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In Brief
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cortex. Changes in the correlation among
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SUMMARY

Blocking motor cortical output with lesions or phar-
macological inactivation has identified movements
that require motor cortex. Yet, when and how motor
cortex influences muscle activity during movement
execution remains unresolved. We addressed this
ambiguity using measurement and perturbation of
motor cortical activity together with electromyog-
raphy in mice during two forelimb movements that
differ in their requirement for cortical involvement.
Rapid optogenetic silencing and electrical stimula-
tion indicated that short-latency pathways linking
motor cortex with spinal motor neurons are selec-
tively activated during one behavior. Analysis of
motor cortical activity revealed a dramatic change
between behaviors in the coordination of firing pat-
terns across neurons that could account for this dif-
ferential influence. Thus, our results suggest that
changes in motor cortical output patterns enable a
behaviorally selective engagement of short-latency
effector pathways. The model of motor cortical influ-
ence implied by our findings helps reconcile previous
observations on the function of motor cortex.

INTRODUCTION

Muscle contractions are readily evoked by stimulation of the mo-
tor cortex, indicating its capacity to drive movement (Leyton and
Sherrington, 1817; Penfield and Boldrey, 1937; Van Acker et al.,
20186). Although forms of movement that require motor cortical
involvement have been identified, the influence of motor cortex
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on muscles during movement execution and its underlying neu-
ral mechanisms remain unresolved.

The behavioral consequences of inactivating motor cortex
suggest that it plays a limited role in motor control. After lesions
to motor cortex or the corticospinal tract, mammals exhibit
persistent deficits in grasping movements but regain the ability
to perform many motor behaviors (Alaverdashvili and Whishaw,
2008; Farr et al., 2006; Lawrence and Kuypers, 1968; Metz
et al., 1998; Piecharka et al., 2005). Similarly, pharmacological
inhibition of neural activity in the primary motor cortex of cats in-
duces deficits in the ability to step over obstacles yet leaves
basic treadmill walking essentially unaltered (Beloozerova and
Sirota, 1993; Drew et al., 1996). Such findings have given rise
to the view that motor cortex contributes to movements
that require sensory-guided adaptation or that involve novel
muscle activation patterns (Lemon, 1993; Shmuelof and Kraka-
uer, 2011).

The specificity of deficits following inactivation, however, of-
fers only limited insight into the influence of motor cortex during
movement execution. The deficits that follow lesions or pharma-
cological inactivation change over time (Martin and Ghez, 1993,
Passingham et al., 1983}, implying the existence of compensa-
tory mechanisms that modify motor control circuits (Nudo,
1989; Shadmehr and Krakauer, 2008) and obscure the normal
role of motor cortical output. The specificity of inactivation defi-
cits could reflect a role for motor cortex in driving muscle activity
similarly across behaviors, with other motor areas compensating
for the loss of motor cortical output during certain movements.
Thus, it remains unclear whether deficit specificity reflects a se-
lective motor cortical influence on the execution of particular
movements.

Electrical recording and stimulation of motor cortex have not
thus far revealed a behavioral selectivity in motor cortical influ-
ence that can account for the specificity of inactivation deficits.
The firing patterns of motor cortical neurons correlate with
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patterns of muscle activity across diverse behaviors, including
those that survive motor cortical inactivation (Armstrong and
Drew, 1984a; Beloozerova et al., 2010; Dombeck et al., 2009),
indicating that motor cortex could drive muscle activity similarly
across behaviors. In principle, during certain behaviors the
impact of motor cortical output on downstream effector path-
ways could be negated by changes intrinsic to these pathways
(Dyson et al., 2014; Schieber, 2011). However, electrical stimula-
tion of motor cortex perturbs muscle activity at short latency
during behaviors that endure after motor cortical inactivation
(Armstrong and Drew, 1985; Bretzner and Drew, 2005; Otchy
et al., 2015). Though the effects of electrical stimulation vary
during and across behaviors, the results are inconsistent with a
downstream attenuation of the influence of motor cortex. If
movements that require motor cortical involvement feature a
specialized influence of motor cortex on muscle activity, its
uniqueness likely arises from structure in the patterns of motor
cortical output that determines whether certain downstream
effector pathways are modulated.

Here, we aimed to clarify the influence of motor cortex on the
execution of movement. We first probed for a selective influence
of motor cortex during movements that require motor cortical
involvement. We compared the impact of motor cortical output
on muscle activity during a trained reaching task, which requires
motor cortex, and treadmill walking, which persists after elimi-
nating motor cortical output. We used rapid optogenetic silencing
of motor cortex (Guo et al., 2014b) to reveal a short-latency influ-
ence on muscle activity that is specific to the trained reach
behavior. The latency of this influence matched that at which mus-
cle activity responds to electrical stimulation of motor cortex,
indicating that relatively direct effector pathways are engaged
by motor cortical output selectively during the trained behavior.
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(F) Performance before and after unilateral ablation
of the caudal forelimb area or sham ablations. Mice
were not frained between sessions 1 and 5 days
after surgery. See also Figure 51,

We then analyzed the structure of motor cortical firing patterns
to assess how selective pathway engagement is mediated.
Since the synaptic inputs to a neuron can be approximated as
a weighted sum of the activity in presynaptic neurons, we exam-
ined whether motor cortical activity could be approximated
by different weighted sums of neuronal firing patterns during
the two behaviors (Druckmann and Chklovskii, 2012; Elsayed
et al., 2016; Kaufman et al., 2014). We found that this was the
case, a consequence of changes in the correlations between
neuronal firing patterns. Thus, it appears that short-latency path-
ways used to drive muscle activity during the trained behavior
are only responsive to particular patterns of motor cortical
output. Collectively, our results support a model of motor cortical
influence, which can account for the specificity of deficits
following motor cortical inactivation, as well as the pervasive
nature of muscle-correlated motor cortical activity and stimula-
tion-induced muscle activation.

RESULTS

Mouse Forelimb Movements that Differ in Their Motor
Cortical Dependence

To elicit movements in mice that require the motor cortex, we
developed a paradigm in which head-fixed mice learn to pull a
joystick a fixed distance with precision (Farr and Whishaw,
2002; Guo et al., 2015; Kawai, 2014). In this task, mice place their
right forepaw on a bar, then reach to a joystick and attempt to
pull it a short distance (~5 mm) that falls within an acceptable
range to earn a reward (Figure 1A; Figure S1A; Movie S1).
Training for this precision pull task involved behavioral shaping
over twice daily training sessions, during which the acceptable
range was adaptively changed to maintain the fraction of



rewarded trials at 25%-40% (Figure S1B; Kawai et al., 2015).
Trials were initiated by the rapid motorized positioning of the
joystick, which prompts trained mice to begin reaching. The
median duration from reach initiation to pull initiation in trained
mice was 176 ms, and the median duration of joystick pulling
was 119 ms (n =659 trials across 3 mice). To quantify muscle ac-
tivity during limb movement, we performed chronic electromyo-
graphic (EMG) recordings fromthree pairs of antagonist muscles
arrayed proximo-distally along the forelimb (Figure 1B; Figures
S1CS1E; Akay et al., 2006).

Measurements of muscle activity during the precision pull task
exhibited two hallmarks of motor behaviors learned through
practice (Shmuelof and Krakauer, 2011). First, the correlation be-
tween trial-averaged muscle activation patterns for individual
training sessions revealed a gradual change in mean activity
patterns across sessions (Figure 1C). Second, the correlation
between muscle activation patterns on individual trials within
sessions showed an increase in the degree of stereotypy over
time (Figure 1D).

The precision pull task was found to require motor cortex.
Unilateral injection of the GABA, agonist muscimol (74 nL of
1 ng/nL), but not saline alone, into contralateral primary motor
cortex greatly diminished motor performance as assessed by
the incidence of rewarded pulls (Figure 1E). Muscimol injection
profoundly disturbed task execution: the frequency at which
mice contacted and deflected the joystick to any degree was
reduced by 85% + 6% (mean + SEM, n = 3 mice). Second, uni-
lateral ablation of contralateral primary motor cortex caused a
similar behavioral impairment, both 1 and 5 days after surgery
(Figure 1F).

For comparison with the precision pull task, we had mice walk
on a motor-driven tread mill (Movie S2). This behavior requires no
training; mice placed on the treadmill without restraint walked
naturally at speeds ranging from 10 to 20 cm/s, without prior
exposure. Critically, interruption of motor cortical output via
lesion or pharmacological inactivation did not impede the ability
of mice to perform this task (Figures S1F and S1G). Thus, the
precision pull and treadmill walking tasks exhibit a markedly
different dependence on motor cortex, with the execution of pre-
cision pull selectively disrupted by motor cortical inactivation.

Behavicral Selectivity of Fast Timescale Motor Cortical
Influence
We next asked whether motor cortical activity influences muscle
activation in a behaviorally selective manner. To avoid compen-
sation from other motor control circuits, we rapidly silenced mo-
tor cortical output and analyzed the immediate effects on muscle
activity during both the precision pull and the treadmill walking
tasks (Figure 2). Unilateral silencing was achieved by activating
channelrhodopsin2 expressed in vGAT"" cortical inhibitory inter-
neurcns using a 2-mm-diameter spot of 473 nm light projected
onto the surface of the caudal forelimb area in one hemisphere
(upper left inset in Figure 2A,; Figure S2A). We used a light inten-
sity (10 mW/mm®) sufficient to cause nearly complete cessation
of firing among putative vGAT®" neurons throughout motor
cortical layers (Figures S2B-S2E; Guo et al., 2014b).
Light-induced inactivation demonstrated the involvement
of motor cortical activity throughout the precision pull task. A

500 ms inactivation (20 Hz, 50% duty cycle) beginning immedi-
ately before trial initiation dramatically altered movement (Fig-
ure 24, left column, and 2G) and essentially abolished reward
attainment (1 trial rewarded out of 293 inactivation trials versus
181 rewarded out of 701 control trials, n = 3 mice; Figure 2C).
Inactivation lasting 200 ms triggered at the onset of reaching
or joystick pulling also had a dramatic effect on movement (Fig-
ure 2A, middle and right columns, and 2G), prolonging the time to
reward by a comparable duration (n = 4 mice; Figures S2F and
S82G). In both of these cases, the effect of inactivation during
ongoing movement began rapidly: muscle activation diverged
from control patterns about 10 ms after the onset of light stimu-
lation (Figures 2D-2G). These results indicate that the output of
motor cortex during precision pull rapidly influences muscle
activation.

During treadmill walking, the influence of motor cortical output
on muscle activation was markedly different. As mice walked
on the treadmill for the first time, 200 ms inactivations were
triggered sporadically (minimum interval of 5 s, mean interval
of 15 s) at a constant phase within the step cycle, just after the
peak activation of biceps. During the first 35 ms after stimulation
onset, the divergence from control activation patterns was
not significantly different from 0 (mean fractional change =
SEM = —-0.000 £ 0.013, p = 0.516, one-tailed t test, n = 8 mice)
and was significantly less than that for inactivation at reach onset
{mean + SEM = 0.099 x 0.029, p = 0.002) and at pull onset
{mean £ SEM = 0.073 £ 0.031, p = 0.015; Figures 2B, 2D, and
2E). However, at later times after stimulation onset, divergence
from controls that appeared to vary across muscles could be
seen during walking, such that significant divergence from con-
trols was detected in the next 35 ms epoch (mean + SEM =
0.102 £ 0.044, p = 0.023; Figures 2B, 2D, 2F, and 2G). Record-
ings of motor cortical neurons during 20 Hz light stimulation re-
vealed no neurons (0/104) that fired in response to light-pulse
offsets throughout 200 ms of stimulation (Figure S2C), indicating
that the timing of muscle activity divergence here does notreflect
a response to light extinction.

To address how the latency of perturbation responses during
treadmill walking depended on the locomotor phase of inactiva-
tion, we sporadically inactivated motor cortex for 200 ms during
walking regardless of the current phase. Trials were divided into
ten groups based on the phase of light stimulation onset. At all
phases, the divergence from control muscle activation was not
significantly different from 0 during the first 35 ms after stimula-
tion onset {p > 0.05 with Bonferroni correction, one-tailed t test,
n = 4 mice; Figure S2H). Divergence from controls was apparent
at later times, though it was not prominent during the next 35 ms
epoch at all phases (Figures S21-82K). Thus, the short-latency
control of muscle activation evident during precision pull is ab-
sent during treadmill walking, suggesting that, in this context,
relatively direct effector pathways are not activated by motor
cortical output.

We then used electrical stimulation in motor cortex to address
two issues raised in interpreting the findings from fast timescale
inactivation. First, we assessed how the ~10 ms latency of
muscle activity perturbation following optogenetic silencing
compares to the shortest latency response following electrical
stimulation, which is believed to reflect the fastest pathway
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linking motor cortex to spinal motor neurons {Lemon, 2008;
Woolsey et al,, 1972). Second, we attempted to distinguish
two potential explanations for the differential influence of motor
cortical output between behaviors. Changes intrinsic to down-
stream circuits could attenuate the impact of this output during
treadmill walking, or downstream circuits are capable of being
engaged during walking, but motor cortical output fails to
do so. The former possibility is not consistent with previous
observations in cat (Armstrong and Drew, 1985; Bretzner and
Drew, 2005), but we used electrical stimulation to test whether
motor cortical output induces short-latency muscle activation
throughout treadmill walking in mice.

We stimulated the caudal forelimb area with different current
levels as mice stood still, with minimal muscle activity in most
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comparable to previous estimates made
in anesthetized mice using a different esti-
mation procedure (Ayling et al., 2009). Our
latency estimate also matches closely
with the latency at which motor cortical inactivation disturbs
muscle activity during precision pull (Figure 20). This implies
that motor cortex influences muscles during precision pull via
short-latency pathways that link cortical projections with spinal
motor neurons.

To test whether the motor cortical influence on downstream
effector pathways is attenuated during treadmill walking, we
electrically stimulated motor cortex as mice performed this
task. We first identified an appropriate level of stimulation current
from responses measured as mice stood still. For each mouse,
we identified a current level that was just large enough reliably
to evoke responses at the shortest observed latency (e.g.,
arrowhead in Figure 3D; range = 70-90 pA). Stimulation at
these current levels during treadmill walking perturbed activity



Figure 3. Motor Cortical Stimulation Per-
turbs Muscle Activity at Short Latency

(A) EMG from biceps (Bi), triceps (Tr), extensor
digitorum communis (EDC), and palmaris longus
(PL) in response to electrical stimulation (top) in the
caudal ferelimb area as a mouse stoed still. Vertical
magenta lines indicate stimulation onset.

(B) Mean + SEM EMG for muscles in (A) (n
25 trials).

(C) Mean + SEM absclute change in activity from
resting level (n = 25), summed acrcss all four
muscles. Current was 90 pyA. Dotted line marks the
initiation of divergence.

(D) Relation between stimulus current and
response latency for one mouse (circles) fit by an
exponential functicn (red) with a variable asymp-
tote (dotted). Arrow indicates the current level
chosen for subsequent stimulation in this mouse.
(E) EMG from Bi, Tri, EDC, and PL in response to
stimulation (top) during walking.
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in forelimb muscles at all phases of the step cycle (Figures 3E
and 3F; n = 3 mice).

Importantly, though the latencies of muscle activity distur-
bance after silencing were longer during treadmill walking, re-
sponses to electrical stimulation were as rapid as those seen
when mice stood still (Figure 3F). As has been observed in cats
(Bretzner and Drew, 2005), stimulation effects varied across
muscles and changed as a function of the locomotor phase at
which stimulation occurred (Figures 3F and 3G). Thus, results
from electrical stimulation of motor cortex in mice are similar to
those obtained in cats and argue against downstream attenua-
tion of motor cortical influence during treadmill walking.

Motor Gortical Activity during Precision Pull and
Treadmill Walking

The above results indicate that short-latency pathways linking
motor cortex with spinal motor neurons are activated during pre-
cision pull, but not treadmill walking, but that this is not because
such pathways are unable to respond to motor cortical output
during walking. This implies that structure in the patterns of mo-
tor cortical output dictates how downstream effector pathways
are modulated. To resolve how such pathways can be engaged
differentially, we examined neural activity in primary motor
cortex.

We monitored the activity of motor cortical neurons during
precision pull and treadmill walking using chronically implanted
microwire tetrodes initially targeted 500 um below the pial sur-
face. After 3 weeks of precision pull training, recordings were
made over 45 min during behavioral sessions and for 15 min
immediately afterward as mice walked along the treadmill. Tet-
rodes were lowered by 50 um after each recording session,
permitting the isolation of ~300 single units in cortical output
layers V and V| of each mouse over 11 days of recording
(mean = 297 units, n= 3).

We first verified that neural activity in mouse motor cortex
shares features observed in other mammals. Neuronal firing
rates averaged across trials of precision pull behavior and across
individual step cycles exhibited a wide array of patterns (Figures
4A and 4B; Figures S3A-S3I, 83K, and S3M) that showed sub-
stantial correlations with muscle activity. For nearly all neurons,
firing rate time series during both the precision pull behavior
and during walking were significantly correlated with the activity
of at least one forelimb muscle, after accounting for false discov-
ery (Figure 4C; Figure S3J, S3L, and S3N). Among neurons firing
above 1 Hz on average, correlation magnitudes were substantial
during both behaviors (Figure 4D), though there was a small, sig-
nificant increase seen during precision pull (pull median = 0.708,
walk median = 0.641; p = 0.00003, Wilcoxon rank-sum test).
These findings are consistent with results from other mammals
during behaviors that vary in their requirement for motor cortical
involvement (Armstrong and Drew, 1984a; Drew et al., 1996;
Kargo and Nitz, 2004).

Despite observed correlations between motor cortical and
muscle activity, previous reports have also noted deviation be-
tween the activity patterns of individual motor cortical neurons
and those of particular muscles (Churchland and Shenoy,
2007, Schieber and Rivlis, 2007). This is true even for neurons
that directly contact spinal motor neurons innervating the mus-
cles in question {Cheney and Fetz, 1980; Muir and Lemon,
1983). Despite this deviation, correlation between motor cortical
and muscle activity en masse has been demonstrated. In partic-
ular, certain weighted sums of neurcnal firing rates can be found
that strongly resemble the activity of muscles (Mormow and
Miller, 2003; Oby et al., 2013; Schieber and Rivlis, 2007).

We searched for similar correlation between motor cortical
and muscle activity in mice, using canonical correlation anal-
ysis (CCA; Hotelling, 1936; Sussillo et al., 2015) to compare
the set of trial-averaged neuronal firing rates with the set of
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(A) Spike rasters and histograms (top, trial-averaged firing rates overlaid) for one neuron and the trial-averaged activation (bottom) of biceps (Bi) and palmaris
lengus (PL), with correlation scores (p) for each EMG trial average with the corresponding neurcnal firing rate.

(B) Trial-averaged firing rates for eight neurons during pull and walk. Scale bars represent 20 Hz, and their bases indicate 0 Hz along the vertical. Arrowheads

indicate muscle activation onset during pull and a step cycle phase of 0°.

(C) Fracticns of recorded neurcns with firing rates significantly correlated with the actlivity of at least cne muscle. Fractions were also computed afier ignering

neurcns with very low firing rates, which may be pecorly estimated.

(D) Histograms of the maximum absolute correlation of neurcnal firing rates with muscle activity during pull and walk, measured using trial averages. Neurons with

mean firing rates < 1 Hz, which may be poorly estimated, were excluded.

(E) Waveform widths, with values from 0 to 0.8 ms fit by a sum of two Gaussians, and boundaries for assigning narrow- and wide-spiking subtypes.

(F) Fracticns of neurons assigned to each subtype. Green bars show means (three mice).

(G—J) Histegrams of mean firing rates (G and I) during pull, walk, and inactivity and of firing rates as a factor of their level during inactivity (H and J) during pull
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Figures 83 and 54.

trial-averaged muscle activations for individual mice (Figure S4).
Starting with two sets of variables, CCA finds weighted sums of
each set (“canonical variables") that are maximally correlated
and then iteratively repeats this process to find additional ca-
nonical variables uncorrelated with all previous ones. For both
pull and walk, CCA identified cancnical variables that are
strongly correlated and account for a substantial fraction of
the variance in neural and muscle data. This indicates substan-
tial correlation between motor cortical and muscle activity en
masse, as observed in primates. Nevertheless, such correla-
tions imply little about the downstream influence of motor
cortical output.

To further compare mouse motor cortical activity to previous
observations, we took advantage of the relationship between
spike width and neuronal identity to assess activity specifically
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in narrow-spiking, putative inhibitory interneurons and wide-
spiking neurons expected to be primarily pyramidal neurons
(Barthd et al., 2004; McCormick et al., 1985). Histograms of
trough-to-peak spike widths appeared well fit by a sum of two
Gaussians for widths ranging from 0 to 0.8 ms (Figure 4E). We
thus used this fit to assign neurons to either narrow- or wide-
spiking groups. We set boundaries for assignment that were ex-
pected to vield a rate of misclassification of 1% of neurons under
the assumption that each group shows a Gaussian distribution of
waveform widths (see STAR Methods). Using this assignment
scheme, 81% + 2% of neurons were wide-spiking, 18% + 1%
of neurons were narrow-spiking, and 5/890 were unassigned
(Figure 4F). These fractions are similar to those seen previously
in mice (Guo et al., 2014b) as well as those observed histolog-
ically in rats (Beaulieu, 1993).



Figure 5. Scaling between Motor Cortical
Firing and Muscle Activity
(A) Schematics of the scaling between firing rates

and muscle activity during pull plotted versus that
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Consistent with previous observations across mammals, ac-
tivity among both neuronal groups was increased on average
during movement, as compared with periods of no muscle activ-
ity that fell between precision pull trials (“inactivity”; Figures 4G—
4J). Mean firing rates divided by their coresponding means
during inactivity were, on average, 3.47 for wide- and 6.61 for
narrow-spiking neurons during pull and 3.11 for wide- and 2.85
for narrow-spiking neurons during walk. In particular, as has
been recently described for primates (Kaufman et al., 20183), nar-
row-spiking neurons did not appear to decrease in firing when
movement began during the precision pull, countering the idea
that cortical inhibition gates voluntary movements. Interestingly,
our observations contrast with recent reports of activity in rat
vibrissa motor cortex (Ebbesen et al., 2017), where firing rates
tend to increase during movement suppression. Collectively,
our observations show that activity in the mouse caudal forelimb
area shares basic features with that seen in the forelimb motor
cortices of other mammals.

Probing the Mechanism of Differential Influence on
Downstream Pathways

One possible mechanism for behavior-specific engagement of
short-latency effector pathways is that separate neuronal popu-
lations are predominantly active during each behavior, and only
the population that is highly active during precision pull engages
such pathways (Dombeck et al., 2009; Hayashi-Takagi et al.,
2015). To test this possibility, we calculated a “scaling” index
for each neuron that measures how the degree of change in its
firing rate compares to the degree of change in muscle activity
during the two behaviors. This was computed by dividing the
range of a neuron’s trial-averaged firing rate time series for a
given behavior by the mean of the ranges of the trial-averaged
EMG time series for the simultaneously recorded muscles. If
separate neuronal populations exist, plots of scaling values
computed for precision pull against those for walking would
show groups of neurons with scaling values much larger for
one of the two behaviors (Figure 5A, left). We did not observe

T
2 log, scalingratio 2

bb with mean firing rates > 10 Hz during at least
cne behavior (F) for three mice. Scaling was only
calculated for neurcns having mean firing rates >
1 Hz during at least one of the two behaviors.

(C) Histegrams of the log cof the ratio between pull
and walk scaling for all cells, wide-spiking cells re-
corded in layer bb, and wide-spiking cells recorded
inlayer bb having mean firing rates » 10 Hz during at
least one behavior.

(D) Mean fractions of recorded wide- and narrow-
spiking neurons versus tetrode depth (thick lines,
three mice). Connected black dots are for individ-
ual mice.
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this outcome (Figure 5B}, providing evidence against the exis-
tence of separate neuronal populations active during individual
behaviors.

We also considered the possibility that, during precision pull,
short-latency effector pathways could be engaged only by activ-
ity levels above those seen during treadmill walking (Beloozerova
et al., 2010; Hosp et al., 2013). If this were the case, variation in
neuronal firing would be larger relative to variation in muscle ac-
tivity during precision pull, assuming firing generally increases
with muscle activity. This quantitative difference would have to
be substantial, because neural activity during the weakest move-
ment involving short-latency pathway engagement would have
to be higher than the activity during the strongest movement
lacking this engagement. In this scenario, plots of precision
pull scaling versus walking scaling would display a preponder-
ance of points above the line where pull scaling equals walk
scaling (Figure 5A, right). However, this feature was not observed
(Figure 5B). Indeed, the ratio of the pull scaling to walk scaling
for each neuron has a distribution centered below 1 (logl10
median = —0.21; Figure 5C), indicating more points below the
line where pull scaling equals walk scaling. This finding does
not support the possibility that short-latency effector pathways
are engaged only by modulation in motor cortical activity beyond
the levels seen during treadmill walking.

We further tested the two above-stated hypotheses by
repeating analyses on subsets of recorded neurons that may
be particularly relevant to the downstream influence of motor
cortex. Among wide-spiking neurons, we analyzed specifically
those recorded between 650 and 850 um below the pia, where
the cell bodies of most subcerebral projection neurons reside
in cortical layer 5b (S. Fageiry, personal communication). The va-
garies of electrical recording do preclude assigning neurons re-
corded in this depth range to layer 5b. However, consistent with
an overrepresentation of subcerebral projection neurons among
our recorded populations, the number of wide-spiking units iso-
lated per recording session was, on average, 72% higher when
tetrodes were located in this range compared with other depths,
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Figure 6. Changes in Firing Rate Correlations Can Modulate Downstream Influence
(A) Schematic depicting how changes in firing rate cerrelations for two input neurcns, ny and ny, can change their modulation of a downstream neurcn. Activity

depicted in the dewnstream cell is the sum cf input firing rates.

(B) Schematic depicting an analogous scenaric in which weighted sums of neural activity are modulated differently between behaviors, which could enable

behavior-specific effects.

(C) Matrices of firing rate correlations in cne mouse during precision pull (left) and treadmill walking (right) ordered to cluster neurcns with similar correlation
patterns during pull {top) and walk (bottom). Each row and the equivalently numbered column correspond to cne neuron. Neurons having mean firing rates < 1 Hz

during either behavior were excluded.

(D) Firing rate correlation for neurcn pairs during pull plotted versus their correlaticn during walk. Every tenth pair plotted from three mice.
(E) Histogram of firing rate correlation changes between behaviors and 10° iterations of the same histogram calculated after data permutation. See alse Figure S5.

while a similar trend was not seen for narrow-spiking units (Fig-
ure 50). The distribution of scaling values for wide-spiking
neurons recorded in this range was similar to that seen for
the full population (Figures 5C and 5E). To focus on those neu-
rons that may exert the strongest influence downstream, we
further excluded neurons that did not fire above 10 Hz on
average during at least one of the two behaviors. The distribution
of scaling values changed only minimally (Figures 5C and 5F).
Collectively, these results argue against both of the above-
stated hypotheses.

Behavioral Selectivity in the Correlation of Firing
Patterns across Motor Cortical Neurons
We next probed for behavior-dependent changes in the correla-
tion between the firing patterns of motor cortical neurons. To see
how this could account for differential engagement of short-
latency pathways, consider first a downstream neuron within
such a pathway that receives input from two motor cortical neu-
rons (Figure 6A). During one behavior, the input neurcns’ firing
patterns are positively correlated, so their activities add cumula-
tively and the downstream neuron is strongly modulated. But
during a second behavior, the firing patterns are negatively
correlated, diminishing their impact on the downstream neuron.
Similarly, we can envisage a downstream neurcnthat receives
direct and/or indirect input from motor cortex that is effectively a
weighted sum of the firing patterns of motor cortical neurons
(Figure 6B). If the comelations between the firing patterns of mo-
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tor cortical neurons change between behaviors, weighted sums
of these firing patterns that show particularly strong modulation
during one behavior will show weaker modulation during the
other. So if firing pattern correlations change such that a
weighted sum of motor cortical output that matches the effective
weighting of inputs to the downstream neuron varies strongly
during only one behavior, then the downstream neuron may be
strongly influenced by motor cortex during only one behavior.
Thus, this neuron can respond in a behaviorally selective
manner, even if upstream neurons are active during both
behaviors.

To assess the plausibility of such a mechanism, we calculated
comelations between trial-averaged firing rate time series for
each pair of neurons from individual mice, separately for each
behavior. Matrices of the resulting correlation scores were or-
dered to reveal groups of similarly active neurons (Figure 6C, up-
per left and lower right). This structure largely disappeared
in identically ordered matrices constructed using correlation
scores from the alternate behaviors (Figure 6C, upper right and
lower left), indicating that groups of similarly active neurons dur-
ing one behavior are less similarly active during the other
behavior. Indeed, the fact that two neurons were similarly active
during one behavior implied little about whether they were simi-
larly active during the other behavior (Figure 6D).

The change in correlation scores between behaviors was
large. We computed a null distribution using data permuted
under the assumption that cormrelations were similar in both
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Figure 7. Behaviorally Selective Variation in Weighted Sums of Motor Cortical Firing Patterns

(A) Left: trial-averaged firing rates for two neurcns during pull and walk. Scale barsrepresent 20 Hz, and their bases indicate 0 Hz along the vertical. Arrowheads in
(A) and (B) indicate muscle activation cnset during pull and a step cycle phase of 0°. Right: relaticns between the firing rates over the first 350 ms of the averages
for pull and walk, with best-fit lines (solid black). To highlight trends, we computed firing rates for this panel with a 20 ms, rather than a 10 ms, Gaussian.

(B) Projection of neuronal pepulaticn activity from one mouse during pull (red) and walk (black) onto the top four principal compenents for the activity during pull

(left) and walk (right).

(C) Relation between neurcnal population activity frem cne mouse during pull and walk preojected onto the first principal compenent for activity during walk and
the first principal cemponent for activity during pull minus its projecticn cnte the first axis (Orthogenalized).
(D and E) Mean + SEM variance captured from pull and walk firing rates by the top principal components for pull and walk using all neurons (D) or wide-spiking

neurcns recorded in layer bb (E).

(F) Alignment of firing rates, permuted firing rates, and muscle activity during pull and walk. Green bars show means {three mice).
(G) Relation between the activity of all recorded muscles frem one meuse during pull and walk projected onto the first principal component for their activity during
walk and the first principal compenent for their activity during pull minus its prejection ente the first axis (Orthegonalized). See alsc Figures 56 and S7.

behaviors, but differences in observed correlations arise from
the use of separate sets of trials. The actual median correlation
score was more than 56 standard deviations beyond the median
of the resulting null distribution (p <10 ®, one-tailed Monte Carlo
test; Figure 6E). The change in correlation did notappearto be an
artifact of the behavioral event chosen for aligning trials or of the
inclusion of neurcns with low firing rates that may have been
poorly estimated given the number of trials used (Figures S5A—
S5F). Moreover, we observed a similar change in correlation spe-
cifically among wide-spiking neurons recorded within layer 5b
(Figures S5G-85l). Thus, correlations among neuronal firing pat-
terns change markedly between precision pull and treadmill
walking.

We used principal component analysis to quantify the result-
ing changes between behaviors in the modulation of weighted
sums of neuronal firing patterns that vary strongly during one
behavior. The first several principal components of firing pat-
terns here define weighted sums of those patterns that account
for a large fraction of firing rate variation across the population.
The first four principal components during either of the two
behaviors account for >90% of firing rate variation during the
given behavior (mean + SEM, pull variance capture: 95% =+
1%, walk variance capture: 90% = 0.3%). Because the corre-

lations between firing rates change between behaviors (Fig-
ure TA), each set of top principal components accounted for
only a small fraction of firing rate variation during the other
behavior (Figures 7B-7D). Here again, the same held true spe-
cifically for wide-spiking neurons recorded within layer 5b (Fig-
ure 7E; Figure S6A). Thus, the top principal components define
weighted sums of firing rates that each vary strongly during only
one behavior.

To quantify the difference between behaviors in the firing rate
variation accounted for by each set of top principal components,
we measured the ratio between the small fractions of variance
accounted for during the other behavior and the fractions of vari-
ance accounted for during the behavior for which the compo-
nents were computed (alignment index, Figure 7F; Elsayed
etal., 2016). The mean £ SEM alignment index for neural activity
during pull and walk was 0.11 £ 0.02. As a control, we computed
the alignment index after permuting data as above under the
assumption that correlations were similar in both behaviors.
The resulting alignment index was 0.89 + 0.02 (p < 10 %, one-
tailed t test). Among wide-spiking neurcns, alignment was
0.07 = 0.01, and among those recorded within layer 5b, it was
0.14 + 0.05. Changes in alignment were not primarily due to a
small subset of recorded neurons and soreflect a general feature
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of population activity (Figure S6B). Thus, weighted sums that
account for the vast majority of variation in motor cortical
firing patterns are much more strongly modulated during one
behavior, which could enable downstream pathways to be
engaged in a behavior-specific manner.

Most critically here, the fraction of firing rate variation during
walking that is accounted for by the pull principal components
is uniformly low (Figures 7D and 7E). This indicates that the motor
cortical firing patterns associated with engagement of short-la-
tency effector pathways during pull are weakly represented in
the activity during walking. This could ensure that those path-
ways are not activated during walking.

We next addressed whether the changes in neural activity
comrelations between behaviors merely reflect changes in mus-
cle activity patterns. If motor cortical and muscle activity are
comelated, and correlations between the activity of different
muscles change between the two behaviors, then we might
expect some degree of difference in the correlations between
the firing patterns of motor cortical neurons. However, the dif-
ference between behaviors in the modulation of weighted
sums defined by prominent principal components for muscle
activity was smaller than it was for neural activity (Figure 7G),
and the alignment index for muscle activity was much higher
(0.65 + 0.08) than that seen for neural activity (Figure 7F).
We note here though that this difference does not imply that
activity among small groups of neuwrons of a size similar to
the number of recorded muscles also show much less align-
ment than muscles. Nor do our claims require this to be true.
These results suggest that the changes in the weighted
sums that account for motor cortical activity do not merely
reflect differences in the patterns of muscle activation between
behaviors.

Lastly, variation in the weighted sums of motor cortical activ-
ity defined by principal components revealed another feature
that is consistent with a difference in downstream pathway
engagement between behaviors. We observed that while the
weighted sums defined by walk principal components varied
minimally after the onset of muscle activation during precision
pull, these weighted sums varied much more so immediately
before muscle activation onset (arrows in Figure 7B). We inves-
tigated this further by calculating principal components for
motor cortical activity after muscle activation onset during pre-
cision pull, in order to focus on weighted sums prominent during
movement (Figure S6C). We found that while the weighted sums
defined by these components varied prominently both before
and after muscle activation onset (Figures S8D and S6E),
weighted sums defined by walk components varied most prom-
inently prior to onset (Figures S6F and S6G). Moreover, the
degree of variation just prior to onset in the weighted sums
defined by walk components was comparable to that seen
throughout walking (Figures S6H and S6l) and 56% as great
as variation of the weighted sums defined by pull components
during the equivalent epoch (arrows in Figures S6E and S6G).
Since muscle activity is minimal during this epoch, these
results are consistent with the view that the weighted sums
of motor cortical activity prominent during walking are not
involved in driving muscle activity through short-latency effector
pathways.
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DISCUSSION

We have examined the influence of motor cortex on muscle ac-
tivity during movement execution and its underlying neural
mechanisms. Rapid silencing and stimulation of motor cortex
demonstrated that relatively direct effector pathways are
engaged by motor cortical output during a trained precision
pull behavior, but not treadmill walking. Downstream effector
pathways therefore respond to motor cortical output in a behav-
iorally selective manner.

Wethen probed motor cortical activity for evidence of how this
behaviorally selective influence is mediated. Between behaviors,
we observed a dramatic change in the corelations among
neuronal firing patterns and, accordingly, a change in weighted
sums of firing patterns that vary strongly. This structure in motor
cortical activity represents a plausible strategy for behavior-spe-
cific influence of motor cortex, in which downstream neurons
respond to particular weighted sums of activity in motor cortical
output neurons (Figures 6A and 6B). Thus, our results suggest
that changes in the correlations between neuronal firing patterns
permit a behaviorally selective engagement of short-latency
effector pathways.

Differential Influence of Motor Cortex on Downstream
Pathways

Our findings argue that motor cortical output does not drive
muscle activity similarly across different behaviors. Muscle acti-
vation was disrupted at very different latencies when we rapidly
silenced motor cortical output. Disturbance began about 10 ms
after light stimulation onset during the precision pull behavior,
matching the latency at which forelimb EMG responses are first
detectable following electrical stimulation. Yet, during treadmill
walking, disturbance started with a delay of >35 ms. This varia-
tion in motor cortical influence suggests that the specificity of
behavioral deficits following lesions or pharmacological inactiva-
tion that eliminate motor cortical cutput does not merely reflect
an inability of other motor areas to compensate during a subset
of movements. Moreover, the agreement between the latencies
of silencing effects during precision pull and of stimulation re-
sponses implies a direct influence of motor cortical output on
muscle activity in rodents, contrary to recent claims {Lopes
et al., 20186).

Though basic treadmill walking survives the elimination of
motor cortical output (Figures S1F and S1G), our results indi-
cate that motor cortical output can influence treadmill walking.
The increased latency of the disturbance in muscle activation
could reflect activity perturbation in a neurcnal pathway
comprised of a larger number of neurons and synapses that
lead to spinal motor neurons. The longer latency would result
from delays due to conduction and synaptic transmission
along such a pathway. One possibility is that motor cortical
output is monitored by circuits that depend on the information
about movement that this output provides and can influence
movement at longer latency when motor cortical output is
disturbed. Even when muscle activity is not directly driven
through short-latency pathways, motor cortical output could
still convey information about movement since afferent
sensory pathways drive responses in motor cortex and can



modulate its output {Armstrong and Drew, 1984b; Hatsopoulos
and Suminski, 2011).

The model of motor cortical influence supported by our results
can resolve the ambiguity posed by the specificity of deficits
following motor cortical inactivation (Drew et al., 1996; Kawai
et al., 2015; Passingham et al., 1983) despite the pervasive na-
ture of muscle-correlated motor cortical activity and stimula-
tion-induced muscle activation (Armstrong and Drew, 1984a,
1985; Griffin et al., 2011; Kargo and Nitz, 2004; Otchy et al.,
2015). The circumscribed deficits seen from blocking motor
cortical cutput with lesions or pharmacological inhibition could
result from the inability of other motor areas to compensate for
the engagement of short-latency effector pathways. Because
electrical stimulation in motor cortex will induce broad changes
in activity that should modulate almost any possible weighted
sum of that activity, any given downstream pathway could
readily be activated. Muscle activity is likely then to be modu-
lated at short latency regardless of behavioral context, consis-
tent with prior observations (Armstrong and Drew, 1985; Bretz-
ner and Drew, 2005). And the observation of muscle-correlated
motor cortical activity during a broad range of behaviors does
not contradict behavior-specific engagement, because correla-
tion between neural and muscle activity does not by itself imply
direct control of muscle activity.

Here, we have employed methodology that may be generally
useful in assessing functional influence in the motor system.
Certain observations have cast doubt on the capacity of pharma-
cological and optogenetic perturbations to elucidate motor
circuit operation (Martin and Ghez, 1993; Otchy et al., 2015).
Of particular concern is the possibility for delusive effects of per-
turbations to pathways normally unimportant for the behavior in
question. Our results demonstrate that such concerns can be
allayed by combining optogenetic perturbation with the milli-
second precision readout EMG provides and with electrical stim-
ulation of relevant pathways. The muscle activity perturbations
we observed following optogenetic silencing during precision
pull matched the latency of relevant pathways, were reproduc-
ible across animals, and were not observed during another
behavior. Such criteria may be applicable when assessing the
direct influence of neuronal populations during circuit operation.

Interpreting the Downstream Influence of Cortical
Output
Findings from analysis of our entire recorded population held
specifically for wide-spiking neurons and the subset thereof re-
corded within layer 5b. Still, the degree of difference between
behaviors in firing rate correlations among subcerebral projec-
tion neurons themselves is not directly specified by our results.
We note, however, that subcerebral projection neurons may be
overrepresented in our recorded populations, as the number of
wide-spiking units isolated in a given recording session was
72% higher when tetrodes were located within layer 5b. More-
over, the very limited similarity in neuronal correlations we
observed between behaviors (Figures 7D-7F) suggests that
such correlations will vary within any substantial fraction of re-
corded motor cortical neurons.

QOur findings do not preclude that changes intrinsic to down-
stream effector circuits also influence the manner in which they

respond to motor cortical output. Indeed, previous studies using
electrical stimulation show that responses in spinal circuits to
descending input vary across movements and during different
phases of particular movements (Bretzner and Drew, 2005;
Drew and Rossignol, 1984; Dyson et al., 2014). Moreover, previ-
ous measurements of spike-triggered average muscle activity
indicate that the impact of individual motor cortical neurons on
muscle activity can vary across different movement types
{Schieber, 2011), though such variation is not prominent in
certain contexts (Buys et al., 1986). Our observation that electri-
cal stimulation during treadmill walking perturbs muscle activity
does, however, indicate that the behavioral selectivity of motor
cortical influence on downstream effector pathways is not attrib-
utable to a negation of motor cortical influence by changes
intrinsic to those pathways. Thus, there should be structure in
the patterns of motor cortical output that at least partly deter-
mines whether downstream effector pathways are modulated.

Behavior-specific responses in downstream neurons do not
necessarily require that most all of the firing rate variation during
a given behavior is captured by weighted sums of motor cortical
output that are minimally modulated during other behaviors.
Rather, specificity would merely require that some fraction
of motor cortical output is captured by weighted sums that
vary sufficiently to modulate downstream pathways only during
certain behaviors. A downstream neuron sensitive to only this
fraction of output could then respond in a behavior-specific
manner. Here, we show that the top principal components for
motor cortical activity during precision pull capture only ~10%
of the firing rate variation during walking. Though much of the
variance captured by these weighted sums during pull may not
be involved in engaging downstream pathways, large fractions
of the variance during pull are at least available for this purpose
without the consequence of much downstream pathway modu-
lation during walking.

The changes in neural activity correlations we see do not
appear to be a simple consequence of the fact that we recorded
from many neurons. Because our weighted sums of activity have
one term for each neuron in the recorded populations, the
weights from each individual sum constitute a vector that repre-
sents a direction in a neural activity space—a high-dimensional
space in which each cardinal dimension represents the firing of
one neuron. We might imagine that our sets of principal compo-
nents during pull and walk define two small sets of randomly
selected vectors in such a space and so are expected to be
mostly orthogonal, consistent with our findings. However, if
we assume that there are static neuronal correlations across be-
haviors so that any ocbserved correlation changes only reflect
chance variation, we would have expected the principal compo-
nents we found to define vectors that were much less orthogonal
{Sadtler et al., 2014). This is indicated by the alignment indices
we calculated for permuted datasets, which assume static
neuronal correlations yet showed much more similarity than
the actual neural data (Figure 7F).

Implications of the Variation in Motor Gortical Activity
Correlations

Much of the structure in motor cortical firing patterns can be
explained by a role in driving muscle activity and in helping
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generate the requisite output commands {Churchland et al.,
2012, Evarts, 1968; Cby et al., 2013; Todorov, 2000). However,
a corollary of our results is that correlations between the activ-
ities of motor cortical neurons and muscles can vary substan-
tially across different movement types (Figure S7). This is
implied by the marked difference between behaviors in the
comrelations among neuronal firing patterns that far exceeds
the difference in correlations among muscle activity patterns.
This extends previous reports of dissimilarity in primates be-
tween the activities of individual muscles and individual motor
cortical neurons, even those that synapse onto spinal motor
neurons (Morrow and Miller, 2003; Schieber and Rivlis,
2007). These previous studies have been used to argue that
meaningful descending commands emerge at the level of the
motor cortical population (Churchland and Shenoy, 2007;
Kaufman et al, 2014), a point that is underscored by our
results.

The finding of changes in the downstream influence of motor
cortical output paired with changes in correlation between motor
cortical and muscle activity also helps to reconcile certain other
observations. A recent study in cats reported substantial similar-
ity in the correlation of motor cortical and muscle activity during
forelimb reach and obstacle avoidance (Yakovenko and Drew,
2015), though a previous study had noted substantial differences
in such correlations between obstacle avoidance and generic
treadmill walking (Drew et al., 1996). In this earlier study, both
the motor cortical dependence and the muscle activation pat-
terns differed between movements, whereas in the more recent
study, both movements are known to require motor cortex and
involve similar muscle activation patterns. Thus, the apparent
discrepancy between studies may reflect the fact that forelimb
reach and obstacle avoidance require motor cortical involve-
ment and so rely on engagement of specific downstream
effector pathways by motor cortical output. The particular pat-
terns of activity required for this engagement could in turn
change the correlations between motor cortical and muscle
activity.

The view that certain weighted sums of neuronal firing pat-
terns serve distinct functions (Druckmann and Chklovskii,
2012; Seung, 1996) is supported by other characterizations of
firing dynamics in motor areas. Motor cortical neurons are active
during both the planning and the execution of movement, but
different weighted sums of their activities vary strongly during
each phase (Elsayed et al., 2016), potentially ensuring that mus-
cles are inactive during planning (Kaufman et al.,, 2014).
Weighted sums of motor cortical firing patterns that are predic-
tive of a decision-making behavior show preferential recovery
following transient activity perturbations (Li et al., 2016). And
in the oculomotor system, different weighted sums of firing pat-
terns in the oculomotor neural integrator encode eye position
during different types of eye movement {Daie et al., 2015). These
movement-related neural dynamics exhibit parallels to those in
other systems, such as the remapping of spatial representation
across place cells in the CA1 region of hippocampus when the
surrounding environment changes (Leutgeb et al., 2005). Func-
tional distinctions between weighted sums of neuronal firing
patterns may therefore prove broadly valuable in defining princi-
ples of neural system function.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments and procedures were performed according to NIH guidelines and approved by the Institutional Animal Care and Use

Committee of Columbia University.

Experimental Animals

Atotal of 52 adult male mice were used, including those in early experimental stages to establish methodology. Strain details and
number of animals in each group are as follows: 16 VGAT-ChR2-EYFP line 8 mice (B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)
8Gfng/J; Jackson Laboratories stock #014548); and 34 C57BL/6J mice (Jackson Laboratories stock #000664).

All mice used in experiments were individually housed under a 12 hr light/dark cycle. At the time of the measurement reported,
animals were 10-20 weeks old. Animals weighed approximately 23-28 g. All animals were being used in scientific experiments for
the first time. This includes no previcus exposures to pharmacological substances or altered diets.

METHOD DETAILS

Precision Pull Task

Male mice were trained via a behavioral shaping procedure to perform a precision pull task inwhich they first place their right forepaw
ina particular spot on a rung, then reach out to grab a joystick, and finally pull the joystick a set but short distance (Figure 1A; Figures
S1A and S1B; Movie S1). The shaping procedure involved three phases: a first phase inwhich mice learned to turn a 60 mm diameter
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wheel with their right forepaw, a second phase in which they learned to reach toward and pull a joystick positioned further away dur-
ing each successive training session, and a third phase during which the initial position of the joystick is fixed.

Apparatus

The training apparatus was housed inside a sound attenuating chamber (H10-24A, Coulbourn). Head-fixed mice were positioned
within an enclosure constructed from Delrin tubing (1.5" OD, 1.25” |D, McMaster-Carr). Enclosures had sections removed to allow
the mouse’s headplate to be fixed to a headplate holder. Enclosures also had a bottom section removed to allow the right forepaw
access to a small custom-designed wheel during the early stages of training (60 mm diameter, 11.5 mm wide; Shapeways) or arung
outfitted with a copper foil electrode connected to capacitive touch sensor during later stages (SEN-12041, Sparkfun; the
AT42QT1010 chip was replaced with a AT42QT1011, Newark). Enclosures also had a rung for the left forepaw and a divider below
the mouse's chest to prevent the left forepaw from gaining access to the wheel or joystick.

Experimental control was performed using the MATLAB Data Acquisition Toolbox and the NI PCle-6323 DAQ. The wheel was af-
fixed to an 8 in. stainless steel shaft mounted on bearings (8600N1, McMaster-Carr). An angular encoder amounted around the shaft
(A2K-A-125-H-M, U.S. Digital) measured shaft position. A ratchet mechanism was used to ensure the wheel could only rotate toward
the mouse. The joystick, which was mounted on a disk, was also affixed to a shaft similarly, except that one end of the shaft was
coupled to a DC motor (DCM-375, All Electronics). Joystick position was controlled by the motor and a linear actuator (L12-30-
50-12-1, Firgelli). The disk on which the joystick was mounted had a short bar attached that was parallel to the shaft. Prior to each
trial, the linear actuator was used to position a plastic guard in the rotational path of this bar. To rapidly set the position of the joystick
to initiate each trial, the DC motor would quickly rotate the shaft until the bar hit the guard, stopping its rotation and the rotation ofthe
joystick. After a movement of the joystick by the mouse was detected via the angular encoder, the actuator was retracted to rotate the
joystick out of the reach of the mouse. A one-dimensional laser displacement sensor was positioned in front of the mouse and aimed
just above the right forepaw rung to enforce the proper initial position of the paw. Water rewards were dispensed with a solenoid valve
(1617012, NResearch) attached to a lick tube (01-290-12, Fisher). A speaker was used to play a 5 kHz tone for 200 ms whenever
rewards were achieved on a given trial or white noise for 200 ms whenever reward criteria were not met.

Training

Under anesthesia induced with isoflurane (1%-3%; Henry Schein), mice were outfitted with titanium head plates (25 X 9 x 0.8mm)
affixed to the skull using dental cement (Metabond, Parkell). Headplates had an open center that enabled subsequent access tothe
skull, which was covered with dental cement. During headplate implantation, the position of bregma relative to marks on either side of
the headplate was measured to facilitate the positioning of craniotomies during later surgeries. After recovery from headplate implan-
tation surgery, mice were placed on a water schedule in which they received 1 mL of water per day.

At least 4 days after the start of the water schedule, mice were acclimated to handling by the experimenter following established
procedures (Guo et al., 2014a). After two daily sessions of acclimation to handling, mice were acclimated to head-fixation over two
daily sessions {first 15 min, then 30 min) during which they were head-fixed in the wheel-turning apparatus and provided water reward
(3 uL per reward) at regular intervals. During acclimation, the wheel was locked in place to prevent its rotation by the right forepaw.

Following acclimation, mice underwent twice daily 40 min training sessions of the precision pull task. The behavioral shaping pro-
cedure involved an initial stage aimed at training mice to perform a basic reach and pull behavior in order to receive reward. Duringthe
first training session, the wheel was freed to allow it to rotate toward the mouse and reward were triggered by an experimenter’s key-
press whenever the mouse performed any slight rotation of the wheel in the desired direction (toward his body). Over the course of
this session, mice generally learned to associate rotation with reward and began iteratively rotating the wheel. Inthe uncommon case
a mouse failed to learn this pairing, sessions of this sort were repeated.

During the next ~10 sessions, mice were gradually trained to pull the wheel with increasing rapidity. During these sessions, the
distance of wheel rotation was integrated in software until a certain threshold distance was achieved, the time to reach the threshold
distance was calculated, and the integrated distance was reset to 0. On the first ten instances during a training session when the
threshold distance was met, mice automatically received a water reward. On each subsequent instance, the time to reach threshold
was compared to those from the previous 10 instances. If the time was below the 75™ percentile value from these 10, one water
reward was dispensed. If it was below the 40™ percentile value, 2 reward were dispensed. And if it was below the 10™ percentile
value, 4 reward were dispensed. Otherwise, no reward were dispensed. The threshold distance was adaptively updated every minute
to keep the reward rate at a level that ensures a mouse received about 0.5 mL of water over each training session. Accordingly, ifthe
recent reward rate was too high, the threshold distance was raised,; if the recent reward rate was too low, the distance threshold was
lowered. The absclute number of rewards a mouse received during a given session was not capped, but the second training session
of a given day was stopped once mice reached their daily water allotment. Once mice were turning the wheel frequently and rapidly
enough to complete ~250 rotations within one 40 min session, they progressed to the next stage of training.

During the next ~10 training sessions, mice were gradually trained to perform a precision pull behavior that involved anincreasingly
long reach component. For this training, the wheel was replaced with a joystick mounted to the shaft, and a rung on which the right
forepaw could rest between reaches was mounted. Trials began with the motorized positioning of the joystick. During the first ses-
sion, the joystick was positioned just a few mm beyond the rung. When mice reached out attempting to rotate the wheel as they had
previously learned to do, they came in contact with the joystick and displaced it, leading to reward. In order to receive areward on a
given trial, the initial position of the paw measured by the laser displacement sensor had to be below an allowed absolute distance
away (“paw error threshold™) from a target position and the movement of the joystick had to fall below an allowed absolute distance
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(“pull error threshold™ away from a target distance of 5 mm. For the first session, these error thresholds were set to be liberal enough
that any joystick movement from any initial paw position would garner a reward. During subsequent sessions, the error thresholds
were each set to the 60™ percentile value of the errors from the previous training session. This updating procedure was intended
to lead to roughly 30%—-40% of trials being rewarded. After 10 trials had elapsed in a session, the mouse could then earn additional
rewards on a given trial; moving the joystick a distance closer than the 60" percentile pull error for the previous 10 trials earned 2
rewards, while moving it a distance closar than the 20'" percentile pull error earned 4 rewards. If mice received at least 80 rewards
in a given session, the initial position of the joystick was moved 2 mm further away from the rung for the subsequent session. Oncethe
initial position of the joystick reached 18 mm away from the rung, the initial position was no longer updated. Training continued with
updating of the error thresholds as before.

Treadmill Walking

Mice were placed on a custom-built motor-driven rodent treadmill (Model 802, University of Cologne electronics lab). Optogenetic
and electrical stimulation was performed as mice walked at 20 cm/s. Neural recording was performed as mice walked at 10 cm/s,
allowing them to better accommodate the weight introduced by the neural headstage and cabling.

Electromyographic Recordings

Electromyographic (EMG) electrodes were fabricated for forelimb muscle recording (Figures 51C-S1E) using a modification of es-
tablished procedures (Akay et al., 2006; Pearson et al., 2005). Each set consisted of six pairs of electrodes. Each electrode pair
was comprised of two 0.001" braided steel wires (793200, A-M Systems) knotted together. On one wire of each pair, insulation
was removed from 1 to 1.5 mm away from the knot; on the other, insulation was removed from 2 to 2.5 mm away from the knot.
The ends of the wires on the opposite side of the knot were soldered to a 12-pin miniature connector (11P3828, Newark). Different
lengths of wire were left between the knot and the connector depending on the muscle a given pair of electrodes would be implanted
within: 2 cm for trapezius, 3.5 mm for biceps and triceps, 4.5 cm for extensor digitorum communis and palmaris longus, and 5.5 cm
for pectoralis. The ends of wires with bared regions had their tips stripped of insulation then were twisted together and crimped inside
of a 27-gauge needle that facilitated insertion into muscle.

Mice were implanted with EMG electrodes during the surgery in which headplates were attached. The neck and right forelimb of the
mouse was shaved and incisions were made above the muscle to be implanted. Electrode pairs were led under the skin from the
incision on the scalp to the incision at the site of implantation. Using the needle, electrodes were inserted into muscle, and the distal
portion of the electrodes was knotted. The needle and excess wire was then cut away. Incisions were sutured and the connector was
affixed with dental cement to the posterior edge of the headplate (Figure S1D).

Recordings were amplified and bandpass filtered (250-20,000 Hz) using a differential amplifier (MA102 with MA103S preamplifiers,
University of Cologne electronics lab). Data was digitized and acquired at 40 kHz using the Omniplex64 and PlexControl software
(Plexon). We used the presence of spike-like transients in records together with alternating activation and quiescence during treadmill
walking to verify that EMG measurements reflected muscle activity rather than motion artifact. We note though that we are not able to
rule out that EMG signals for certain muscles were influenced by the activity of adjacent, synergist muscles.

Movement strategies employed during precision pull varied across animals, as was reflected in a variation in muscle activation
patterns seen across animals. Muscle activation patterns during locomotion were largely consistent across animals, with one excep-
tion. A biphasic activation of pectoralis with a larger activation more aligned with flexor muscle activation was seen in a minority of
mice (2/14), and is exemplified in Figure 2B. The more common monophasic, extensor-aligned pectoralis activation pattern during
locomotion is exemplified in Figures S1E-S1G. This variation may be due to differences in the activation patterns of motor units most
strongly reflected in pectoralis EMG measurements, perhaps as a consequence of variation in the insertion position of the EMG
electrode.

Muscimol Injection

Cne day before injections were to begin, dental cement above the skull was removed and a 1 mm diameter craniotomy was made
above the left caudal forelimb area. After the craniotomy was made, and following each round of injections, craniotomies were sealed
with Kwik-Cast (WP). Injections were performed between the two training sessions on a given day, 90 min prior to the latter session.
We used a Nanoject Il (Drummond) to inject 1 ng/nl muscimol hydrobromide (G019-5MG, Sigma) in saline (DPBS with CaCl, and
MgCl., GIBCO) through pulled glass capillaries. Injections were positioned 1.5 mm left and 0.25 mm rostral of bregma, aligned
with the center of the caudal forelimb area as previously delineated (Tennant et al., 2011). Two extrusions of 36.8 nL were performed:
one 700 um below pia, and one 400 um below pia. Extrusion was verified immediately before and immediately after capillary insertion
into the brain. Injections of saline alone were performed identically.

Cortical Ablation

Here we followed methods described by Asante et al. (2010). Dental cement was removed from the skull and a 2 mm diameter
craniotomy was made above the left caudal forelimb area. The dura was removed with forceps. Brain tissue was then slowly
aspirated away through iterative removal of ~100 um of tissue depth at a time in a circular region spanning 0.5 to 2.5 mm left and
0.75 mm posterior to 1.25 mm anterior of bregma. Bleeding was controlled using Gelfoam (Pfizer) and the depth of tissue removal
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was continually measured. In each mouse, a total of between 800 and 1000 um of tissue depth was removed. The cavity was then
filled with Gelfoam and the exposed brain surface was covered in Kwik-Cast. A fresh layer of dental cement was then applied to cover
the Kwik-Cast and any exposed skull. Sham ablations were performed identically, except no brain tissue was aspirated away.

On the day following surgery, precision pull performance was assayed during a training session (“1d post” in Figure 1F). Behavior
was then assayed again 96 hr later (“5d post”) without any intervening training. Ablation had a marked effect on performance at both 1
and 5 days after surgery compared to sham surgeries (Figure 1F). Training was not performed between time points because the ab-
lated animals could not perform the task after surgery and so could not practice. Thus to enable a legitimate comparison at the 5 day
time point, no training of ablated or sham animals was performed. Because a lack of intervening training causes only a limited erosion
of performance in the sham animals (Figure 1F), we do not attribute the effects of ablation to an acute effect of tissue removal at 1 day
post-surgery and then a prolonged effect at 5 days from a lack of practice.

Optogenetic Inactivation

After several days of performing the precision pull task at the full reach distance in VGAT-ChR2-EYFP mice, dental cement above the
skull was removed and a 2-2.5 mm diameter craniotomy was made above the left caudal forelimb area. A thin layer of Kwik-Sil (WPI)
was applied over the dura and a 3 mm diameter #1 thickness cover glass (64-0720, Warner Instruments) was placed on the Kwik-Sil
before it cured. The gap between the skull and the cover glass was then sealed with dental cement around the circumference of the
glass. A custom stainless steel ferrule guide (Ziggy's Tubes and Wires; Figure S2A) was then cemented to the headplate a certain
distance above the surface of the brain. This distance was set to ensure that the cone of light emanating from a 200 um core,
0.39 NA optical patch cable terminating ina 2.5 mm ceramic ferrule (M81L01, Thorlabs) would project a spot of light 2 mm in diameter
onto the surface of the brain. The ferrule guide enabled quick and reliable positioning of the ferrule above the brain surface so that a
large expanse of cortex could be illuminated.

To attenuate firing throughout motor cortical layers, we used a 473 nm laser (CL473-075-0, Crystalaser) to apply pulses of light at
an intensity of 10 mW/mm® to the brain surface. The pulse frequency was 20 Hz and the duty cycle was 50%. Intensity and duty cycle
were set to match those in experiments calibrating the relation between light power and the cessation of firing (Guo et al., 2014b).

To inactivate motor cortex during trial initiation, a 500 ms light pulse train was triggered in software immediately before the com-
mand to the DC motor to quickly position the joystick, ~70-100 ms before muscle activation began. To inactivate motor cortex near
the outset of reaching, a 200 ms train was triggered when the standard deviation of raw biceps EMG signal over a 16 ms window
reached a threshold set at the 90" percentile value from the distribution of such measurements over time during repetitive reaching.
To inactivate motor cortex at the outset of pulling, a 200 ms train was triggered when the rate of change in the position of the shaft's
optical sensor reached a threshold set to be ~6 standard deviations above the mean of this rate of change when the shaft is motion-
less. In each of the above three types of trials, light was applied during arandom third of the trials on which the stimulation conditions
were met. Unstimulated trials were then used as controls.

To inactivate motor cortex at a consistent phase during treadmill walking, a 200 ms light pulse train was triggered when the stan-
dard deviation of raw biceps EMG signal over a 16 ms window reached a threshold set at the 98" percentile value from the distri-
bution of such measurements during walking. After each detected threshold crossing, at least 5 s elapsed before a subsequent
crossing could be detected. Light stimuli were applied on a random third of detections and unstimulated trials were used as controls.
To verify that disturbances in EMG did not result from retinal responses to light stimulation, identical experiments were performed
during treadmill locomotion in wild-type mice. Quantitative comparison of effects in wild-types and VGAT-ChR2-EYFP mice, dis-
cussed below, demonstrate that perturbation effects cannot be attributed to retinal responses to light stimulation.

For experiments looking at the relation between locomotor phase and EMG disturbance following optogenetic inactivation, 200 ms
light pulse trains were triggered at random times during treadmill walking. Inactivations were never performed less than 15 s apart.

Electrical Stimulation
Stimulation electrodes were fabricated by soldering an ~5 mm length of insulated steel wire (790700, A-M Systems) to a male
connector pin (520200, A-M Systems). To implant stimulation electrodes, dental cement was removed from the skull and a 2 mm
diameter craniotomy was made above the left caudal forelimb area. Two electrodes were inserted to a depth of 700 um below
the pial surface roughly 1 mm apart surrounding the center of the caudal forelimb area at 1.5 mm left and 0.25 mm rostral of bregma
(Tennant et al., 2011). The cranioctomy was covered in Kwik-Cast (WPI) and then dental cement (Metabond, Parkell). A #000 screw
(BOOOFNOJS8, Amazon) with the top half of a male connector pin soldered on its head was inserted above the contralateral posterior
parietal cortex for grounding.

Stimulation was performed in head-fixed mice sitting still in the enclosure used for the precision pulltask, and in mice walking freely
on the treadmill regardless of phase. Current pulse trains (10 400 us pulses at 333 Hz, 10-150 pA) were generated using a function
generator (33522A, Agilent) driving a stimulus isolator (A365D, WPI). Stimulations were never performed less than 15 s apart.

Neural Recording

Tetrode microdrives were assembled using VersaDrive components (Neuralynx) but the microdrive design was modified to be better
suited for targeting cortical neurons within forelimb motor cortex. Microdrive bases were outfitted with a 4.5 mm stainless steel
cannula (20 gauge, 660 pum [.D., Amazon) into which 4 0.008" polyimide tubes (Neuralynx) were positioned. Each drive housed 4
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independently moveable tetrodes made from twisted 18 pm Pt-Ir wire (CFW0011173, California Fire Wire) plated with Platinum Black
solution {(Neuralynx) to achieve final impedances of 80-200 k at 1 kHz. Microdrives were wrapped in aluminum tape (McMaster-
Carr). Conductive silver epoxy (M.E. Taylor Engineering) was used to attach steel wires coming from the drive ground pin to both
the cannula and the aluminum tape to ground them during recording. An 0.002" insulated Pt-Ir wire was run from the reference
pin of the microdrive and affixed to the side of the cannula with regular epoxy so that upen implantation, the stripped tip of the
wire would protrude ~1 mm into the cortex, about 1 mm caudal or lateral to the recording electrodes.

To implant microdrives, dental cement above the skull was removed and a 2 mm diameter craniotomy was made above the left
caudal forelimb area. Two small holes were drilled above the right posterior parietal and occipital cortex. A #000 screw
(BOOOFNOJ58, Amazon) was inserted into each hole, and wire was run from the ground pin of the microdrive to each one. The micro-
drive was positioned on the brain surface with the cannula in contact with dura and centered at 1.5 mm left and 0.25 mm rostral of
bregma, unless large superficial blood vessels clearly obstructed the path of the tetrodes into the cortex. In this case, the microdrive
was translated 100-200 um to allow tetrodes a clear path. The interface between the cannula and the brain was sealed with Kwik-
Cast, and dental cement was used to fix the microdrive in place. Tetrodes were slowly lowered down to 500 um below pia and then
raised to 250 um below pia during implantation surgery. Over the subsequent two weeks, tetrodes were lowered ~30 um every three
days. Recording commenced at least 14 days after implantation with tetrodes positioned 500 um below pia. Recording from sites
spaced by 50 um intervals between 500 and 1000 pm below the pia was done to focus recordings within layer 5, and ensure that
electrode tips resided in or near layers 5 and 6 during all recordings (Tennant et al., 2011). Recordings were made using a 20x
gain analog headstage (HST/16v-g20, Plexon). Data was digitized and acquired at 40 kHz using the Omniplex64 and PlexControl
software (Plexon).

Acute recordings using a 32-site silicon probe (A1x32-Poly3-5mm-25 s-177, NeuroNexus) were performed to gauge the efficacy of
light stimulation on motor cortical output in VGAT-ChR2-EYFP mice. To implant bone screws, the dental cement above the skull was
removed and 2 ~0.7 mm diameter craniotomies were drilled in the skull above the right parietal and occipital cortex. A #000 screw
(BOOOFNOJ58, Amazon) with attached male connector pin was positioned in each hole and rotated until in contact with the brain sur-
face. The screws and surrcunding skull were covered in dental cement, leaving the male connector pins exposed. To expose the
recording area, dental cement above the skull was removed and a 2 mm diameter craniotomy was made over the left caudal forelimb
area. The exposed brain tissue was sealed with Kwik-Cast. Male connector pins (520200, A-M Systems) were soldered to the probe’s
ground and reference sites. During recording, female connector pins (520100, A-M Systems) soldered to either end of 2-stranded 28
gauge ribbon wire (10647, SparkFun) connected the probe’s male connectors to the bone screws.

Before recording, the animal was head-fixed, the Kwik-Cast was removed, and the silicon probe was slowly inserted at a 45” angle
to vertical depths of 800, 1000, or 1200 um from dura. Once the probe was in place, the tissue was allowed to relax for 20 min before
recording began. Recordings were made using a digital headstage (Cereplex M84, Blackrock Microsystems). Data was acquired at
30 kHz using the Cerebus 128-channel and Central software (Blackrock Microsystems).

Spike Sorting

Putative spikes were detected and sorted with KlustaKwik (Rossant et al., 20186). For each animal and each session, recordings made
during the precision pull task and treadmill walking were concatenated and spike sorting was carried cut as if they formed a single,
continuous recording. Thus the cluster of waveforms assigned to an individual unit could involve spikes occurring during either
behavior, and no matching of units between behavioral epochs was necessary. This allowed us to analyze the activity of the
same unit during both behaviors, though the usual caveats in interpreting individual units as individual neurons still apply. Clusters
of waveforms were deemed to correspond to well-isolated units if their spike autocomelograms indicated an absolute refractory
period of at least 1 ms and a firing rate far less than the unit's mean firing rate for at least 2 ms before and after spikes occurred.
Clusters that did not meet these criteria were discarded. If inspection revealed that the cluster contained activity from more than
one unit, as shown by the presence of dissimilar waveforms or refractory period violations, the cluster was manually split. If multiple
clusters contained spikes from the same unit, as shown by the presence of similar waveforms across clusters and the absence of
refractory period violation in their cross-correlograms, those clusters were merged.

QUANTIFICATION AND STATISTICAL ANALYSIS
All analysis was completed in MATLAB v.8.0 or 9.0 (MathWorks).

EMG Processing and Analysis

With certain exceptions discussed below, EMG measurements were downsampled to 1 kHz, high-pass filtered at 40 Hz, rectified,
and convolved with a Gaussian having a 10 ms standard deviation.

EMG during Precision Pull Behavior

To define trials and identify the associated EMG segments for this analysis, we used the time at which the onset of joystick pulling was
detected by the experiment control program from the angular encoder signal. This method used the mean change in the encoder
signal over 8 ms epochs, detecting a joystick pull when this value rose to ~6 standard deviations above the mean value when the
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joystick was at rest. The analysis depicted in Figures 1C and 10 used EMG segments spanning 250 ms before to 200 ms after the
onset of joystick pull. Correlations between time series segments were measured using Pearson correlation.

To compute the duration from the initiation of reaching to the initiation of pulling and the duration of pulling, we used a more
involved method to detect the precise onset and offset of pulling. We first took the derivative of the angular encoder signal and
smoothed it with a Savitzky—Golay fitter (MATLAB function smooth, span = 10, order = 3). Joystick pulls were then detected as
time points at which the resulting filtered time series rose to ~6 standard deviations above the mean value when the joystick was
at rest. The filtered time series was then additionally smoothed by replacing each value by the median of the values spanning
from 5 ms before to 5 ms after it. For each detected pull, the onset and offset of pulling were identified as the last value before
and the first value after each detected pull at which this doubly filtered time series fell below 0. The onset of reaching was identified
from the activation of biceps (Bi) and extensor digitorum communis (EDC), by first rectifying the raw EMG measurements and
smoothing them with a Savitzky—Golay filter (MATLAB function smooth, span = 10, order = 3). We then identified the onset of reaching
as the time point at which the sum of the resulting traces first rose above a threshold set ~-6 standard deviations above the mean level
during inactivity.

EMG during Optogenetic inactivation

For optogenetic inactivation, we chose a method for smoothing EMG that used causal filtering to enable precise assessment of
perturbation latencies. Thus, in this case EMG time series were high-pass filtered at 40 Hz, rectified, and convolved with a 10 ms
Gaussian, except the Gaussian filter kernel had amplitudes for times < 0 — its “backwards in time” side — set uniformly to zero.
The modal EMG value from periods of quiescence was then subtracted off each measurement to set the baseline to 0. Segments
surrounding inactivation or control detections were aligned by the time at which the laser command pulse was initiated after detection
(though on control trials this pulse was only sent to the acquisition system and not to the laser itself).

Before EMG trial averages were assembled, cutliers were removed. Separately for either inactivation or control trials, we found the
mean EMG array (time points x muscles) for the first half of trials. We then found the distance of each and every trial array — not just
those in the first half — from this mean (MATLAB function pdist), generating distributions of distances from which we computed the
standard deviation. We then eliminated those trial arrays that were more than 2 standard deviations away from the mean EMG array.
This procedure was then repeated using the mean EMG array for the second half of trials, eliminating those trials more than 2 stan-
dard deviations away from this mean. This method was aimed at ensuring that individual outlying trials would be compared to mean
EMG arrays to which they did not contribute. This prevents the inclusion of outlying trials because they skewed a mean EMG array
used for comparison. We note that no outliers were removed when calculating the success rate (rewarded trials/total trials; Figure 2C)
or the latency to pull or to reward (Figures S2F and S2G).

To calculate the normalized fractional change following inactivation (Figures 2D), we found for each muscle the difference between
the means for EMG time series from controland inactivation trials. All values in the resulting matrix {time x muscles) were squared, the
mean across muscles at each time point was taken, and the square root of each value in the resulting time series was found. Each
time point in the resulting time series was then divided by the corresponding time point in a similarly constructed time series
computed using EMG time series from control trials without subtracting values from inactivation trials. We then corrected these frac-
tional change time series for the difference expected by chance due to the use of separate sets of trials. On 1000 different iterations,
we divided the control trials into random halves and similarly calculated a fractional change time series using the two halves in place
of the control and inactivation trial sets. The mean fractional change time series across these 1000 iterations was computed, and this
mean was subtracted from the fractional change time series computed with the actual data. Lastly, we subtracted the mean value
across the 25 ms preceding stimulus onset time from the resulting time series. The result was what we refer to as the normalized
fractional change time series. The mean normalized fractional change was computed over the following epochs: 1 to 35 ms from light
onset, 36 to 70 ms from light onset, and the full duration of light stimulation.

The normalized fraction change in VGAT-ChR2-EYFF mice over the full duration of light stimulation during locomotion was signif-
icantly different from that attributable to retinal responses or other unintended behavioral effects of stimulation seen in wild-type mice
(one-tailed ttest, p = 0.0068). The mean normalized fractional change during locomotionin VGAT-ChR2-EYFP mice was 0.224 £ 0.05
(n = 4), which was 28x as large in magnitude as the mean normalized fractional change in wild-types (—0.0079 + 0.003, n = 3).

To analyze EMG following inactivation at variable locomotor phases (Figures S2H-32K). Locomotor phase was defined from EMG
time series using the Phaser algorithm (Revzen and Guckenheimer, 2008), which computes a one-dimensional phase variable
(range: - to ) from multidimensional time series. To ensure that locomotor phase was defined in an equivalent manner across ses-
sions, we trained the algorithm’s phase classifier only once for each animal, using data from just one session. Phase assignment ap-
peared consistent across animals, in terms of the relation of particular phase values to particular muscle activation features.

Trials were divided into ten groups based on the locomotor phase at which the light stimulus began and were aligned by stimulus
onset time. The phase boundaries between groups were defined to ensure approximately equal numbers of trials in each group, but
the same boundaries were used for all animals. Outlying trials were removed from each group using the distance from mean EMG
arrays for the first and last half of trials as above. A mean EMG array across trials was computed for each trial group.

An equivalently-sized number of EMG arrays identified from the time series intervening between inactivations served as controls for
each group of trials. This set was identified as follows. First, all the time series samples at which the locomotor phase reached the
mean stimulus onset phase for the given group were identified. Second, samples were eliminated if the length of the current step was
more than 50 ms different from the mean step length for the full dataset. Third, a random subset of ~~1000 of the remaining samples
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was identified. From this set, 50,000 different random subsets of a size equal to that of the given trial group were taken. For each
subset, we computed the sum squared difference between the mean EMG array over the preceding 300 ms and the trial group’s
mean EMG array over the 300 ms preceding stimulus onset. We defined our control trials using the subset for which this sum squared
difference was lowest.

Normalized fractional change was then computed as described above for each trial group, with one difference. Here, in order to
correct fractional change time series for the difference expected by chance due to the use of separate sets of trials, we needed to use
groups of control trials selected using the same method we used to find control trials for each trial group. Thus on each of 25 iter-
ations, we selected a random subset with a size equal to that of the trial group from the ~1000 samples found based on the length
of the current step above. From the remaining samples, we identified 50,000 different random subsets of the same size, computed
the sum squared difference between the mean EMG array over the preceding 300 ms and the mean EMG array over the 300 ms pre-
ceding the samples in the first random subset, and found the subset for which this difference was lowest. On each of the 25 iterations,
time series of the fractional change between EMG arrays for this subset and EMG amrays for the first random subset were found, the
mean time series across the 25 iterations was computed, and this mean was subtracted from the fractional change time series
computed with the actual data to yield the normalized fractional change time series for the given trial group.

EMG during Electrical Stimulation

Analysis of EMG data during electrical stimulation experiments utilized the same filtering and smoothing procedures as were used for
optogenetic inactivation. However, the latency of stimulation response onset was measured using time series that were rectified but
not smoothed and were subsampled only to 10 kHz. Latency measurements for a given stimulation current level were made with data
only from muscles inactive as mice stood still, and utilized the following procedure. First, rectified time series for a given muscle sur-
rounding the time of stimulation onset were subtracted by the mean value during the epochfrom 100 to 10 ms prior to onset. Second,
time series were normalized by dividing by their standard deviation during this same epoch. Third, each time series element was
squared. Fourth, the resulting time series were summed across simultaneously recorded muscles. Fifth, the mean across trials
(n > 25) was taken, and the mean during the epoch from 100 to 10 ms prior to onset was again subtracted. Sixth, the first time point
following onset at which the resulting time series rose above a threshold set to be 7 times the standard deviation of the time series
from 100 to 10 ms prior to onset was determined. Lastly, the last time point at which the time series was below zero prior to this
threshold crossing was defined to be the time of response onset for the given current level.

The relation between stimulation current level, s, and latency, L, was then fit with the following equation for a decaying exponential
with a variable asymptote:

L=a+be e

The constants a, b and ¢ were fit using the simplex method implemented by MATLAB's fminsearch function. The fit result for a was
taken to be the response latency for a given animal.

Electrical stimulation responses during treadmill walking were quantified as follows. Locomotor phase was again defined from
EMG time series using the Phaser algorithm. To ensure that phase was defined in an equivalent manner across sessions, we again
trained the algorithm's phase classifier only once for each animal, using data from just one session. Cur analysis procedures then
followed those of Bretzner and Drew (2005) who used data collected in cats. Stimulation trials were divided into ten groups based
on the locomotor phase of stimulation onset and were aligned by onset time. Outlying trials were removed from each group using
the distance from mean EMG arrays for the first and last half of trials as above. A mean EMG array across trials was computed
for each trial group. The response magnitude for a given muscle for each trial group was computed as the integral over the 50 ms
following stimulation onset, of the difference of the across-trial mean time series and a mean of control trials aligned on the mean
stimulation onset phase for the given trial group. These control trials were identified from time series intervening between stimula-
tions. Response magnitudes were then normalized by the largest response across groups.

EMG during Neural Recording

All comparison between neural and muscle activity used EMG high-pass filtering at 40 Hz, rectified, and convolved with a symmetric
10 ms Gaussian. For analysis of trial-averaged neuronal firing rates, trial segments were defined using EMG measurements. To define
precision pull trials, two types of events were detected for each instance of the behavior: the activation of biceps (Bi) and extensor
digitorum communis (EDC) at the onset of reaching, and the onset of joystick movement during pulling. The activation of Biand EDC
was determined as described above. To identify the onset of joystick pulling, we first took the derivative of the angular encoder signal
and smoothed it with a Savitzky—Golay fitter (MATLAB function smooth, span = 10, order = 3). We then identified the onset of pulling
during eachtrial as the time point at which the resulting trace rose above a threshold set ~6 standard deviations above the mean level
when the shaft is motionless. Epochs for trials aligned to reach onset were set to span 150 ms before to 350 ms after onset. Epochs
for trials aligned to pull onset were set to span 400 ms before to 100 ms after onset. In both cases, these definitions ensure that
epochs begin with a period of quiescence prior to task initiation.

We defined sets of precision pull trials in a manner meant to maximize the similarity between the muscle activation across trials
both within a given recording session and also across different recording sessions. For each animal, we therefore employed a
two-step process: first, we defined a template for the activation of each muscle during the pull task using data from all recording
sessions, then we found the 40 trials from each session in which the EMG activation was most similar to these templates. Templates
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were defined separately for trials aligned to reach onset and pull onset. To construct EMG templates, we first identified, separately for
each recording session, sets of EMG arrays aligned to either reach onset or pull onset. We next smoothed EMG measurements as
described above. EMG measurements were next baseline subtracted as above. We then aimed to identify the subset of size > 25in
which trials were maximally similar in terms of the Euclidean distance between time series arrays. The task of identifying a maximally
similar subset is known as the clique problem, and we solved it here using a routine available on the MATLAB file exchange (Bron-
Kerbosch maximalCliques, downloaded 11/21/2013). After the clique problem was solved yielding trial subsets of each type, we
found the mean EMG array across each subset. To compute across-session EMG templates, we then took the mean across sessions
of these mean arrays for individual sessions. After identifying templates, we then went back through all trials from each session and
identified the 40 for which EMG amrays had the smallest distance from the template.

To delineate steps from EMG recordings during treadmill walking, we used the Phaser algorithm to define a one-dimensional phase
variable from the multidimensional EMG recordings, as above. Here again, to ensure that locomotor phase was defined in an equiv-
alent manner, we trained the algorithm’s phase classifier only once for each animal, using data from just one session. For animals C20
and C31, the algorithm defined 0 radians to be a phase just before the onset of triceps activity. This phase occurred at 0.94 radians
(54°) after the peak in biceps activity for C20, and 0.82 radians (47°) after the peak in biceps activity for C31. For animal C32, the
algorithm set 0 radians much later in the step cycle, so we applied an offset to phase measurements so that 0 radians occurred
0.89 radians (51°) after the peak in biceps activity.

We applied the Phaser algorithm to data from each session, identified each instance when this phase variable reached w and
defined the intervals between these instances as individual step cycles. We found the median step cycle duration across sessions,
discarded step cycles less than half this duration or more than twice this duration, and calculated the median duration again (377 ms
for C20, 387 ms for C31 and 363 ms for C32). We then defined an ideal phase variable time series as one cycle running from - to w at
a constant rate of change over a duration equal to the median cycle duration, followed by a second cycle of the same form. For every
instance at which the phase variable reached m, we took the phase variable segment from one median step cycle duration before to
one median step cycle duration after the instance and computed its distance from the ideal time series. For each session we found
the 50 segments that had the shortest distance from the ideal and found the corresponding EMG array for each spanning the epoch
from one half the median step cycle duration before to one half the median step cycle duration after the instance. From these 50, we
then removed a small number (4%—12%) using the EMG outlier removal procedure outlined above for optogenetic inactivation and
electrical stimulation experiments.

To identify time series segments during which muscles were inactive between precision pull trials, full EMG time series from pre-
cision pull behavior sessions were divided into successive 500 ms segments. For each segment, we measured the summed muscle
activity as the sum of the integrals of the EMG time series for each muscle. The 40 segments having the lowest summed muscle ac-
tivity were used for subsequent analysis of neuronal firing during inactivity. Visual inspection determined that such segments involved
no discernable movement related EMG activity.

Firing Rate Calculation

Firing rate time series were computed at 1 kHz for each isolated unit by defining for each identified spike a time series approximating a
Gaussian function with a mean at the time of the spike and a standard deviation of 10 ms, and which was normalized so that it had a
temporal integral equal to 1. These Gaussian time series were then summed to form a smoothed firing rate time series. All plotting and
analysis of firing rates used these smoothed firing rate time series. Trial averages were assembled using smoothed firing rate seg-
ments fromthe epochs corresponding to those of trials identified using EMG measurements (see above). All analysis discussed inthe
paper or depicted in figures was performed using precision pull trials aligned to reach onset unless otherwise noted. Mean firing rates
were computed as the mean value of trial-averaged firing rates, separately for precision pull and treadmill walking. The lower median
values we find across neuronal mean firing rates compared to other published accounts may result from the spike sorting procedures
we employed, which could have enabled us to better resolve lower firing rate units from multiunit recordings.

Pearson correlations between firing rates and EMG activation for individual muscles were computed (MATLAB function cor) both
using time series from all individual trials (Figures 4C) and from trial averages (Figure 4D). When using all trials, trial segmenits for either
firing rate or EMG were concatenated. P values for the significance of these correlations used all individual trials. Because there were
multiple muscles recorded, p value thresholds for statistical significance were adjusted to account for the multiple comparisons.

1
Instead of setting the threshold at « = 0.05, we used «=0.05 14 of muscles

To estimate the fraction of all neurons whose firing rates were significantly correlated with at least one muscle, we had to account
for the rate at which these significance tests would fall below the adjusted threshold by chance (“false discovery™). As expected,
histograms of p values were roughly flat above p = 0.5. To estimate the rate of false discovery for the correlation of neuronal firing
rates with the activation of each muscle, we assembled histograms for the p values resulting from the correlation calculation having
a bin size equal to the adjusted «. We then defined the number of expected false discoveries for that muscle to be the mean of the
counts within bins starting above p = 0.5, rounding the mean to the nearest integer. To then estimate the number of neurons that will
be correctly assigned as significant with at least one muscle after accounting for the rate of false discovery, we used a simulation-
based approach. For 1,000 different iterations, we took the p values for all neurons for a given muscle and selected a random subset
of p values < «, with the subset having a size equalto the number of expected false discoveries for that muscle, and set those pvalues
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equal to 1. After doing this for all muscles on a given iteration, we then calculated the percentage of cells that still had p values < « for
at least one muscle, and returned the p values to their original values. The percentage of neurons whose firing was significantly corre-
lated with at least one muscle was the mean percentage across all iterations.

Waveform-Based Subtype Assignment

For each isolated unit, the electrode on which spike-related voltage transients were largest in amplitude was identified. The mean
spike waveform was then computed as the mean voltage time series on the identified electrode from 1 ms before spike time to
2 ms afterward for the first 300 recorded spikes. If less than 300 spikes were identified for a given unit, then all spikes were used.
Trough-to-peak spike widths were measured as the duration between the mean spike waveform’s minimum and its subsequent
maxima.

Histograms of waveform widths appeared well-fit (MATLAB function fminsearch) by a sum of two Gaussians for widths ranging up
to 0.8 ms (Figure 4E). We then assumed that two groups of neurons, one with relatively narrow and one with relatively wide wave-
forms, each show a Gaussian distribution of waveform widths over this range of widths. This allowed us to identify width boundaries
such that the expected rate of misclassification as narrow or wide was below a proscribed level. That is, we could find a width bound-
ary so that among those neurons with smaller widths, we would expect only a proscribed fraction to come from the distribution of
wide-waveform neurons. And similarly, we could find a width boundary so that among those neurons with larger widths, we would
expect only a proscribed fraction to come from the distribution of narrow-waveform neurons.

We thus used the means (i and uy) and standard deviations (o and o) for the narrow and wide waveform distributions resulting
from the fit to calculate these two boundaries using the following equations:

erf(x) = % /e Fat

cau)= (1 +erf()(c;v—f";”))

)

Using these, than the expected fraction of neurons classified as wide-spiking that are actually narrow-spiking for a given width
boundary b, my(b), is given by the following:
1 — cdfy(b)
—cdfy(b)) + {1 — cdfy(b))

mW(b):(_I

And the fraction of neurons classified as narrow-spiking that are actually wide-spiking for a given width boundary b, mn(b), is given
by the following:

cdfy (b)

(B} = By + odTe(B)

Using these equations, we found boundaries that yield an expected rate of misclassification of 1% of assigned neurons. The width
boundary below which neurons were classified as narrow-spiking was 0.475 ms. The width boundary above which neurons were
classified as wide-spiking was 0.519 ms. These boundaries left 5 out of our 890 recorded neurons unclassified.

Canonical Correlation Analysis

Canonical correlation analysis (MATLAB function canoncor) was applied to sets of all trial-averaged firing rate and smoothed EMG
time series from a given animal after reducing the dimensionality of each set to four. The choice of four was based on the fact that
plots of neural variance capture versus dimensionality quickly flattened out above 4. Four dimensions also captured essentially all
EMG variance (~99%j). Dimensionality was reduced by performing principal component analysis (MATLAB function princomp)
and retaining the projection of the data onto the first four principal component vectors.

We next identified a temporal offset, ranging from the muscle activation being offset 0 to 60 ms forward in time relative to neural
activity, at which the quality of agreement between the canonical variables that result from canonical correlation analysis was maxi-
mized. The parameter we maximized was computed as follows: for each pair of canonical variables, we took the product between
their correlation, the amount of additional variance captured by the muscle variable, and the amount of additional variance captured
by the neural variable. We then took the mean of this product across all pairs and all animals, arriving at a single scalar value for each
lag tested. There was a reasonable agreement between the lag at which this parameter reached a peak — 31 ms for pull and 36 ms for
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walk. We thus used a lag of 34 ms, the median of the two values. Similar results were obtained when excluding the fourth and last pair
of canonical variables from these calculations.

To provide a baseline for comparing the quality of agreement between canonical variables, we also performed canonical correla-
tion analysis on neural and muscle activities after reformulating the neural data to change its structure. In one case, each neuron’'s
averaged firing rate was replaced by a trial average recomputed after randomily shuffling the sequence of interspike intervals for the
given neuron. Since firing rates are much higher during movement, we only shuffled the intervals occurring during trials of the task. In
a second case, each neuron’s averaged firing rate was replaced by one recomputed after replacing that neuron’s full firing rate time
series with one generated by simulating a Poisson process having an event rate equal to the mean of the trial-averaged firing rate for
the given neuron.

We note here that the canonical variables resulting from this analysis are not constrained to be orthogonal. To compute the addi-
tional variance capture by each canonical variable, we then orthogonalized the sets of neural or muscle canonical variables via the
Gram-Schmidt process. The additional variance captured by a given canonical variable is then the fraction of the variance captured
by the corresponding orthogonalized variable. We also note here that in Figures S4D and 84G, we plot the neural variance captured
as a fraction of that of the dimensionally reduced data, not the full neural dataset. This is necessary for comparison with the results
from the comparator datasets made by reformulating the neural data, in which cases the relation between variance capture and
dimensionality differs substantially compared to the actual data.

Scaling

For each neuron, we computed a scaling index to measure how much changes in the firing of that neuron scale with changes in mus-
cle activation during either of the two behaviors. This was computed by dividing the range of a neuron’s trial-averaged firing rate for a
given behavior by the mean of the ranges of the trial-averaged EMG activity. Scaling values were calculated for neurons having mean
firing rates > 1 Hz during at least one of the two behaviors to exclude neurons with very low firing rates, which may be poorly
estimated.

Correlation Differences

Correlation matrices (Figure 6C; Figures S5A, S50, and S5G) were computed by finding the Pearson correlation between each
possible pair of trial-averaged firing rates having means > 1 Hz during both behaviors to exclude neurons with very low firing rates,
which may be poorly estimated. We note here that Pearson correlation is insensitive to relative magnitude of data series values; no
normalization of firing rates was performed prior to these calculations. Correlation scores for walking used the full trial averaged firing
rate, which comprised one step cycle (363 to 387 ms, depending on the animal). For precision pull, segments of trial-averaged firing
rates from 150 to 50 ms prior to the onset of movement were omitted for these calculations, as they reflectto a lesser extent the neural
activity during the movement. Segments of the firing rate time series starting from 50 ms before movement and lasting for a time equal
to the duration of the step cycle in the given animal were used. Row and column orderings based on correlations for pull or walk data
used the symmetric approximate minimum degree permutation (MATLAB function symamd).

Correlation difference values (Figure 6E; Figures S5C, S5F, and S5l) were computed for each pair of neurons as the absolute value
of the difference between the correlation scores for the two behaviors. We also computed the distribution of such differences that
could be expected under a null hypothesis that the neuronal correlations are the same between behaviors and estimates from
data vary merely because the trials used to compute trial averages for pull and walk are distinct. We computed this distribution
by taking the firing rate segments for each neuron for the two sets of trials and assembling two new sets. One set was comprised
of the firing rate segments from a random half of the trials for one behavior and the segments from a random half of the trials
from the other. The second set was then assembled from the remaining half of trials from each behavior. Trial averages were then
computed for each new set of trials for each neuron, and absolute correlation differences were calculated. A cumulative distribution
of these differences was computed from the permuted firing rates for each of 100,000 different permutations. Monte Carlo-based
tests were performed to probe the differences between the medians of these null distributions and those of the observed data.
P values signifying differences were calculated as {1 + # of permutations for which the median was higher than that of the observed
data) / 100,001.

Analysis of Weighted Sums Defined by Principal Components

Principal components were computed separately for each behavior using matrices of trial-averaged neuronal firing rates, D, each
having rows corresponding to different time points and columns to different neurons. Projections onto individual principal compo-
nents were computed by multiplying D by the column vector comprised by the weight on each cardinal neural dimension for a given
component.

To plot changes in the projection across all dimensions from one set of components (Figures 56D, S6F, and S6H), the vectors re-
sulting from projecting onto individual components were collected in matrices having 4 columns. Each row of these matrices corre-
sponds to a point in a four-dimensional space in which the principal components serve as cardinal dimensions. For each successive
point in these matrices, the Euclidean distance from the first point was calculated, yielding the distance from the activity at time = 0.

To compute the normalized variance in individual epochs (Figures S6E, S6G, and S6l), data matrices D were first divided temporally
into 10 equally sized segments and then the dimensionality of each segment was reduced to 4 by projecting it onto the sets of
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components for the full data matrices, as above. Normalized variance for each segment was then computed as the trace of the
covariance matrix for each of these projected segments, normalized by the trace of the covariance matrix for the full projection matrix
of activity during precision pull. Normalizing by the total variance during the precision pull permits comparison of magnitudes across
the two behaviors.

The alignment index (Figure 7E) measuring alignment between neural activity during pull and walk was computed for sets of trial-
averaged firing rates, muscle activations, and for 1000 different sets of trial-average firing rates computed after regrouping trials as
was done above for correlation score changes. Here again, permuted data reflects a null hypothesis that underlying neuronal cor-
relations are the same between behaviors. For each of the 3 types of data here, we begin with two datasets, one from each behavior,
comprised by matrices D, and D, with each row corresponding to a different time point and each column to a different neuron or
muscle. For each matrix, we then compute matrices P, and P> comprised of principal component vectors. Here we used matrices
with four such vectors as columns. We then computed the alignment index a using

trace (P! -cov(Dy)+P, )
trace (PL-cov(D;)-P,)

Segments of trial-averaged firing rates from 150 to 50 ms prior to the onset of movement were omitted for these calculations. In
each case, the alignment index was computed a second time after reversing the identities of behaviors 1 and 2, and the mean of both
resulting values was used.

Regression

Ridge regression was used to fit two types of models in which the activation of each muscle is determined by neuronal firing rates. In
the first type (“static model”), the trial-averaged activation of each muscle was fit by a linear combination of the trial-averaged firing
rates. For matrices N of firing rates and M of muscle activations in which each row corresponds to a different time point and each
column to a different neuron/muscle, this model has the form M=NW where W is a matrix of weights. Results plotted in Figure S7
were obtained using no temporal offset between neural and muscle activity. Similar results were obtained though when imposing
temporal offsets ranging from the muscle activation being offset 10 to 50 ms forward in time relative to neural activity.

In the second type (“dynamic model™), the trial-averaged muscle activations were fit by a linear combination of trial-averaged
neurcnal firing rates at several different time lags ranging from 0 ms to 50 ms in 5 ms increments. Regressors were the neuronal firing
rate time series at all 11 time lags, corresponding to 11n variables, where n is the number of neurons. This model is equivalent to one
in which muscle activity is fit by a linear combination of the outputs from a linear dynamical system that has neuronal firing rates as
inputs (Kailath, 1980).

For both model types, the ridge parameter was selected via a three-fold cross-validation procedure. Sets of trials were partitioned
into three subsets. The training set was obtained by averaging across trials in two of the three partitions, and a test set was obtained
by averaging across trials inthe remaining partition. The ridge parameter was selected as the one that minimized mean squared error
on the test sets. A different ridge parameter was calculated for each day of recordings, since each day corresponded to different sets
of neurons.

For the fits to each muscle, the difference between behaviors was computed by subtracting the two vectors of weights, taking the
norm of the resulting difference vector, and dividing it by the sum of the norms of the original two weight vectors. These normalized
differences then can range from 0 to 1. To test the null hypothesis that the underlying relationship between firing rates and muscle
activation was the same between behavioral contexts, models were also fit using 1000 different sets of trial-average firing rates
computed after regrouping trials as was done above for correlation score changes. Here again, Monte Carlo-based tests were per-
formed to probe the differences between the medians of these null distributions and those of the observed data. P values were calcu-
lated as {1 + # of permutations for which the median was higher than that of the observed data) / 1,001.

To compute the variance captured by the weight matrices for each model, we orthogonalized each set of weight vectors using the
Gram-Schmidt process, computed the projection of the firing rate matrices N onto the resulting vectors, computed the covariance
matrix for this projection, and then took the trace of that covariance matrix. For the dynamic model, the weights on a given neuron’s
activity at each different lag were summed, resulting in one matrix the same size as W for the static model, before the Gram-Schmidt
process was applied. This ensured that neural dimensions used at each time lag were reflected equally in measurements of variance
captured.

DATA AND SOFTWARE AVAILABILITY

Custom software are available. See Key Resources Table above for details.
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