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Abstract 20 

In the visual system, the response to a stimulus in a neuron’s receptive field can be modulated by 21 

stimulus context, and the strength of these contextual influences vary with stimulus intensity. 22 

Recent work has shown how a theoretical model, the stabilized supralinear network (SSN), can 23 

account for such modulatory influences, using a small set of computational mechanisms. While 24 

the predictions of the SSN have been confirmed in primary visual cortex (V1), its computational 25 

principles apply with equal validity to any cortical structure. We have therefore tested the 26 

generality of the SSN by examining modulatory influences in the middle temporal area (MT) of 27 

the macaque visual cortex, using electrophysiological recordings and pharmacological 28 

manipulations. We developed a novel stimulus that can be adjusted parametrically to be larger or 29 

smaller in the space of all possible motion directions. We found, as predicted by the SSN, that 30 

MT neurons integrate across motion directions for low-contrast stimuli, but that they exhibit 31 

suppression by the same stimuli when they are high in contrast. These results are analogous to 32 

those found in visual cortex when stimulus size is varied in the space domain. We further tested 33 

the mechanisms of inhibition using pharmacologically manipulations of inhibitory efficacy. As 34 

predicted by the SSN, local manipulation of inhibitory strength altered firing rates, but did not 35 

change the strength of surround suppression. These results are consistent with the idea that the 36 

SSN can account for modulatory influences along different stimulus dimensions and in different 37 

cortical areas.  38 



 

 3 

Significance Statement 39 

Visual neurons are selective for specific stimulus features in a region of visual space known as 40 

the receptive field, but can be modulated by stimuli outside of the receptive field. The SSN 41 

model has been proposed to account for these and other modulatory influences, and tested in V1. 42 

As this model is not specific to any particular stimulus feature or brain region, we wondered 43 

whether similar modulatory influences might be observed for other stimulus dimensions and 44 

other regions. We tested for specific patterns of modulatory influences in the domain of motion 45 

direction, using electrophysiological recordings from MT. Our data confirm the predictions of 46 

the SSN in MT, suggesting that the SSN computations might be a generic feature of sensory 47 

cortex.  48 
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Introduction 49 

What circuitry underlies sensory cortical processing? Recent work argues that visual 50 

cortical circuitry is well described by a circuit termed the Stabilized Supralinear Network (SSN) 51 

(Ahmadian et al., 2013; Rubin et al., 2015). The key idea is that neuronal gain – the change in 52 

output per change in input – increases with activation. As a result, the effective connection 53 

strengths between neurons increases with network activation, leading to a wide range of cortical 54 

nonlinear behaviors. 55 

One such behavior involves surround suppression: a decrease in a neuron’s firing rate 56 

when the size of a stimulus exceeds that of the receptive field “center” (Allman et al., 1985; 57 

Jones et al., 2001; Cavanaugh et al., 2002). In the visual cortex, surround suppression is stronger 58 

for strong (high-contrast) stimuli than for weak (low-contrast) stimuli, so that the optimal 59 

stimulus size is larger for weaker stimuli (Sceniak et al., 1999; Pack et al., 2005; Tsui and Pack, 60 

2011).  61 

The SSN circuit explains this observation as follows. For very weak center stimuli, the 62 

cortical region representing the center is weakly activated and has weak effective connection 63 

strengths. Therefore, monosynaptic inputs to the center from the surround, which are primarily 64 

excitatory, dominate over di- and polysynaptic surround-driven local inputs, which are often 65 

inhibitory. As a result, the surround stimulus facilitates the response. With increasingly strong 66 

center activation, due either to a larger or higher-contrast stimulus, recurrent interactions become 67 

increasingly strong and increasingly inhibition-dominated (as observed in mouse V1, Adesnik 68 

(2017)). The surround stimulus then more strongly drives inhibitory neurons, yielding surround 69 

suppression. Thus, contrast-dependent surround suppression emerges from the dynamics of 70 
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recurrent activity, without the need for explicit assumptions about different contrast thresholds 71 

for excitation and inhibition (Rubin et al., 2015). 72 

Although the model has been primarily tested with V1 data, the underlying principles are 73 

generic (Ozeki et al., 2009; Rubin et al., 2015; Miller, 2016). In particular, if the connection 74 

strength between neurons decreases with their distance in a feature space (e.g., preferred 75 

orientation in V1, (Cossell et al., 2015); or preferred direction in MT), then the SSN model 76 

predicts that there should be contrast-dependent surround suppression in that feature space, just 77 

as in retinotopic space (Rubin et al., 2015). MT should show such a decrease in connection 78 

strength with increasing difference in preferred direction, because MT contains a local columnar 79 

structure (Albright, 1984) so that nearby neurons encode similar motion directions (Born and 80 

Bradley, 2005). The SSN thus predicts that MT neurons should show contrast-dependent 81 

surround suppression in the space of motion-direction: stimuli that include a wider range of 82 

motion directions, and thus activate MT neurons with a wider range of motion preferences, 83 

should suppress MT responses; and this direction-domain suppression should be stronger at 84 

higher contrasts and become weaker or absent at lower contrasts. Here we test this prediction in 85 

monkey area MT. 86 

We also test a second prediction. For reasonably strong activation, the excitatory 87 

recurrence becomes strong enough that the network becomes an inhibition-stabilized network 88 

(ISN): a network in which recurrent excitation is strong enough to be unstable (i.e., epileptic), 89 

but the network is stabilized by feedback inhibition (Tsodyks et al., 1997; Ozeki et al., 2009). An 90 

ISN shows a “paradoxical” response: when external excitatory drive is added to inhibitory cells 91 

(as when a surround stimulus drives center inhibitory cells sufficiently strongly to cause 92 

surround suppression), the inhibitory cells lower their sustained firing rates, due to loss of 93 
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recurrent excitation from suppressed excitatory cells. Thus, both excitatory and inhibitory cells 94 

are surround suppressed, as assayed by the inhibition received by excitatory cells being reduced 95 

by surround suppression (Ozeki et al., 2009; Adesnik, 2017). The SSN, and any model that is an 96 

ISN, predicts that surround suppression is little affected by local blockade of GABAergic inputs 97 

(Ozeki et al., 2004; Ozeki et al., 2009; Rubin et al., 2015), because the suppression is caused by a 98 

withdrawal of excitatory input that is not disrupted by local manipulations of inhibition.  99 

We tested the first prediction by designing a stimulus that could be manipulated 100 

parametrically to be larger or smaller in the space of directions, while maintaining a fixed size in 101 

visual space. We found that responses in MT were indeed suppressed by stimuli with a wider 102 

range of motion directions, but only when the stimulus was high in contrast. At low contrast, 103 

neurons integrated over a larger spread of motion directions, as has been observed for spatial 104 

integration (Levitt and Lund, 1997; Kapadia et al., 1999; Sceniak et al., 1999). In addition, we 105 

confirmed that local blockade of GABAergic inhibition does not reduce spatial surround 106 

suppression in MT, just as in V1 (Ozeki et al., 2004). These results are consistent with the idea 107 

that the SSN is a generic mechanism of cortical computation (Miller, 2016).  108 
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Materials and Methods 109 

Electrophysiological Recordings and Visual Stimuli 110 

Two adult female rhesus monkeys (Macaca mulatta, both 7 kg) were used for 111 

electrophysiological recordings in this study. Before training, under general anesthesia, an MRI-112 

compatible titanium head post was attached to each monkey’s skull. The head posts served to 113 

stabilize their heads during subsequent training and experimental sessions. For both monkeys, 114 

eye movements were monitored with an EyeLink1000 infrared eye tracking system (SR 115 

Research) with a sampling rate of 1,000 Hz. All procedures conformed to regulations established 116 

by the Canadian Council on Animal Care and were approved by the Institutional Animal Care 117 

Committee of the Montreal Neurological Institute. 118 

Area MT was identified based on an anatomical MRI scan, as well as depth, prevalence 119 

of direction-selective neurons, receptive field size to eccentricity relationship, and white matter 120 

to grey matter transition from a dorsal-posterior approach. We recorded single units using linear 121 

microelectrode arrays (V-Probe, Plexon) with 16 contacts. 122 

Neural signals were thresholded online, and spikes were assigned to single units by a 123 

template-matching algorithm (Plexon MAP System). Offline, spikes were manually sorted using 124 

a combination of automated template matching, visual inspection of waveform, clustering in the 125 

space defined by the principle components, and absolute refractory period (1 ms) violations 126 

(Plexon Offline Sorter). 127 

Visual motion stimuli were displayed at 60 Hz at a resolution of 1,280 by 800 pixels; the 128 

viewing area subtended 60° × 40° at a viewing distance of 50 cm. Stimuli consisted of random 129 

dot stimuli displayed on a gray background (luminance of 98.8 cd/m2). Half the dots were black, 130 

and half the dots were white, resulting in a constant mean luminance across stimulus conditions. 131 
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At 100% contrast, the black dots had luminance of 0.4 cd/m2, and the white dots had luminance 132 

of 198 cd/m2. The intermediate contrasts were defined as a percentage of the luminance 133 

difference from the gray background luminance, contrast = |(luminance - 98.8 cd/m2) / 98.8 134 

cd/m2|. Animals were trained to fixate on a small dot at the center of the screen. Stimuli were 135 

shown after 300 ms of fixation. Each stimulus was presented for 500 ms, and the animals were 136 

required to maintain fixation throughout the stimulus and for another 300 ms after the end of the 137 

stimulus to receive a liquid reward. In all trials, gaze was required to remain within 2º of the 138 

fixation point in order for the reward to be dispensed. Data from trials with broken fixation were 139 

discarded. 140 

 The direction tuning and contrast response of the single units were quantified using 100% 141 

coherent dot patches placed inside the receptive fields. Offline the receptive field locations were 142 

further quantified by fitting a spatial Gaussian to the neuronal response measured over a 5 x 5 143 

grid of stimulus positions. The grid consisted of moving dot patches centered on the initially 144 

hand-mapped receptive field locations. We confirmed that all neurons included in our analysis 145 

had receptive field centers within the stimulus patch used.  146 

 147 

Size Tuning Stimuli in Direction Space 148 

We designed a stimulus that would allow us to study surround suppression in the motion domain 149 

in a manner that was analogous to studies in the spatial domain. In this conception, the input to 150 

the receptive field “center” is the strength of motion in a range about the neuron’s preferred 151 

direction. The “surround” is then motion in other directions, and the bandwidth of the center plus 152 

surround is the size of the stimulus in direction space. That is, a stimulus that contains motion in 153 

a range of directions spanning 180° is larger than a stimulus that spans a range of 60°. For these 154 
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experiments we did not manipulate the spatial size of the stimulus, but rather fixed it according 155 

to the size of the hand-mapped spatial receptive field. 156 

Our stimuli made use of random dots, each of which could be assigned to either a noise 157 

or a signal pool. The noise dots moved in random directions. The signal dots moved in a range of 158 

directions that straddled the preferred direction of each neuron. All dots moved at the same fixed 159 

speed of 8 or 16º/s, depending on the speed preference of the neuron. In all cases, dot patches 160 

were centered on the receptive fields determined by hand mapping. All conditions were 161 

interleaved randomly, and each stimulus was repeated 20 times. 162 

 We wished to change the size of the stimulus in direction space without changing other 163 

stimulus variables to which the neurons were sensitive. However, changing the size in direction 164 

space entails changing other low-level stimulus parameters (e.g., total number of dots or total 165 

amount of motion energy), which could confound our interpretation of the data. We therefore 166 

used two different methods to vary the stimulus bandwidth in direction space, each of which 167 

entailed changing a different low-level aspect of the stimulus.  168 

In the first method, we kept the total number of stimulus dots fixed, and increased the 169 

motion bandwidth by drawing dots from a noise pool. Thus the total number of dots was 170 

identical for all stimuli, across variations in direction bandwidth. We constructed stimuli that 171 

contained signal dots moving in 1, 3, 5, and 7 directions, and each increase in the number of 172 

motion directions involved recruiting 25% of the noise dots to move coherently in the new 173 

direction (Fig. 1A and Table 1). This paradigm thus allowed us to test the influence of size in 174 

direction space for stimuli comprised of a fixed number of dots and a fixed amount of overall 175 

motion energy. We limited the largest size in direction space to be ±90° from the preferred 176 
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direction in order to avoid null direction suppression at larger sizes (Snowden et al., 1991; Qian 177 

and Andersen, 1994). 178 

However, in this approach, increases in motion bandwidth are yoked to decreases in 179 

noise, which might be expected to affect the strength of inhibitory inputs on their own (Hunter 180 

and Born, 2011). Thus, we also tested neurons using a second method, in which there was no 181 

noise pool, and we increased the size in direction space by simply adding more dots that moved 182 

in different directions. In this case the center stimulus strength (i.e. the strength of motion in the 183 

preferred direction) was constant across conditions, but the total number of dots (and hence the 184 

total motion energy) increased with stimulus size. The lowest dot density used was 2 185 

dots/degree2, which is beyond the density at which MT responses typically saturate, at least for 186 

100% coherence stimuli (Snowden et al., 1992). We again tested four different direction 187 

conditions (Fig. 1B and Table 1). In all cases, the dot size was 0.1°. The dots were initially 188 

plotted at random locations and moved in fixed directions from frame to frame. A dot that left 189 

the patch was replotted at the corresponding location on the opposite boundary of the patch on 190 

the next frame and continued its motion from there, i.e. the lifetime was equal to the stimulus 191 

duration (Qian and Andersen, 1994).  192 

Number of 

directions 

Method 1: varying the noise pool, with 

dot density fixed to 2 dots/degree2 (Fig 

1A) 

Method 2: varying the dot density 

without adding any noise dots (Fig 

1B) 

Signal directions Noise Directions Density 

1 25% at preferred direction 75% Preferred direction 2 dots/degree2 

3 25% at preferred; 25% at ±30° 

from preferred 

50% Preferred; ±30° 

from preferred 

4 dots/degree2 
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5 25% at preferred; 25% at ±30° 

and 25% at ±60° from preferred 

25% Preferred; ±30° and 

±60° from preferred 

6 dots/degree2 

7 25% at preferred; 25% at ±30°; 

25% at ±60°; and 25% at ±90° 

from preferred 

0% Preferred; ±30°, 

±60° and ±90° from 

preferred 

8 dots/degree2 

Table 1. Summary of the two methods of stimulus generation. 193 

 194 

For all size tuning experiments in direction space, we tested each of the 4 sizes at high 195 

and low contrasts. High contrast was defined as 100% contrast, and the low contrast was chosen 196 

online to be around the c50 of the contrast response function obtained with the 100% coherent dot 197 

patch. Offline, we eliminated one neuron for which the response at the lowest contrast was below 198 

2 standard deviations of the spontaneous baseline firing rate. 199 

 200 

Grating, plaid, and pattern selectivity 201 

We tested a subset of MT neurons (n = 65) with a standard measure of motion integration, the 202 

plaid stimulus (Movshon et al., 1985). Direction selectivity for each neuron was first measured 203 

with a 100% contrast drifting sinusoidal grating of spatial frequency of 0.5 cycles/º. Stimulus 204 

size and temporal frequency were matched to the neuron’s preferences. Plaid stimuli were 205 

constructed by superimposing two gratings (Fig. 5A). 206 

We used the standard approach to quantify the component and pattern selectivity of each 207 

neuron (Smith et al., 2005). The partial correlations for the pattern and component predictions 208 

were calculated as, 209 
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Here, rp and rc are the correlations between the plaid response and the pattern and component 210 

predictions, respectively, and rpc is the correlation between the pattern and component 211 

predictions. The partial correlations are z-scored as, 212 

 

 

Where n = 12 is the number of directions. The pattern index was calculated as Zp – Zc. 213 

 214 

Pharmacological Injections 215 

The pharmacological injection system has been previously described (Liu and Pack, 2017). 216 

Briefly, our linear electrode arrays contained a glass capillary with an inner diameter of 40 μm. 217 

One end of the capillary was positioned at the opening between contacts 5 and 6 of the array 218 

(contact 1 was most dorsal-posterior), so that the separation of the injection site from the 219 

recording contacts ranged between 0 and 1000 m. The other end of the capillary was connected 220 

via plastic tubing to a Hamilton syringe for the injection of pharmacological agents with a 221 

minipump. 222 

To effectively manipulate neuronal responses without compromising isolation, we 223 

typically used injections of 0.1-0.2 μL at 0.05 μL/min. For GABA, we used a concentration of 224 

25 mM, which reduced neural activity without silencing it completely (Bolz and Gilbert, 1986; 225 

Nealey and Maunsell, 1994). For gabazine, the concentration was 0.05 mM, and we used 226 

injections of approximately 0.5 μL at 0.05 μL/min. In a few cases, this induced unstable and 227 
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synchronized responses in the nearby neurons (Chagnac-Amitai and Connors, 1989). The 228 

electrophysiological recordings in those sessions were not further analyzed here. 229 

 230 

Data Analysis 231 

MT direction tuning curves r(xd) were characterized by fitting a Gaussian function to the mean 232 

responses using the least-squares minimization algorithm (lsqcurvefit in MATLAB). The 233 

Gaussian function is 234 

 235 

where a scales the height of the tuning curve; b determines the tuning curve width, the direction 236 

tuning width (DW) was defined as full width at half maximum of the fit, i.e. 2.35b; xd is the 237 

motion direction; θ is the preferred direction of motion; and m is the baseline firing rate of the 238 

cell. d(θ, xd) is the shortest distance around the 360 degree circle between θ and xd. The Gaussian 239 

fit to the data was very good in most cases (Median R2 = 0.90 before gabazine injection and R2 = 240 

0.89 after injection). 241 

 The contrast response functions r(xc) were fitted with a Naka-Rushton function, 242 

 

where Rmax scales the height of the contrast response function; n determines the slope; c50 is the 243 

contrast at which the response function achieves half of its maximum response; and m is the 244 

baseline firing rate of the cell. xc is the contrast. 245 

The neuronal size tuning curves r(xs) in retinotopic space were fitted by a Difference of 246 

Error functions (DoE) (Sceniak et al., 1999; DeAngelis and Uka, 2003), 247 
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where Ae and Ai scale the height of the excitatory center and inhibitory surround, respectively. se 248 

and si are the excitatory and inhibitory sizes, and m is the baseline firing rate of the cell. xs is the 249 

stimulus size. The DoE fit to the data was very good in most cases (Median R2 = 0.93 before 250 

gabazine injection and R2 = 0.93 after injection). 251 

The size suppression index (SIS) for each neuronal size tuning curve was calculated as 252 

SIS = (Rm – RL)/Rm, where Rm is the maximum across responses to different stimulus sizes and 253 

RL is the response observed at the largest size. Since using the raw responses is sensitive to noise 254 

at both the maximum response and the response at the largest size, we used the values from the 255 

DoE fits for SI calculations. 256 

Since we only measured the response at 4 sizes in the directional space, we were unable 257 

to fit a DoE function to the directional size tuning curves. Instead, to capture potential 258 

suppressive influences in the direction domain, we calculated a direction integration index from 259 

the raw data IID = (RL – RS) / (RL + RS), where RL is the response observed at the largest size and 260 

RS is the response observed at the smallest size. 261 

 262 

SSN Model Simulations 263 

We first simulated a 1D ring model, which captures putative interactions among neurons 264 

representing different motion directions (Fig. 2A). Details of this model can be found elsewhere 265 

(Rubin et al., 2015). Our model differs in that the ring is 360 degrees in extent (vs. 180 degrees 266 

in Rubin et al., 2015), representing all possible motion directions. There is an excitatory (E) and 267 

inhibitory (I) neuron at every integer position = 0o, 1o, …, 359o, where  represents the 268 

preferred direction of the corresponding E and I cells. We can write the model equation in matrix 269 

notation as, 270 
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 271 

where is the vector of firing rates of the excitatory and inhibitory neurons with preferred 272 

motion direction ,  is the weight matrix of E → E, E → I, I → E, and I → I connections 273 

between neurons separated by angular distance y (measured as shortest distance around the 360° 274 

circle). The connection weights Wab(y) = JabGσdir(y), where JEE = 0.044, JEI = 0.023, JIE = 0.042, 275 

JII = 0.018, Gσdir(y) are a Gaussian function with standard deviation of 64º (Ahmadian et al., 276 

2013). is the convolution where the sum is over all preferred 277 

directions ; h( ) is the vector of external input to the E and I neurons preferring ; and c is 278 

the strength (monotonically related to contrast) of the input. The elements of the vector of input 279 

to the neuron, , are thresholded at zero before being raised to the power n: 280 

 (the operations of thresholding and raising to a power are 281 

applied separately to each element of the vector). k and n are identical for E and I neurons, with k 282 

= 0.04 and n = 2.  is a diagonal matrix of the time constant for E cells, τE = 20 ms, and for I 283 

cells, τI = 10 ms.  284 

 Regarding the model parameter choices, the four amplitudes Jab were constrained to 285 

ensure stability and strong nonlinear behavior. To ensure stability, we require JEIJIE > JEEJII, 286 

meaning feedback inhibition is sufficiently strong. For equal-strength inputs to E and I cells as 287 

used here, the strongest nonlinear behavior also requires JII – JEI < 0 and JII – JEI < JIE – JEE 288 

(Ahmadian et al., 2013). We chose Gσdir(y) to have a standard deviation of 64°, given the 289 

bandwidth of MT direction tuning curves and the idea that cells with more strongly overlapping 290 

tuning curves should more strongly connect to each other; this value can be varied to give a 291 

diversity of surround suppression as observed in the data. We chose n = 2 for the power-law 292 

input-output (I/O) function, consistent with the observation in V1 that neurons have I/O 293 
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functions well described by a power law throughout the full range of firing induced by visual 294 

stimuli, with powers in the range 2-5 (Priebe and Ferster, 2008). At n = 2, k =0.04 gave 295 

reasonable firing rates, but the qualitative behavior is consistent for a large range of n and k. 296 

Finally, we chose the ratio of the time constants for E and for I cells, τE/τI = 2, to help ensure 297 

stability; given that the network is stable, the time constants do not affect the steady-state 298 

network responses, which is what we are modeling here. 299 

We simulated network responses to random dot field stimuli of variable coherence. We 300 

assumed that a coherent dot stimulus of a given direction gives input to MT neurons proportional 301 

to a Gaussian function, of standard deviation 60º, of the difference (shortest distance around a 302 

360o circle) between the neuron’s preferred direction and the stimulus direction. To simulate the 303 

method using noise dots (Table 1, Method 1), the non-coherent (noise) dots gave equal input, 304 

proportional to 1/360, to neurons of all preferred directions. The strength of the stimulus is given 305 

by a parameter c, identified as the “contrast” in Figure 2. As in our electrophysiological 306 

experiments, we used stimuli corresponding to 4 different sizes in direction space (Fig. 1A). 307 

Thus for the smallest size, 25% of the input, h, was modelled as a Gaussian distribution around 308 

the preferred direction (peak of the Gaussian = c/4), while the remaining 75% was spread equally 309 

around the ring (uniform distribution of size (3/4) × c/360). At 2 directions, an additional 25% 310 

was taken from the non-coherent input and added to Gaussian spreads about +/-30° from the 311 

preferred direction (these two Gaussians have peak = c/8; noise amplitude becomes (1/2) × 312 

c/360). 3 and 4 directions followed in a similar manner while the total input strength was kept 313 

constant across sizes. We also simulated Method 2 (Table 1), which used the same set of stimuli 314 

except without a noise background (so that the total input strength grew with increasing number 315 

of directions), and the results were qualitatively similar as presented in Results. 316 
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 317 

Experimental design and statistical analysis 318 

We used two female rhesus monkeys (Macaca mulatta) for electrophysiological recordings in 319 

this study; this is standard for electrophysiological studies involving monkeys. We used the 320 

Wilcoxon rank-sum test to evaluate the difference between the Integration Index at low and high 321 

contrast, and the difference between Direction Tuning Width and Suppression Index before and 322 

after injection of Gabazine. As the Direction Tuning Width and Suppression Index can be 323 

affected by the ability to sample the tuning curves, we performed a bootstrapping analysis to 324 

ensure the robustness of the summary statistics. For each cell, we randomly sampled (with 325 

replacement) 10 trials per direction or size to create a tuning curve and then fitted a circular 326 

Gaussian or DoE to the subsampled tuning curve to generate a new direction tuning width or 327 

suppression index. We generated 100 sample distributions and tested the effects of gabazine 328 

injections with a Wilcoxon signed-rank test. To evaluate the relationship between the Pattern 329 

Index and Direction Tuning Width and the Integration Index, we calculated Pearson correlation 330 

coefficients. All analyses made use of built-in MATLAB functions and custom scripts. The 331 

complete results of the statistical analyses for each experiment can be found in the corresponding 332 

Results section.  333 
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Results 334 

In this section, we first present simulation results for the SSN. We then test a crucial model 335 

prediction with neurophysiological recordings from MT neurons in awake and behaving 336 

macaques. The theoretical and empirical results show that surround suppression in the motion 337 

domain behaves similarly to surround suppression in the space domain, with integration at low 338 

contrasts switching to suppression at high contrasts (Figs. 3 and 4). We also find that pattern-339 

selective cells (as assayed from plaid responses) show greater motion integration than 340 

component-selective cells (Fig. 5). Finally, as predicted by the SSN model, local 341 

pharmacological manipulation of inhibition does not alter spatial surround suppression, although 342 

our methods had the expected effects on directional tuning width (Figs. 6 and 7). 343 

 344 

Stabilized supralinear network predicts contrast-dependent surround suppression in the 345 

direction domain in MT 346 

Previous instantiations of the SSN have considered a model in which connections are defined 347 

either across a retinotopic sheet of the kind found in V1 or across a ring of preferred orientations 348 

(Ahmadian et al., 2013; Rubin et al., 2015; Miller, 2016). Like orientation, motion direction is a 349 

circular variable, but it takes values over 360o rather than 180o as for orientation. Thus to 350 

examine the properties of the SSN in this circular space, we first simulated a ring model ((Rubin 351 

et al., 2015); Fig. 2A) of motion direction space. This represents neurons of varying preferred 352 

directions sharing a common location in retinotopic space. 353 

  In general, the SSN predicts that contrast-dependent surround suppression should occur 354 

in any stimulus feature dimension, provided certain minimal connectivity conditions are met, e.g. 355 

average connection strength between neurons decreases with the dimensional distance between 356 
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them. We accordingly assumed that the strengths of connections between neurons on the ring 357 

decreased with increasing difference in their preferred directions. By analogy with the study of 358 

size-tuning in the spatial domain, we tested the SSN with stimuli of different motion-domain 359 

sizes. We increased the size of the stimulus in direction space by including stimuli at 360 

increasingly wider ranges of directions about the preferred direction (the “center” of the 361 

receptive field). As described in Methods, we considered size or bandwidth 0º (preferred-362 

direction stimulus only), 60º (adding stimuli at +/- 30º about the preferred), 120º (adding 363 

additional stimuli at +/- 60º), and 180º (additional stimuli at +/- 90º). For each motion size, we 364 

examined different levels of stimulus contrast, represented as scaling the strengths of all inputs. 365 

The simulation results (Fig. 2B) show that the model predicts strong direction-domain 366 

surround suppression at high contrast, but not at low contrast. Specifically, at low contrasts (red), 367 

increasing the range of motion directions leads to increased responses with a hint of suppression 368 

for the largest stimulus size, while at high contrasts larger motion-domain stimulus sizes lead to 369 

strong suppression (blue). Intermediate contrasts give an intermediate result (black). These 370 

results change very little with changes in the total number of dots in the stimulus (Fig. 2C), a 371 

factor that we consider in our experiments below (Fig. 4). Thus the model consistently predicts 372 

direction-domain suppression that is analogous to space-domain surround suppression. In the 373 

SSN, the dependence of surround suppression on contrast arises generically from the dynamics 374 

of the SSN in summing inputs, rather than by the assumption of a higher contrast threshold for 375 

inhibition, as in previous models (Somers et al., 1998; Huang et al., 2008; Schwabe et al., 2010; 376 

Carandini and Heeger, 2012). 377 

 378 

 379 
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Surround suppression in direction domain of MT 380 

We tested the model predictions by recording from individual MT neurons, using the same 381 

stimuli as in the simulations. We first show results for the first type of stimulus described above, 382 

in which there was a noise pool of dots moving in random directions. For each neuron we fixed 383 

the physical size of each stimulus according to an estimate of the classical receptive field size. 384 

We then varied stimulus size in the motion domain, as well as dot contrast. Thus for the smallest 385 

stimulus, all the coherent dots moved in the preferred direction of the neuron (Fig. 1A, left), with 386 

the remaining dots in the noise pool moving in random directions. To increase the size of stimuli 387 

in the motion space, we recruited dots from the noise pool and added them to directions around 388 

the preferred direction (Fig. 1A). This manipulation kept the total motion energy and dot density 389 

of the stimulus constant across sizes. 390 

Figure 3A shows the firing rate of an example MT neuron for stimuli of different 391 

contrasts and motion sizes. For the low contrast stimulus (red), firing rate increased with motion 392 

size, while for higher contrasts (blue, black) firing rate decreased with motion size. Thus the 393 

pattern of firing rates for this neuron was consistent with the SSN prediction that MT neurons 394 

would shift from motion-domain integration to suppression as the stimulus contrast was 395 

increased (Fig. 3A). Indeed, just as in the space domain, for large stimuli it is possible to increase 396 

firing rates by lowering contrast (Fig. 3A; Pack et al., 2005).   397 

To examine these effects across the MT population, we calculated the directional 398 

integration index (IID, the difference between responses to the largest and smallest sizes divided 399 

by the sum of these responses; see Methods) for data of the kind shown in Figure 3A for 125 400 

neurons. The IID captures the integration of signals across motion directions, with larger IID 401 

values indicating more integration. Across the population (Fig. 3C) the IID was frequently below 402 
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zero, indicating a suppression of the response when dots activated the directional surround. 403 

Overall the IID was significantly decreased at high contrast compared to low contrast, consistent 404 

with reduced integration at high contrasts (p < 0.001, rank sum test; p < 0.001 for monkey 1 and 405 

p = 0.01 for monkey 2). Note that this is not due to a failure of the low contrast stimuli to elicit a 406 

response from the neurons, as all neurons except one showed responses to the lowest contrast 407 

tested that were significantly above baseline. The one neuron that failed to meet this criterion 408 

was eliminated from further analysis. Overall, these results are similar to previous results in the 409 

space domain in MT (Pack et al., 2005; Tsui and Pack, 2011). However, the mechanisms of 410 

spatial and directional integration for a given cell appeared to be independent, as there was no 411 

correlation between the degree of spatial surround suppression and directional surround 412 

suppression measured at high contrast in the same neurons (Pearson’s r = -0.06, p = 0.46, N = 413 

124). 414 

We also tested 46 neurons using a second stimulus in which there was no noise pool, and 415 

we increased the total number of stimulus dots with size in the direction domain (Fig. 1B). This 416 

stimulus was designed to control for a potential confound in the previous experiment, which kept 417 

the total number of dots constant across stimulus size. In the latter configuration, increases in 418 

direction-domain size were yoked to decreases in the number of noise dots, and because noise 419 

includes motion in all directions, this can be viewed as reduction in the strength of the directional 420 

surround, analogous to the far surround in retinal space (Angelucci and Bullier, 2003; Angelucci 421 

and Bressloff, 2006). The new stimulus was directly analogous to that typically used in size 422 

tuning experiments, in which the stimulus is simply expanded to probe the influence of the 423 

surround. 424 
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We tested this subpopulation of MT neurons with both stimuli, and the results are shown 425 

in Figures 4A and 4B. For the control stimulus, the IID is still significantly higher at low contrast 426 

than at high contrast (Fig. 4A; p = 0.04, rank sum test). Thus integration across direction space 427 

was greater at low contrast, regardless of how size was manipulated. For these neurons, we also 428 

replicated the previous result using the stimulus with a constant total number of dots (Fig. 4B; p 429 

< 0.001, rank sum test). The contrast modulation of IID was not significantly different for the two 430 

stimulus types (rank sum test, p = 0.45). 431 

Of the complete MT population, 65 were also tested with a standard probe of direction-432 

domain integration, the plaid stimulus (Movshon et al., 1985). Our plaid stimuli consisted of two 433 

superimposed sine-wave gratings, moving in directions separated by 120o (Fig. 5A); stimulus 434 

size was again matched to the classical receptive field, and contrast was 100%. From the 435 

resulting data we computed a pattern index (see Methods; Smith et al., 2005), which captures the 436 

extent to which MT neurons integrate the two motion directions; higher values indicate greater 437 

integration (Fig. 5B and C). We found that the pattern index was significantly correlated with the 438 

directional IID, as measured in our direction-size-tuning experiments at both low (Fig. 5D; 439 

Pearson’s r = 0.33, p = 0.01) and high contrasts (r = 0.27, p = 0.03). That is, cells with higher 440 

pattern indices showed less surround suppression in direction space – greater motion integration 441 

-- both at low and high stimulus contrasts. This suggests that area MT might use similar 442 

mechanisms to integrate motion signals for dot stimuli and grating stimuli. We also found that 443 

there was no correlation between the directional motion integration index and the width of the 444 

direction tuning curve, as measured using responses to standard stimuli of drifting dots moving 445 

coherently in a single direction (Fig. 5E; Pearson’s r = -0.08, p = 0.38 for low contrast, r = 0.05, 446 

p = 0.57 for high contrast). 447 
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GABAergic influence on neuronal direction tuning and surround suppression in the spatial 448 

domain 449 

Another prediction of the SSN is that local changes in the strength of inhibition should have little 450 

or no effect on surround suppression, because surround suppression is a result of withdrawal of 451 

network excitation (as well as inhibition), and a local blockade of inhibition will not change 452 

these network dynamics (Ozeki et al., 2009). This is different from conventional models, which 453 

posit that suppression is induced by an increase in the inhibition that a cell receives, so that a 454 

reduction in the inhibition to a given neuron will reduce its surround suppression (Tsui and Pack, 455 

2011). Previous work has confirmed the SSN predictions in anesthetized cat V1, using 456 

iontophoretic injection of GABA antagonists: inhibitory blockade did not reduce surround 457 

suppression (Ozeki et al., 2004). In this section, we examine the effects of pharmacological 458 

manipulation of GABA in MT of awake monkeys. 459 

We first confirmed that gabazine, a GABAA receptor antagonist, robustly modulated 460 

neuronal firing in MT (Thiele et al., 2012). We measured direction tuning using random-dot 461 

stimuli of fixed spatial size, with all dots moving coherently in a single direction (Fig. 6A). We 462 

found that injection of gabazine increased direction tuning width, as found previously (Thiele et 463 

al., 2004; Thiele et al., 2012). In contrast, injections of GABA decreased firing rates across all 464 

directions (Fig. 6E), leading to narrower tuning (Leventhal et al., 2003).  465 

Figure 7A summarizes the influence of gabazine on direction tuning widths for a 466 

population of 38 MT cells: Tuning width increased following the injection, as determined by a 467 

rank sum test (p = 0.04) and verified with a bootstrapping analysis (see Methods; Wilcoxon 468 

signed-rank test; p < 0.001); these increases were particularly noticeable for cells that were 469 

narrowly tuned before the injection, as noted previously in V1 of anesthetized cat (Katzner et al., 470 
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2011). These changes in tuning width were not associated with changes in spontaneous firing 471 

rate, as the changes in spontaneous were modest and did not reach statistical significance (rank 472 

sum test, p = 0.32). Moreover, there was no correlation between gabazine-induced changes in 473 

spontaneous firing and changes in tuning width (Pearson’s r = 0.05, p = 0.78). We did not have 474 

enough data from the GABA experiments to perform statistical analyses, but in all 5 475 

experiments, direction tuning width decreased following injection.  476 

To test the influence of GABA concentrations on surround suppression, we performed 477 

standard (space-domain) measurements of size tuning, using random-dot stimuli (100% 478 

coherence) of different physical extents, with all dots moving in the neuron’s preferred direction 479 

(Fig. 6B). Previous work has shown that these stimuli elicit surround suppression in the upper 480 

and lower layers in MT, but not in layer 4, suggesting that the suppression is generated through 481 

intrinsic connections within MT (Born and Tootell, 1992; Raiguel et al., 1995). This property 482 

makes such stimuli useful for testing the predicted role of inhibitory inputs in the SSN. 483 

 Figure 6D shows size tuning curves from the same MT neuron as in Figure 6C. The pre-484 

injection data (black line) show that the neuron exhibited substantial surround suppression, as the 485 

response was reduced significantly with increasing stimulus size. As for the direction tuning 486 

curve, injection of gabazine increased firing rates in a non-specific manner. However, in this 487 

neuron there was no apparent reduction in surround suppression (Fig. 6D), and this result was 488 

generally true for the MT population (n = 38): The size suppression index (SIS), defined as the 489 

difference between the peak response and the response to the largest stimulus divided by the 490 

peak response, was similar before and after injection of gabazine (Fig. 7B; rank sum test, p = 491 

0.98; bootstrapping analysis followed by Wilcoxon signed-rank test; p = 0.99). Again there was 492 

no correlation between the effects of gabazine on SI and the effects on spontaneous firing 493 
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(Pearson’s r = -0.11, p = 0.52). These results are similar to those found in V1 of anesthetized cats 494 

(Ozeki et al., 2004), despite the much larger volume of gabazine used here. In a smaller sample 495 

(n = 5), we found that injection of GABA did not increase surround suppression, despite a strong 496 

overall reduction in firing rate (Fig. 6F).    497 
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Discussion 498 

Through electrophysiological recordings in awake monkeys, we have found contrast-dependent 499 

surround suppression in MT in a space defined by motion directions. In addition, we found that 500 

local manipulation of the efficacy of GABAergic inhibition had little influence on standard 501 

measures of surround suppression. Both results are consistent with predictions of the stabilized 502 

supralinear network (SSN), previously tested in V1 (Rubin et al., 2015). 503 

 504 

SSN as a unifying motif for normalization in multiple cortical areas 505 

The contrast dependence of surround suppression in the space domain has been observed in both 506 

V1 and MT (Polat et al., 1998; Kapadia et al., 1999; Sceniak et al., 1999; Pack et al., 2005; 507 

Schwabe et al., 2010; Tsui and Pack, 2011). These results have previously been modeled under 508 

the assumption that inhibitory neurons have higher contrast thresholds than excitatory neurons 509 

(Somers et al., 1998; Huang et al., 2008; Schwabe et al., 2010; Carandini and Heeger, 2012). 510 

However, there is little experimental support for this assumption, and some data that contradict it 511 

(Contreras and Palmer, 2003; Song and Li, 2008). 512 

In the SSN, the excitatory and inhibitory units can have the same properties (Rubin et al., 513 

2015). Each unit has a power-law input/output function, but is stabilized by network inhibition 514 

(Ozeki et al., 2009; Ahmadian et al., 2013; Rubin et al., 2015). With low contrast inputs, the 515 

recurrent interactions within the network are weak, so neurons act relatively independently, 516 

summing their feedforward inputs and responding according to their transfer functions. With 517 

higher-contrast inputs, strong recurrent connections within the network provide contrast- and 518 

size-dependent suppression, with size in the spatial and feature (direction) domains playing 519 

similar roles. 520 



 

 27 

The SSN also predicts that the local blockade of GABAA receptors should not reduce 521 

surround suppression (Ozeki et al., 2009). In the SSN, surround suppression is not a result of an 522 

increase in inhibitory GABAergic input, but a withdrawal of both excitation and inhibition. In 523 

contrast, in models in which surround suppression results from an increase in the inhibition 524 

received by suppressed neurons (e.g., Tsui and Pack, 2011), local blockade of inhibition should 525 

reduce or prevent surround suppression. 526 

Modulatory influences in visual cortex are often modeled within the normalization 527 

framework, which is hypothesized to be a generic computation with equal validity across brain 528 

regions and stimulus modalities (Carandini et al., 1997; Reynolds and Heeger, 2009; Carandini 529 

and Heeger, 2012; Krause and Pack, 2014). The normalization model as typically conceived, is a 530 

phenomenological rather than circuit model, in which some form of unnormalized neuronal 531 

response is suppressed by the sum of unnormalized responses in other neurons that constitute the 532 

“normalization pool”. The precise form of normalization, for example whether the normalizing 533 

pool constitutes all neurons or is restricted in some way based on neuronal tuning, must be 534 

matched to fit the particular experiments modeled.  535 

The SSN can be regarded as a circuit instantiation of the normalization model, in that 536 

many SSN results closely match the results of an appropriately constructed normalization model 537 

(Rubin et al., 2015). In the circuit implementation, the form of normalization is determined by 538 

the connectivity. For example, in the SSN, orientation-specific long-range horizontal 539 

connectivity leads to the orientation-selectivity of surround suppression (Rubin et al., 2015); in a 540 

normalization model, this would be explained by assuming that the normalization pool consists 541 

of neurons of similar preferred orientations to the normalized cell. The normalization model does 542 

not explain the mechanism of suppression, and alternative mechanisms yield different 543 
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predictions. For example, if the normalization pool exerted suppression by adding inhibition to 544 

the normalized cells, then one would expect increased inhibition and increased conductance in 545 

normalized (e.g., surround-suppressed) cells, and local GABAergic blockade would reduce or 546 

eliminate the normalization. In the SSN mechanism, normalization typically results from a 547 

decrease in both excitation and inhibition and thus a decreased conductance (Rubin et al., 2015). 548 

 549 

Relationship to motion integration in MT 550 

In MT, the integration of different motion directions has frequently been probed with the plaid 551 

stimuli (Movshon et al., 1985; Smith et al., 2005), comprised of superimposed gratings moving 552 

in different directions. Previous work has distinguished between pattern cells, which respond to 553 

the plaid motion direction, and component cells, which respond to the individual grating motion 554 

directions (Movshon et al., 1985). 555 

In the terminology used here, a plaid stimulus moving in a neuron’s preferred direction 556 

entails component motion confined to the directional surround. Thus for a high-contrast plaid, 557 

the component gratings should suppress the neuron’s response, and this could contribute to the 558 

observed responses of component neurons. Furthermore, component-selective neurons have 559 

small direction centers (i.e. narrow tuning width), so that they do not integrate input from two 560 

gratings moving in very different directions (Rust et al., 2006; Tsui et al., 2010; Khawaja et al., 561 

2013).  562 

Pattern cells have broader direction tuning than component cells (Rust et al., 2006; 563 

Khawaja et al., 2013). Direction tuning, measured from the responses to individual motion 564 

directions, corresponds to the “minimal response field” in visual space, the region in which small 565 

stimuli can activate the cell; this measure does not change with contrast (Song and Li, 2008). Our 566 
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measure of motion integration is not correlated with direction tuning width (Fig. 5E), and is best 567 

related to the “summation field size” in visual space, the size of a stimulus that best drives a cell 568 

before further size increases cause surround suppression. The summation field size, like our 569 

measure of motion integration, shrinks with contrast (Sceniak et al., 1999). We found a weak 570 

correlation between our motion integration index and the pattern index, which quantifies 571 

integration of plaid stimuli (Fig. 5D). These results suggest that the motion-domain summation 572 

field and pattern selectivity are linked, but that summation on its own is insufficient to account 573 

for pattern selectivity. 574 

Pattern cells also show stronger suppression than component cells by stimuli moving 575 

opposite to their preferred directions (Rust et al., 2006). This suggests a direction-domain 576 

analogue of the “far surround” suppression that is found in the space domain; such suppression is 577 

also regulated by contrast both in the direction domain in MT (Pack et al., 2005) and in spatial 578 

surrounds in V1 (Schwabe et al., 2010). Our stimuli did not contain null-direction motion, and so 579 

they would not have probed this component of the MT receptive fields. Nevertheless, an 580 

inference from the existing data is that pattern cells in MT have both larger directional 581 

summation fields and larger (or stronger) directional surrounds. 582 

 It can be argued that random-dot stimuli are larger than gratings in the direction domain, 583 

as they activate a broader range of columns in V1 (Simoncelli and Heeger, 1998). Thus stimuli 584 

composed of multiple dots fields moving in different directions might elicit stronger suppression 585 

than grating stimuli containing a similar number of directions. Evidence in support of this idea 586 

comes from studies that use transparent motion stimuli, comprised of overlapping dot fields 587 

moving in two different directions. These stimuli evoke responses in MT that seem to reflect a 588 

suppression of responses to stimuli that straddle the preferred direction (Xiao and Huang, 2015), 589 
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particularly for pattern cells (McDonald et al., 2014). One prediction of the current work is that 590 

such suppression should be weaker for low-contrast stimuli. 591 

  592 

Functional correlates of integration and suppression 593 

A number of psychophysical studies have drawn a close link between contrast-dependent 594 

responses in MT and visual motion perception. For simple motion discrimination tasks, 595 

performance mirrors spatial processing in MT: for high-contrast stimuli, performance is worse 596 

for large than for small stimuli (Tadin et al., 2003; Liu et al., 2016). Similarly, motion perception 597 

can decrease at high contrasts when the stimulus speed is low, mirroring the contrast-dependent 598 

suppression found in MT (Pack et al., 2005; Seitz et al., 2008). In the direction domain, MT 599 

neurons exhibit higher null-direction suppression when the stimulus is high in contrast (Pack et 600 

al., 2005). This suggests further that suppressive influences are stronger for high-contrast stimuli, 601 

and there is some evidence that motion perception can worsen as the size of the stimulus 602 

increases in the direction domain (Treue et al., 2000; Dakin et al., 2005). Conversely, motion 603 

discrimination with noisy dots can sometimes improve at low contrast (Tadin et al., 2003). Our 604 

results predict the ability to integrate motion signals in the direction domain should 605 

systematically improve at low contrast, as has been found with manipulations of stimulus speed 606 

(Seitz et al., 2008) and spatial size (Tadin et al., 2003). 607 

 608 

Conclusion 609 

A growing body of evidence points to a set of generic computations that are similar across brain 610 

regions (Creutzfeldt, 1977; Barlow, 1985; Miller, 2016) and across sensory modalities 611 

(Mountcastle, 1978; Pack and Bensmaia, 2015). Although this idea is attractive from a 612 
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theoretical standpoint, it remains somewhat speculative. In this work, we have provided an 613 

experimental test of the genericity of one computational model by comparing results in MT with 614 

those obtained previously in V1. The qualitative pattern of results is similar, supporting the 615 

possibility that this model provides a more general framework for modulatory responses and 616 

integration in cortex.   617 
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Figure Legends 756 

 757 

Figure 1. Illustration of the two methods of stimulus generation. A, Illustration of the stimulus 758 

that engages directional surround suppression in MT while the dot density is fixed. B, Illustration 759 

of the stimulus that engages directional surround suppression in MT while the dot density 760 

increases with directional size. 761 

 762 

Figure 2. Stabilized supralinear network can account for surround suppression in both spatial 763 

and direction domains. A, Schematic of the 1D SSN ring model as a direction space analogue of 764 

the visual space model. In the visual space model (top), stimuli of different sizes in visual space 765 

(gray circles) are simulated as input, h(x), of varying width, to a linear 1D grid of excitatory (E, 766 

red) and inhibitory (I, blue) units. The grid positions represent visual space positions. In the 767 

direction space (bottom), there are 360 E and I units, with coordinates on the ring as preferred 768 

directions. A dot stimulus, h(x), moving at a single direction is a Gaussian-shaped input with 769 

standard deviation of 60º. Stimuli including multiple directions simply add such input for each 770 

direction. We considered two methods of adding directions: including a “noise pool” stimulus of 771 

equal input to all directions, and subtracting from the noise pool as we added directions to keep 772 

total input strength unchanged (Fig. 1A); or simply adding additional input as we added 773 

directions, without a noise pool (Fig. 1B). B, Directional surround suppression at high contrast, 774 

but not at low contrast, arises from the dynamics of the model. This simulation result is for the 775 

first method of taking dots from a noise pool to add further directions about the preferred (Fig. 776 

1A). The response at each contrast is normalized to the peak response. C, The simulation result 777 
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for the second method of adding dots to further directions about the preferred without a noise 778 

pool (Fig. 1B). The response at each contrast is normalized to the peak response.  779 

 780 

Figure 3. Surround integration and suppression in the direction domain. A, Surround 781 

suppression occurs in direction space at high contrast, but not at low contrast for an example 782 

neuron. B, Contrast response function for the same example neuron using 100% coherent dots in 783 

the preferred direction. The line indicates the Naka-Rushton function fit. C, Population data for 784 

direction surround integration. Scatter plot of the integration index, IID, at low contrast against 785 

the IID at high contrast (rank sum test, p < 0.001). The marginal distributions are histograms of 786 

the IID (Median at high contrast = 0.002; Median at low contrast = 0.084). Dashed lines in the 787 

histograms show location of IID = 0. 788 

 789 

Figure 4. Additional controls for direction surround integration and suppression. A, Population 790 

data for direction surround integration. Scatter plot of the directional integration index (IID) at 791 

low contrast against the IID at high contrast (rank sum test, p = 0.04). The marginal distributions 792 

are histograms of the IID (Median at high contrast = -0.012; Median at low contrast = 0.018). 793 

Dashed lines in the histograms show location of IID = 0. B, The contrast modulation of IID for the 794 

same 46 neurons as in B, when the number of dots is held fixed by drawing from a noise pool (as 795 

in Fig. 3). The conventions are the same as in panel B (Median at high contrast = 0.003; Median 796 

at low contrast = 0.065). 797 

 798 

Figure 5. Direction integration with plaid stimuli. A, Illustration of the grating (left) and plaid 799 

stimuli (right). B, Direction tuning curve for an example neuron in response to drifting gratings. 800 
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C, Direction tuning curve for the same neuron in response to moving plaids. The dashed line 801 

indicates the component prediction, which is the expected result if the neuron fails to integrate 802 

the motion of the plaid. D, Population data for motion integration. Scatter plot of the pattern 803 

index against the directional integration index (IID) at low contrast (r = 0.33, p = 0.01). E, Scatter 804 

plot of the direction tuning width against the directional integration index (IID) at low contrast (r 805 

= -0.08, p = 0.38). 806 

 807 

Figure 6. Effect of GABA on motion direction and size tuning. A and B, 100% coherent random 808 

dot patches were used to probe the direction and size tuning of MT neurons. C and E, Direction 809 

tuning curve for an example neuron before (black) and after injection of gabazine (C, red) or 810 

GABA (E, blue). The points are the mean responses for each direction. The lines indicate 811 

Gaussian function fits. Direction tuning width (DW) was defined as full width at half maximum 812 

of the fit. D and F, Size tuning curves for an example neuron, plotting the firing rate (mean ± 813 

s.e.m.) as a function of patch size before (black) and after injection of gabazine (D, red) or 814 

GABA (F, blue). The lines indicate difference of error functions fits. The horizontal lines show 815 

the spontaneous firing rate. 816 

 817 

Figure 7. Population data on the effects of gabazine on direction and size tuning. A, Scatter plot 818 

of the direction tuning width before the injection of gabazine against the tuning width after 819 

injection (rank sum test, p = 0.04). Red and black lines represent the medians of the respective 820 

marginal distributions. B, Scatter plot of the neuronal size suppression index (SIS) before the 821 

injection of gabazine against the neuronal SIS after injection (rank sum test, p = 0.98). 822 
















