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Neurons and networks in the cerebral cortex must operate reliably
despite multiple sources of noise. To evaluate the impact of both
input and output noise, we determine the robustness of single-
neuron stimulus selective responses, as well as the robustness of
attractor states of networks of neurons performing memory tasks.
We find that robustness to output noise requires synaptic connec-
tions to be in a balanced regime in which excitation and inhibition
are strong and largely cancel each other. We evaluate the condi-
tions required for this regime to exist and determine the proper-
ties of networks operating within it. A plausible synaptic plasticity
rule for learning that balances weight configurations is presented.
Our theory predicts an optimal ratio of the number of excitatory
and inhibitory synapses for maximizing the encoding capacity of
balanced networks for given statistics of afferent activations. Pre-
vious work has shown that balanced networks amplify spatiotem-
poral variability and account for observed asynchronous irregu-
lar states. Here we present a distinct type of balanced network
that amplifies small changes in the impinging signals and emerges
automatically from learning to perform neuronal and network
functions robustly.
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The response properties of neurons in many brain areas
including cerebral cortex are shaped by the balance between

coactivated inhibitory and excitatory synaptic inputs (1–5) (for a
review see ref. 6). Excitation–inhibition balance may have differ-
ent forms in different brain areas or species and its emergence
likely arises from multiple mechanisms. Theoretical work has
shown that, when externally driven, circuits of recurrently con-
nected excitatory and inhibitory neurons with strong synapses
settle rapidly into a state in which population activity levels
ensure a balance of excitatory and inhibitory currents (7, 8).
Experimental evidence in some systems indicates that synaptic
plasticity plays a role in maintaining this balance (9–12). Here
we address the question of what computational benefits are con-
ferred by the excitation–inhibition balance properties of bal-
anced and unbalanced neuronal circuits. Although it has been
shown that networks in the balanced states have advantages in
generating a fast and linear response to changing stimuli (7, 8, 13,
14), the advantages and disadvantages of excitation–inhibition
balance for general information processing have not been elu-
cidated [except in special architectures (15–17)]. Here we com-
pare the computational properties of neurons operating with and
without excitation–inhibition balance and present a constructive
computational reason for strong, balanced excitation and inhi-
bition: It is needed for neurons to generate selective responses
that are robust to output noise, and it is crucial for the stabil-
ity of memory states in associative memory networks. The dis-
tinct balanced networks we present here naturally and automat-
ically emerge from synaptic learning that endows neurons and
networks with robust functionality.

We begin our analysis by considering a single neuron receiv-
ing input from a large number of afferents. We characterize its
basic task as discriminating patterns of input activation to which

it should respond by firing action potentials from other patterns
which should leave it quiescent. Neurons implement this form of
response selectivity by applying a threshold to the sum of inputs
from their presynaptic afferents. The simplest (parsimonious)
model that captures these basic elements is the binary model
neuron (18, 19), which has been studied extensively (20–23) and
used to model a variety of neuronal circuits (24–28). Our work
is based on including and analyzing the implications of four fun-
damental neuronal features not previously considered together:
(i) nonnegative input, corresponding to the fact that neuronal
activity is characterized by firing rates; (ii) a membrane poten-
tial threshold for neuronal firing above the resting potential (and
hence a silent resting state); (iii) sign-constrained and bounded
synaptic weights, meaning that individual synapses are either
excitatory or inhibitory and the total synaptic strength is limited;
and (iv) two sources of noise, input and output noise, represent-
ing fluctuations arising from variable stimuli and inputs and from
processes within the neuron. As will be shown, these features
imply that, when the number of input afferents is large, synap-
tic input must be strong and balanced if the neuron’s response
selectivity is to be robust. We extend our analysis to recurrently
connected networks storing long-term memory and find that sim-
ilar balanced synaptic patterns are required for the stability of the
memory states against noise. In addition, maximizing the perfor-
mance of neurons and networks in the balanced state yields a
prediction for the optimal ratio of excitatory to inhibitory inputs
in cortical circuits.

Results
Our model neuron is a binary unit that is either active or qui-
escent, depending on whether its membrane potential is above
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or below a firing threshold. The potential, labeled VPSP, is a
weighted sum of inputs xi , i = 1, 2, ...,N , that represent afferent
firing rates and are thus nonnegative,

VPSP (x, w) = Vrest +

N∑
i=1

wixi , [1]

where Vrest is the resting potential of the neuron and x and w
are N -component vectors with elements xi and wi , respectively.
The weight wi represents the synaptic efficacy of the i th input.
If VPSP≥Vth the neuron is in an active state; otherwise, it is
in a quiescent state. To implement the segregation of excitatory
and inhibitory inputs, each weight is constrained so that wi ≥ 0 if
input i is excitatory and wi ≤ 0 if input i is inhibitory.

To function properly in a circuit, a neuron must respond selec-
tively to an appropriate set of inputs. To characterize selectiv-
ity, we define a set of P exemplar input vectors xµ, with µ=
1, 2, ...,P , and randomly assign them to two classes, denoted as
“plus” and “minus.” The neuron must respond to inputs belong-
ing to the plus class by firing (active state) and to the minus
class by remaining quiescent. This means that the neuron is act-
ing as a perceptron (18–22, 25, 27, 29). We assume the P input
activations, xµ, are drawn identically and independently from a
distribution with nonnegative means, x̄, and covariance matrix,
C (when N is large, higher moments of the distribution of x
have negligible effect). For simplicity we assume that the stim-
ulus average activities are the same for all input neurons within
a population, so that x̄i = x̄exc(inh)≥ 0, and that C is diagonal
with equal variances within a population, σ2

i =σ2
exc(inh). Note

that synaptic weights are in units of membrane potential over
input activity levels (firing rates) and hence will be measured in
units of (Vth−Vrest) /σexc.

We call weight vectors that correctly categorize the P exem-
plar input patterns, xµ for µ= 1, 2, ...,P , solutions of the cat-
egorization task presented to the neuron. Before describing in
detail the properties of the solutions, we outline a broad dis-
tinction between two types of possible solutions. One type is
characterized by weak synapses, i.e., individual synaptic weights
that are inversely proportional to the total number of synaptic
inputs, wi ∼ 1/N [note that weights weaker than O (1/N ) will
not enable the neuron to cross the threshold]. For this solu-
tion type, the total excitatory and inhibitory parts of the mem-
brane potential are of the same order as the neuron’s threshold.
An alternative scenario is a solution in which individual synaptic
weights are relatively strong, wi ∼ 1/

√
N . In this case, both the

total excitatory and inhibitory parts of the potential are, individ-
ually, much greater than the threshold, but they make approxi-
mately equal contributions, so that excitation and inhibition tend
to cancel, and the mean VPSP is close to threshold. We call the
first type of solution unbalanced and the second type balanced.
Importantly, since both balanced and unbalanced solutions solve
the categorization task with the same value of Vth, the two solu-
tion types are not related to each other by a global scaling of
the weights but represent different patterns of {wi}. Note that

the norm of the weight vector, |w| =
√∑N

i=1 w
2
i , serves to dis-

tinguish the two types of solutions. This norm is of order of
1/
√
N for unbalanced solutions and of order 1 in the balanced

case. Weights with norms stronger than O (1) lead to membrane
potential values that are much larger in magnitude than the neu-
ron’s threshold. For biological neurons postsynaptic potentials of
such magnitude can result in very high, unreasonable firing rates
(although see ref. 30). We therefore impose an upper bound of
the weight norm |w| ≤ Γ, where Γ is of order 1. We now argue
that the differences between unbalanced and balanced solu-
tions have important consequences for the way the system copes
with noise.

As mentioned above, neurons in the central nervous system
are subject to multiple sources of noise, and their performance
must be robust to its effects. We distinguish two biologically rel-
evant types of noise: input noise resulting from the fluctuations
of the stimuli and sensory processes that generate the stimulus-
related input x and output noise arising from afferents unrelated
to a particular task or from biophysical processes internal to the
neuron, including fluctuations in the effective threshold due to
spiking history and adaptation (31–33) (for theoretical modeling
see ref. 34). Both sources of noise result in trial-by-trial fluctua-
tions of the membrane potential VPSP and, for a robust solution,
the probability of changing the state of the output neuron rela-
tive to the noise-free condition must be low. The two sources of
noise differ in their dependence on the magnitude of the synaptic
weights. Because input noise is filtered through the same set of
synaptic weights as the signal, its effect on the membrane poten-
tial is sensitive to the magnitude of those weights. Specifically, if
the trial-to-trial variability of each input xµi is characterized by
SD σin, the fluctuations it generates in the membrane potential
have SD |w|σin (Fig. 1, Top Left and Top Right). On the other
hand, the effect of output noise is independent of the synaptic
weights w. Output noise characterized by SD σout induces mem-
brane potential fluctuations with the same SD σout for both types
of solutions (Fig. 1, Bottom Left and Bottom Right).

Fig. 1. Only balanced solutions can be robust to both input and out-
put noise. Each panel depicts membrane potentials resulting from differ-
ent input patterns in a classification task. Weights are unbalanced [|w| =

O(1/
√

N), Top Left and Bottom Left] or balanced [|w| =O (1), Top Right
and Bottom Right]. The neuron is in an active state only if the membrane
potential is greater than the threshold Vth. The input pattern class (plus or
minus) is specified by the squares underneath the horizontal axis. Each input
pattern determines a membrane potential (mean, horizontal bars) that fluc-
tuates from one presentation to another due to input noise (Top Left and
Top Right) and output noise (Bottom Left and Bottom Right). Vertical bars
depict the magnitude of the noise in each case. The variability of the mean
VPSP across input patterns (which is the signal differentiating input pattern
classes) is proportional to |w|. As a result, the mean VPSPs for unbalanced
solutions (Top Left and Bottom Left) cluster close to the threshold [dif-
ference from threshold O(1/

√
N)]. For balanced solutions (Top Right and

Bottom Right), the mean VPSPs have a larger spread [potential difference
O (1)]. Input noise (fluctuations of xi , Top Left and Top Right) produces
membrane potential fluctuations with SD that is proportional to |w|, which
is of O(1/

√
N) for unbalanced solutions (Top Left) and of O (1) for bal-

anced solutions (Top Right). Output noise (Bottom Left and Bottom Right)
produces membrane potential fluctuations that are independent of |w|, so
it is of the same magnitude for both solution types. Thus, while both bal-
anced and unbalanced solutions can be robust to input noise, only balanced
solutions can also be robust to substantial output noise.
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We can now appreciate the basis for the difference in the noise
robustness of the two types of solutions. For unbalanced solu-
tions, the difference between the potential induced by typical
plus and minus noise-free inputs (the signal) is of the order of
|w| =O(1/

√
N ) (Fig. 1, Top Left and Bottom Left). Although the

fluctuations induced by input noise are of this same order (Fig.
1, Top Left), output noise yields fluctuations in the membrane
potential of order 1, which is much larger than the magnitude of
the weak signal (Fig. 1, Bottom Left). In contrast, for balanced
solutions, the signal differentiating plus and minus patterns is of
order |w| =O (1), which is the same order as the fluctuations
induced by both types of noise (Fig. 1, Top Right and Bottom
Right). Thus, we are led to the important observation that the
balanced solution provides the only hope for producing selectiv-
ity that is robust against both types of noise. However, there is no
guarantee that robust, balanced solutions exist or that they can be
found and maintained in a manner that can be implemented by a
biological system. Key questions, therefore, are, Under what con-
ditions does a balanced solution to the selectivity task exist? And
what are, in detail, its robustness properties? Below, we derive
conditions for the existence of a balanced solution, analyze its
properties, and study the implications for single-neuron and net-
work computation. We show that, subject to a small reduction of
the total information stored in the network, robust and balanced
solutions exist and can emerge naturally when learning occurs in
the presence of output noise.

Balanced and Unbalanced Solutions. We begin by presenting the
results of an analytic approach (20–22) for determining existence
conditions and analyzing properties of weights that generate a
specified selectivity, independent of the particular method or
learning algorithm used to find the weights (SI Replica Theory
for Sign- and Norm-Constrained Perceptron). We validate the the-
oretical results by using numerical methods that can determine
the existence of such weights and find them if they exist (SI Mate-
rials and Methods).

When the number of patterns P is too large, solutions may not
exist. The maximal value of P that permits solutions is propor-
tional to the number of synapses, N , so a useful measure is the
ratio α=P/N , which we call the load. The capacity, denoted
as αc, is the maximal load that permits solutions to the task.
The capacity depends on the relative number of plus and minus
input patterns. For simplicity we assume throughout that the two
classes are equal in size (but see SI Capacity for Noneven Split
of Plus and Minus Patterns). A classic result for the perceptron
with weights that are not sign constrained is that the capacity
is αc = 2 (20, 35, 36). For the “constrained perceptron” consid-
ered here, we find that αc depends also on the fraction of exci-
tatory afferents, denoted by fexc. This fraction is an important
architectural feature of neuronal circuits and varies in different
brain systems. For fexc = 0, namely a purely inhibitory circuit, the
capacity vanishes, because when all of the input to the neuron is
inhibitory, VPSP cannot reach threshold and the neuron is quies-
cent for all stimuli. When the circuit includes excitatory synapses,
the task can be solved by appropriate shaping of the strength of
the excitatory and inhibitory synapses, and this ability increases
the larger the fraction of excitatory synapses is. Therefore, for
fexc> 0, αc increases with fexc up to a maximum of αc = 1 (half
the capacity of an unconstrained perceptron) for fractions equal
to or greater than a critical fraction fexc = f ?exc. This dependence
can be summarized by the capacity curve αc (fexc) (Fig. 2A, solid
line) bounding the range of loads which admit solutions for the
different excitatory/inhibitory ratios.

Interestingly, f ?exc depends on the statistics of the inputs
(SI Replica Theory for Sign- and Norm-Constrained Perceptron).
We denote the coefficient of variation (CV) of the excita-
tory and inhibitory input activities by CVexc =σexc/x̄exc and
CVinh =σinh/x̄inh, respectively. These measure the degree of

A B C

Fig. 2. Balanced and unbalanced solutions. (A) Perceptron solutions as a
function of load and fraction of excitatory weights. Above the capacity
line [αc (fexc), solid line] no solution exists. Balanced solutions exist only
below the balanced capacity line [αb (fexc), dashed shaded line]. Between
the balanced capacity and maximum capacity lines, only unbalanced solu-
tions exist (U). On the other hand, below the balanced capacity line, unbal-
anced solutions coexist with balanced ones (B+U). (B) The norm of the synap-
tic weight vector of typical solutions as a function the load [in units of
(Vth−Vrest) /σexc]. Below αb the norm is clipped at its upper bound Γ (in
this case Γ = 1). Above αb the norm collapses and is of order 1/

√
N (shown

here for N = 3,000). (C) The input imbalance index (IB, Eq. 3) of typical solu-
tions as a function of the load. Note the sharp onset of imbalance above αb.
In B and C fexc = 0.8, yielding αc = 1. See SI Materials and Methods for other
parameters used. For simulation results see Fig. S1.

stimulus tuning of the two afferent populations. In terms of these
quantities, the critical excitatory fraction is

f ?exc =
CVexc

CVexc + CVinh
. [2]

In other words, the critical ratio between the number of excita-
tory and inhibitory afferents [f ?exc/(1 − f ?exc)] equals the ratio of
their degree of tuning. To understand the origin of this result,
we note that to maximize the encoding capacity, the relative
strength of the weights should be inversely proportional to the
SD of their afferents, w̄exc(inh) ∝ 1/σexc(inh), implying that the
mean total synaptic inputs are proportional to fexcw̄excx̄exc +
finhw̄inhx̄inh = fexc/CVexc − finh/CVinh, where finh = 1 − fexc.
For excitatory fraction fexc> f ?exc this mean total synaptic inputs
are positive, allowing the voltage to reach the threshold and the
neuron to implement the required selectivity task with optimally
scaled weights. Thus, the capacity of the neuron is unaffected
by changes in fexc in the range f ?exc≤ fexc≤ 1. For excitatory
fraction fexc< f ?exc the neuron cannot remain responsive (reach
threshold) with optimally scaled weights, and thus the capacity
is reduced.

In cortical circuits, inhibitory neurons tend to fire at higher fir-
ing rates and are thought to be more broadly tuned than exci-
tatory neurons (4, 37, 38), implying f ?exc> 0.5 (SI Effects of E
and I Input Statistics). This is consistent with the abundance of
excitatory synapses in cortex. However, input statistics that make
f ?exc< 0.5 do not change the qualitative behavior we discuss (SI
Effects of E and I Input Statistics and Fig. S2A).

For load levels below the capacity, many synaptic weight vec-
tors solve the selectivity task and we now describe the properties
of the different solutions. In particular, we investigate the param-
eter regimes where balanced or unbalanced solutions exist. We
find that unbalanced solutions with weight vector norms of order
1/
√
N exist for all load values below αc. As for the balanced

solutions with weight vector norms of order 1, they exist below
a critical value αb which may be smaller than αc. Specifically,
for fexc≤ f ?exc balanced solutions exist for all load values below
capacity; i.e., αb =αc. For fexc> f ?exc, αb is smaller than αc and
decreases with fexc until it vanishes at fexc = 1 (Fig. 2A, dashed
shaded line). The absence of balanced solutions for fexc = 1 is
clear, as there is no inhibition to balance the excitatory inputs.
Furthermore, the synaptic excitatory weights must be weak

E9368 | www.pnas.org/cgi/doi/10.1073/pnas.1705841114 Rubin et al.
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(scaling as 1/N ) to ensure that VPSP remains close to thresh-
old (slightly above it for plus patterns and slightly below it for
minus ones). For 1≥ fexc> f ?exc the predominance of excitatory
afferents precludes a balanced solution if the load is high; i.e.,
αb≤α≤αc. As argued above and shown below, balanced solu-
tions are more robust than unbalanced solutions. Hence, we can
identify f ?exc as the optimal fraction of excitatory input, because
it is the fraction of excitatory afferents for which the capacity of
balanced solutions is maximal.

For loads below αb both balanced and unbalanced solutions
exist, raising the question, What would be the character of a
weight vector that is sampled randomly from the space of all pos-
sible solutions? Our theory predicts that whenever the balanced
solutions exist, the vast majority of the solutions are balanced
and furthermore have a weight vector norm that is saturated
at the upper bound Γ. This is a consequence of the geometry
of high-dimensional spaces in which volumes are dominated by
the volume elements with the largest radii (see SI Replica Theory
for Sign- and Norm-Constrained Perceptron for details). Thus, for
fexc> f ?exc, the typical solution undergoes a transition from bal-
anced to unbalanced weights as α crosses the balanced capacity
line αb (fexc). At this point the norm of the solution collapses
from Γ to |w| ∼ 1/

√
N (Fig. 2B).

As explained above, for balanced solutions we expect to find a
near cancellation of the total excitatory (E) and inhibitory (I)
inputs. Our theory confirms this expectation. To measure the
degree of E-I cancellation for any solution, we introduce the
imbalance index,

IB =

∑
i wi x̄i∑

i∈exc wi x̄i −
∑

i∈inh wi x̄i
, [3]

where the overbar symbol denotes an average over all of the
input patterns (µ) and, as mentioned above, E weights are
nonnegative (wi ≥ 0) and I weights are nonpositive (wi ≤ 0).
Whereas for the unbalanced solution the IB is of order 1, for
the balanced solution it is small, of order 1/

√
N . Thus, the typ-

ical solution below αb has zero imbalance (to leading order in
N ), but the imbalance increases sharply as α increases beyond
αb (Fig. 2C).

Noise Robustness of Balanced and Unbalanced Solutions. To charac-
terize the effect of noise on the different solutions, we introduce
two measures, input robustness κin and output robustness κout,
which characterize the robustness of the noise-free solutions to
the addition of two types of noise. To ensure robustness to out-
put noise, the noise-free membrane potential that is the closest
to the threshold must be sufficiently far from it. Thus, we define

κout = min
µ

∣∣∣∣∣
N∑
i=1

wix
µ
i − 1

∣∣∣∣∣, [4]

where the minimum is taken over all of the input patterns in the
task and the threshold is 1 [because we measure the weights in
units of (Vth−Vrest) /σexc]. The second measure, which char-
acterizes robustness to input noise, must take into account the
fact that the fluctuations in the membrane potential induced by
this form of noise scale with the size of the synaptic weights.
Hence, κin =κout/ |w| [κin corresponds to the notion of mar-
gin in machine learning (39)]. Efficient algorithms for finding
the solution with a maximum possible value of κin have been
studied extensively (39, 40). We have developed an efficient
algorithm for finding solutions with maximal κout (SI Materials
and Methods).

We now ask, What are the possible values of the input and out-
put robustness of unbalanced and balanced solutions? Our the-
ory predicts that the majority of both balanced and unbalanced
solutions have vanishingly small values of κin and κout and are
thus very sensitive to noise. However, for a given load (below

capacity) robust solutions do exist, with a spectrum of robustness
values up to maximal values, κmax

in > 0 and κmax
out > 0. Since the

magnitude of w scales both signal and noise in the inputs, κmax
in

is not sensitive to |w| and hence is of O (1) for both unbalanced
and balanced solutions. On the other hand, κmax

out =κmax
in |w| is

proportional to |w|. Thus, we expect κmax
out to be of O(1) when

balanced solutions exist and ofO(1/
√
N ) when only unbalanced

solutions exist. In addition, we expect that increasing the load will
reduce the value of κmax

in and κmax
out as the number of constraints

that need to be satisfied by the synaptic weights increases.
In Fig. 3 we present the values of κmax

in and κmax
out vs. the load.

As expected, we find that the values of both κmax
in and κmax

out reach
zero as the load approaches the capacity, αc (and diverges, as
N →∞, for vanishingly small loads). However, κmax

out is only sub-
stantial (of order 1) and proportional to Γ below αb where bal-
anced solutions exist (Fig. 3 A and B). In contrast, κmax

in remains
of order 1 up to the full capacity, αc (Fig. 3C). What are the prop-
erties of “optimal” solutions that achieve the maximal robustness
to either input or output noise? We find that the solutions that
achieve the maximal output robustness, κmax

out , are balanced for
all α≤αb and their norm saturates the upper bound, Γ (Fig.
S3B). Interestingly, for a wide range of input parameters (SI
Replica Theory for Sign- and Norm-Constrained Perceptron, Effects
if E and I Input Statistics, and Fig. S2B), solutions that achieve the
maximal input robustness, κmax

in , are unbalanced solutions (Fig.
S3C). Nevertheless, we find that below the critical balance load,
αb, the κin values of the balanced maximal κout solutions are of
the same order as, and indeed close to, κmax

in (Fig. 3C, dashed
shaded line). In fact, the balanced solution with maximal κout

also poses the maximal value of κin that is possible for balanced
solutions.

We conclude that solutions that are robust to both input and
output noise exist for loads less than αb which for fexc > f ?exc
is smaller than αc. However, as long as fexc is close to f ?exc, the
reduction in capacity from αc to αb imposed by the requirement
of robustness is small.

Balanced and Unbalanced Solutions for Spiking Neurons. Neurons
typically receive their input and communicate their output
through action potentials. Thus, a fundamental question is, How
will the introduction of spike-based input and spiking output

A B C

Fig. 3. Maximal values of input and output robustness. (A) Maximal value
of κout vs. load [in units of Γσexc/ (Vth−Vrest)]. No solutions exist above the
maximal κout line (κmax

out , solid line). Below κmax
out , for output robustness that

is of order 1, only balanced solutions exist. (B) Maximal value of κout for
loads between αb and αc (in units of σexc/x̄exc). In this range only unbal-
anced solutions exist and the maximal κout values (solid line) scale as 1/

√
N.

(C) Maximal value of κin vs. load (in units of σexc). No solutions exist above
the maximal κin line (κmax

in , solid line). For the parameters used, solutions
that achieve κmax

in are unbalanced. The maximal value of κin for balanced
solutions (dashed shaded line) is not far from the κmax

in and is attained
by solutions that maximize κout for α<αb. In A–C, theory and numerical
results are depicted in solid or shaded lines and shaded circles, respectively.
Error bars depict SE of the mean. See SI Materials and Methods for parame-
ters used. For further simulation results see Fig. S3.
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affect our results? Here we show that the main properties of
balanced and unbalanced synaptic efficacies, as discussed above,
remain when the inputs are spike trains and the model neuron
implements spiking and membrane potential reset mechanisms.

We consider a leaky integrate-and-fire (LIF) neuron that is
required to perform the same binary classification task we con-
sidered using the perceptron. Each input is characterized by
a vector of firing rates, xµ. Each afferent generates a Poisson
spike train over an interval from time t = 0 to t =T , with mean
rate ri ∝ xµi . The LIF neuron integrates these input spikes (SI
Materials and Methods) and emits an output spike whenever its
membrane potential crosses a firing threshold. After each out-
put spike, the membrane potential is reset to the resting poten-
tial, and the integration of inputs continues. We define the out-
put state of the LIF neuron, using the total number of output
spikes nspikes: The neuron is quiescent if nspikes≤nthr and active
if nspikes>nthr, where nthr is chosen to maximize classification
performance. We do not discuss the properties of learning in
LIF neurons (41–45), but instead test the properties of the solu-
tions (weights) obtained from the perceptron model when they
are used for the LIF neuron. In particular, we compare the per-
formance of the balanced, maximal κout solution and the unbal-
anced, maximal κin solution. When the synaptic weights of the
LIF neuron are set according to the two perceptron solutions, the
mean output of the LIF neuron correctly classifies the input pat-
terns (according to the desired classification; Fig. S4). Consistent
with the results for the perceptron, we find that with no output
noise the performance of both solutions is good, even in the pres-

A

D E F

B C

Fig. 4. Selectivity in a spiking model. A and B (D and E) depict the output
of an LIF neuron with no (high) output noise for the balanced maximal κout

solution (A and D) and the unbalanced maximal κin solution (B and E). C
and F depict the receiver operating characteristic (ROC) curves for the two
solutions under the no output noise (C) and high output noise (F) conditions
obtained as the decision threshold (nthr) is modified from 0 to∞. Consistent
with the results of the perceptron, the performances of the two solutions
with no output noise are very similar with a slight advantage for the maxi-
mal κin solution. With higher levels of output noise, the performance of the
unbalanced maximal κin solution quickly deteriorates, whereas the perfor-
mance of the balanced maximal κout solution is only slightly affected. |w| of
the balanced solution was chosen to equalize the mean output spike count
across all patterns in both solutions (mean nspike∼ 4). See SI Materials and
Methods for parameters used.

ence of the substantial input noise caused by Poisson fluctuations
in the number of input spikes and their timings (Fig. 4 A–C).
When the output noise magnitude is increased (SI Materials and
Methods), however, the performance of the unbalanced maximal
κin solution quickly deteriorates, whereas the performance of the
balanced maximal κout solution remains largely unaffected (Fig.
4 D–F). Thus, the spiking model recapitulates the general results
found for the perceptron.

Balanced and Unbalanced Synaptic Weights in Associative Memory
Networks. Thus far, we have considered the selectivity of a sin-
gle neuron, but our results also have important implications for
recurrently connected neuronal networks, in particular recurrent
networks implementing associative memory functions. Models
of associative memory in which stable fixed points of the net-
work dynamics represent memories, and memory retrieval cor-
responds to the dynamic transformation of an initial state to
one of the memory-representing fixed points, have been a major
focus of memory research for many years (24, 27, 28, 46–48).
For the network to function as an associative memory, memory
states must have large basins of attraction so that the network can
perform pattern completion, recalling a memory from an initial
state that is similar but not identical to it. In addition, memory
retrieval must be robust to output noise. As we will show, the
variables κin and κout for the synaptic weights projecting onto
individual neurons in the network are closely related to the sizes
of the basins of attraction of the memories and the robustness to
output noise, respectively.

We consider a network that consists of Nfexc E and N (1−fexc)
I, recurrently connected binary neurons. The network operates
in discrete time steps and at each step the state of one randomly
chosen neuron, i , is updated according to

si (t + 1) = Θ

∑
j 6=i

Jij sj (t) + ηout (t)− 1

. [5]

Here Θ(x ) = 1 for x ≥ 0 and 0 otherwise, Jij is the weight of
the synapse from neuron j to neuron i , and ηout(t), the output
noise, is a Gaussian random variable with SD σout. P randomly
chosen binary activity patterns {sµ}, µ= 1, 2, ...,P (where each
sµi = {0, 1}) representing the stored memories are encoded in
the recurrent synaptic matrix J . This is achieved by treating each
neuron, say i , as a perceptron with a weight vector wi = {Jij}j 6=i

that maps its inputs {sµj } from all other neurons to its desired
output sµi for each memory state (Fig. 5 A and B and SI Materi-
als and Methods). This creates an attractor network in which the
memory states are fixed points of the dynamics in the noise-free
condition (σout = 0) (20).

We do not attempt to perform a complete analysis of the
effects of input and output noise in recurrent networks, a dif-
ficult challenge. Instead, we link observations from our single-
neuron analysis to key features of a recurrent network perform-
ing a memory function. The capacity of such a memory network
is defined as the maximal load for which the memory patterns can
be fixed points of the noise-free dynamics, stable against single-
neuron perturbations. This condition is met as long as the single-
neuron synaptic weights possess substantial κin (i.e., κin∼O (1))
for all neurons. Thus, the single-neuron capacities will determine
the overall network capacity. As we showed before, the capac-
ity of a single-neuron perceptron depends on the statistics of its
desired output (which in our case is the sparsity of activity across
memory states). Since this statistic may be different in E and I
populations, the single-neuron capacity of the two populations
may vary, and hence the global capacity of the recurrent net-
work is the minimum of the single-neuron capacities of the two
neuron types. As long as P is smaller than this critical capacity,
a recurrent weight matrix exists for which all P memory states

E9370 | www.pnas.org/cgi/doi/10.1073/pnas.1705841114 Rubin et al.
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Fig. 5. Recurrent associative memory network constructed using single-
neuron feedforward learning. (A) A fully connected recurrent network of E
and I neurons in a particular memory state. Active (quiescent) neurons are
shown in black (white). E and I synaptic connections (Jij) are shown in yel-
low and blue, respectively (not all connections are depicted). Lines symbol-
ize axons, and synapses are shown as small circles. (B) To find an appropriate
Jij , the postsynaptic weights of each neuron are set using the memory-state
activities of the other neurons as input and its own memory state as the
desired output. In this example, neuron 4 will implement its desire mem-
ory state through modification of the weights J4j for j = 1, 2, 3, 5, 6, 7.
C and E show the fraction of erroneous (different from a given mem-
ory pattern) neurons in the network as a function of time. (C) Network
dynamics with σout = 0. An initial state of the network can either converge
to the memory state (blue) or diverge to other network states (red). (D)
Probability of converging to a memory state vs. initial pattern distortion
(SI Materials and Methods) for a network with unbalanced maximal κin

weights (green), a network with balanced maximal κout weights (black),
and a network with balanced maximal κout weights with unlearned inhi-
bition (gray, main text). (E) Network dynamics with σout > 0. The network
is initialized at the memory state. The dynamics can be stable (blue; the
network remains close to the memory state), or unstable (red; the net-
work diverges to another state). (F) Probability of stable dynamics for at
least 500N time steps for networks initialized at the memory state in the
presence of output noise vs. σout. Colors are the same as in D. (G) Max-
imal output noise magnitude vs. load for networks with balanced synap-
tic weights matrix maximizing κout. Similar to κout, the maximal output
noise magnitude is of order 1 only below αb. Above it, even though solu-
tionsexisttheyare extremely sensitive to output noise. Results are shown for

are stable fixed points of the noiseless dynamics. However, such
solutions are not unique, and the choice of a particular matrix
can endow the network with different robustness properties. As
stated above, to properly function as an associative memory the
fixed points must have large basins of attraction. Corruption of
the initial state away from the parent memory pattern introduces
variability into the inputs of each neuron for subsequent dynamic
iterations and hence is equivalent to injecting input noise in the
single-neuron feedforward case. The network propagates this ini-
tial input noise in a nontrivial way; however, its magnitude always
remains proportional to the magnitude of the norm of the neu-
rons’ synaptic weights. We therefore expect that a large basin of
attraction is achieved when the matrix J yields a large input noise
robustness for each neuron in the (noise-free) fixed points (49,
50). When output noise is introduced to the network dynamics
(σout> 0), the network may propagate it as input noise to other
neurons in subsequent time steps. However, initially its magni-
tude is proportional only to σout and is unaffected by the scale
of the synaptic weights. Thus, we expect that the requirement
that the memory states and retrieval will be robust against output
noise is satisfied when J yields a large output noise robustness
for each neuron in the (noise-free) fixed points. We therefore
consider two types of recurrent connections: one in which each
row of J is a weight vector that maximizes κin and hence, in the
chosen parameter regime, is necessarily unbalanced and a sec-
ond one in which the rows of the connection matrix correspond
to balanced solutions that maximize κout.

We estimate the basins of attraction of the memory patterns
numerically by initializing the network in states that are cor-
rupted versions of the memory states (SI Materials and Methods)
and observing whether the network, with σout = 0, converges to
the parent memory state (Fig. 5C, blue) or diverges away from it
(Fig. 5C, red). We define the size of the basin of attraction as the
maximum distortion in the initial state that ensures convergence
to the parent memory with high probability.

Comparing the basins of attraction of the two types of net-
works, we find that the mean basin of attraction of the unbal-
anced network is moderately larger than that of the balanced
one (Fig. 5D), consistent with the slightly lower value of κin in
the balanced case (Fig. 5D). On the other hand, the behavior of
the two networks is strikingly different in the presence of output
noise. To illustrate this, we start each network at a memory state
and determine whether it is stable (remains in the vicinity of this
state for an extended period), despite the noise in the dynamics
(Fig. 5E). We estimate the output noise tolerance of the network
by measuring the maximal value of σout for which the memory
states are stable (Fig. 5F). We find that memory states in the bal-
anced solution with maximal κout are stable for noise levels that
(for the network sizes used in the simulation) are an order of
magnitude larger than for the unbalanced network with maximal
κin (Fig. 5F).

Finally, we ask how the noise robustness of the memory states
in the balanced network depends on the number of memories. As
shown in Fig. 5F, for a fixed level of load below capacity, mem-
ory patterns are stable (Pstable> 0.5) as long as levels of noise
remain below a threshold value, which we denote as σmax

out (α).
When σout increases beyond σmax

out (α), stability of the memory
states rapidly deteriorates. The critical noise function σmax

out (α)
decreases smoothly from a large value at small α to zero at a
level of load, αb. This load coincides with the maximal load for
which both E and I neurons have balanced solutions (Fig. 5G).
For loads αb<α<αc, all solutions are unbalanced, and hence

fexc = 0.8 (green) and fexc = 0.9 (magenta). See SI Materials and Methods for
parameters used.
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the magnitude of the stochastic dynamical component can be at
most of order 1/

√
N .

The Role of Inhibition in Associative Memory Networks. In our asso-
ciative memory network model, we assumed that both E and I
neurons code desired memory states and that all network con-
nections are modified by learning. Most previous models of asso-
ciative memory that separate excitation and inhibition assume
that memory patterns are restricted to the E population, whereas
inhibition provides stabilizing inputs (14, 48, 51–54). To address
the emergence of balanced solution in scenarios where the I neu-
rons do not represent long-term memories, we studied an archi-
tecture where I to E, I to I, and E to I connections are random
sparse matrices with large amplitudes, resulting in I activity pat-
terns driven by the E memory states. In such conditions, the I
subnetwork exhibits irregular asynchronous activity with an over-
all mean activity that is proportional to the mean activity of the
driving E population (7, 55, 56). Although the mean I feed-
back provided to the E neurons can balance the mean excita-
tion, the variability in this feedback injects substantial noise onto
the E neurons, which degrades system performance (SI Recur-
rent Networks with Nonlearned Inhibition). This variability stems
from the differences in I activity patterns generated by the dif-
ferent E memory states (albeit with the same mean). Additional
noise is caused by the temporal irregular activity of the chaotic I
dynamics. Next we ask whether the system’s performance can be
improved through plasticity in the I to E connections for which
some experimental evidence exists (23, 57–60). Indeed, we find
an appropriate plasticity rule for this pathway (SI Recurrent Net-
works with Nonlearned Inhibition) that suppresses the spatiotem-
poral fluctuations in the I feedback, yielding a balanced state that
behaves similarly to the fully learned networks described above
(Fig. 5 D and F, gray lines). Interestingly, in this case the basins
of attraction of the balanced network are comparable to or even
larger than the basins of the unbalanced fully learned network
(compare gray to green curves in Fig. 5D). Despite the fact that
no explicit memory patterns are assigned to the the I populations,
the I activity plays a computational role that goes beyond provid-
ing global I feedback; when the weights of the I to E connections
are shuffled, the network’s performance significantly degrades
(Fig. S5).

Learning Robust Solutions. Thus far, we have presented analyti-
cal and numerical investigations of solutions that support selec-
tivity or associative memory and provide substantial robustness
to noise. However, we did not address the way in which these
robust solutions could be learned by a biological system. In fact,
as stated above, the majority of solutions for these tasks have
vanishingly small output and input robustness and the above
maximum robustness solutions are found numerically by special
learning algorithms. Therefore, an important question is whether
noise robust weights can emerge naturally from synaptic learning
rules that are appropriate for neuronal circuits.

The actual algorithms used for learning in the neural circuits
are generally unknown, especially within a supervised learning
scenario. Experiments suggest that learning rules may depend
on brain area and both pre- and postsynaptic neuron types
(for example, refs. 57–59, 61; for reviews see refs. 60, 62–64).
From a theoretical perspective, the properties of the solutions
found through learning, and in particular their noise robustness,
depend on both the type and parameters of the algorithm and
the properties of the space of possible solutions. However, our
theory suggests that a general, simple way to ensure that learn-
ing arrives at a robust solution is to introduce noise during learn-
ing. Indeed, this is a common practice in machine learning for
increasing generalization abilities [a specific form of data aug-
mentation (65, 66)]. The rationale is that learning algorithms

that achieve low error in the presence of noise necessarily lead
to solutions that are robust against noise levels at least as large
as those present during learning. In the case we are considering,
learning in the presence of substantial input noise should lead to
solutions that have substantial κin and introducing output noise
during learning should lead to solutions with substantial κout. We
note that κin may be large even if κout remains small (for exam-
ple, in unbalanced solutions with maximal κin) but not vice versa
[because κout of order 1 implies |w| (and as a result κin) of order
1 as well]. Therefore, learning in the presence of significant out-
put noise should lead to solutions that are robust to both input
and output noise, whereas learning in the presence of input noise
alone may lead to unbalanced solutions that are sensitive to out-
put noise, depending on the details of the learning algorithm. We
therefore predict that performing successful learning in the pres-
ence of output noise is a sufficient condition for the emergence
of excitation–inhibition balance.

To demonstrate that robust balanced solutions emerge in the
presence of output noise, we consider a variant of the percep-
tron learning algorithm (18) in which we have forced the sign
constraints on the weights (29) and, in addition, added a weight
decay term implementing a soft constraint on the magnitude of
the weights (SI Materials and Methods). This supervised learn-
ing rule possesses several important properties that are required
for biological plausibility: It is online, and weights are modified
incrementally after each pattern presentation; it is history inde-
pendent so that each weight update depends only on the current
pattern and error signal; and finally, it is simple and local, and

A

C D

B

Fig. 6. Emergence of E-I balance from learning in the presence of out-
put noise. All panels show the outcome of perceptron learning for a noisy
neuron (SI Materials and Methods) under low (σout = 0.01, solid lines) and
high (σout = 0.1, shaded lines) output noise conditions. Except for σout, all
model and learning parameters are identical for the two conditions (includ-
ing σin = 0.1). (A) Mean training error vs. learning cycle. On each cycle, all of
the input patterns to be learned are presented once. The error decays and
plateaus at its minimal value under both low and high output noise condi-
tions. (B) Mean IB (Eq. 3) vs. learning cycle. IB remains of order 1 under low
output noise conditions and drops close to zero under high output noise
conditions. (C) Mean input robustness (κin) vs. learning cycle. Input robust-
ness is high under both output noise conditions. (D) Mean output robust-
ness (κout) vs. learning cycle. Output robustness is substantial only under the
high output noise learning condition. These results demonstrate that robust
balanced solutions naturally emerge under learning in the presence of high
output noise. See SI Materials and Methods for other parameters used.
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weight updates are a function of the error signal and quantities
that are available locally at the synapse (presynaptic activity and
synaptic efficacy). When this learning rule is applied to train a
selectivity task in the presence of substantial output noise, the
resulting solution has a balanced weight vector with substantial
κout and κin (Fig. 6, shaded lines). In contrast, if learning occurs
with weak output noise, the algorithm’s tendency to reduce the
magnitude of the weights causes the resulting solution to be
unbalanced with small κout, while its κin may be large if substan-
tial input noise is present during learning (Fig. 6, solid lines).
When this learning rule is applied in the load regime where
only unbalanced solutions exist (αb<α<αc), learning fails to
achieve reasonable performance when applied in the presence
of large output noise. When noise is scaled down to the value
allowed by κmax

out ∝ 1/
√
N , learning yields unbalanced solutions

with robustness values of the order of the maximum allowed in
this region (Fig. S6).

Discussion
The results we have presented come from imposing a set of fun-
damental biological constraints: fixed-sign synaptic weights, non-
negative afferent activities, a positive firing threshold (relative to
the resting potential), and both input and output forms of noise.
Amit et al. (23) studied the maximal margin solution for the sign-
constrained perceptron and showed that it has half the capacity
of the unconstrained perceptron. However, this previous work
considered afferent activities that were centered around zero and
a neuron with zero firing threshold, features that preclude the
presence of the behavior exhibited by the more biologically con-
strained model studied here. Chapeton et al. (27) studied per-
ceptron learning with sign-constrained weights and a preassigned
level of robustness, but considered only solutions in the unbal-
anced regime which, as we have shown, are extremely sensitive
to output noise.

Learning in neural circuits involves a trade-off between
exhausting the system’s capacity for implementing complex
input–output functions on the one hand and ensuring good gen-
eralization properties on the other. A well-known approach in
machine learning has been to search for solutions that fit the
training examples while maximizing the distance of samples from
the decision surface, a strategy known as maximizing the mar-
gin (21, 23, 39). The margin being maximized in this case cor-
responds, in our framework, to κin. Work in computational
neuroscience has implicitly optimized a robustness parameter
equivalent to our κout (25, 27). To our knowledge, the two
approaches have not been distinguished before or shown to
result in solutions with dramatically different noise sensitivities.
In particular, over a wide parameter range, we have shown that
maximizing κout leads to a balanced solution with minimal sensi-
tivity to output noise and robustness to input noise that is almost
as good as that of the maximal margin solution, with only a mod-
est trade-off in capacity. On the other hand, maximizing the mar-
gin (κin) often leads to unbalanced solutions with extreme sensi-
tivity to output noise.

The perceptron has long been considered a model of cerebel-
lar learning and computation (67, 68). More recently, Brunel et
al. (25) investigated the capacity and robustness of a perceptron
model of a cerebellar Purkinje cell, taking all weights to be E. In
view of the analysis presented here, balanced solutions are not
possible in this case (fexc = 1), and solutions that maximize either
input-noise or output-noise robustness both have κout ∝ 1/

√
N .

These two types of solutions differ in their weight distributions,
with experimentally testable consequences for the predicted cir-
cuit structure [SI κmax

out and κmax
in Solutions in Purely E Networks

and Fig. S2C; Brunel et al. (25) considered only solutions that
maximize κout]. Output robustness of the unbalanced solutions
can be increased by making the input activity patterns sparse.

Denoting by s the mean fraction of active neurons in the input,
maximum output robustness scales as κout∼ 1/

√
Ns (Fig. 3B and

SI Replica Theory for Sign- and Norm-Constrained Perceptron).
Thus, the high sparsity in input activation (granule cell activity)
of the cerebellum relative to the modest sparsity in the neocor-
tex is consistent with the former being dominated by E modi-
fiable synapses.

Interestingly, our results suggest an optimal ratio of E to I
synapses. Capacity in the balanced regime is optimal when fexc =
f ?exc, with f ?exc determined by the CVs (with respect to stimulus)
of the E and I inputs (Eq. 2). Thus, optimality predicts a simple
relation between the fraction of E and I inputs and their degree
of tuning. Estimating the CVs from existing data is difficult, but
it would be interesting to check whether input statistics and con-
nectivity ratios in different brain areas are consistent with this
prediction. The commonly observed value in cortex, fexc' 0.8,
would be optimal for input statistics with CVexc/CVinh' 4. In
general, we expect that CVexc/CVinh> 1, which implies that
f ?exc> 1/2.

For most of our work, we assumed that I neurons learn to rep-
resent specific sensory and long-term memory information, the
same as the E ones, and that all synaptic pathways are learned
using similar learning rules. While plasticity in both E and I
pathways has been observed (57–59, 61, 63, 64, 69), accumulat-
ing experimental evidence indicates a high degree of cell-type
and synaptic-type specificity of the plasticity rules. In addition,
synaptic plasticity is under tight control of neuromodulatory sys-
tems. At present, it is unclear how to interpret our learning rules
in terms of concrete experimentally observed synaptic plasticity.
Other functional models of neural learning assume learning only
within the E population with inhibition acting as a global stabi-
lizing force. In the case of sensory processing, our approach is
consistent with the observation of a similar stimulus tuning of E
and I postsynaptic currents in many cortical sensory areas. The
role of I neurons in memory representations is less known (but
see ref. 70). Importantly, we have shown that our main results
are valid also in the case in which I neurons do not explicitly par-
ticipate in the coding of the memories. Interestingly, our work
suggests that even if I neurons are only passive observers dur-
ing learning processes, learning of I synapses onto E cells can
amplify the memory stability of the system against fluctuations in
the I feedback. Given the diversity of I cell types it is likely that
in the real circuits inhibition plays multiple roles, including both
conveying information and providing stability.

Several previous models of associative memory have incorpo-
rated biological constraints on the sign of the synapses, Dale’s
law, assuming variants of Hebbian plasticity in the E to E
synapses (14, 48, 51–54). The capacity of the these Hebbian mod-
els is relatively poor, and their basins of attraction are small,
except at extremely sparse activity levels. In contrast, our model
applies a more powerful learning rule that, while keeping the sign
constraints on the synapses, exhibits significantly superior perfor-
mance: with high capacity even for moderate sparsity levels, large
basins of attraction, and high robustness to output noise.

From a dynamical systems perspective, the associative mem-
ory networks we construct exhibit unusual properties. In most
associative memory network models large basins of attrac-
tions endow the memory state with robustness against stochas-
ticity in the dynamics (i.e., output noise). Here, we found
that, for the same set of fixed-point memories, the synaptic
weights with the largest possible basins (the unbalanced solu-
tions with maximal κin) are very sensitive to even mild levels of
stochasticity, whereas the balanced synaptic weights with some-
what reduced basins have substantially increased output noise
robustness.

At the network level, as at the single-neuron level, impos-
ing basic features of neural circuitry—positive inputs, bounded
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synapses of fixed sign, a positive firing threshold, and sources
of noise—forces neural circuits into the balanced regime. A
recent class of models showing computational benefits of bal-
anced inputs uses extremely strong synapses, which are outside
the range we have discussed (16). These models are stabilized by
instantaneous transmission of signals between neurons which are
not required in the range of synaptic strength we consider.

Previous models of balanced networks have highlighted the
ability of networks with strong E and I recurrent synapses to
settle into a state in which the total input is dynamically bal-
anced without special tuning of the synaptic strengths. Such a
state is characterized by a high degree of intrinsically gener-
ated spatiotemporal variability (7). Mean population activities
respond fast and in a linear fashion to external inputs. Typically,
these networks lack the population-level nonlinearity required
to generate multiple attractors. In contrast, we have explored
the capacity of the balanced network to support multiple sta-
ble fixed points by tuning the synaptic strengths through appro-
priate learning. We note that fully understanding and charac-
terizing the dynamic properties of these networks and their
relation to previously studied models remains an important chal-
lenge. Despite the dynamic and functional differences in the two
classes of networks, the balancing of excitation and inhibition
plays a similar role in both. In the first scenario, synaptic balance
amplifies small changes in the spatial or temporal properties of
the external drive. Similarly, in the present scenario, balanced
synaptic architecture leads to enhanced robustness by amplifying
the small variations in the synaptic inputs induced by changes
in the stimulus or memory identity. It would be very interest-
ing to combine fast dynamics with robust associative memory
capabilities.

In conclusion, we have uncovered a fundamental principle of
neuronal learning under basic biological constraints. Our work

reveals that excitation–inhibition balance may have a critical
computational role in producing robust neuronal functionality
that is insensitive to output noise. We showed that this bal-
ance is important at the single-neuron level for both spiking and
nonspiking neurons and at the level of recurrently connected
neural networks. Further, the theory suggests that excitation–
inhibition balance may be a collective, self-maintaining, emer-
gent phenomenon of synaptic plasticity. Any successful neuronal
learning process in the presence of substantial output noise will
lead to strong balanced synaptic efficacies with noise robustness
features. The fundamental nature of this result suggests that it
should apply across a variety of neuronal circuits that learn in
the presence of noise.

Materials and Methods
Detailed methods and simulation parameters are given in SI Materials and
Methods.

Software. To acknowledge their contribution to scientific work we cite the
open source projects that directly and most crucially contributed to the
current work: The Python stack of scientific computing [CPython, Numpy,
Scipy, Matplotlib (71), Jupyter/Ipython (72), and others], CVXOPT (73) (con-
vex conic optimization), and IPyparallel (parallelization).

Code Availability. Python code for simulations and numerical solution of
saddle-point equations is available upon request.
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