (Figure S10). This difference
in separation was large but not as profound as the difference
in tangling. Thus, low neural-trajectory tangling (relative to mus-
cle-trajectory tangling) results from a variety of factors: more cir-
cular trajectories, increased separation between forward and
backward trajectories, and greater alignment of flow-fields
{e.g., co-rotation in the dominant dimensions).

Tangling in Sulcal Motor Gortex

The results above support the hypothesis that population activity in
motor cortex is less tangled than the outputs of that population. If
so, tangling might be predicted to be moderately higher in sulcal
motor cortex, where some neurons (cortico-motoneurons) make
mono-synaptic connections onto spinal motoneurons (Rathelot
and Strick, 2009), and signals related to outgoing muscle-like com-
mands might thus be enriched. This is worth investigating both as
an additional test of the central hypothesis, and because our mea-
surements of muscle activity are only a proxy for the output of
motor cortex. ldeally, we would be able to compute tangling for
a subpopulation of identified cortico-motoneurons. Inthe absence
of such recordings, we considered the subpopulation of sulcal re-
cordings as a whole and compare with a subpopulation from the
most anterior region from which we recorded: the aspect of dorsal
premotor cortex contiguous with surface primary motor cortex.
Cortico-motoneurons are largely absent from this anterior region
{Rathelot and Strick, 20086). The subpopulation of sulcal neurons
did indeed show significantly higher tangling during both cycling
and reaching (Figure S11).

DISCUSSION

Are the Dominant Signals in Motor Gortex
Representational or Computational?

We found that the dominant signals in motor cortex were not
muscle-like. This result echoes findings during reaching, where
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aspects of neural responses depart from expectations under
a muscle-encoding framework (Evarts, 1968, Heming et al.,
2016; Kakei et al., 1999; Moran and Schwartz, 1999b; Scott,
2008; Scott and Kalaska, 1997; Todorov, 2000). The dominance
of non-muscle-like signals is more patent during cycling; non-
muscle-like signals are apparent simply via inspection of projec-
tions onto the top PCs.

A traditional explanation for non-muscle-like signals is that
they represent higher-level movement parameters. The present
results are inconsistent with the most common proposal: a rep-
resentation of direction or velocity. Under that proposal, trajec-
tories should have been co-planar and counter-rotated between
forward and backward cycling. We also found that single-neuron
responses rarely resembled velocity profiles. Our data do not
rule out the possibility that neural activity encodes a yet-to-be-
determined set of kinematic parameters (perhaps in addition to
muscle-like signals). However, our results urge caution when
considering such hypotheses. For example, reducing tangling
via optimization increases the degree to which activity appears
(incorrectly) to represent kinematic parameters. More broadly,
it may often be possible post hoc to select kinematic parameters
that resemble the dominant neural signals, but this may gener-
alize poorly across tasks. As one example, a representation of
horizontal position and velocity would produce ellipses that
co-rotate during forward/backward cycling. However, this “hor-
izontal kinematics" hypothesis would require a high relative po-
sition sensitivity to ensure a circular trajectory. A high position
sensitivity is inconsistent with observations during reaching,
where correlations are strongest with reach velocity and direc-
tion (Ashe and Georgopoulos, 1994). In summary, in this study
as in others, there will always be correlations that are incidental
rather than fundamental {Churchland and Shenoy, 2007; Fetz,
1992; Mussa-Ivaldi, 1988; Reimer and Hatsopoulos, 2009; To-
dorov, 2000). While it remains possible that kinematic parame-
ters are represented, we saw no compelling evidence for this
idea. The dominant signals were already naturally explained by
the hypothesis that tangling should be minimized. Furthermore,
the observation of low tangling generalized well across tasks.

Our results thus suggest that the dominant signals in cortex
may play a computational rather than a representational function.
Specifically, the dominant signals may fall partly or largely in the
null space of communication with downstream structures yet
may be critical for ensuring reliable generation of the commands
that are communicated. Put differently, motor cortex is part of a
larger dynamical system (spanning many areas, including the spi-
nal cord, and incorporating sensory feedback) that culminates in
the generation of muscle commands. Such a system as a whole
is almost certain to contain non-output signals. It does logically
follow that motor cortex itself must show either non-output signals
or low tangling; motor cortex could be downstream of the relevant
dynamics or reflect only a small part of the overall network state.
Yet empirically, motor cortex displayed very low tangling.

Differences and Commonalities across Tasks

During both cycling and reaching (Churchland et al., 2012), neu-
ral trajectories follow circular paths that rotate in a concordant
direction, a feature not seen in the muscle population during
either task. This shared feature may reflect the combination of
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two facts. First, a circle is the least-tangled rhythmic trajectory.
Second, muscle activity during both tasks involves rhythmic as-
pects. This is trivially true during cycling. It is more subtly true
during reaching, where multiphasic patterns of muscle activity
are readily constructed from a quasi-oscillatory basis (Church-
land and Cunningham, 2014; Churchland et al., 2012). Rotational
trajectories are thus a natural way of encoding muscle activity
while maintaining low tangling. This interpretation agrees with
the recent finding that a network model, trained to produce mus-
cle activity during reaching, produced rotational neural trajec-
tories (Sussillo et al.,, 2015). This occurred only if the network
was regularized to encourage smooth dynamics, a regularization
that would implicitly encourage low tangling.

Still, we stress that rotational structure per se is unlikely to be
the fundamental principle shared across tasks. There are many
ways of adding structure that can reduce tangling. Even if certain
motifs are common, the optimal way to reduce tangling will
be task dependent. Thus, we propose that the deeper connec-
tion across tasks will not be a specific form of dynamics, but
dynamics that yield low tangling.

We also note that different tasks may involve motor cortex
sending different classes of cutput commands. For some tasks,
the details of muscle activity may be largely determined by spinal
circuitry, while other tasks (especially learned or dexterous tasks)
may require more direct control of the musculature. The latter
is potentially true duwring cycling, and some of our analyses
thus assumed a roughly linear relationship between neural and
muscle activity. However, the hypothesized computational princi-
ple—embed outgoing commands in structure that minimizes
tangling—would apply even if commands were only somewhat
muscle-like (e.g., if they were transformed considerably by the spi-
nalcord). Indeed, it would apply evenif descending commands are
high-level, as may have been the case in mice during locomotion.

Tangling across Areas

Trajectory tangling was very low for motor cortex, considerably
higher for 51, and higher still for the muscles. Tangling was
also high for V1. The degree of tangling may depend on how fully
activity in that areareflects the relevant global network and feed-
back dynamics. Motor cortex may show particularly low tangling
because it processes many relevant souwces of information.
It is not only a major output of the primate motor system but re-
sponds robustly and rapidly to sensory inputs (Herter et al., 2009)
and lies at the nexus of cerebellar and basal-ganglia feedback
loops (Middleton and Strick, 2000). Other areas, even those
that participate in the same task, may or may not exhibit low
tangling depending on how fully they reflect the overall network
state. In particular, 31 responses are likely dominated by sen-
sory feedback and may very incompletely reflect the broader
dynamics of motor control. Even within motor cortex, tangling
was modestly higher within the sulcus, where activity may be
more dominated by output commands. Although V1 presumably
does exhibit some dynamics, activity is likely dominated by vi-
sual inputs, which can produce high tangling. These compari-
sons echo our recent finding that population structure can be
fundamentally different depending onwhether an area is hypoth-
esized to primarily reflect population dynamics versus external
variables (Seely et al., 20186).
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Differences between areas raise the question of whether
tangling might sometimes differ within a population. Might the
motor system, over the course of learning or development, adopt
network trajectories that are increasingly less tangled? When
a new skill is learned, is performance better if subjects achieve
lower tangling? Are pathological conditions associated with
increased tangling? Such questions illustrate that many aspects
of motor cortex activity may be best understood not in terms
of representations of external parameters, but in terms of the
computational strategies that allow outputs to be accurately
and reliably generated.
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Other

Speedgoat Real-time Target Machine Speedgoat https //www.speedgoat.com/products-services/real-time-
target-machines/performance

Polaris Eye Tracking System Northern Digital https://www.ndigital.com/medical/products/polaris-family/

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-research-products/

neural-data-acquisition-systems/cerebus-dag-system/

Utah array Blackrock Microsystems NAA
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Mark
M. Churchland {mc3502@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Main Experimental Datasets

Subjects were two adult male rhesus macaques {(monkeys D and C). Animal protocols were approved by the Columbia University
Institutional Animal Care and Use Committee. Experiments were controlled and data collected under computer control (Speedgoat
Real-time Target Machine). During experiments, monkeys sat in a customized chair with the head restrained via a surgical implant.
Stimuli were displayed on a monitor in front of the monkey. A tube dispensed juice rewards. The left arm was loosely restrained using
atube and a cloth sling. With their right arm, monkeys manipulated a pedal-like device. The device consisted of a cylindrical rotating
grip (the pedal), attached to a crank-arm, which rotated upon a main axel. That axel was connected to a motor and a rotary encoder
that reported angular position with 1/8000 cycle precision. In real time, information about angular position and its derivatives was
used to provide virtual mass and viscosity, with the desired forces delivered by the motor. The delay between encoder measurement
and force production was 1 ms.

Horizontal and vertical hand position were computed based on angular position and the length of the crank-arm (64 mm). Te mini-
mize extraneous movement, the right wrist rested in a brace attached to the hand pedal. The motion of the pedal was thus almost
entirely driven by the shoulder and elbow, with the wrist moving only slightly to maintain a comfortable posture. Wrist movements
were monitored via two reflective spheres attached to the brace, which were tracked optically (Polaris system; Northern Digital,
Waterloo, Ontario, Canada) and used to calculate wrist angle. The small wrist movements were highly stereotyped across cycles.
Visual monitoring (via infrared camera) confirmed the same was true of the arm as a whole (e.g., the lateral position of the elbow
was quite stereotyped across revolutions). Eye position and pupil dilation were monitored but are not analyzed here.

Reaching Datasets

Recordings from primate motor cortex during reaching have been described and analyzed previously (Elsayed et al., 2016). Briefly,
two male rhesus monkeys (A and B) performed center-out reaches in eight target directions on a fronto-parallel screen. This task
employed three ‘contexts’ in which reach initiation was prompted by different cues. That manipulation was incidental to the present
analysis: we analyzed only movement-related responses, which were empirically very similar across the three contexts. We therefore
simply computed the trial-averaged time-varying firing rate (smoothed with a 20 ms SD. Gaussian) across all reaches for each of the
eight directions. Trials were aligned to movement onset and we analyzed the period from 100 ms before movement onset until 100 ms
after the average time of movement offset. Neural populations included 101 and 129 neurons (monkey A and B) recorded from the
arm region of motor cortex (including sulcal and surface primary motor cortex and the adjacent aspect of dorsal premotor cortex).
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During this same task, activity was recorded from the muscles of the upper arm (deltoid, trapezius, biceps, brachialis, pectoralis,
fatissimus dorsi muscles) using the same procedures described above (13 and 10 recordings for monkey A and B; smoothed with
a 20 ms SD. Gaussian). The median number of analyzed trials per direction was 48 (monkey A) and 60 (monkey B).

Visual Cortex Datasets

Data from primate V1 were recorded using natural-movie stimuli from an anaesthetized adult monkey (Macaca fascicufaris) implanted
with a 96-electrode silicon ‘Utah’ array (Blackrock Microsystems, Salt Lake City, UT) in left-hemisphere V1 as previously described
(Seely et al., 2016). These data were recorded in the laboratory of Adam Kohn. Procedures were approved by the Animal Care
and Use Committees at Albert Einstein College of Medicine (protocol #20150303). The left eye was covered. Receptive field centers
(2—4 degrees eccentric) were determined via brief presentations of small drifting gratings. Stimuli, which spanned the receptive fields,
were 48 natural movie clips (selected from YouTube) with 50 repeats each. The frame rate was ~.85 Hz. Each stimulus lasted 2.63 s
(100 movie frames followed by 150 blank frames). Spikes from the array were sorted offline using MKsort (available at https://github.
com/ripple-neuro/mksort/). A total of 108 single units and stable multi-unit isolations were included. It is unclear how anesthesia
might affect trajectory tangling of this neural population. However, responses to stimuli were robust and only stimulus-evoked
aspects of the responses were analyzed.

Mouse Datasets

Data from mouse motor cortex have been described and analyzed previcusly (Miri et al., 2017). Briefly, three head-fixed mice per-
formed a task that included both a reach-to-grasp sub-task and natural treadmill walking (10 cmv/s), performed in separate blocks.
Multiple neurons / muscles were recorded simultaneously, but were also accumulated across days to allow analysis of larger pop-
ulations. The populations for each mouse were analyzed separately. Neural recordings were made with independently movable
tetrode micro-drives, lowered over the course of two weeks to primarily target layer 5. A total of 890 well-isolated units from three
animals were recorded across 11 behavioral sessions. Muscle activity from the forelimb was recorded from electrodes chronically
implanted in the frapezius, pectoralis, biceps, triceps, extensor digitorum commuris, and palmaris longus. For two mice, recordings
were made from all six of these muscles. For one mouse, recordings could only be made from four. Each muscle was recorded across
eleven sessions. PCA thus extracted the top EMG signals across 66 total records for two mice and 44 for the other. Spike-trains and
muscle activity were smoothed with a Gaussian filter (20 ms SD) and averaged across trials.

METHOD DETAILS

Task

The monitor displayed a virtual landscape, generated by the Unity engine (Unity Technologies, San Francisco). Surface texture and
landmarks to each side provided visual cues regarding movement through the landscape. Movement was along a linear ‘“track’. Cne
rotation of the pedal produced one arbitrary unit of movement. Targets on the landscape surface indicated where the monkey should
stop for juice reward.

Each trial of the task began with the appearance of an initial target. To begin the trial, the monkey had to cycle to and to acquire
the initial target (i.e., stop on it and remain stationary) within 5 s. Acquisition of the initial target yielded a small reward. After a 1000 ms
hold period, the final target appeared at a prescribed distance. Following a randomized (500-1000 ms) delay period, a go-cue (bright-
ening of the final target) was given. The monkey then had to cycle to acquire the final target. After remaining stationary in the final
target for 1500 ms, the monkey received a large reward.

Successfully completing a trial necessitated satisfying a variety of constraints. Cycling had to begin between within 650 ms after
the go cue. Cnce cycling began, the final target had to be reached within a distance-dependent time limit. The trial was aborted if this
time elapsed (< 0.01% of trials for both monkeys), or if cycling speed dropped below a threshold before entering the final targst
(~1.5% of trials in monkey D and ~1.7% in monkey C). The trial was also aborted if the monkey moved past the final target
(~1.5% / 0.6% of trials), or if the monkey acquired the final target and then moved while waiting for the reward {(~0.6% /0.3%). These
constraints, combined with the monkeys’ natural desire to receive reward quickly, produced movements that were both brisk and
quite consistent across trials. The primary difference in behavior across trials was modest variation in overall movement duration
(as illustrated in Figure 1). In rare cases, behavior on a successful trial differed notably from typical behavior for that condition.
Such trials were removed prior to analysis.

The task included 20 conditions distinguishable by final target distance (half-, one-, two-, four-, and seven-cycles), initial starting
position (top or bottom of the cycle), and cycling direction. Salient visual cues (landscape color) indicated whether cycling must be
“forward’ (the hand moved away from the body at the top of the cycle) or ‘backward’ {the hand moved toward from the body at the
top of the cycle) to produce forward virtual progress. Trials were blocked into forward and backward cycling. Other trials types were
interleaved using a block-randomized design. We collected a median of 15 trials / condition for both monkeys

Neural Recordings during Cycling

After initial training, we performed a sterile surgery during which monkeys were implanted with a head restraint and recording cylin-
ders. Cylinders (Crist Instruments, Hagerstown, MD) were placed surface normal to the cortex, centered over the border between
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caudal PMd and primary motor cortex, located according to a previous magnetic resonance imaging scan. The skull within the
cylinder was left intact and covered with a thin layer of dental acrylic. Electrodes were introduced through small (3.5 mm diameter)
burr holes drilled by hand through the acrylic and skull, under ketamine / xylazine anesthesia. Neural recordings were made using
conventional single electrodes (Frederick Haer Company, Bowdoinham, ME) driven by a hydraulic microdrive (David Kopf Instru-
ments, Tujunga, CA).

Sequential recording with conventional electrodes (as opposed to simultaneous recording with an array) allowed us to acquire re-
cordings from a broader range of sites, including sulcal sites inaccessible to many array techniques. Recording locations were guided
via microstimulation, light touch, and muscle palpation protocols to confirm the trademark properties of each region. For motor cor-
tex, recordings were made from primary motor cortex {(both surface and sulcal) and the adjacent (caudal) aspect of dorsal premotor
cortex. For most analyses, these recordings are analyzed together as a single motor cortex population (atthough see Figure S11).
Motor cortex recordings were restricted to regions where microstimulation elicited responses in shoulder, upper arm, chest, and
forearm. For one monkey, we also recorded from area 3a (proprioceptive primary motor cortex). These recordings (44 neurons)
were made from the deeper aspects of the posterior bank of the central sulcus, where microstimulation did not produce movement.

Neural signals were amplified, filtered, and manually sorted using Blackrock Microsystems hardware (Digital Hub and 128-channel
Neural Signal Processor). A total of 277 isolations were made across the two monkeys. Nearly all neurons that could be isolated in
motor cortex were responsive during cycling. A modest number (21) of isolations were discarded due to low signal-to-noise ratios or
insufficient trial counts. No further selection criteria were applied. On each trial, the spikes of the recorded neuron were filtered with a
Gaussian (25 ms standard deviation; SD) to produce an estimate of firing rate versus time. These were then averaged across trials as
described below.

EMG Recordings

Intra-muscular EMG was recorded from the major muscles of the arm, shoulder, and chest using percutaneous pairs of hook-wire
electrodes (30mm x 27 gauge, Natus Neurology) inserted ~1 cm into the belly of the muscle for the duration of single recording ses-
sions. Electrode voltages were amplified, bandpass filtered (10-500 Hz) and digitized at 1000 Hz. To ensure that recordings were of
high quality, signals were visualized on an oscilloscope throughout the duration of the recording session. Recordings were aborted if
they contained significant movementartifact or weak signal. That muscle was then re-recorded later. Offline, EMG records were high-
pass filtered at 40 Hz and rectified. Finally, EMG records were smoothed with a Gaussian (25 ms SD, same as neural data) and trial
averaged (see below). Recordings were made from the following muscles: the three heads of the deltoid, the two heads of the biceps
brachii, the three heads of the triceps brachii, trapezius, latissimus dorsi, pectoralis, brachioradialis, extensor carpi ulnaris, extensor
carpi radialis, flexor carpi ulnaris, flexor carpi radialis, and pronator. Recordings were made from 1-8 muscles at a time, on separate
days from neural recordings. We often made multiple recordings for a given muscle, especially those that we have previously noted
can display responses that vary with recording location {e.g., the deltoid).

Trial Alignment and Averaging

To preserve response features, it was important to compute the average firing rate across trials with nearly identical behavior. This
was achieved by 1) training to a high level of stereotyped behavior, 2) discarding rare aberrant trials, and 3) adaptive alignment of
individual trials prior to averaging. Because of the temporally extended nature of cycling movements, standard alignment procedures
(e.g., locking to movement onset) often misalign responses later in the movement. For example, a seven-cycle movement lasted
~3500 ms. By the last cycle, a trial 5% faster than normal and a trial 5% slower than normal would thus be misaligned by
350 ms, or over half a cycle.

To ensure response features were not lost to misalignment, we developed a technique to adaptively align trials within a condition.
First, trials were aligned on movement onset. Individual trials were then scaled so that all trials had the same duration (set to be the
median duration across trials). Because monkeys usually cycled at a consistent speed (within a given condition) this brought trials
largely into alignment: e.g., the top of each cycle occurred at nearly the same time for each trial. The adaptive alignment procedure
was used to correct any remaining slight misalignments. The time-base for each trial was scaled so that the position trace on that trial
closely matched the average position of all trials. This involved a slight non-uniform stretching, and resulted in the timing of all key
moments —such as when the hand passed the top of the cycle — being nearly identical across trials. This ensured that high-frequency
temporal response features (e.g., the small peak in Figure 1G) were not lost to averaging.

All variables of interest {firing rate, hand position, hand velocity, EMG, etc.) were computed on each trial before adaptive alignment.
Thus, the above procedure never alters the magnitude of these variables, but simply aligns when those values occur acrosstrials. The
adaptive procedure was used once to align trials within a condition on a given recording session, and again to align data across
recording sessions. This allowed, for example, comparison of neural and muscle responses on a matched time-base.

QUANTIFICATION AND STATISTICAL ANALYSIS
Preprocessing and PCA

Because PCA seeks to capture variance, it can be disproportionately influenced by differences in firing rate range (e.g., a neuron with
arange of 100 spikes/s has 25 times the variance of a similar neuron with a range of 20 spikes/s). This concern is larger still for EMG,
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where the scale is arbitrary and can differ greatly between recordings. The response of each neuron / muscle was thus normalized
prior to application of PCA. EMG data were fully normalized: response :=response /range(response), where the range is taken
across all recorded times and conditions. Neural data were ‘soft’ normalized: response : =response/(range(response) + 5). We stan-
dardly (Churchland et al., 2012; Seely et al., 2016) use soft normalization to balance the desire for PCA to explain the responses of all
neurons with the desire that weak responses not contribute on an equal footing with robust responses. In practice, nearly all neurons
had high firing rate ranges during cycling, making soft normalization nearly identical to full normalization.

Following preprocessing, neural data were formatted as a ‘full-dimensional’ matrix, X of size nxt, where nn is the number of neu-
rons and t indexes across all analyzed times and conditions. We similarly formatted muscle dataasa matrix, Z*  of size mxt, where
m is the number of muscles. Unless otherwise specified, analyzed times were from 100 ms before movement onset to 100 ms after
movement offset, for all conditions. Because PCA operates on mean-centered data, we mean-centered X and Z' so that every
row had a mean value of zero.

PCA was used to find X, a reduced-dimensional version of X% with the property that X = VX, where V are the PCs {‘neural di-
mensions' upon which the data are projected). PCA was similarly used to find Z, the reduced-dimensional version of 2%, For most
analyses, we employed eight PCs, such that X and Z were of size 8xt. Eight PCs captured 70% and 68% (monkey D and C) of the
neural data variance, and 94% and 88% of the muscle data variance.

Regression

Decoding of muscle activity from neural activity was accomplished via a linear model: Z* = BX*#, B was found using ridge regres-
sion. Performance was assessed using generalization R2, using Leave-One-Out Cross Validation. Regularization strength was cho-
sen to maximize Leave-One-Out Cross Validation performance, though in practice a broad range of regularization strengths provided
similar performance. We also attempted to decode neural activity from muscle activity using the model X*#* = BZ*"  Decoding neural
activity from muscle activity was less successful than decoding muscle activity from neural activity. Although our neural recordings
generally had very good signal-to-noise, we considered that poor decoding of neural activity from muscle activity {relative to decod-
ing muscle activity from neural activity) could potentially result because neural responses tend to have higher sampling error than
muscle responses. We therefore re-ran the regression above after de-noising the neural data by replacing each neuron’s response
with its reconstruction using the top thirty PCs. The same discrepancy was observed.

In a subsequent analysis, we decoded kinematic parameters from both predicted and empirical population activity. The predicted
population response pertained only to the three middle cycles of seven-cycle movements. Thus, all decoding of kinematic param-
eters involved only those three cycles. Decoding employed ridge regression as described above. Regularization strength was chosen
to improve generalization performance without overly sacrificing test performance. Kinematics were mean centered, and regressed
against the ten dimensions of the predicted population response, or the projection of the empirical data onto the top ten PCs. Match-
ing dimensionality ensured that it is appropriate to compare R? and generalization R values when regressing against the predicted
versus empirical population. Generalization performance was tested by fitting to data for one direction {(e.g., forward cycling) and
generalizing to the other (e.g., backward cycling).

Tangling

Tangling was computed as described in the results (Equation 1). The neural state, x, was an 8x 1 vector comprised of the £ column of
X, where X is of size 8 x{. Muscle tangling was computed analogously, based on Z. Essentially identical results were found if we used
XY and Z" (Figure S$2) but this was less computationally efficient and did not allow matched dimensionality between neurons and
muscles. We computed the derivative of the state as X, = (x; — x; )/ At, where At was 1 ms. When computing tangling, we employed
the squared distance between derivatives, ||x; — X¢ || 2 because its magnitude more intuitively tracks the difference in trajectory di-
rection. For example, if the angle between derivatives doubles from 90° to 180°, the norm grows by only 41 %, but the squared norm is
doubled. The constant « was set to 0.1 times the average squared magnitude of x; across all £. Results were essentially identical
across an order of magnitude of values of e.

Tangling estimates how non-smooth a flow-field would have to be to have produced the observed trajectories. While there are
many potential measures one could use, tangling is simple to compute directly from the data, without any need to attempt to estimate
the underlying flow-field. The simplicity of the tangling measure is desirable not only from a data analysis standpoint, butalso fromthe
standpoint of the optimizations in Figures 7 and S7. A more complicated measure would have resulted in a cost function that was
difficult or impossible to minimize. The ability to compute tangling without fitting a flow-field is desirable because even with many
conditions and temporally extended trajectories, the data leave many large ‘gaps’ in high-dimensional state space, making it difficult
to fit an overall flow-field with any confidence. That said, one would still hope that tangling would correlate with how well the flow-field
can be fit by a dynamical model with smoothness constraints (e.g., a linear model). This was indeed the case. Muscle trajectories
(which were highly tangled) were less well fit by a linear dynamical model (8% = 0.51 and 0.37 for monkey D and C) than were the
empirical neural trajectories (R° = 0.79 and 0.73). Despite this agreement, we avoided using the above R? as our primary measure,
because there exist trajectories that could be readily produced by a dynamical system with smooth dynamics but are poorly
described by a linear model — e.g., the trajectory in Figure 7A {right subpanel). We also found that the quality of a linear dynamical
fit was somewhat sensitive to both the span of time and the number of dimensions considered. In contrast, tangling gave consistent
results regardless of such choices.
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GComputational Motivation for the Tangling Measure

Here we show that, given limits on how rapidly a flow-field can change, when two trajectories (or two portions of the same trajectory)
come close and then diverge, a potential instability is inevitable. We define a potential instability as a direction aloeng which an error
will grow with time in the local vicinity. The argument below is a simple proof by contradiction. Avoiding a potential instability requires
that, for all directions, local errors shrink with time. For a linearized system, this implies that all eigenvalues are less than zero. Yet if
two trajectories diverge, there must be at least one positive eigenvalue.

Assume two time-evolving trajectories, x1(t), and xz(t'). These could be two portions of a larger trajectory or could correspond to
two different conditions. We consider the moment where they become closest: i.e., when ||x4(f) — x> () || is smallest. Without loss of
generality, we assume this happens at t =0 and £’ = 0. We also consider the state, X halfway between x1(0) and x»{0). Without loss of
generality, we define X as the origin. Thus x4{0)= — x,(0). As in Figure S1, we assume that tangling between x4 and x; is high
because ||x1(0) — x2(0) || is large while ||x1{0) — x2{0) || is small. We cantherefore use the Taylor series to approximate the flow-field
at state x in the vicinity of X. We ignore higher-order terms:

X—a+Bx

where the matrix B is the Jacobian evaluated at x =0.
Because both x1(0) and x2{0) are near X, we have:

x1{0)=a+Bx:{0)
and
X:(0)=a+Bx2(0)=a — Bx;{0).
We now consider some perturbation of the x4 trajectory, such that x;{0)=x4(0) +&. Stability requires, Ye:

| (A8) —x1 (a8 || < [ (0) —x (0) ||

= (x;{0) + At(a+Bx{0))} — (x;{0) + At{a+Bx,(0)}) 1% < {0) +2 — x (0 || 2
= le+ AtBe |2 < [l |

=g ® +2ate’Be+ At "B Be < |e || ®

=|le||® +2Ate"Be<|e]|®, as Af is very small.

=¢'Be<0

Because this must be true for all £, this is equivalent to stating that all eigenvalues of B must be negative. However, because x4 (t), and
X3 (t) are closest at t=0, we have:

x: (At — xo{At) [| % > [ (0) — x2(0) || , )
=|{x4(0) + At{a + Bx (Og)) — {x2{0) * At{a+Bxz(0))} || > [1x1(0) — x2(0) |
= |2, (0} + 2At8x, (0} ||~ > ||2x, (0} ||

=[x (0) || 2 + 280 (0) B (0) + At (0) B x: (0) » | (0) || 2

=[x (0) || +2A6¢, (01 Bx, (0) > || (03 || %, as AL is very small.

=x,(0) Bx;(0)>0

This is in contradiction to the claim above that £TBe < 0 for ¥ e. Equivalently, it implies that at least one eigenvalue of 8 must be
positive, in contrast to the claim above that all eigenvalues must be negative.

Thus, local stability is inconsistent with the fact that trajectories are close but diverging. The above argument does not strictly
depend on ||x1{0) — x»{0) || being large. However, alarger ||x;{0) — x»{0) || implies larger positive eigenvalue(s) of B. All other things
being equal, this will result in a larger potential instability due to greater local divergence.

Standard Recurrent Neural Networks
We used two very different approaches to train recurrent neural networks (RNNs). In the first approach, we trained RNNs to produce a
target output (Figure 5) as is conventionally done. We used a network with dynamics:

x{t+1,c)=f(Ax{t,c) +Bu{c)+wl(t,c))
where x is the network state (the “firing rate’ of every unit) for time t and condition c. The function f : =tanhis an element-wise transfer
function linking a unit’s input to its firing rate, Ax captures the influence of network activity on itself via the connection weights in A, Bu

captures external inputs, and the random vector w ~ N{0, ¢/} adds modest noise. Network output is then a linear readout of its
firing rates:

yit,c)=Cx{t,c)

The parameters A, B, C, and x(0,c} were optimized to minimize the difference between the network output, ¥ and a target, ¥i.y.
That target output was the pattern of activity, across all muscles, during the middle five cycles of a seven-cycle movement. We used

Neuron 97, 1-14.e1-e8, February 21, 2018 e5



Please cite this articls in press as: Russo st al., Motor Gortex Embeds Muscls-like Gommands in an Untangled Population Response, Neurcn (2018),
hittps://doi.org/10.1016/.neuron.2018.01.004

two conditions with different target outputs: ¥ia (-, 1) and yi,4(:, 2) contained muscle activity during forward and backward cycling
respectively. The input provided the network with the condition identity: u(1)=[1;0] and u(2) =[0; 1].
The loss function optimized during training contained both error and regularization terms:

1 A % 9
L= Y [pivmstte) ~veo) 2] s pIAlE+RIC 12+ X [Fite ]
o

te

where the first term is the error between the network output and the target, the second and third terms penalize large recurrent and
output weights respectively, and the last term penalizes large firing rates. By varying the hyper-parameters A4, Az, A4, ow. and the
initial weight values, we simulated a family of networks that found different solutions for producing the same cutput. This allowed
us to ask whether low network-trajectory tangling was a common feature of those solutions.

We trained 1000 such networks. Hyper-parameters were drawn randomly from log uniform distributions, 14 [10 4,10 1),
Ace[10 &, 10", Ae[10 410", and owe[10 4,10']. Each RNN included rn =100 units. Each matrix of the RNN was initialized to a
random orthonormal matrix. RNNs were trained using TensorFlow’s Adam optimizer. We discarded RNNs that were not successful
(R? < 0.5 between target and actual outputs). Because of the broad range of hyper-parameters, only a subset of networks (463) were
successful.

As a technical point, we were concerned that, despite regularization, networks might find overly specific solutions. Each cycle of
the empirical muscle activity had different smallidiosyncrasies, and optimization might promote overfitting of these small differences.
We therefore added ‘new’ conditions to ¥y, (f, ¢}. Each new condition involved a target output that was almost identical to that for
one of the original two conditions, but was modified suchthat the small idiosyncrasies occurred on different cycles. This ensured that
networks produced a consistent output very close to the empirical muscle activity, but did not attempt to perfectly match small cycle-
specific idiosyncrasies. The inclusion of noise via w also encouraged optimization to find robust, rather than overfit, solutions. Noise
magnitude, ¢, was a hyper-parameter that was varied across networks, to encourage varied solutions. However, o, was always set
to zero when measuring network tangling.

Trajectory-Constrained Neural Networks

To examine how tangling relates to noise-robustness (Figure 7B) we trained RNNSs to follow a set of target internal trajectories. This
involved the unconventional approach of employing both a targst output, yy,, and a targst internal network trajectory, Siaq. Net-
works consisted of 100 units. Network dynamics were governed by

vit+1)=v(f) +At/r( —v{E) + A fiv(t)) + w(D)
y(t) =Cf(v{t))

where f :=tanh, and w ~ N(0, #,,/) adds noise. v can be thought of as the membrane voltage and f(v(f}) as the firing rate. Af(v(f)} is
then the network input to each unit: the firing rates weighted by the connection strengths. Cf(v(f)) is a linear readout of firing rates.

During training, A was adjusted using recursive least-squares (Sussillo and Abbott, 2009) so that Af(v(t)) =8t. Training thus
insured that the synaptic inputs to each unit closely followed the pre-determined trajectory defined by s:a. Firing rates therefore
also followed a pre-determined trajectory. C was adjusted so that y =y,,4. Training was deemed successful if the R2 between
¥ and ¥y was >0.9. Noise tolerance was assessed as the largest value of ¢, for which the network could be trained to accurately
produce the target output for five consecutive cycles (B2 > 0.9 between y and Viarg» @veraged across 100 iterations) despite the
constraint of following the target internal trajectory, siag.

We set ¥, = [cos t; sin 2]. To construct sqyg, we began with an idealized low-dimensional target, s(t);arg =[cos t; sin 2¢; Psint]. To
give each unit a target, we set 81,y = GSy,,, where G is a random matrix of size 100x 3 with entries drawn independently from a uniform
distribution from —1 to 1. Noise tolerance was tested for a range of values of . That range produced target trajectories that varied
greatly in their tangling, allowing us to examine how tangling related to noise tolerance. Noise tolerance was the largest magnitude of
state noise for which the network still produced the desired ocutput. For each target trajectory, and each of the 20 random initializa-
tions of A, C, and G, we doubled o, starting at 0.005 until we found the noise tolerance. We then computed the average (and SEM)
noise tolerance across the 20 parameter initializations.

Predicting Neural Population Activity

The optimization described by Equation 2 was performed using the Theano Python module. Optimization was initialized either with
)?,-n,-f =Z,orwith )?,-nit =Z + noise where the noise was smooth with time but independent for each dimension. Both X and Z were 10 T;
they contained the projection onto the top ten PCs. T is the total number of time points across the conditions being considered.
Specifically, we predicted neural activity for three middle cycles of forward cycling and three middle cycles of backward cycling
(both taken from seven-cycle movements). Because dimensionality is equal for X and Z, the ability to decode Z from X will suffer
as optimization modifies X. However, because some dimensions of Z contain more variance than others, X can gain considerable
new structure while compromising the decode only modestly. This tradeoff can be determined by the choice of A. However, for sci-
entific reasons, we employed a modified approach to better control that tradeoff. We wished to ensure that the predictions made
by different cost functions all encoded muscle activity equally well. This aids interpretation when comparing the results of the
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optimizationin Figures 7C and 7D with optimizations using different cost functions in Figure S7. By matching encoding accuracy, any
differences in similarity must be due to other structure that differs due to the cost function being optimized. Thus, instead of mini-
mizing the first term of Equation 2 (which attempts to create a perfect decode) we minimized the squared difference between the
decode R? and 0.95. We only considered optimizations that achieved this with a tolerance of 0.01. This approach insures that muscle
encoding is equally good for the predicted populations responses yielded by different cost functions. Optimizations employed
gradient descent using an inexact line search for the Wolfe conditions ¢1=0.05 and ¢2=0.1. As a technical point, the derivative
used to compute Q(t.ng) was based on the assumption that the three-cycle pattern would repeat.

Similarity between Empirical and Predicted Data

We assessed similarity using a modified version of canonical correlation (Cunningham and Ghahramani, 2015). This method
finds a pair of orthogonal transformations, one for each dataset, that maximizes the correlation between the transformed datasets.
Specifically, for mean-centered datasets X, € R7 and X, R7, similarity is:

T T
5{Xa, X)) = argmax tr(M] XX, Ms)
N s \/tr(mgxaxgma)tr(mg X XT M)

Subject to the constraint that M, and My are orthonormal matrices. Similarity will thus be unity if two datasets are the same but
for an orthonormal transformation. Note also that an overall shift of one dataset relative to the other does not impact similarity
because the data are mean-centered before computing similarity. Due to the normalization in the denominator of the above cost
function, similarity is also not impacted by an isotropic scaling of one dataset relative to the other.

Predictions via Alternate Cost Functions
We performed a variety of optimizations cormresponding to several alternate cost functions (Figure S7). Each cost function embodied a
hypothesis regarding the relationship between neural activity and muscle activity.

All cost functions were of the form:

K
X = argmin E Me(X, Z)
Xk

where f; is some function of the input data and A; are scaling coefficients used to ensure that one term of the cost function did not
dominate at the expense of the others. The arguments of f,() are the optimization variable, X and the empirical muscle activity, Z. All
cost functions examined in Figure S7 are described below in terms of different definitions of 7{).

Muscle encoding and low tangling {(same as Equation 2):

F1{X,Z) = Faocote (X, Z) = | Z — ZXIX ||
f (X) = ftangling (X) = Z Qx(t)
ik

Nonlinear mapping with L-2 minimization:

= = = =2
fi (X,Z) =Fdecode noniin (X;Z) = HZ -Z HF

Z contains individual muscle activity. Here we consider the activity of all muscles individually (rather than the top ten PCs as above)
because this matters in the non-linear case. The hypothesis being considered is that motor cortex may use a simplified set of muscle

.

‘synergies’ that becomes, via a set of non-linear transformations, the activity of each muscle. Z = & + tanh{BX + ¥) with the param-
eters &, 8, and « optimized to minimize faecode nontin(X, Z)-

f2(x) :fnorm(x) = HX HJQE

where F denotes the Frobenius norm.
Nonlinear mapping with tangling minimization:

fi (X:z) = faecode nenlin (Xyz)

f2 (X) = ftang\ing (X)

where faecode nonin 8Nd franging are as described above.
Low curvature:

Jr1 (X,Z) = fdecode(x,z)
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X'norm 7X'n0rm
fQ(X) :fcunratum(x): Z—H : L H
i St
where,
M lslsu} = X.f
okl
and s; is the normalized ‘speed’ of the neural trajectory,
oo LRl
2 llxe |

As atechnical point, we wished to ensure that the predictions made by different cost functions all encoded muscle activity equally
well. By matching the accuracy of muscle encoding, any differences in similarity must be due to other structure introduced during
optimization. We therefore modified faecods (X, Z) and fascode ronin{X,2) S0 that they were minimized when decode accuracy had
an R? of 0.95, rather than 1.0. We only considered optimizations that achieved this with a tolerance of 0.01.
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Figure 81. lllustration of how low tangling allows stable flow-fields, while high tangling leads to potential instabilities (related to STAR
Methods). A. lllustrated are two states, x, and x,, that are weakly tangled with one another; they have very different derivatives but are
well separated in state space. Due to that distance, it is possible for the flow-field to be locally stable in the vicinity of both x, and x.,.
Gray arrows plot one potential flow-field for points along the line between X, and x,. In the example shown, if the neural state in the
vicinity of x| is perturbed slightly along the blue line towards x., then that error will be reduced by the self-correcting structure of the
flow-field (arrows converge locally). Note that this requires a non-linear flow-field. B. lllustration of potential instabilities when tangling
is high. We assume that high tangling between x| and x, occurs because |l x'z- il Ilis large while Il x- x Il is small. We can express
the flow-field using the Taylor series expansion around X,: X-a+B( X-X) + higher order terms. We assume some limit on smoothness,
such that in the vicinity of X, higher order terms are small. Conversely, because | JZ:z- JI:1 II'is large, B must be large. Thus, in the
viginity of X, dynamics are dominated by the first two terms of the expansion. Therefore, if we consider a point X that is a distance d

along the line intersecting x, and x, then X' =% + (X,-X).In the present example, given Ji’l and i‘z illustrated by the black

_d
hx-x |
arrows, the resulting flow-field is shown in gray. This flow-field is locally unstable near x ; the gray arrows diverge from that paint. This
cannot be avoided if the local flow-field is locally linear. Thus, when the local approximation is limited to being linear (or affine), errors
introduced by noise cannot be consistently corrected. This ‘potential instability’ is compounded by the fact that if x and x, are close,
even small amounts of noise may move the state a relatively large distance. Whether this actually renders the system unstable
depends on the level of noise, and on the structure of the rest of the flow-field. Thus, high tangling does not necessarily produce global
instabilities, but does introduce potential instabilities. In particular, a potential instability necessarily occurs whenever two highly

tangled states are diverging. This is demonstrated formally in the Methods.
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Figure S2. Trajectory tangling without dimensionality reduction (related to
Figure 6). A,B. Analysis was as in Figure 6A,B, except no dimensionality

reduction was employed. Tangling was instead based on vectors that
included the activity of every neuron / muscle.
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Figure 53. The difference between neural- and muscle-trajectory tangling is not due to differences in
dimensionality or population size (related to Figure 6). A. Neural-trajectory tangling (black) and muscle-trajectory
tangling (orange) as a function of the number of PCs used when computing tangling. Tangling was gquantified as
the 90th percentile of the distribution. The triangle on the horizontal axis indicates eight PCs, which were used for
the analyses in Figure 6. Flanking traces show the standard error, computed via bootstrap (see Figure 6 legend).
Star indicates the number of neural PCs necessary such that the percentage of variance captured equaled that
captured by eight muscle PCs. Neural-trajectory tangling changes little over the range from eight dimensions to
the dimensionality indicated by the star. Thus, the difference in neural versus muscle tangling would be
essentially identical if we had matched the variance accounted for rather than the number of PCs. Data are for
monkey D. B. Neural-trajectory tangling (black) and muscle-trajectory tangling (orange) as a function of the
number of recordings considered when computing tangling. For a given number of recordings, we drew that many
neurons (or muscles) from the full population and computed tangling. Flanking traces show the standard error,
computed via bootstrap across 200 such repetitions. Data are for monkey D. C,D. Same as A,B but for monkey C.
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Figure S4. Firing rates of six example neurons recorded from primary
somatosensory cortex (related to Figures 2 and 3). Same format as Figure 2

and 3.
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Figure 85. Tangling cannot be predicted from the dimensionality of a dataset (related to Figure 6). The fraction of
cumulative variance accounted for is plotted as a function of number of PCs used for reconstruction. Red traces
corresponding to muscle activity ¢limb quickly, indicating that these datasels are relatively low-dimensional: most
of the variance is captured by a few dimensions. Blue and green traces {corresponding to visual and
somatosensory cortex data respectively) climb more slowly, indicating higher dimensionality. In spite of these
differences in dimensionality, muscle activity, visual cortex activity and somatosensory cortex data all possess
moderate to high tangling. Motor cortex data (black traces) is intermediate in dimensionality relative to visual and
somatosensory cortex yvet has strikingly low tangling.
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Figure §6. Relationship between low tangling and noise robustness in networks trained to follow specified internal trajectories
(related to Figure 7). These trajectories encoded muscle activity with varying degrees of tangling. A. Schematic of network
architecture and internal trajectory for networks trained to produce trajectories corresponding to forward cycling only. Networks
(50 fully connected units) were trained to produce ten-dimensional target trajectories that encode muscle activity with varying
degrees of trajectory tangling. To create target trajectories, we used an optimization that was the same as that described in the
main text (and that produced the data in Figure 7C-F) but was applied to a single cycle of muscle data for forward cycling only.
Optimization was repeated 10 times with smooth noise added during initialization to produce a family of solutions. As
optimization ran, we kept the solution for different iterations: 0, 1, 2, 3, 4, 5, 10,100, and the final iteration. This yielded 80
trajectories: one for each optimization and iteration. These trajectories were all ten-dimensional and had a wide variety of
tangling values. For each such trajectory, 20 networks (each with a different set of initial weights) were trained to autonomously
and repeatedly follow that trajectory. As for Figure 7B, networks were not trained to produce the trajectory as an output but
rather to internally follow that trajectory. B,C. Analysis of the noise robustness of the networks described in A. Noise tolerance
was assessed by training networks in the presence of different levels of additive Gaussian noise. Noise tolerance was defined
as the maximum noise level at which the network still followed the target trajectory. Each black circle plots the mean noise
tolerance across many networks whose tangling fell within a given bin. Standard errors are within the symbol size. D. Schematic
for networks trained to produce trajectories corresponding to either forward or backward cycling depending on an input. The
input was two-dimensional. The command to produce forward / backward cycling involved one dimension being high and the
other low. Each input dimension was connected to all network units with random weights. All other details are as in A. E,F.
Same as B,C, but for the networks deseribed in D.
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Figure S7. Elaboration of analyses in Figure 7C.D. A,B. Same as Figure 7C,D but using additional cost functions. These
cost functions are described below, and formalized subsequently. Each cost function embodies a hypothesis regarding
the relationship between neural and muscle activity. The similarity metric thus indicates how well that hypothesis predicts
the data. Blue traces (reproduced from Figure 7) show similarity between empirical and predicted population responses
when prediction employed the cost function in Equation 2. That cost function included linear-decode error and trajectory
tangling. Optimization thus embodies the hypothesis that neural activity seeks to encode muscle activity fairly directly
while maintaining low tangling. Purple traces: predictions yielded by minimizing non-linear decode error and the L2-norm
of population activity. Optimization thus embodies the hypothesis that neural activity may wish to be as modest as
possible while still allowing muscle activity to be decoded. Each muscle was allowed its own non-lingarity, the parameters
of which were optimized. This potentially allowed neural activity to be lower-dimensional and/or simpler than muscle
activity, with different patterns of activity across muscles accounted for via different non-linearities. In principle, this might
have explained why the dominant neural signals are ‘simpler’ and different from the dominant muscle signals. In fact,
similarity between the empirical and predicted populations typically declined. {There were many local minima so the
algorithm was run from many different initializations.) Gray traces: predictions yielded by minimizing both non-linear
decode error and trajectory tangling. This cost function embodies the same hypothesis as in Equation 2, but allows each
muscle’'s activity to be decoded nonlinearly as above. Across multiple initializations, similarity occasionally increased,
especially when compared to the purple traces. However, similarity did not increase to the same degree as for the simpler
cost function in Equation 2. This might mean that the ‘true’ readout is already close to linear {such that the constraint of
linearity is beneficial). More likely, the space of non-linear readouts is sufficiently large that we did not find an instance
where the non-linear model improved upon the linear approximation. Red trace: prediction yielded by minimizing
linear-decode error and trajectory curvature within each condition. Trajectory curvature is effectively a local measure of
tangling. Similarity increased, but not as much as if tangling was minimized directly. Not shown: prediction yielded by
minimizing linear-decode error and sparseness. Similarity declined dramatically and immediately, with traces falling off the
bottom of the plot.
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Figure S8 Examination of tangling for a simulated dataset based on the hypothesis that neural
activity might encode muscle activity and its derivatives (related to Figures 4 and 6). Each unit in
this population had a response that was either the response of a given muscle or the derivative of
that response. All units were normalized to have a response range of one. A. Tangling for a
simulated dataset based on the muscle activity of monkey D. As expected, the simulated dataset
has fairly low tangling. This is essentially insured by the addition of derivatives. Thus, introduction
of derivatives is one potential way of reducing tangling. B. Projection of simulated data onto the
top two PCs for forward {top) and backward {bottom) cycling. Compare with Figure 4D. Although
this simulated dataset had fairly low tangling, the dominant signals did not qualitatively resemble
the dominant signals in the neural population. For example, trajectories were often elongated and
rather than circular. Further, this simulated population did not result in a consistent increase in
quantitative similarity to the empirical data. Compared with the improvement in similarity produced
by the optimization for low tangling directly (Figure 7C,D) the improvement in similarity that
resulted from including derivatives of muscle activity was modest (43.5% as large for monkey D)
or non-existent {-4.3% for monkey C).
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Figure 89. Muscle-like signals coexist with signals that contribute to low tangling
(related to Figure 8). Same format as Figure 8 but for monkey C.
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Figure $10. Examination of an alternative metric related to tangling: the distance between trajectories corresponding to
forward and backward cycling {related to STAR Methods). This analysis examines the possibility that low neural- versus
muscle-trajectory tangling is due in part to greater separation between forward / backward trajectories for the neural
population relative to the muscle population. This was indeed the case. Datasets were first reduced to 8-dimensions and
normalized to have unit variance (so that distances are comparable between datasets). For each time point for a given
cycling direction, we computed the closest distance between that state and all states corresponding to the opposite cycling
direction. A. Histograms of that distance for all time points for monkey D. Red distributions corresponding to muscle
activity are shifted left relative to black distributions corresponding to neural data. Dashed lines show distribution medians.
This analysis reveals that trajectories for forward cycling and trajectories for backward cycling tend to be better separated
for neural versus muscle populations. Other analyses (not shown) indicate that this effect is largely due to the fact that the
subspaces occupied during forward and backward cycling overlap less than the corresponding subspaces for muscle
trajectories. B. The same data as in A presented as a scatter plot. Most dots lie above the line with unity slope {blue line)
indicating greater separation for neural versus muscle trajectories. Most cases where separation is greater for the muscle
data involve cases where separation was high for both. C,D. Same as A,B for monkey C.
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Figure §11. Tangling is modestly but consistently higher in sulcal verses
surface motor cortex {related to Figure 6). Red bars: 90" percentile
tangling in a subpopulation of the most sulcal 10-15 neurens for each
dataset. Black bars: Same as red but for surface motor cortex. Flanking
standard errors were computed via bootstrap (see Fig. 6 legend).



	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_01
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_02
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_03
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_04
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_05
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_06
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_07
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_08
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_09
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_10
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_11
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_12
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_13
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_14
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_15
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_16
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_17
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_18
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_19
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_20
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_21
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_22
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_23
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_24
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_25
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_26
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_27
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_28
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_29
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_30
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_31
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_32
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_33
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_34
	Russo1, Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response_Page_35

