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ABSTRACT

An essential component of initiatives that aim to address pervasive

inequalities of any kind is the ability to collect empirical evidence

of both the status quo baseline and of any improvement that can

be attributed to prescribed and deployed interventions. Unfortu-

nately, two substantial barriers can arise preventing the collection

and analysis of such empirical evidence: (1) the sensitive nature

of the data itself and (2) a lack of technical sophistication and in-

frastructure available to both an initiative’s beneficiaries and to

those spearheading it. In the last few years, it has been shown that

a cryptographic primitive called secure multi-party computation

(MPC) can provide a natural technological resolution to this co-

nundrum. MPC allows an otherwise disinterested third party to

contribute its technical expertise and resources, to avoid incurring

any additional liabilities itself, and (counterintuitively) to reduce the

level of data exposure that existing parties must accept to achieve

their data analysis goals. However, achieving these benefits requires

the deliberate design of MPC tools and frameworks whose level

of accessibility to non-technical users with limited infrastructure

and expertise is state-of-the-art. We describe our own experiences

designing, implementing, and deploying such usable web applica-

tions for secure data analysis within the context of two real-world

initiatives that focus on promoting economic equality.

CCS CONCEPTS

· Security and privacy → Privacy-preserving protocols; Human

and societal aspects of security and privacy; · Information systems

→ Information systems applications;
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1 INTRODUCTION

Initiatives that aim to address pervasive inequalities within a par-

ticular context or of a particular kind (such as wage inequality

across race and gender, or inequality of opportunity for women-

and minority-owned small businesses) often face an uphill battle

due to a variety of factors. One way such an initiative can introduce

a level of rigor and legitimacy is by attaining the ability to collect

and analyze empirical evidence of both the status quo baseline for

relevant metrics, as well as any improvements in those metrics

over time that can be attributed to interventions that are being

investigated, prescribed, or administered as part of the initiative.

Paradoxically, the very same root cause being addressed by the

initiative can introduce substantial or even insurmountable ethical,

legal, and institutional barriers to such an evidence-based approach.

This quandary can be understood and examined by taking in-

ventory of the parties involved, their concerns, their incentives,

and the capabilities and resources available to them. In a typical

scenario, an initiative involves at least two kinds of entities: the

population of initiative beneficiaries, and the organizations that are

spearheading the initiative with the purpose of collectively finding

solutions. Both kinds of entities may be disincentivized to collect

and analyze data. Beneficiaries may be unwilling to reveal sensitive

data to the initiative; this may be especially true for beneficiaries

that are members of a vulnerable population and do not want their

data collected by third-party organizations. Initiative leaders may

be concerned that collection and analysis of data that measures such

inequalities might expose participants (or themselves) to negative

publicity or risk of litigation. All parties may fear that inadvertent

data exposure may be harmful (to beneficiaries, to participant orga-

nizations, and to the viability of the initiative as a whole) and that

the liability associated with housing it is too burdensome.

Additionally, initiative leaders may not possess the technical

skills and resources needed to effect a secure data collection and

analysis workflow (e.g., they may be individuals from non-technical

fields, human resources departments, social scientists, non-profits,

government organizations, and so on). The initiative may have
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to resort to using a third party that is tasked with building the

appropriate system for securely collecting and storing the data,

as well as with performing the desired analytics. However, this

requires that all entities strongly trust this third party, presents yet

another security risk, and may be costly if the third party wishes to

be compensated for incurring liability on its own end. Additionally,

this may further disincentivize beneficiaries from participating,

since their sensitive data will be revealed to this third party.

Secure multi-party computation (MPC) is a cryptographic prim-

itive for building privacy-preserving analytics over private data.

MPC federates data collection and analysis among different parties

so that results may be calculated and delivered while preserving the

confidentiality of each contributor’s data. Theoretical constructs

for MPC have been known for more than 35 years [4, 18, 32, 37];

performance improvements and software implementations in the

past decade confirm their feasibility [7, 24, 30, 33, 36]. Available

frameworks vary in the maturity of their software implementations,

their security guarantees [29], and their communication models

(i.e., peer-to-peer or client-server). Additionally, MPC has been de-

ployed to promote socially desirable outcomes such as fair auctions

[8], tax fraud detection [6], and disease surveillance [16].

In the last few years, MPC solutions have been utilized suc-

cessfully to provide a resolution to the conundrum faced by such

initiatives. MPC allows otherwise disinterested third parties to con-

tribute their technical expertise and resources without being privy

to the input data or the results of the analysis. Thus, beneficiaries

no longer need to trust the third party and the third party can avoid

incurring any additional liabilities. However, achieving MPC’s ben-

efits within initiatives that aim to address inequalities requires the

deliberate design of highly accessible MPC tools and frameworks.

Our contributions. In this paper, we report our experiences de-

signing, implementing, and successfully deploying web-based se-

cure computation frameworks that support two real-world initia-

tives relying on secure data analysis and promoting economic equal-

ity: pay equity and business spending on local, minority-owned

businesses. Our frameworks were informed by the interconnected

usability, security, and legal requirements of the pay equity applica-

tion and subsequently adapted to a second use case, demonstrating

the ease of generalizing the frameworks to a variety of scenarios.

Our applications and frameworks are distinguished from those

used in prior deployments of MPC in that they must drive partici-

pation via their usability and accessibility from the perspective of

non-technical users with limited computational resources (i.e., web

browsers): users do not need to download an application package

or configure a web server. The frameworks also explicitly support

introducing resource asymmetries into secure data analysis proto-

cols (in terms of the computations each party must perform). Thus,

analysis applications can let resource-rich parties contribute their

computational resources to do the heavy lifting, can let resource-

constrained parties perform as little computation as possible, and

can maintain desired security guarantees throughout the analysis.

2 PRELIMINARIES AND RELATEDWORK

Secure MPC allows several parties to learn the output of a shared

function while guaranteeing that all inputs remain private even

against a colluding coalition of malicious parties. MPC relies on

a łsecret-sharingž step in which the private input data of a par-

ticipant is split into multiple shares (i.e., pieces that on their own

are indistinguishable from random noise), and each share is then

sent to one of the participating parties. MPC provides generic pro-

tocols that transform any typical data analysis program into an

equivalent distributed version that operates on the secret shares;

each stage of this program (when executed in a distributed manner

across all parties) produces a new set of secret shares that represent

the intermediate result. At the end, the secret shares of the final

output(s) are sent out to the designated parties to allow them to

reconstruct the final result. MPC provides mathematically rigorous

security guarantees that ensure that (1) the initial input remains

private throughout the computation because any subset of parties

only sees shares of it and (2) participants can be certain that the

distributed MPC protocol was executed correctly by all parties.

The past several years have seen several successful deployments

of MPC [6, 8, 13] and the creation of various software frameworks

for MPC development and deployment. These framework range

from proprietary implementations [7, 23] to open-source, proof-

of-concept work [3, 9, 14, 15, 24, 26, 30, 36]. They can be divided

into two settings: peer-to-peer and client-server. The peer-to-peer

setting assumes symmetry in the capabilities and roles of all par-

ticipating parties: all parties must deploy the software framework

on continuously available servers, must remain online throughout

protocol execution, and must perform the same amount of compu-

tation and communication. Most frameworks in this category are

open-source research prototypes In many cases, the framework’s

authors explicitly discourage use in production [14, 24, 26, 30, 36].

In the client-server model, one entity acts as a service provider

and the other parties can be resource-constrained clients. Unfor-

tunately, this setting has received less attention in the community,

with the few available frameworks limited in their flexibility. Work

by Schröpfer et al. [31] allows two clients to perform a secure two-

party computation using browsers while leveraging a web server for

communication and code delivery. The framework is closed-source

and restricted to two parties. Canon-MPC [19] offers a web-based

system that supports MPC with symmetric binary functions. How-

ever, Canon-MPC’s code is delivered as a compiled binary and runs

in Google’s proprietary NativeClient, which reduces accessibility

and auditability. Canon-MPC also forces all parties to actively par-

ticipate in the computation and may require an additional round to

finish the session if some parties did not submit data.

Existing MPC frameworks fall short of supporting our setting

along one or more of three critical dimensions: low-resource com-

puting, accessibility, and usability. Initiative participants often do

not possess adequate computational resources or technical exper-

tise, particularly in cases where beneficiaries are members of under-

served communities. This is especially problematic because MPC

protocols are computationally more expensive than non-secure

counterparts and require technical expertise to design and deploy.

Successful MPC solutions must be accessible to beneficiaries and

must not require any setup (e.g., they must run within a browser as

typical web applications) or specialized software or hardware de-

pendencies. These requirements influenced the design of our MPC

frameworks, which are, to the best of our knowledge, the only MPC

frameworks that are deployed in a low-resource user community.

We discuss these requirements in greater detail in Section 3.
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3 ACCESSIBLE MPC FRAMEWORKS

Successful MPC-enabled data analysis applications must satisfy

certain requirements in order to drive participation from data con-

tributors [5]. These requirements are particularly critical in the

context of societal initiatives serving communities that have lim-

ited technical resources and expertise. Computational asymmetry:

the stakeholders in an initiative may require assistance from third

parties because they must perform as little computation as possible

on their end. Solutions should allow expensive parts of the compu-

tation to be delegated to the third parties without compromising the

security of the computation. Asynchronicity: resource constraints

may make it impossible for certain parties to be online throughout

the computation. Such parties should be able to join and leave a

computation at any time while relying on third parties to keep

the service available throughout. In our applications, only a single

entity (a service provider) must remain online; all other parties can

contribute inputs once and remain offline during the rest of the anal-

ysis computation. Idempotence: contributors must be able to update

their data if they discover the data they submitted was corrupted

due to human error or software failures. Additionally, parties with

more technical resources and expertise should be able to leverage

these resources and expertise to help recover from failures and

data corruption events without being able to observe or access any

of the original input data. Accessibility: software solutions must

be easily deployable, and should require no setup or specialized

software or hardware dependencies. In our applications, users only

require a web browser. Comprehensibility: MPC protocols must be

simple enough to explain to potential users who do not possess

technical knowledge, so that initiative leaders and beneficiaries can

be confident in the security guarantees of the analysis.

3.1 Web-MPC Data Aggregation Framework

Web-MPC [35] leverages a variant [22] of standard additive secret

sharing [10] to enable data analyses that do not require data con-

tributors to reveal their data. This protocol allows a large number

parties with limited computational resources to aggregate their

data with the help of at least one party that can operate a web

server. Web-MPC supports aggregate analysis of tabular numeric

data (supplied by users in the familiar format of a spreadsheet as

shown in Figure 1) and responses to multiple-choice questions. Cor-

relations between responses to multiple-choice questions can also

be aggregated using the same additive secret sharing approach.

The protocol utilized by Web-MPC groups participating entities

into three main roles:

• contributors who submit their private data for computation;

• the service provider that performs computations necessary

for the analysis without being able to observe any of the

individual inputs (in our deployment scenarios, this role was

assumed by our institution);

• the analyzer who receives the result of the analysis compu-

tation (in our scenarios, these are the organizations spear-

heading their respective initiatives).

The described architecture was informed by the resource limitations

of both the BWWC and the initiative participants [5]. In addition to

its reliance on additive secret sharing, the security of the protocol

leverages standard public-key encryption schemes that provide

IND-CPA security; concretely, RSA is used in the implementation

[25]. The protocol is secure in the honest-but-curious model [17]:

the service provider’s view of the random masks is protected using

the analyzer’s public key and the analyzer never sees the individual

masked data values unless it violates its promise not to collude

with the service provider. The honest-but-curious model is appro-

priate when the service provider and analyzer have no incentives

to collude (e.g., if both are vested in an initiative’s success).

3.2 JavaScript Implementation of Federated
Functionalities (JIFF)

JIFF [34] is a general-purposeMPC framework that generalizesWeb-

MPC along two dimensions: (1) it supports arbitrary computations

(as opposed to only aggregation) and (2) it allows designers to

customize an application to match the specific resource profiles

of participants by defining the roles they play in the computation

[21]. JIFF utilizes a server to store and route encrypted messages

sent between the various participating parties. The server may

also participate in the computation itself to improve performance

and usability. The library supports asynchronous and asymmetric

computations: parties are not required to remain online throughout

the computation, can leave and join a computation dynamically,

and can execute customized portions of the computation according

to their resources and roles. JIFF assumes the honest-but-curious

security model, and uses threshold Shamir’s Secret Sharing [32]. It

is compatible with browsers and can run as a Node.js application.

4 APPLICATIONS

4.1 100% Talent Compact

In 2013, Boston Mayor Thomas Menino established a taskforce to

advance the interests of women in the workforce, leading to the

creation of the Boston Women’s Workforce Council (BWWC) by

Mayor Marty Walsh in 2014. The BWWC initiated the 100% Talent

Compact to partner with local government and private businesses

in addressing issues impacting women in the workplace. Partici-

pating companies were required to help analyze wage gaps [12]

by anonymously reporting salary data broken down by gender,

ethnicity, and level of employment (similarly to the standard EEO-1

form [11]). Initially, no third party was willing to undertake the

risk of receiving the raw salary data in order to enable the analysis.

In theory, the City of Boston or BWWC could have implemented

an MPC solution such as Web-MPC on their own. However, they

lacked the software engineering resources to build and deploy a

platform, and did not posses the subject-area expertise needed to ex-

plain or execute the cryptographic protocol. The comprehensibility

of the additive secret sharing protocol used by Web-MPC played a

critical role in our and BWWC’s ability to explain to non-technical

participants that each company could contribute cumulative em-

ployee earnings to the city-wide analysis, that our institution could

provide and manage the computational resources and MPC data

analysis application, and that only aggregate data would be revealed

by the output. Prior work discusses our experiences communicating

with participating organizations about the protocol’s capabilities

[5, 22]. Ultimately, the BWWC was able to analyze aggregate data

across companies while keeping company-specific data private

during three successful deployments in 2015, 2016, and 2017.
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Figure 1: Web-MPC user interface at https://100talent.org.

In 2017, the BWWCwas able to analyze aggregate data represent-

ing 166,705 employees across 114 companies, comprising roughly

16% of the Greater Boston area workforce. The data showed that

the gender gap in the Boston area is even larger than previously

estimated by the U.S. Bureau of Labor Statistics. Their analysis con-

cluded that white women were earning 75 cents relative to every

dollar that a white man earns. Asian women, black women, and

Hispanic women made 71, 52, and 49 cents, respectively relative to

every dollar made by a white male. The full report [12] documents

in more detail the nuances of the study. By having actual employer-

reported wage data, these results are a more accurate reflection of

the magnitude of the salary inequities in the Greater Boston area.

Since these analyses will be repeated at regular intervals, broad

comparisons can be made from from year to year. The analysis also

enables granular insights into how employees of different races and

job categories are affected by wage inequities. These outcomes are

then used by the BWWC to drive discussions and workshops aimed

at helping advance women of all backgrounds in the workplace.

4.2 Pacesetters Initiative

The Greater Boston Chamber of Commerce (GBCC) launched the

Pacesetters Initiative [28] in January 2018 [27]. This initiative aims

to leverage the purchasing power of large and mid-sized companies

to create and promote economic opportunities for local minority-

owned businesses. By tracking spending patterns and awarded

contracts of participating members over time, the GBCC can mea-

sure the initiative’s impact on supplier diversity practices, including

ways to increase spending with minority-owned businesses.

During a one-week period in March 2018, nine Pacesetters partic-

ipated in the data analysis effort. We enabled the aggregation of four

data points measuring spend and interactions with local minority-

owned businesses; these were later shared by the GBCC with ini-

tiative participants. The Pacesetters Initiative will continue to pro-

mote equitable spending for minority-owned businesses amongst

its members, and these initial results will be used as a baseline to

which future analyses can be compared to assess progress.

For this initiative, we deployed a modified version of the Web-

MPC platform that was used in the 100% Talent Compact data

analysis. After the many training and feedback sessions we held

with participants, we customized the user interface to better accom-

modate the definitions and number of data points to be analyzed.

A large amount of time and effort was spent to ensure every par-

ticipant felt comfortable interacting with the system. Due to the

anonymity guarantees of MPC, mistakes made by any individual

affect the overall analysis results in an irreversible way and re-

covering from incorrect data submissions is non-trivial (and often

impossible). Nevertheless, during the collection it became clear that

at least one of the data contributors ran into a limitation of our

platform. The upper bound for input values was 232 − 1, which

caused an error for one of the participants. We were able to recover

from this problem without violating the privacy of all the other

submissions (and by learning no additional information about the

affected participant other than this lower bound) by changing the

finite additive group used for additive secret sharing to Z/240Z

in the middle of the analysis session. This was accomplished by

rebuilding all secret shares under MPC using the general-purpose

features of JIFF. While this unexpected issue leaked the lower bound

of a data point for one participant, we note that this lower bound

can be inferred from publicly available earnings reports.

Future analyses are planned at six month intervals, growing the

group of Pacesetters as the initiative continues. One future goal is

to perform a more granular analysis to better understand how to

improve diversity spending, going beyond simple aggregation to

more advanced statistical methods running under MPC.

5 CONCLUSIONS AND FUTURE WORK

By designing accessible MPC-enabled data analysis libraries and

applications, we have allowed a third party (our institution) to

contribute its resources to empirical studies of inequality without

compromising the privacy of data contributors. Our work has re-

ceived public praise from the BWWC. Speaking on NPR’s OnPoint,

BWWC co-chair Evelyn Murphy stated that our framework consti-

tutes a first step in łshow[ing] how to use sophisticated computer

science research for public programsž [1]. Christina Knowles, ex-

ecutive director of the BWWC [2, 20]: ł[We] spent more than a

year brainstorming with global experts in fruitless pursuit of a data-

gathering method that would ensure employers’ confidentiality. It

proved impossible to find a solution Ð until we were introduced to

[the authors] who [were] absolutely vital to our work. The project

is the first of its kind in the country and we owe our progress on

this innovative and groundbreaking project [to them].ž

A framework for privacy-preserving web-based data analysis

that properly balances security and usability has far-reaching po-

tential for public initiative research studies. Government agencies,

non-profit organizations, and social scientists can identify analyt-

ics with social value and address legal and economic barriers to

participation, while software engineers and security experts can de-

sign a technically sound data analysis application combining cloud

computing and thin clients (even if vulnerability of participants

is inversely proportional to computing power). Many potentially

interesting avenues of research lie ahead in working to understand

and model how the availability and accessibility of contemporary

cryptographic techniques such as MPC changes the incentives, con-

cerns, and limitations within the research and policy landscape.
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