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Abstract

Complex cognitive behaviors, such as context-switching and rule-following, are
thought to be supported by prefrontal cortex (PFC). Neural activity in PFC must thus
be specialized to specific tasks while retaining flexibility. Nonlinear 'mixed’ selectivity
is an important neurophysiological trait for enabling complex and context-dependent
behaviors. Here we investigate (1) the extent to which PFC exhibits computationally-
relevant properties such as mixed selectivity and (2) how such properties could arise via
circuit mechanisms. We show that PEF'C cells recorded during a complex task show a
moderate level of specialization and structure that is not replicated by a model wherein
cells receive random feedforward inputs. While random connectivity can be effective
at generating mixed selectivity, the data shows significantly more mixed selectivity
than predicted by a model with otherwise matched parameters. A simple Hebbian
learning rule applied to the random connectivity, however, increases mixed selectivity
and allows the model to match the data more accurately. To explain how learning
achieves this, we provide analysis along with a clear geometric interpretation of the
impact of learning on selectivity. After learning, the model also matches the data on
measures of noise, response density, clustering, and the distribution of selectivities.
Of two styles of Hebbian learning tested, the simpler and more biclogically plausible
option better matches the data. These modeling results give intuition about how neural
properties important for cognition can arise in a circuit and make clear experimental
predictions regarding how various measures of selectivity would evolve during animal
training,.

Significance Statement: Prefrontal cortex (PFC) is a brain region believed
to support the ability of animals to engage in complex behavior. How neurons in
this area respond to stimuli-—and in particular, to combinations of stimuli (" mixed
selectivity”)—is a topic of interest. Despite the fact that models with random feedfor-
ward connectivity are capable of creating computationally-relevant mixed selectivity,
such a model does not match the levels of mixed selectivity seen in the data analyzed
in this study. Adding simple Hebbian learning to the model increases mixed selectivity
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to the correct level and makes the model match the data on several other relevant mea-
sures. This study thus offers predictions on how mixed selectivity and other properties
evolve with training.

1. Introduction

1 The ability to execute complex, context-dependent behavior is evolutionarily valu-
s able and ethologically observed [36, 16]. How the brain carries out complex behaviors
s is thus the topic of many neuroscientific studies. A region of focus is the prefrontal
« cortex (PFC), [4, 44, 29, 9], as lesion [42] and imaging [28, 6] studies have implied
s its role in complex cognitive tasks. As a result, several theories have been put forth
¢ to explain how PFC can support complexity on the computational and neural levels
7 [29, 46, 11].

g Observing the selectivity profiles of its constituent cells is & common way to inves-
¢ tigate a neural population’s role in a computation. In its simplest form, this involves
1o modeling a neurcn’s firing rate as a function of a single stimulus, or, perhaps, an addi-
i tive function of multiple stimuli [39, 8, 30|. More recently, however, the role of neurons
1> that combine inputs in a nonlinear way has been investigated [38, 23, 41, 32, 25, 35, 11],
12 often in PFC. Rather than responding only to changes in one input, or to changes in
1= multiple inputs in a linear way, neurons with nonlinear mixed selectivity have firing
15 rate responses that are a nonlinear function of two or more inputs (Figure 1B). Cells
15 with this selectivity (which we just call "mixed”) are important for population coding
7 because of their effect on the dimensionality of the representation: they increase the
s dimensionality of the population response, which increases the number of patterns that
1o a linear classgifier can read out. This means that arbitrary combinations of inputs can
20 be mapped to arbitrary outputs. In relation to complex behaviors, mixed selectivity
21 allows for a change in context, for example, to lead to different behavioral cutputs,
2 even if stimulus inputs are the same. For more on the benefits of mixed selectivity, see
2 [11].

2 Theoretical work on how these properties can arise on a circuit level shows that
25 random connectivity is surprisingly efficient at increasing the dimensionality of the
s neural representation [15, 22, 7, 37, 2, 1, 20]. This means that mixed selectivity can be
o7 observed even without learning. However, learning can greatly improve the ability of
2 a linear readout to generalize and hence to make the readout response more robust to
»e noise and variations in the sensory inputs (see e.g. [11]}. The ideal situation would be
s one in which a neural population represents only the task relevant variables and the
s representation has the maximal dimensionality. In brain areas like PFC, where there
52 is a huge convergence of inputs from many other brain areas, it might be important
s to bias the mixed selectivity representations toward the task relevant variables, which
s can be achieved only with learning,.

35 In this study, we characterize the response of a population of PFC cells in terms of
s the distribution of linear and nonlinear selectivity, the response density, and the clus-
s tering of selectivities. All these properties characterize the dimensionality of neural
s representations and are important for the readout performance. As described above,
s nonlinear mixed selectivity is important for increasing dimensionality. High dimension-
o ality, however, also requires a diversity of responses. We studied this by determining
11 how the preference to different stimuli are distributed across the population. In some
22 lower sensory areas, cells tend to be categorizable—that is, there are groups of cells
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s that display similar preference profiles [14]. More associative areas tend to lose this
u  clustering of cell types. Such categories may be useful when an area is specialized for
s a given task, but diversity is needed for flexibility [35].

4 After characterizing the PFC response, we show that a model with random connec-
w tivity can only partially explain the PFC representation. However, with a relatively
s small deviation from random connectivity—obtained with a simple form of Hebbian
w2 learning that is characterized by only two parameters—the model describes the data
s significantly better.

51 2. Methods

s 2.1, Task Design

53 The data used in this study comes from previously published work [43]. In brief,
s+ two monkeys performed two variants of a delayed match-to-sample task (Figure 1A).
ss In both task types, after initial fixation, two image cues (chosen from four possible)
s were presented in sequence for 500ms each with a 1000ms delay period in between
s the first and second cue. After a second delay period also lasting 1000ms, one of two
s events occurred, depending on the task type. In the recognition task, another sequence
s of two images were shown and the monkey was instructed to release a bar if this test
e sequence matched the initial sample sequence. In the recall task, an array of three
&1 images appeared on the screen, and the monkey had to saccade to the two images from
e the sample sequence in the correct order. Blocks of recall and recognition tasks were
es interleaved during each recording session. Given that each sequence had two different
e« image cues chosen from the four total image identity options and that there were two
es task types, the total number of conditions was 4 x 3 x 2 = 24,

es 2.2 Newral Data

67 Recordings were made using grids with 1 mm spacing (Crist Instrument) and
e custom-made independently moveable microdrives to lower eight dura-puncturing Epoxylite-
s« coated tungsten microelectrodes (FHC) until single neurons were isolated. Cells were
o recorded from two adult rhesus monkeys (Macaca mulatta), one female and one male,
71 and combined for analysis. No attempt was made to pre-screen neurons, and a total
5 of 248 neurons were recorded (with each neuron observed under both task types).

72 For the purposes of this study, firing rates for each neuron were calculated as the
= total number of spikes during the later 900ms of the second delay period, as it was at
75 this point that the identities of all task variables were known. Any cells that did not
s have at least 10 trials for each condition or did not have a mean firing rate of at least
71 spike/sec as averaged over all trials and conditions were discarded. This left 90 cells.

w 2.3 Fano Factor Measurements

70 Noise is an important variable when measuring selectivity. High noise levels re-
s quire stronger tuning signals in order to be useful for downstream areas, and to reach
s significance in statistical testing. Thus, any model attempting to match the selectivity
s2 profile of a population must be constrained to have the same level of noise. Here, we
s measure noise as the Fano Factor (variance divided by mean) of each cell’s activity
s across trials for each condition (spike count taken from later 900ms of the two-object
s delay). This gives 24 values per cell. This is the trial Fano Factor. Averaging over
s conditions gives one trial Fano Factor value per cell, and averaging over cells gives a
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s single number representing the average noise level of the network. Unless otherwise
sz stated, I'Fp refers to this network averaged measure.

8o Another measure of interest is how a neuron’s response is distributed across con-
o ditions. Do neurons respond differentially to a small number of conditions (i.e., a
ot sparse response), or is the distribution more flat? To measure this, the firing rate for
s each condition {averaged across trials) was calculated for each neuron and the Fano
o3 Factor was calculated across conditions. In this case, a large Fano Factor means that
e some conditions elicit a very different response than others, while a small Fano Factor
o5 suggests the responses across conditions are more similar. Averaging across all cells
es gives the condition Fano Factor of the network, or FFg.

o7 See Figure 1C for a visualization of these measures in an example neuron.

os 2.4, Selectivity Measurements

0 A neuron is selective to a task variable if its firing rate is significantly affected
wo by that the identity of that task variable. In this task, each condition contains three
w1 task variables: task type (recall or recognition), the identity of the first cue, and the
w2 identity of the second cue. Therefore, we used a 3-way ANOVA to determine if a
s given neuron’s firing rate was significantly (p<.05) affected by a task variable or com-
ws  bination of task variables. Selectivity can be of two types: pure or nonlinearly mixed
ws (referred to as just "mixed”), based on which terms in the ANOVA are significant. If
we a neuron has a significant effect from one of the task variables, for example, it would
wr  have pure selectivity to that variable. Interaction terms in the ANOVA represent
we honlinear effects from combinations of variables. Therefore, any neurons that have
we significant contributions from interaction terms as determined by the ANOVA have
1o nonlinear mixed selectivity. So, for example, if a neuron’s firing rate can be written as
w FR= f(Xyp, Xoo, Xpret, b), that neuron has pure selectivity to task type (T'T), pure
s selectivity to cue 2 {C2) and mixed selectivity to the combination of task type and
uz cue 1 (TTC1), with b as a bias term and f a linear function of its arguments. Note
1= that having pure selectivity to two or more task variables is not the same as having
us  nonlinear mixed selectivity to a combination of those task variables.

e 2.5 Clustering Measurement

17 Beyond the numbers of neurons selective to different task variables, an understand-
1e  ing of how preferences to task variable identities cluster can inform network models.
e For this, we use a method that is inspired by the Projection Angle Index of Response
o Similarity (PAIRS) measurement as described in [35]. For this measure each neuron
121 18 treated as a vector in selectivity space, where the dimensions represent preference
122 10 a given task variable identity {Figure 1D). To get these values, neurcnal responses
15 are fit with a general linear model (GLM) to find which task variable identities sig-
12+ nificantly contribute to the firing rate. Note that this gives a beta coefficient value
15 for task variable identities, such as cue 1=A, rather than just each task variable, such
126 as cue 1. It does not include interaction terms. The reason for this is that, given
127 the relatively low number of trials, the high dimensional full GLM model would be
e difficult to confidently fit. Furthermore, analysis of clustering in a high-dimensional
1o space with a relatively small number of neurons would be difficult to interpret. The
0 beta values found for each cell via this method are shown in Figure 3C (non-significant
s coefficients—those with p>.05—are set to 0).



bioRxiv preprint first posted online May. 2, 2017, doi: hitp:/dx.doi.org/10.1101/133025. The copyright holder for this preprint (which was
not peer-reviewed) is the author/ffunder. It is made available under a CC-BY-NC 4.0 International license.

Low
dimensional

A. B_ B=2: B=4:

Pure Selectivity

Neuron 3
rate

Sample sequence (O(\'L
ﬁﬁﬁ—‘ : . \Aa‘)(b@
() w
(=3 [=
5] 15}
o o
' ]
-4 -4
e . . =] Value of A Value of A
Fixation = near Mixed Selectivity /Ve
irst cue L
1000ms TP one-object - o g farg’” i
disla econd - 7] c
y cue Twao-object g F o
1,000 ms . delay a a. ™ High
] g = di ional
1,000 ms 2 o | ! I §o imensional
Value of A Value of A g2
Test sequence in recognition task ) . . =z \)(DQQ'
Nonlinear Mixed Selectivity T\@\,&e
) L]
wn wn
: 5
Match
= Bl .|
¥ : :
& J Value of A Value of A
C /V@uron
I — . FF ‘a7
c
Non-match | 4 . — 40r D. Preference
r;‘ = to Task
2 Type= Recall
500 ms 30+
1,000 ms P
mo9 FF
3 : "
Test i Il task 5 . Poor .
est sequence in recall tas E’ 20+ - - i - F
= § . et q
— i : v & i< . Preference to
¥ o s iebRpgL iy Cue 2-8
L ]
/4 - ¥ : :
/I - :
E A 0— ) Preference
- Cue 2: B C D A c D A B D A B c
Cue 1: A B C D to Cue 1=A

Task: Recall

Figure 1: Description of prefrontal cortex data and relevant measures of selectivity A.) Task Design. In both
task types, the animal fixated as two image cues were shown in sequence. After a delay the animal had to either
indicate that a second presented sequence matched the first or not ("recognition”) or saccade to the two images
in correct order from a selection of three images ("recall”). B.) What nonlinear mixed selectivity can look like
in neural responses and its impact on computation. The bar graphs on the left depict three different imagined
neurons and their responses to combinations of two task variables A and B. The black neuron has selectivity
only to A, as its responses are invariant to changes in B. The blue neuron has linear mixed selectivity to A and
B: its responses to different values of A are affected by the value of B, but in a purely additive way. The red
neuron has nonlinear mixed selectivity: its responses to A are impacted nonlinearly by a change in the value of
B. The figures on the right show how including a cell with nonlinear mixed selectivity in a population increases
the dimensionality of the representation. With the nonlinearly-selective cell (bottom), the black dot can be
separated with a line from the green dots. Without it (top), it cannot. C.) A depiction of measures of trial-to-
trial noise (F'Fr) and the distribution of responses across conditions (F'F). The x-axis labels the condition,
each dot is the firing rate for an individual trial and the crosses are condition means used for calculating I'F
(data from a real neuron; recognition task not shown). D).} Conceptual depiction of the clustering measure.
Each cell was represented as a vector (blue) in a space wherein the axes (black) represent preference for task
variable identities, as determined by the coeflicients from a GLM (only three are shown here). The clustering
measure determines if these vectors are uniformly distributed.
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132 The coeflicients derived from the GLM define a vector in a 7-D vector space for each
155 neuron (see Figure 1D for a schematic). This clustering method compares the distri-
122 bution of vectors generated by the data to a uniform distribution on the hypersphere
135 in order to determine if certain combinations of selectivities are more common than
s expected by chance. In [35] this comparison is done by first computing the average
1w angle between a given vector and its k nearest neighbors and seeing if the distribution
e of those values differs between the data and a random population.

130 That approach is less reliable in higher dimensions, therefore we use the Bingham
o test instead [24]. The Bingham test calculates a test statistic: & = @n(Tr(Tz) —319).
11 This statistic, which we refer to as the clustering value, measures the extent to which
w2 the scatter matrix, T, (an approximation of the covariance matrix) differs from the
us identity matrix (scaled by 1/p), where p and n are the dimensions of the selectivity
s space (7) and the number of cells (90}, respectively. The higher this value is, the more
us the data deviates from a random population of vectors wherein selectivity values are
us 11D, Thus, a high value suggests that neurons in the population cluster according to
w7 task variable identity preferences. In order to put this clustering value into context
us  we compared the value found from the data to two distributions: one generated by
wue shuffled data and one generated from data designed to be highly clustered. For the
o shuffled data, we created "fake” cell vectors by shuffling the selectivity values across
151 all cells. For the clustered data, we created 3 categories of fake cells, each defined by
152 pure selectivity to two specific task variable identities. A population of 90 cells was
152 created by combining 30 cells from each category (the population was also designed to
15« have the same average firing rate and F'Fr of the data). This results in a population
155 that has 3 clear clusters of cell types in selectivity space. 100 populations based on
156 each type of fake data were created in order to generate distributions that represent
157 random and clustered data.

158 Using the Gine-Ajne test of uniformity on the hypersphere ([13]) gives very similar
5o results to the Bingham test results.

w0 2.6, Circuit Model

161 To explore the circuit mechanisms behind PFC selectivity, we built a simple two-
102 layer neural model, modeled off of previous work 2| (see Figure 4A for a diagram). The
165 first layer consists of populations of binary neurons, with each population representing
1« a tagk variable identity. To replicate a given condition, the populations asscciated
1es with the task variable identities of that condition are turned on (set to 1) and all
s Oother populations are off (set to 0). Each population has a baseline of 50 neurons. To
o7 capture the biases in selectivities found in this dataset (particularly the fact that, in
e the 900ms period we used for this analysis, many more cells show selectivity to task
s type than cue 2 and to cue 2 than cue 1), the number of neurons in the task type and
o cue 2 populations are scaled by factors that reflect these biases (80 cells in each task
i1 type population and 60 in each cue 2 population). The exact values of these weightings
1z do not have a significant impact on properties of interest in the model.

172 The second layer represents PFC cells. These cells get weighted input from a subset
1= of the first layer cells. Cells from the input layer to the PFC layer are connected with
175 probability .25 (unless otherwise stated), and weights for the existing connections are
s drawn from a Gaussian distribution (uw = .207, and ow = pw unless otherwise
w7 stated. Because negative weights are set to 0, the actual connection probability and
s oy may be slightly lower than given).
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179 The activity of a PFC cell on each trial, £, is a sigmoidal function of the sum of its
w0 Inputs:

T’E = kqﬁ(z wijaf;- + Eil - @z)
J

i =

H) = 1 1
€y~ N(0,04%) oa=apy

181 where x; is the activity (0 or 1) of the 4** input neuron and wi; 1s the weight from

w: the 5% input neuron to the " output neuron. ©; is the threshold for the #" output
122 neuron, which is calculated as a percentage of the total input it receives: ©; = A¥w;;.
1« The A value is constant across all cells, making © cell-dependent. k scales the responses
15 S0 that the average model firing rate matches that of the data.

186 Two sources of noise are used to model trial-to-trial variability. €4 is an additive
17 synaptic noise term drawn independently on each trial for each cell from a Gaussian
s distribution with mean zero. The standard deviation for this distribution is controlled
1o by the parameter a, which defines ¢4 in units of the mean of the weight distribution,
10 fw. The second noise source is multiplicative and depends on the activity of a given
121 cell on each trial:

gt~ Nt ont)
(2)

TpE = mry

192 Thus, the final activity of an output PFC cell on each trial, %}, is drawn from a
s Gaussian with a standard deviation that is a function of rf. This standard deviation is
1« controlled by the parameter m. Both m and a are fit to make the model FFp match
1es  that of the data.

195 To make the model as comparable to the data as possible, ten trials are run for
o7 each condition and 90 model PFC cells are used for inclusion in the analysis.

s 2.7, Hebbian Learning

100 A simplified version of Hebbian learning is implemented in the network in a manner
a0 that captures the "rich get richer” nature of Hebbian learning while keeping the overall
201 input to an individual cell constant. In traditional Hebbian learning, weight updates
202 are a function of the activity levels of the pre- and post-synaptic neurons: Aw;; =
o2 g{2;,%;). In this simplified model we use connection strength as a proxy for joint
oo activity levels: Awg; = g{w;). We also implement a weight normalization procedure
a5 s0 that the total input to a cell remains constant as weights change.

206 To do this, we first calculate the total amount of input each output cell, , receives
w7 from each input population, p:

P __
JEp

208 The input populations {each corresponding to one task variable identity) are then

7



bioRxiv preprint first posted online May. 2, 2017; doi: http://dx.doi.org/10.1101/133025. The copyright holder for this preprint {(which was
not peer-reviewed) is the authorfunder. It is made available under a CC-BY-NC 4.0 International license.

a0 ranked according to this value. The top Np populations according to this ranking
s (that is, those with the strongest inputs onto the output cell) have the weights from
211 their constituent cells increased according to:

wy = (L+nwy, j€ Py (4)

2 Where 7 is the learning rate (set to .2 unless otherwise stated). After this, all weights
213 into the cell are normalized via:

P
0

> i1 Wi

2 Note, the numerator in the second term is the sum of all weights into the cell before
a5 Han. 4 is applied and the denominator is the sum after it is applied.

216 In this work, two versions of Hebbian learning are tested. In the unrestricted, or
a7 "free”, learning condition described above, the top Ny populations are chosen freely
sis from all input populations (equivalently, all task variable identities) based solely on
210 the total input coming from each population after the random weights are assigned.
20 The alternative, "constrained” learning, is largely the same, but with a constraint
21 on how these top Ny populations are chosen: all task variables must be represented
22 before any can be repeated. So, two populations representing different identities of
w25 the same task variable (e.g., cue 1 A and cue 1 B) will not both be included in the
222 N, populations unless both other task variables already have a population included
w25 (which would require that Ny > 3). So, with N = 3, exactly one population from
s2s each task variable (task type, cue 1, cue 2) will have weights increased. This variant
27 of the learning procedure was designed to ensure that inputs could be mixed from
2s  different task variables, to increase the likelihood that mixed selectivity would arise.
20 Both forms of learning are demonstrated for an example cell in Figure 4B.

230 In both forms of learning, the combination of weight updating and normalization
231 18 applied to each cell once per learning step.

ue 2.8, Toy Model Calculations

232 To make calculations and visualizations of the impacts of learning easier, we use a
s further simplified toy model (see Figure 8A (left) for a schematic). A cell in this toy
235 model is similar to that in the full model, but instead of a sigmoidal nonlinearity, the
s35  heaviside function is used. The toy model has two task variables (T1 and T2) and
s5r  each task variable has two possible identities (A or B). Four random weights connect
238 these input populations to the output cell: W4, Wig, Waus, Wsp. Just as in the full
230 model, on each condition, exactly one task variable identity from each task variable
a0 18 active (set to 1). This gives four possible conditions, each of which is plotted as a
w1 point in the input space in Figure 2. The threshold is denoted by the dotted lines. If
w2 the weighted sum of the inputs on a given condition is above the threshold, the cell is
s active (green), otherwise it is not.

24 The toy model follows the same learning rules defined for the full model. Examples
ws  of the impacts of learning on the representation of the 4 conditions are seen in Figure
a5 2A and B. In A (top), random weights cause the cell to have pure selectivity to T2.
a7 After a learning step that consists of increasing the weights from the two strongest
s input populations, T2B and T1B, and then normalizing all weights (N = 2, learning

8
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Figure 2: Signal and noise representation for the toy model shown in Figure 8A. Strength of weights from the
4 input populations are given as arrows in (A and B) and the threshold for the heaviside function is shown as
a dotted line. The cell is active for conditions above the threshold (green). Weight arrows omitted for visibility
in (C and D). A.) Learning causes the representation of conditions to change. This can change selectivity in
multiple ways. Shown here: pure selectivity turns into mixed selectivity (top) and mixed selectivity turns into
pure (bottom). B.) Constrained and free learning can lead to different signal changes. Constrained learning
(top) guarantees that one population from each task variable is increased. This ensures that the representation
spreads out. In this case, the cell goes from no selectivity to mixed selectivity. With these starting weights,
free learning increases hoth populations from T2, and the cell does not gain selectivity. C.) Noise robustness
can be thought of as the range of thresholds that can sustain a particular type of selectivity. Relative noise
robustness of mixed and pure selectivity depends on the shape of the representation. « is the ratio of the
differences between the weights from each task variable (top). In the two figures on the bottom, blue (red)
dotted lines show optimal threshold for pure (mixed) selectivity and shaded areas show the range of thresholds
created by trialwise additive noise that can exist without altering the selectivity. When o < 2, mixed selectivity
is robust to larger noise ranges (bottom left). When o > 2, pure selectivity is more robust (bottom right).
Given normally-distributed weights, o > 2 is more common. D. Two example cells showing how selectivity
changes with changing A. Sets of weights for both cells are drawn from the same distribution. The resulting
thresholds at 3 different A values (labeled on the right cell but identical for each) are shown for each cell.
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e rate is 1, weights sum to 10), the cell has lost its pure selectivity and now has nonlinear
20 mixed selectivity. This happens because the T1B-T2A condition was pulled over the
st threshold by the increase in T1B weight. In another circumstance (bottom), the cell
2 starts with nonlinear mixed selectivity. But the decrease in the weight from T1A
;53 with learning pulls the T1A-T2B condition beneath the threshold, resulting in pure
o2 selectivity. As the learning process continues until the weights plateau (right column},
255 the new selectivities persist.

256 The changes in selectivity with learning are the result of the representation of the
»s7 four conditions being expanded. Constrained learning is better able to achieve this
s55 expansion. The reason for this is shown in Figure 2B. Unlike Figure 2A, this cell
s starts off with its two strongest inputs coming from the same task variable (T2). In
w0 free learning (bottom), these inputs get increased while the two from T'1 get decreased.
w1 T'his shrinks the representation along the T1 dimension and only increases it slightly
se2  along the T2 direction. Thus, the selectivity of this cell {no selectivity) doesn’t change.
ses With constrained learning (top), the representation is expanded in both directions (as
¢ ONe input from each task variable is increased and the other decreased), and the cell
s gaing mixed selectivity.

266 While some cells will show changes in selectivity, changes in the representation also
w7 strongly impact noise robustness. Because additive noise functions like a change in
s threshold, it can cause a cell’s response to flip. Trialwise additive noise drawn from a
o Mmean-zero distribution creates a range of effective thresholds centered on the original
a0 threshold value, and a cell’s selectivity will only remain intact if the range of thresholds
o1 that support its selectivity is larger than the noise range. Therefore, a cell’s selectivity
s72 18 more noise robust if there is a larger range of threshold values for which its selectivity
o2 doesn’t change. To explore noise robustness in this model, we will define:

AmEW1B—W1A AyEWQB—WQA CMEAL./AZE 1 (6)

o« Thus, @ is the ratio of the side lengths of the rectangle formed by the four conditions
o5 (see Figure 2C, top). Without loss of generality, we define the larger of the two sides
ars  ag associated with T2, Wop > Waya, and Wig > Wia.

a17 For the cell to display pure selectivity to T2, the following inequality must hold:

Wip + Way <O <Wia +Wap (7)
ars Therefore the range of thresholds that give rise to pure selectivity is:

(Wia+Wap) — (Wip + Was) = (Wap — Waou) + (Wia — Wig)

— Ay A, = Ao — 1) ®)

s The analogous calculations for mixed selectivity (assuming the T1B-T2B condition is
w0 active only, but results are identical for TIA-T2A being the only inactive condition)
231 are.

Wia+ Wop <© < Wip + Wap

9
Wig +Waop — (Wia +Wap) = (Wip — Wia) = A, ©)

10



bioRxiv preprint first posted online May. 2, 2017; doi: http://dx.doi.org/10.1101/133025. The copyright holder for this preprint {(which was
not peer-reviewed) is the authorfunder. It is made available under a CC-BY-NC 4.0 International license.

s Thus, pure selectivity is more noise robust than mixed selectivity when « > 2. This
=3 imbalance can be seen in Figure 2C, where the bottom left panel shows that the range
s« Of thresholds that support mixed selectivity (red shaded area) is larger than that of
s pure selectivity (blue shaded area) when a < 2. The right panel shows the reverse
s pattern, when o > 2. Here, the dotted colored lines show the optimal (most noise
7 robust) threshold for each selectivity type.

288 Now we show that, given weights drawn at random from a Gaussian distribution,
e (¢ > 2 is more common than o < 2. The argument goes as follows: because A,
20 and A, are differences of normally distributed variables, they are themselves normally
sor  distributed (with g = 0, ¢ = 20,). The ratio of these differences is thus given
22 by a Cauchy distribution. However, because o represents a ratio of lengths, we are
203 only interested in the magnitude of this ratio, which follows a standard half-Cauchy
o0 distribution. Furthermore, « is defined such that the larger difference should always
25 be in the numerator. Thus,

2

Pl 2 ) =1 — /1/2 7r(1—2|—uQ) — 5003 (10)

206 Therefore, the majority of cells can be expected to have o > 2 with random weights.
207 This means that most cells have a representation that leads to higher noise robustness
20 for pure selectivity than for mixed.

200 This comparison of noise robustness, however, assumes an optimal threshold for
w0 each type of selectivity. But selectivity (in the absence of noise) and noise robustness
a1 change as the threshold varies. Here, the threshold is defined as a fraction of the
w00 total weight going into the cell: ©® = AXWW. As we increase A then, the threshold is
w02 a line with slope of -1 that moves from the bottom left corner up to the top right.
w0 Examples of this are shown in Figure 2D. With the smallest A, neither example cell has
w5 selectivity. With the middle A value Cell 1 gains mixed. Cell 2 gains pure selectivity,
w00 which it retains at the higher A, while Cell 1 switches to the other type of mixed. A
wr  low A is thus conducive to the type of mixed selectivity where the cell is active in all
sz but one condition, while a high A can create the opposite type of mixed selectivity.
w0 Pure selectivity can come from a range of A in the middle.

310 If X is low, for example, a cell may still achieve pure selectivity, but it will likely
a1 do so with low noise robustness, as the threshold will be very near to the condition for
sz mixed selectivity.

313 To investigate how noise robustness changes with A, we generate a large (10000)
s population of cells, each with four random input weights (drawn from a Gaussian with
15 positive mean. Qualitative results hold for many weight/variance pairs. Weights are
ss  strictly non-negative), and calculate the size of the additive noise shift needed to cause
s each cell to lose its selectivity {(whichever it has). For each type of selectivity, we plot
15 these noise values in the form of a cumulative distribution function: Figure 7B plots
30 the fraction of cells that will lose their selectivity at a noise value less than or equal
30 Lo that given on the x-axis. This function depends on the threshold, and so is plotted
a1 for different A values.

393 To synthesize this, we plot the noise value at which 50% of cells have lost selectivity,
223 as a function of A (Figure 7C, noise values are normalized by the maximum value).
s On the same plot we show the percent of cells that have mixed and pure selectivity in
15 the absence of noise. The percent of cells that ultimately demonstrate selectivity will
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w25 depend on the percent present without noise and the noise robustness. For example,
sr starting at A = .25 and going to A = .35, the percent of cells with mixed selectivity
15 grows, while its noise robustness decreases. So, depending on the noise level, the
10 amount of cells with mixed selectivity may grow or shrink as A changes this way. This
10 plot is used to understand the choice of threshold in the model.

331 Assuming a fixed threshold, we then explore how noise robustness varies with
12 learning. In doing so, it is important to note the effect of starting from a A value
;33 that has unequal noise robustness for pure and mixed selectivities. Given a fixed noise
s value, if most cells with pure selectivity are already robust to it, an increase in noise
15 robustness for pure will only have a moderate effect on the population levels of pure
ss selectivity, Conversely, if most mixed cells have noise robustness less than the current
;7 Noise value, an increase in that robustness could strongly impact the population. In
135 Lhe same vein, a decrease in robustness will impact the pure population more than the
e mixed.

340 In the case of constrained learning with Ny = 2, A, and A, both increase. Accord-
s ing to Eqn. 7 and Eqgn. 9, robustness to both selectivities increases with A, which is
s2  why constrained learning causes increases in both mixed and pure selectivity (Figure
343 GA)

242 The relative increase in robustness will depend on how « changes. It can be shown
s that if % % % then A, will expand more than A, and o will decrease, meaning
us  the increase in noise robustness favors mixed selectivity. If %—ﬁ ;- %, then a will
wr grow, and the increase in noise robustness will be larger for pure than mixed. Because
us  the latter condition is less common, pure noise robustness doesn’t increase as much as
se mixed {see Figure 8C, where constrained learning with Ny = 2 is used.)

350 When Ny = 1, only one side length will increase and the other decrease, leading
11 Ultimately to lower length of the shortest side but a larger ratio between the sides
12 (80 more robustness to noise for pure selectivity and less for mixed). This is straight-
=2 forward for Whop > Wip (A, grows and A, shrinks) and contributes to the increase
4 N pure selectivity with Ny = 1 in Figure 6A. However, if Wigp > Wag, o will first
155 decrease as A, grows and A, shrinks. This is good for mixed noise robustness. The
55 ratio then flips (A, > A,), and A, (the side that is now shorter) is still shrinking and
57 A, is growing. In this circumstance, if A, /A, becomes less than %, the representation
sz will favor pure noise robustness over mixed. This pattern is reflected in the shape
e of the mixed selectivity changes seen with Ny = 1 in Figure 6A {mixed selectivity
0 increases then decreases). This flipping of « is possible for some cells when Ny = 2 if
361 %—i < %f, but the weights would likely plateau before o became less than %, and so
2 the drop in mixed selectivity does not occur.

265 In free learning with Ny = 2, cells that have W4 > Wsp, will see both weights
s from T1 increase and (due to the weight normalization) both weights from T2 decrease.
w5 Because the weights change in proportion to their value, A, increases, A, decreases
ws  and so a goes down. This leads to more noise robustness for mixed and less for pure.
wr 1f Woy > Wip, these trends are reversed and the cell has more noise robustness for
ws  pure and less for mixed.

we 3. Results

170 In this study, we analyzed various measures of selectivity of a population of PFC
s cells recorded as an animal carried out a complex delayed match-to-sample task.

12
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Figure 3: Results from the experimental data. A.) Selectivity profile of the 90 cells analyzed. A cell had pure
selectivity to a given task variable if the term in the ANOVA associated with that task variable was significant
(p<.05). A cell had nonlinear mixed selectivity to a combination of task variables if the interaction term for
that combination was significant. On the right of the vertical bar are the percent of cells that had at least one
type of pure selectivity (blue) and percent of cells that had at least one type of mixed selectivity (red). B.)
Values of firing rate, F Fr, and F I for this data. Each open circle is a neuron and the red markers are the
population means. C.) Beta coefficients from GLM fits for each cell. The first regressor corresponds to task
type, regressors 2-4 correspond to cue 1 and 4-7 to cue 2. These values were used to determine the clustering
value D.) Histograms of clustering values generated for different distributions. The shuffled data comes from
shuffling the selectivity coefficients across cells. The clustered data is designed to have 3 different categories of
cell types defined according to selectivity. The red dot shows the data value.
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sz Through this process, several properties of the representation in PFC were discov-
srs ered and a simple circuit model that included Hebbian learning was able to replicate
s them. These properties, combined with the modeling results, provide strong support
55 for the notion that PFC selectivities are the result of Hebbian learning in a random
are network.

s 3.1, PEC Population is Moderately Specialized and Selective

178 The average firing rate of of cells in this population was 4.90+ /-5.14 spikes/s.
o Fano Factor analyses provided measurements of the noise and density of response
w0 in the data (Figure 3B). The average value of the across-trial Fano Factor (FFp =
e 2.86+4 /—1.68), shows that the data has elevated levels of noise compared to a Poisson
2 agsumption. Looking at FFo—a measure of how a cell’s response is distributed across
sy conditions—suggests that PFC cells are responding densely across the 24 conditions
e (FFe =111+ / — 1.19, for comparison, at the observed average firing rates, a cell
w5 that responded only to a single condition would have F Iy =~ 120, one that responded
ws 10 two conditions would have FFe = 57). This finding suggests that these cells are
w7 not responding sparsely and are not very specialized for the individual conditions of
s this task.

389 Each condition is defined by a unique combination of 3 task variables: task type,
0 identity of image cue 1 and identity of image cue 2 (Figure 1A). Selectivity to task
so1  variables was determined via a 3-way ANOVA. The results of this analysis are shown
see  in Figure 3A. This figure shows the percentage of cells with selectivity to each task
203 variable and combination of task variables {as determined by a significant (p<.05)
;0 term in the ANOVA). A cell that has selectivity to any of the regular task variables
.05 (task type, cue 1, cue 2) has pure selectivity, while a cell that has selectivity to any
.5 of the interaction terms {(combination of task variables such as task type-cuel, task
wer type-cue 2, etc) has nonlinear mixed selectivity. The final two bars in Figure 3A show
s the number of cells with pure and mixed selectivity defined this way. Note that a cell
se can have both pure and mixed selectivity, thus the two values sum to more than 100%.
200 The majority of cells (77/90) showed pure selectivity to at least one task variable.
:1  But the population shows clear biases in the distribution of these pure selectivities:
ws task type selectivity is the most common (59 cells) and cue 2 is represented more than
ws cue 1 (48 vs. 30 cells) (these biases are observable in the GLM fits as well, see Figure
w4 3C). This latter effect may be due to the time at which these rates were collected: these
ws  rates were taken during the second delay, which comes directly after the presentation
ws  of the second cue. The former effect is perhaps more surprising. While the task type is
wr  changed in blocks and thus knowable to the animal on each trial (with the exclusion of
w08 block changes), there is no explicit need for the animal to store this information: the
20e  presence of a second sequence or an array of images will signal the task type without
:10 the need for prior knowledge. However, regardless of its functional role in this task,
a1 contextual encoding is a common occurrence (|10, 19]). Furthermore, the fact that
212 the recall task is more challenging than the recognition task may contribute to clear
.12 representation of task type. That is, it is possible that the animals keep track of the
212 task type in order to know how much effort to exert during the task.

415 Approximately half of the cells (46) had some form of mixed selectivity, mostly to
15 combinations of two task variables. The small number of cells with selectivity to the
a7 3-way interaction term (TT-C1-C2) is consistent with the relatively low value of FF¢
.15 in this population, as a strong preference for an individual condition would lead to a
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s1e high F'F. The number of cells with only mixed selectivity was low {only 1 out of 90
w0 cells), 32 cells had only pure selectivity, and 12 cells had no selectivity.

291 We use a population-level analysis inspired by [35] to measure the extent to which
22 cell types are clustered into categories. Here, we used this analysis to determine if
203 cells cluster according to their responsiveness to different task variable identities (i.e.,
22 recognition vs recall). That is, are there groups of neurons which all prefer the same
25 task type and image identities, beyond what would be expected by chance? In order to
25 explore this, we first use a GLM, with task variable identities as regressors, to fit each
2v neuron individually. The beta coefficients from these fits define a neuron’s position in
s selectivity space (these beta coefficient values are shown in Figure 3C, and a schematic
w2s of how the clustering measure works is shown in Figure 1D). The clustering measure
w0 then determines the extent to which the population of neurons deviates from a uniform
2n  distribution in this space. The data had a clustering value of 186.22. Comparing this to
w32 the mean values of two distributions of artificially generated populations suggests the
133 data has a mild but significant deviation from random: the average clustering value for
w4 populations generated by randomly shuffling the coefficient values is -22.50+ /-21.75,
w5 and the average value of populations that have 3 distinct clusters of selectivity is
s T06.68+ /-6.84. As the data clustering value sits in between these values and closer to
.3v  the shuffled data, we conclude that some structure does exist in the data, yet the cells
232 in this population do not appear to form strongly separable categories as defined by
s task variable identity preference (Figure 3D).

wo 3.2, Circutt Model without Hebbian Learning Cannot Replicate Mix of Density and
a1 Specialization

243 A simple circuit model was made to replicate the selectivity properties found in
22 the data. The model contains two layers: an input layer consisting of binary neurons
s that represent task variable identities and an output layer consisting of " PFC” neu-
a5 rons which get randomly-weighted input from the first layer and whose activity is a
s nonlinear function of the sum of that input. The model also has two forms of noise:
«7an additive term applied before the nonlinearity (which replicates input/background
25 moise, and implicitly shifts the threshold of the cell), and a multiplicative term applied
us  after (which enforces the observed relationship between firing rate and variance) (see
s Methods and Figure 4A).

451 The output of the initial circuit model, prior to any Hebbian learning, was analyzed
w52 in the same way as the data to determine if it matched the properties found in PFC.
«s5 The results of this can be found in Figure 5. First, in Figure bA, we demonstrate the
w54 impact of the noise parameters on F Fp, pure and mixed selectivity, and the clustering
ss5 value. As expected, increasing the additive and/or multiplicative noise terms increases
6 the FFp, as this is a measure of trial variability. Increasing noise also makes it harder
ssv for cells to reach significance, and thus the percentage of cells with pure and mixed
sss selectivity are inversely related to the noise parameters, (the relative sensitivities of
so mixed and pure selectivity to noise will be discussed in depth later). For similar
w0 reasons, clustering value also decreases with noise (cells need to display significant
w01 preferences to task variable identities in order to form clusters based on that).

462 To determine the impact other properties of the model had on our measures of
w3 interest, we varied several other parameters. Figure 5B shows what happens at differ-
:6: ent values of the threshold parameter. Here, the threshold is given as the amount of
:65 input the cell needs to reach half its maximal activity, expressed as a fraction of its
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Figure 4: The full model and how learning occurs in it. A.) The model consists of groups of binary input
neurons (colored blocks) that each represent a task variable identity. The number of neurons per group is given
in parenthesis. Each PFC cell (gray circles) receives random input from the binary cells. Connection probability
is 25% and weights are Gaussian-distributed and non-negative. The sum of inputs from the binary population
and an additive noise term are combined as input to a sigmoidal function (bottom). The output of the PFC
cell on a given trial is a function of the output of the sigmoidal function, » and a multiplicative noise term
(see Methods). The threshold, ©, is given as percentage of total input to each cell B.) Two styles of learning
in the network, both of which are based on the idea that the input groups that initially give strong input to
a PFC cell have their weights increased with learning (sum of weights from each population are given next to
each block). In free learning, the top Ny, input populations are chosen freely. In this example, that means two
groups from the cue 1 task variable have their weights increased (marked in blue). In constrained learning, the
top N1, populations are chosen with the constraint that they cannot come from the same task variable. In this
case, that means that cue 2D is chosen over cue 1C despite the latter having a larger summed weight. In both
cases, all weights are then normalized. C.) Learning curves as a function of learning steps for different values
of Np. Strength of changes in the weight matrix expressed as a percent of the sum total of the weight matrix
are plotted for each learning step (a learning step consists of both the weight increase and normalization steps).
Different colors represent different Nps.
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w5 total input (keep in mind that, given the number of input cells in each population and
w7 the task structure, roughly one-third of input cells are on per trial). The colored lines
ss  are, for each measure, the extent to which the model differs from the data, expressed
w0 in units of the model’s standard deviation {calculated over 100 instantiations of the
s model). Due to the impact of noise parameters discussed above, at each point in this
s graph the noise parameters were fit to ensure the model was within + /- 1.5 standard
s deviations of the data F'Fyp (this generally meant that it varied from ~ 2.8 to 2.9).
73 With an increasing threshold, the F'Fi (green line in Figure 5B) increases. This
22 18 because higher thresholds mean cells respond to only a few combinations of input,
a5 rather than responding similarly to many, and the FF- is a measure of variability
w5 in response across conditions (note that while F'F appears to peak at &~ .35 and
w7 decrease, this particular trend is driven by an increase in I I standard deviation; the
ss mean continues to increase). The percentage of cells with mixed selectivity (red line)
we  also increases with threshold. With a higher threshold, the majority of conditions give
s input to the cell that lies in the lower portion of the sigmoidal function (bottom of
s Figure 4A). The nonlinearity is strong here—with some input producing little to no
w2 response—thus, more cells can attain nonlinear mixed selectivity. Pure selectivity also
s increases with threshold, and the percent of cells with pure selectivity goes quickly
s 10 100 (and the standard deviation of the model gets increasingly small). We go into
:ss more detail about the reliance of selectivity on threshoeld later.

286 The clustering value relies on cells having preference for task variable identities
v and so increases as selectivity increases initially. However, just having selectivity is
s not enough to form clusters, and so the clustering value in the model levels off below
e the data value even as the number of cells with pure selectivity reaches full capacity.
200 'Thus, with the exception of the clustering value, the model can reach the values found
w1 in the data by using different thresholds. As Figure 5B shows, however, at no value of
w2 the threshold are all measures of PFC response in the model simultaneously aligned
s with those in the data.

404 Figure HC shows how the same measures change when the width of the weight
205 distribution from input to PFC cells is varied. Here, the standard deviation of the
w06 distribution from which connection strengths are drawn (o) is given as a factor of
sor the mean weight, uw . Increasing this value increases pure and mixed selectivity as well
ws 88 FF>. Because a wider weight distribution increases the chances of a very strong
200 Weight existing from an input cell to an output cell, it makes it easier for selectivity to
o0 emerge {that is, the output cell’s response will be strongly impacted by the task variable
sor identity the input cell represents). The F F- increase occurs for similar reasons: a cell
s00 Mmay have uneven responses across conditions due to strong inputs from single input
sos  cells. Clustering values, however, are unaffected by this parameter. At no point, then,
s can the model recreate all aspects of the data by varying the weight distribution.
sos  Furthermore, while values of mixed selectivity and FF> approach the data values
s with large ow /pw, such large values are likely unrealistic. Data show that a ow /uw
sor  ratio of around 1 is consistent with observations of synaptic strengths from several
sz brain areas [3].

500 Varying other parameters such as the mean weight, number of cells per population,
si0 and connection probability similarly doesn’t allow the model to capture all properties
0 of the data (not shown).

512 Figure 5D shows the values of the model as compared to the data for the set of
sis parameters marked with arrows in Figure 5B and 5C. For reasons that will be discussed
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Figure 5: Results from the model without learning. A.) F'Fp and other measures can be controlled by the
additive and multiplicative noise parameters. Each circle’s color shows the value for the given measure averaged
over 25 networks, for a set of @ and m values (see Methods). F'Fr scales predictably with both noise parameters.
Mixed selectivity, pure selectivity, and clustering scale inversely with the noise parameters. Other model
parameters are taken from the arrow locations in (B) and (C). B.) How the threshold parameter, A, affects
measures of selectivity. Lines show how the average value of the given measure in the model (in units of standard
deviations away from the data value) varies as a function of the threshold parameter A, where ©; = A¥;w;;
At each point noise parameters are fit to keep F'Fr close to the data value. C.) Same as (B), but varying the
width of the weight distribution rather than the threshold parameter. D.) Example of the model results at the
points given by the black arrows in (B) and (C). On the left, blue and red bars are the data values as in Fig
2. The lines are model values (averaged over 100 networks, errorbars +/-1 std). On the right, histograms of
model values over 100 networks. The red markers are data values. This model has no learning.

18



bioRxiv preprint first posted online May. 2, 2017; doi: http://dx.doi.org/10.1101/133025. The copyright holder for this preprint {(which was
not peer-reviewed) is the authorfunder. It is made available under a CC-BY-NC 4.0 International license.

s more later, these parameters were chosen because they were capable of capturing the
s amount of pure selectivity in the model (any higher value of the threshold would lead
sis to too many cells with pure selectivity, for example). On the left are the percentage
sir - of cells with different selectivities as in Figure 3C. The bars are the data and the lines
515 are the model. On the right, are histograms of model values from 100 instantiations,
5.0 with the red markers showing the data values. The model matches the average firing
s0 rate and FFp of the model, as it was fit to do so. Clustering, FF>, and the amount
s of mixed selectivity are too low in the model. We use these parameters as the starting
50 point for learning in this model.

se 3.3, Clireuit Model with Hebbian Learning Captures PFC Responses

52 As described above, responses of PFC cells have a set of qualities that cannot be
s2s explained by random connectivity. In particular, the inability of the random network to
s simultaneously capture the values of £ F», clustering, pure, and mixed selectivity shows
sor that PFC cells have a balance of specialization that may require learning to achieve.
s2s Here, we tested two variants of Hebbian learning to determine if a network endowed
s2o With synaptic plasticity can capture the elements of the data that the random network
sso could not. The simple form of Hebbian learning that we use is based on the idea that
551 the input populations that randomly start out giving strong inputs to a cell would likely
ss2 make that cell fire and thus have their weights increased. In both variants of learning
s tested, each cell has the weights from a subset (V) of its input populations increased
s while the rest are decreased to keep overall input constant (this is done via a weight
s35 increase step and a normalization step). Mechanisms for such balancing of Hebbian
s35 - and homeostatic plasticity have been observed experimentally ([17]), particularly via
ssr the type of synaptic up and down regulation used here (|5, 40, 21]).

538 The difference between the two variants of learning comes from which input pop-
s Ulations are increased. In general, the top Ny input populations from which the cell
s already receives the most input have their weights increased (to capture the ”rich get
ss richer” nature of Hebbian learning). In the ”constrained” variant, however, weight
s20  increagses onto a PFC cell are restricted to populations of input cells that come from
sz different task variables (e.g., cue 1 and cue 2. For a detailed explanation see Methods).
s« 'This was done to ensure that cells had enough variety of inputs to create mixed selec-
ss  tivity, In the free variant, the populations from which a cell receives increased input
s due to learning are unrestricted. That is, they are determined only by the amount of
=7 input that the cell originally received from each population as a result of the random
s connectivity, This unrestricted form of learning is more biologically plausible as it
so can be implemented locally, without knowledge of other inputs. A toy example of
ss0 each variant can be found in Figure 4B. Given random weights, free and constrained
551 learning will select the same input populations in some cells.

552 Figure 4C shows how the weight matrix changes with different Ny values (the
ss2. number of populations from which weights are increased during learning). The higher
s the Ny the faster the matrix converges to its final state. When Ny is low, convergence
ss5 takes longer as all the weight is transferred to a small number of cells. This plot is
556 shown with a learning rate of .2.

557 The results of both forms of learning are shown in Figure 6A. The effects of learning
sss are dependent on Ny, and different Ny, values are in different colors (N = 1,2,3 are
sso tested here). Free learning is shown with solid lines, and constrained with dotted lines,
se0  except for the case of Ny = 1, where free and constrained learning do not differ and
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Figure 6: The model with learning. A.) How selectivity measures change with learning. In each plot, color
represents Ny, value, solid lines are free learning, and dotted lines are constrained learning (only one line is
shown for Ny, = 1 as the free and constrained learning collapse to the same model in this circumstance). Step 0
is the random network. Black dotted lines are data values and errorbars are +/—1 std over 100 networks. In the
pure selectivity plot, with constrained learning and when Ny, = 1, the value maxes out at 100% in essentially
all networks, leading to vanishing errorbars. B.) All measures as a function of learning for the Nj, = 3 free
learning case. Values are given in units of model standard deviation away from the data value as in Figure 5B
and C. C.) The model results at the learning step indicated with the black arrow in (B), same as in Figure 54D.
Here, the model provides a much better match to the data.
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1 only one line is shown. In each plot, the data value is shown as a small black dotted
s line,

562 Clustering, mixed selectivity, and F F~ all increase with learning, for any value of
s g and both learning variants. When Ny = 1 (green line), mixed selectivity peaks and
ses then plateaus at a lower value {as connections to all but one population are pruned},
sso  while other values of N plateau at their highest values. As it was designed to do so,
se7  constrained learning is very effective at increasing mixed selectivity, eventually getting
ses Lo nearly 100 percent of cells. Free learning produces more modest increases in mixed
seo - selectivity, with Ny, = 2 leading to slightly larger increases than Ny = 3.

570 A factor impacting selectivity in this model-—and especially with this task structure—
st is that cells that receive inputs from multiple populations from a single task variable
s may not end up having significant selectivity to that variable. This is especially true
sz for the "task type’ variable, as cells can easily end up with input from both ’recall” and
st recognition’ populations. If the inputs from these populations are somewhat similar in
srs strength, the cell does not respond preferentially to either. This can help understand
st the discrepancy in how pure selectivity changes with free and constrained learning.
s7 In constrained learning, pure selectivity necessarily increases with learning (to the
55 point where nearly all networks have 100% pure selectivity), whereas free learning can
so  have inputs that effectively cancel each other out. A more direct investigation of how
ss0  selectivity changes with learning occurs in the next section.

561 In these plots, both noise parameters are fixed, which allows us to see how FFy
o varies with learning (this is also why the values at step 0 in Figure 6A do not always
ss2 match those shown in Figure 5, as that model has noise parameters fit to match the
s« data). The changes in F'Fr stem from both changes in robustness to the additive noise
sss and from changes in the mean responses, which impacts FFp via the multiplicative
sse noise term. Figure 6A shows that the variant of learning has less of an impact on FFyr
s than Ny does. In all cases, however, learning ultimately leads to lower trial variability
s in the model. This is consistent with observation made in PFC during training [34].
50 Overall, low Ny, leads to more acutely distributed weights and stronger structure
so0  and selectivity in the model. Constrained learning, with its guarantee of enhancing
so0  welghts from different task variables, is also more efficient at enhancing structure
soo  and selectivity. The prefrontal cortex data shows a moderate level of structure and
so  selectivity, therefore the approach that is best able to capture it is free learning with
s IN;, = 3. In Figure 6B, we show how all of the model values compare to the data as
sos  this form of learning progresses. These plots, similar to Figure 5B and C, show values
ses in units of standard deviations away from the model. It is clear from these plots that
so7  this form of learning leads all values in the model closer to those of the data, and all
ses values eventually plateau within +/- 2.5 model standard deviations of the data. The
seo best fit to the data comes after 6 learning steps with a learning rate of .2 (marked
0 with a black arrow). At this point the ratio of the standard deviation to the mean of
«o1  the distribution has only slightly increased, remaining within a biclogically plausible
a2 range. We plot the values of the data in comparison to model in Figure 6C, similarly
ez to Figure 5D. At this point, the average percent of cells with only pure selectivity is
sor 25.404/-4.16, with only mixed 4.42+/-2.15, and with no selectivity 15.94 /-4.08 (the
sos comparable data values are &2 36%, 1%, and 13%, respectively). Thus, the model with
«0s learning is a much better fit to the data than the purely random network.
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ar 3.4, Understanding Properties of Selectivity Before Learning

608 We have shown that Hebbian learning can impact selectivity properties in a model
so Of PFC. Some of these impacts, particularly the increase in mixed selectivity, may seem
er0  counterintuitive. Here we use a further simplified toy neuron model to understand the
e:1 properties of the network before learning and then demonstrate how learning causes
er2  these changes.

613 A schematic of this toy model is in Figure TA and 8A, and it is fully described in
s the Methods. Briefly, the cell gets four total inputs—two (A and B) from each of two
s:s task variables (T1 and T2). The output of the cell is binary: if the weighted sum of
s16  the inputs is above the threshold, ©, the cell is active and otherwise it is not. As in
ei7  the full model, © is defined as a fraction, A, of the sum of the input weights.

615 This format makes it easy to spot nonlinear mixed selectivity: if the cell is active
s (or inactive) for exactly one of the four conditions, it has nonlinear mixed selectivity
s20  t0 the combination of T1-T2. If the cell’s output can be determined by the identity of
s only one task variable, it has pure selectivity {(and would be active for two of the four
s2» conditions). Otherwise it has no selectivity (active or inactive for all conditions) (see
s2s examples in Figure 2A and B).

62 Learning impacts selectivity by altering the way a cell represents these four condi-
25 tions. To say more about how this occurs, we must first describe the properties of the
e26 representation in the random network before learning.

627 To be robust to noise, the cell’s response should be constant across conditions.
es  Additive noise can be thought of as a shift in the threshold, which may lead to a
s20  change in the cell’s response. Thus, trialwise additive noise drawn from a distribution
es0 centered on zero can be thought of as a range of effective thresholds centered on the
s original one (gray shaded area in Figure 8A | black dotted line is the threshold without
s noise). If the inputs for a given condition fall in this range, the response of the cell
ess will be noisy, i.e. flipping from trial to trial, and selectivity will be lost. Robustness to
e« noise, then, can be measured as the range of thresholds a representation can sustain
e without any responses flipped, with a larger range implying higher noise robustness,
636 Assuming optimal threshold values for each, the relative noise robustness of mixed
51 and pure selectivity can be calculated (see Methods). We find that, thinking of the
s four conditions as the corners of a rectangle (as visualized in Figure 2C), mixed se-
es0  lectivity robustness depends on the length of the shorter side, while pure selectivity
es0 Noise robustness depends on the difference between the two side lengths. We also find
es1  that, with random weights, most cells will have a representation that has higher noise
s robustness for pure selectivity than for mixed (see Methods).

642 Noise robustness changes, however, as thresholds deviate from optimal. The type
s Of selectivity cells have in the absence of noise also varies with threshold (see Figure
s 2D for examples). To quantify these trends, we varied the threshold parameter A and
as  determined both the probability of different types of selectivity as well as the noise
s robustness for each type (see Methods for details). In Figure 7B, we show the fraction
sz Of cells that lose selectivity at a given noise level, for three different values of A. Noise
s robustness (plotted as a function of A in Figure 7C) is defined then as a normalized
550 measure of the noise value that causes 50% of cells to lose selectivity.

651 Figure 7C demonstrates why the random network from which we start learning is
es2 necessarily in a condition of low mixed selectivity. The value of A we choose to start
ess from is constrained by the fact that the data shows high levels of pure selectivity.
e« Therefore, we need a value that has high probability of pure selectivity and high
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Figure T: How noise robustness varies with threshold in a random network using the toy model A.) Schematic
of the toy model: four input populations (two from each task variable) send weighted inputs to a cell with a
threshold (&) nonlinearity B.) For a given noise value, the fraction of cells that would lose selectivity if that
noise value were used. Values are separated for cells with pure (blue) and mixed (red) selectivity. Three A
values shown, where ® = AZW. C.) Based on plots like those in (B}, the noise value at which 50% of cells have
lost: selectivity is calculated ("Noise Robustness” refers to these values normalized by the peak value. Higher
values are better) and plotted as a function of A {solid lines). On the same plot, the percent of cells with each
type of selectivity in the ahsence of noise is shown (dotted lines). The black doted line marks a A value at
which the probability of mixed and pure selective cells is equal, but their noise robustness is unequal. This plot
is mirror-symmetric around A = .5

s noise robustness for it. Values of A that meet this condition are not favorable for
56 mixed selectivity. Therefore, the best we can do is choose a value of, for example, 4,
57 Where probabilities of pure and mixed are even, but pure has higher noise robustness
s (therefore effective rates of pure selectivity are higher). The fact that mixed selectivity
sso 18 less noise robust than pure in the full model can be seen in Figure 5A.

660 Note that while the XA used for the random version of the full model shown in Figure
81 b was around .27, that value is not directly comparable to the A values in these plots
2 for many reasons. First, the full model has 3 task variables, compared to the 2 used
s in the toy model. This means that, from the perspective of mixed selectivity for 2
s+ task variables, a given A value will create a higher © in the full model with 3 task
s variables than in the toy one that has only 2 {because © is a function of the sum total
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sss  Of all weights, not just those relevant for the 2-way selectivity). In addition, in the toy
ssv model, 50% of the inputs are on for any given condition, whereas the nature of the
s task in the full model means that only 25% of inputs are on when looking at C1-C2
eo Mixed selectivity, while one-third are on for TT-C1, TT-C2, and TT-C1-C2 mixed
er0  selectivity. The percentage of cells are also not directly comparable, as cells in the full
o1 model are labeled as pure if they have any of 3 different types of pure selectivity, and
o2 mixed if they have any of 4 different types of mixed. This toy model is thus meant to
672 provide intuition only.

en 3.5, How Learning Impacis Selectivity

675 For the reasons just discussed, the random model starts in a regime where pure
e7s  selectivity has high noise robustness and mixed does not. In order to match the amount
err - of mixed selectivity seen in the data, we must then rely on learning to increase noise
e robustness for mixed selectivity, allowing more mixed cells to reach significance.

670 Learning impacts noise robustness by expanding the representation of the different
ss0  conditions. An example of this is in Figure 8A, where the gray shaded area repre-
es1 sents the noise-induced range of the threshold. Before learning, the cell’s response is
sz impacted by the noise. With learning, different conditions get pulled away from each
ess  Other and the threshold, creating a much more favorable condition for mixed selectivity
s« 10 be robust to noise. Ag can be seen, the responses are now outside the noise range.
685 For the same reason that learning increases noise robustness (because the expansion
sss  increases the range of thresholds that support mixed selectivity), it can also increase
ee7  Lhe probability of a cell having mixed selectivity in the absence of noise. This can
s be seen in Figure 8C (left), where learning steps are indicated by increasing color
s brightness (constrained learning with rate of .25). At lower A values, cells that are
s initially above threshold for all conditions (no selectivity) gain mixed selectivity with
st learning. But for A values that support higher levels of pure selectivity (e.g., A = .4,
seo marked with a black dotted line), the percent of cells with mixed is not as impacted
eoz Dy learning. The percent of cells with pure selectivity increases only slightly at most
ses A values.

605 Noise robustness has a different pattern of changes with learning (Figure 8C, right).
«s In particular, at A = .4, the noise robustness still increases with learning even when
«or  the percent of cells with mixed doesn’t change. Thus, changes in noise robustness are
sz more relevant for the increase in mixed selectivity observed in the full model.

600 In particular, constrained learning with N;, = 2 always increases the lengths of
w0 both sides of the rectangle (as one weight from each task variable increases and the
w1 other decreases). As mentioned above, noise robustness for mixed selectivity scales
2 with the length of the shorter side and so it necessarily increases with learning in this
702 condition. Under certain weight conditions, noise robustness will also increase for cells
e with pure selectivity (this can be seen in Figure 8C, see Methods for details).

705 If N; =1, only one side length will increase and the other decrease. If the shorter
s side decreases, mixed selectivity noise robustness decreases. If the shorter side in-
77 creases, mixed noise robustness increases, up until the point at which side lengths
s are equal. At that point the shorter side is now the decreasing side and mixed noise
e robustness goes down. This trend is reflected in the shape of the mixed selectivity
7o changes seen with Ny = 1 in Figure 6A (mixed selectivity increases then decreases).
711 When using free learning (with Ny = 2), a portion of the cells will by chance
712 have the same changes as with constrained learning. The remaining cells cause the
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13 differences observed between the two versions of learning, and can be of two types.
712 In the first type, the larger side length increases and the smaller shrinks, causing a
715 decrease in mixed noise robustness. Free learning doesn’t achieve the same levels of
7 mixed selectivity as constrained because these cells continue to be too noisy. In the
717 other type, the shorter side increases and the larger decreases, reducing the difference
715 between the two side lengths and thus reducing pure noise robustness. Free learning
no loses pure selectivity as these cells become too noisy (as seen in 6A). More detailed
70 descriptions of changes with learning can be found in the Methods.

701 Inputs from additional task variables can be thought of as a source of ncise as well.
72 In Figure 8B, we add a third task variable to the toy model. Now, in the case of the
723 T1B-T2A condition, the identity of T3 determines if the cell is active or not. From
72« the perspective of T1-T2 mixed selectivity, this has the same impact as shifting the
725 threshold, and thus creates noise. If both T3 inputs are weaker than the strongest
126 two inputs from T1 and T2 {as they are here), they will decrease with learning. This
77 means that not only do different T1-T2 conditions get pulled apart with learning, but
722 the same T1-T2 conditions become closer. This reduces the impact of "noise” from
720 other task variables, and explains why mixed increases more with Ny = 2 than with
730 NL =3 (Figure GA)

731 In sum, learning changes a cell’s representation of the task conditions. Depending
732 on the threshold value, this can create changes in the probability of mixed and pure
733 selectivity and the relative noise robustness for each. Here, in order to match the
7 high levels of pure selectivity seen in the data, we use a threshold regime where mixed
735 selectivity noise robustness increases with learning. This causes a gain in the number
736 of cells with mixed selectivity, such that it reaches the level seen in the data.

o 8.6, How Learning Impacts Other Properties

738 The visualization of this toy model gives intuition for why other properties change
10 with learning as well. FFi, for example, increases with learning (Figure 6A). The ex-
20 pansion that comes with learning places different conditions at different distances from
71 the threshold. With a sigmoidal nonlinearity, this would translate to more variance in
12 the responses across conditions, increasing FF>. Because constrained learning ensures
s the most expansion, it increases F'F> more. These increases depend on N, because
e lower Ny allows for a more extreme skewing of weights, and thus a subset of conditions
ns will be far above threshold while the rest are below (leading to a high FFy). FFe has
ms & limit, however, because even with Ny = 1, the cell would still respond equally to a
nr quarter of the conditions (assuming an input from a cue variable)

748 Clustering values are also impacted by how selectivity changes. Clustering in the
ne data appears to be driven by task type selectivity (Figure 3C), and as task type
0 preferences develop in the model the clustering value increases. Here, the relative
s sizes of the the input populations play a role. Because the input populations that
2 represent task type contain more cells (Figure 4A), these populations are more likely
53 to be among the strongest inputs to a cell, and thus have their weights increased (Note
s that this bias in favor of task type could also arise from the fact that only two task
15 Lypes are possible, and thus these inputs are on twice as often as cue inputs. Such a
755 mechanism cannot be implemented in this model, however, so we use uneven numbers
rsr of input cells). Therefore, task type selectivity becomes common and clusters form
s around the axis representing the first regressor (which captures task type preference).
750 This effect is weaker with free learning because both task type populations may have
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Figure 8: How learning impacts noise robustness A.) A simple toy cell (left) with 2 task variables is used to
show the effects of learning. The 4 possible conditions are plotted as dots (green if above threshold, black if
not), with the threshold as a dotted black line. Colored arrows represent the weights from each population.
Before learning (middle), the cell’s input on two of the conditions falls within the range of the shifting threshold
created by additive noise (gray area). After learning, all conditions are outside the noise range. B.) A third
task variable is added to the model and is another source of additive noise from the perspective of T'1-T2
gelectivity. The model's outputs are color-coded according to which T3 population is active. Weight arrows
are ormitted for visibility. After learning with Nz = 2, input strength from T3 populations are decreased and
the points from the same T'1-T2 condition are closer together (less noisy). C.) How the percent of cells with a
given selectivity (left) and their noise robustness (right) change with constrained learning as a function of the
threshold parameter A. Learning steps are symbolized by increasing color brightness (the darkest line is the
random model as displayed in Figure 7C, and the dashed line shows where the percent of mixed and pure are
the same in the random model)
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70 their weights increased, which diminishes the strength of task type preference. Lower
7e1 Ny, which minimizes preferences to other task variable identities, allows these clusters
w2 Lo be tighter.

762 Finally, it is important to note that the strength of inputs shown in Figures 2
e and 8 (the colored arrows) correspond to, in the full model, the summed input from
s all cells representing a given task variable identity (i.e., IF), not just to weights from
e individual cells. These summed values are what need to change in order to expand the
w7 representation and see the observed changes. This is important for why the Hebbian
e procedure described here is effective at changing selectivity, as it assumes that many
mo  cells, acting in unison to cause post-synaptic activity, would lead to the increase of their
o individual synaptic weights, and thus an increase in the sum of those weights. Merely
i increasing the variance of the individual weights does not cause such a coordinated
o effect and would be less effective at driving these changes (as was shown in Figure 5C},
73 especially with larger input population size.

7+ 4. Discussion

775 Here, motivated by several theoretical proposals about properties that would ben-
e efit encoding, we explored how prefrontal cortex represents task variables during a
7 complex task. In particular we were interested in measures of selectivity (particularly
s nonlinear mixed selectivity), response density, and clustering of cell types according
e to selectivity. By quantifying and measuring these properties in a PFC dataset, this
1m0 work connects theoretical literature with experimental data to give insight into how
w  PFC is able to support complex and flexible behavior. Furthermore, we explored how
2 these response properties could be generated by a simple network model. Through
s this, we find evidence that the particular level of specialization and structure in the
7 PFC response is not achievable in a random network without Hebbian learning. After
s Hebbian learning, the model—despite its relative simplicity—is able to capture many
s response properties of PF'C. The changes that come with learning act via an expansion
w7 of the way cells represent conditions, and corresponding changes in noise robustness.
788 Interestingly, the variant of Hebbian learning that best matches the data is not the
s most effective at increasing mixed selectivity. It may be that the more effective method
wo  ("constrained” learning) would be too difficult to implement biologically, but perhaps
701 there is also a computational benefit to the balance of mixed and pure selectivity
72 found in the data. Particularly, in order to read out the task variable identity inputs
70 themselves, pure selectivity may be of more use. Retaining pure selectivity could be a
72« tool then for staying flexible.

705 In addition to retrospectively matching experimental results, this model also malkes
706 predictions regarding how certain values should change with training. In particular,
o7 clusters of cells defined by selectivity are expected to emerge with training and cell
res responses should become less dense across conditions. Previous work [38] has shown
7ee  the value of mixed selectivity for the ability of a population to perform complex tasks.
so0  This work shows that mixed selectivity increases with learning, and these changes
st in PFC may correspond to increases in performance [33]. Perhaps surprisingly, this
g2 Mmodel also predicts a concurrent, though small, decrease in pure selectivity. However,
sz studies that have tracked PFC responses during training show signs of these changes.
s For example, in [27], the ability to decode the identity of the stimuli (in the comparable
o5 portion of the trial) decreases slightly after training, suggesting a possible decrease in
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s pure selectivity. The ability to readout match/nonmatch of the two stimuli, however,
sor  increases dramatically, suggesting an increase in mixed selectivity. In [26], the amount
sos  Of pure selectivity was measured directly pre- and post-training, and a significant drop
soo in the percent of cells with pure selectivity was indeed observed. In hippocampus,
g0 an increase in mixed selectivity and slight decrease in pure was also observed with
s learning ([18]).

812 Our model makes many simplifying assumptions. The inputs, for instance, are
g1 binary cells that encode only the identity of different task variables. While this implies
s that the cells representing cue identities already have mixed selectivity (responding to
sis the combination of the image and its place as either cue 1 or cue 2), it is still an
s assumption that the cells providing input to PEFC are otherwise unmixed. This is
sir something that, given current experimental evidence seems plausible [32], but would
s benefit from further experimental exploration.

810 Another valuable endeavor would be to expand this model in the temporal domain.
s20  Currently in the model, all the task variable inputs are given to the network simulta-
szt neously. In the experiment, of course, there is a delay between cue 1 and cue 2. Delay
s22 activity is known to exist in areas like IT [45, 12], and so this information could be
g2z being feed into PFC at the same time. But presumably, recurrent connections in PFC,
s and even possibly between PFC and its input areas, can enhance or alter selectivity.
ss5 A recurrent model could also explore how PFC responses and representation vary over
g2 Lhe time course of the trial, as recent experimental work has provided insight on this
827 [31]
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