

Hebbian Learning in a Random Network Captures Selectivity Properties of Prefrontal Cortex

Grace W. Lindsay^{a,e,g}, Mattia Rigotti^{a,b}, Melissa R. Warden^c, Earl K. Miller^d,
Stefano Fusi^{a,e,f}

^a *Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, New York, USA*

^b *IBM T.J. Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY, USA*

^c *Neurobiology and Behavior, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA*

^d *The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA*

^e *Mortimer B. Zuckerman Mind Brain Behavior Institute, College of Physicians and Surgeons, Columbia University, New York, New York, USA*

^f *Kavli Institute for Brain Sciences, Columbia University, New York, New York, USA*

^g *Corresponding Author: gracewlindsay@gmail.com*

Abstract

Complex cognitive behaviors, such as context-switching and rule-following, are thought to be supported by prefrontal cortex (PFC). Neural activity in PFC must thus be specialized to specific tasks while retaining flexibility. Nonlinear 'mixed' selectivity is an important neurophysiological trait for enabling complex and context-dependent behaviors. Here we investigate (1) the extent to which PFC exhibits computationally-relevant properties such as mixed selectivity and (2) how such properties could arise via circuit mechanisms. We show that PFC cells recorded during a complex task show a moderate level of specialization and structure that is not replicated by a model wherein cells receive random feedforward inputs. While random connectivity can be effective at generating mixed selectivity, the data shows significantly more mixed selectivity than predicted by a model with otherwise matched parameters. A simple Hebbian learning rule applied to the random connectivity, however, increases mixed selectivity and allows the model to match the data more accurately. To explain how learning achieves this, we provide analysis along with a clear geometric interpretation of the impact of learning on selectivity. After learning, the model also matches the data on measures of noise, response density, clustering, and the distribution of selectivities. Of two styles of Hebbian learning tested, the simpler and more biologically plausible option better matches the data. These modeling results give intuition about how neural properties important for cognition can arise in a circuit and make clear experimental predictions regarding how various measures of selectivity would evolve during animal training.

Significance Statement: Prefrontal cortex (PFC) is a brain region believed to support the ability of animals to engage in complex behavior. How neurons in this area respond to stimuli—and in particular, to combinations of stimuli ("mixed selectivity")—is a topic of interest. Despite the fact that models with random feedforward connectivity are capable of creating computationally-relevant mixed selectivity, such a model does not match the levels of mixed selectivity seen in the data analyzed in this study. Adding simple Hebbian learning to the model increases mixed selectivity

to the correct level and makes the model match the data on several other relevant measures. This study thus offers predictions on how mixed selectivity and other properties evolve with training.

1. Introduction

1 The ability to execute complex, context-dependent behavior is evolutionarily valuable
2 and ethologically observed [36, 16]. How the brain carries out complex behaviors
3 is thus the topic of many neuroscientific studies. A region of focus is the prefrontal
4 cortex (PFC), [4, 44, 29, 9], as lesion [42] and imaging [28, 6] studies have implied
5 its role in complex cognitive tasks. As a result, several theories have been put forth
6 to explain how PFC can support complexity on the computational and neural levels
7 [29, 46, 11].

8 Observing the selectivity profiles of its constituent cells is a common way to investigate
9 a neural population’s role in a computation. In its simplest form, this involves
10 modeling a neuron’s firing rate as a function of a single stimulus, or, perhaps, an additive
11 function of multiple stimuli [39, 8, 30]. More recently, however, the role of neurons
12 that combine inputs in a nonlinear way has been investigated [38, 23, 41, 32, 25, 35, 11],
13 often in PFC. Rather than responding only to changes in one input, or to changes in
14 multiple inputs in a linear way, neurons with nonlinear mixed selectivity have firing
15 rate responses that are a nonlinear function of two or more inputs (Figure 1B). Cells
16 with this selectivity (which we just call ”mixed”) are important for population coding
17 because of their effect on the dimensionality of the representation: they increase the
18 dimensionality of the population response, which increases the number of patterns that
19 a linear classifier can read out. This means that arbitrary combinations of inputs can
20 be mapped to arbitrary outputs. In relation to complex behaviors, mixed selectivity
21 allows for a change in context, for example, to lead to different behavioral outputs,
22 even if stimulus inputs are the same. For more on the benefits of mixed selectivity, see
23 [11].

24 Theoretical work on how these properties can arise on a circuit level shows that
25 random connectivity is surprisingly efficient at increasing the dimensionality of the
26 neural representation [15, 22, 7, 37, 2, 1, 20]. This means that mixed selectivity can be
27 observed even without learning. However, learning can greatly improve the ability of
28 a linear readout to generalize and hence to make the readout response more robust to
29 noise and variations in the sensory inputs (see e.g. [11]). The ideal situation would be
30 one in which a neural population represents only the task relevant variables and the
31 representation has the maximal dimensionality. In brain areas like PFC, where there
32 is a huge convergence of inputs from many other brain areas, it might be important
33 to bias the mixed selectivity representations toward the task relevant variables, which
34 can be achieved only with learning.

35 In this study, we characterize the response of a population of PFC cells in terms of
36 the distribution of linear and nonlinear selectivity, the response density, and the clustering
37 of selectivities. All these properties characterize the dimensionality of neural
38 representations and are important for the readout performance. As described above,
39 nonlinear mixed selectivity is important for increasing dimensionality. High dimensionality,
40 however, also requires a diversity of responses. We studied this by determining
41 how the preference to different stimuli are distributed across the population. In some
42 lower sensory areas, cells tend to be categorizable—that is, there are groups of cells

43 that display similar preference profiles [14]. More associative areas tend to lose this
44 clustering of cell types. Such categories may be useful when an area is specialized for
45 a given task, but diversity is needed for flexibility [35].

46 After characterizing the PFC response, we show that a model with random connec-
47 tivity can only partially explain the PFC representation. However, with a relatively
48 small deviation from random connectivity—obtained with a simple form of Hebbian
49 learning that is characterized by only two parameters—the model describes the data
50 significantly better.

51 2. Methods

52 2.1. Task Design

53 The data used in this study comes from previously published work [43]. In brief,
54 two monkeys performed two variants of a delayed match-to-sample task (Figure 1A).
55 In both task types, after initial fixation, two image cues (chosen from four possible)
56 were presented in sequence for 500ms each with a 1000ms delay period in between
57 the first and second cue. After a second delay period also lasting 1000ms, one of two
58 events occurred, depending on the task type. In the recognition task, another sequence
59 of two images were shown and the monkey was instructed to release a bar if this test
60 sequence matched the initial sample sequence. In the recall task, an array of three
61 images appeared on the screen, and the monkey had to saccade to the two images from
62 the sample sequence in the correct order. Blocks of recall and recognition tasks were
63 interleaved during each recording session. Given that each sequence had two different
64 image cues chosen from the four total image identity options and that there were two
65 task types, the total number of conditions was $4 \times 3 \times 2 = 24$.

66 2.2. Neural Data

67 Recordings were made using grids with 1 mm spacing (Crist Instrument) and
68 custom-made independently moveable microdrives to lower eight dura-puncturing Epoxylite-
69 coated tungsten microelectrodes (FHC) until single neurons were isolated. Cells were
70 recorded from two adult rhesus monkeys (*Macaca mulatta*), one female and one male,
71 and combined for analysis. No attempt was made to pre-screen neurons, and a total
72 of 248 neurons were recorded (with each neuron observed under both task types).

73 For the purposes of this study, firing rates for each neuron were calculated as the
74 total number of spikes during the later 900ms of the second delay period, as it was at
75 this point that the identities of all task variables were known. Any cells that did not
76 have at least 10 trials for each condition or did not have a mean firing rate of at least
77 1 spike/sec as averaged over all trials and conditions were discarded. This left 90 cells.

78 2.3. Fano Factor Measurements

79 Noise is an important variable when measuring selectivity. High noise levels re-
80 quire stronger tuning signals in order to be useful for downstream areas, and to reach
81 significance in statistical testing. Thus, any model attempting to match the selectivity
82 profile of a population must be constrained to have the same level of noise. Here, we
83 measure noise as the Fano Factor (variance divided by mean) of each cell's activity
84 across trials for each condition (spike count taken from later 900ms of the two-object
85 delay). This gives 24 values per cell. This is the trial Fano Factor. Averaging over
86 conditions gives one trial Fano Factor value per cell, and averaging over cells gives a

87 single number representing the average noise level of the network. Unless otherwise
88 stated, FF_T refers to this network averaged measure.

89 Another measure of interest is how a neuron's response is distributed across con-
90 ditions. Do neurons respond differentially to a small number of conditions (i.e., a
91 sparse response), or is the distribution more flat? To measure this, the firing rate for
92 each condition (averaged across trials) was calculated for each neuron and the Fano
93 Factor was calculated across conditions. In this case, a large Fano Factor means that
94 some conditions elicit a very different response than others, while a small Fano Factor
95 suggests the responses across conditions are more similar. Averaging across all cells
96 gives the condition Fano Factor of the network, or FF_C .

97 See Figure 1C for a visualization of these measures in an example neuron.

98 2.4. *Selectivity Measurements*

99 A neuron is selective to a task variable if its firing rate is significantly affected
100 by that the identity of that task variable. In this task, each condition contains three
101 task variables: task type (recall or recognition), the identity of the first cue, and the
102 identity of the second cue. Therefore, we used a 3-way ANOVA to determine if a
103 given neuron's firing rate was significantly ($p < .05$) affected by a task variable or com-
104 bination of task variables. Selectivity can be of two types: pure or nonlinearly mixed
105 (referred to as just "mixed"), based on which terms in the ANOVA are significant. If
106 a neuron has a significant effect from one of the task variables, for example, it would
107 have pure selectivity to that variable. Interaction terms in the ANOVA represent
108 nonlinear effects from combinations of variables. Therefore, any neurons that have
109 significant contributions from interaction terms as determined by the ANOVA have
110 nonlinear mixed selectivity. So, for example, if a neuron's firing rate can be written as
111 $FR = f(X_{TT}, X_{C2}, X_{TTC1}, b)$, that neuron has pure selectivity to task type (TT), pure
112 selectivity to cue 2 (C2) and mixed selectivity to the combination of task type and
113 cue 1 (TTC1), with b as a bias term and f a linear function of its arguments. Note
114 that having pure selectivity to two or more task variables is not the same as having
115 nonlinear mixed selectivity to a combination of those task variables.

116 2.5. *Clustering Measurement*

117 Beyond the numbers of neurons selective to different task variables, an understand-
118 ing of how preferences to task variable identities cluster can inform network models.
119 For this, we use a method that is inspired by the Projection Angle Index of Response
120 Similarity (PAIRS) measurement as described in [35]. For this measure each neuron
121 is treated as a vector in selectivity space, where the dimensions represent preference
122 to a given task variable identity (Figure 1D). To get these values, neuronal responses
123 are fit with a general linear model (GLM) to find which task variable identities sig-
124 nificantly contribute to the firing rate. Note that this gives a beta coefficient value
125 for task variable identities, such as cue 1=A, rather than just each task variable, such
126 as cue 1. It does not include interaction terms. The reason for this is that, given
127 the relatively low number of trials, the high dimensional full GLM model would be
128 difficult to confidently fit. Furthermore, analysis of clustering in a high-dimensional
129 space with a relatively small number of neurons would be difficult to interpret. The
130 beta values found for each cell via this method are shown in Figure 3C (non-significant
131 coefficients—those with $p > .05$ —are set to 0).

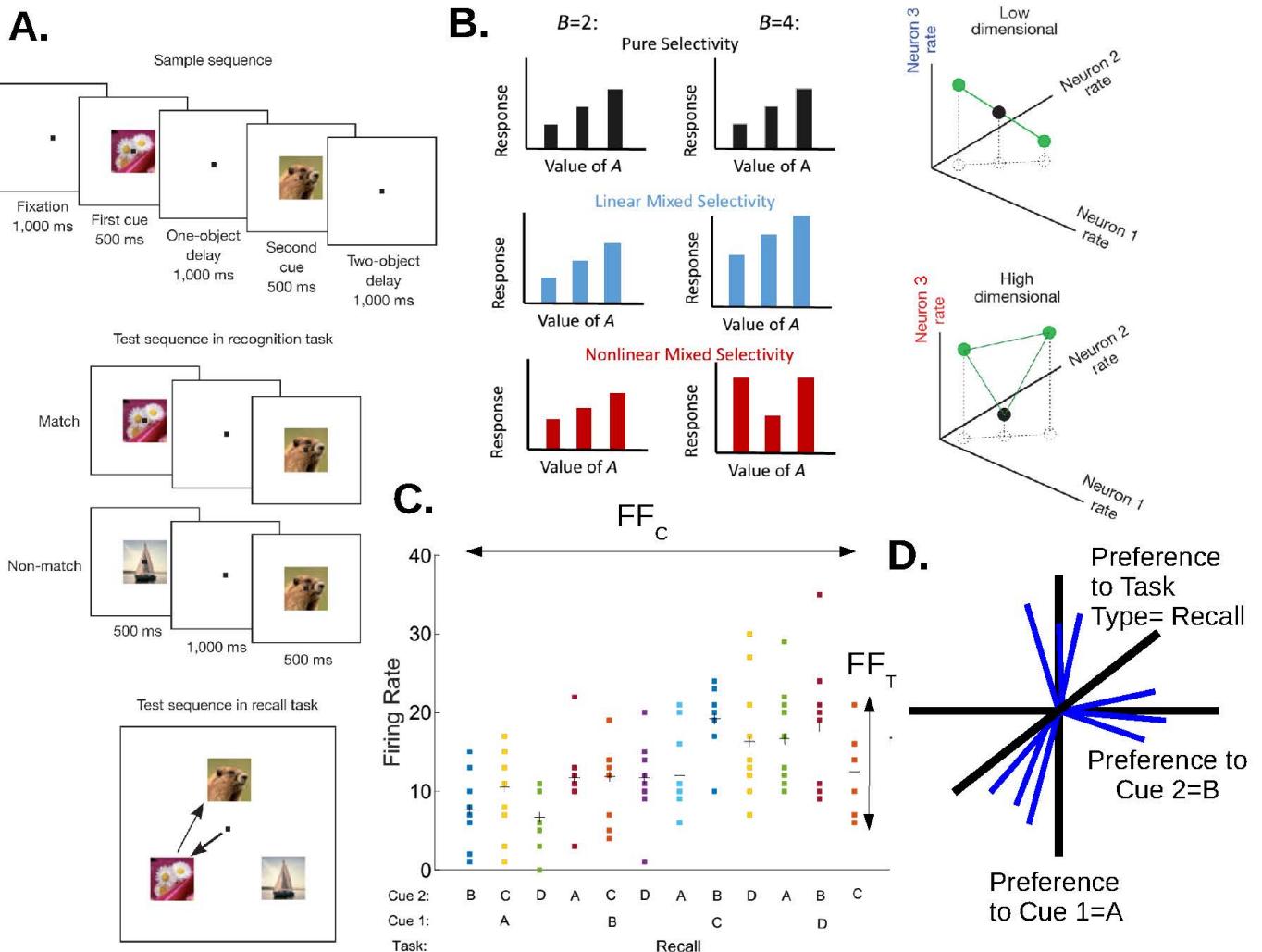


Figure 1: Description of prefrontal cortex data and relevant measures of selectivity A.) Task Design. In both task types, the animal fixated as two image cues were shown in sequence. After a delay the animal had to either indicate that a second presented sequence matched the first or not ("recognition") or saccade to the two images in correct order from a selection of three images ("recall"). B.) What nonlinear mixed selectivity can look like in neural responses and its impact on computation. The bar graphs on the left depict three different imagined neurons and their responses to combinations of two task variables A and B. The black neuron has selectivity only to A, as its responses are invariant to changes in B. The blue neuron has linear mixed selectivity to A and B: its responses to different values of A are affected by the value of B, but in a purely additive way. The red neuron has nonlinear mixed selectivity: its responses to A are impacted nonlinearly by a change in the value of B. The figures on the right show how including a cell with nonlinear mixed selectivity in a population increases the dimensionality of the representation. With the nonlinearly-selective cell (bottom), the black dot can be separated with a line from the green dots. Without it (top), it cannot. C.) A depiction of measures of trial-to-trial noise (FF_T) and the distribution of responses across conditions (FF_C). The x-axis labels the condition, each dot is the firing rate for an individual trial and the crosses are condition means used for calculating FF_C (data from a real neuron; recognition task not shown). D.) Conceptual depiction of the clustering measure. Each cell was represented as a vector (blue) in a space wherein the axes (black) represent preference for task variable identities, as determined by the coefficients from a GLM (only three are shown here). The clustering measure determines if these vectors are uniformly distributed.

132 The coefficients derived from the GLM define a vector in a 7-D vector space for each
133 neuron (see Figure 1D for a schematic). This clustering method compares the distri-
134 bution of vectors generated by the data to a uniform distribution on the hypersphere
135 in order to determine if certain combinations of selectivities are more common than
136 expected by chance. In [35] this comparison is done by first computing the average
137 angle between a given vector and its k nearest neighbors and seeing if the distribution
138 of those values differs between the data and a random population.

139 That approach is less reliable in higher dimensions, therefore we use the Bingham
140 test instead [24]. The Bingham test calculates a test statistic: $S = \frac{p(p+2)}{2}n(Tr(\mathbf{T}^2) - \frac{1}{p})$.
141 This statistic, which we refer to as the clustering value, measures the extent to which
142 the scatter matrix, \mathbf{T} , (an approximation of the covariance matrix) differs from the
143 identity matrix (scaled by $1/p$), where p and n are the dimensions of the selectivity
144 space (7) and the number of cells (90), respectively. The higher this value is, the more
145 the data deviates from a random population of vectors wherein selectivity values are
146 IID. Thus, a high value suggests that neurons in the population cluster according to
147 task variable identity preferences. In order to put this clustering value into context
148 we compared the value found from the data to two distributions: one generated by
149 shuffled data and one generated from data designed to be highly clustered. For the
150 shuffled data, we created "fake" cell vectors by shuffling the selectivity values across
151 all cells. For the clustered data, we created 3 categories of fake cells, each defined by
152 pure selectivity to two specific task variable identities. A population of 90 cells was
153 created by combining 30 cells from each category (the population was also designed to
154 have the same average firing rate and FF_T of the data). This results in a population
155 that has 3 clear clusters of cell types in selectivity space. 100 populations based on
156 each type of fake data were created in order to generate distributions that represent
157 random and clustered data.

158 Using the Gine-Ajne test of uniformity on the hypersphere ([13]) gives very similar
159 results to the Bingham test results.

160 2.6. Circuit Model

161 To explore the circuit mechanisms behind PFC selectivity, we built a simple two-
162 layer neural model, modeled off of previous work [2] (see Figure 4A for a diagram). The
163 first layer consists of populations of binary neurons, with each population representing
164 a task variable identity. To replicate a given condition, the populations associated
165 with the task variable identities of that condition are turned on (set to 1) and all
166 other populations are off (set to 0). Each population has a baseline of 50 neurons. To
167 capture the biases in selectivities found in this dataset (particularly the fact that, in
168 the 900ms period we used for this analysis, many more cells show selectivity to task
169 type than cue 2 and to cue 2 than cue 1), the number of neurons in the task type and
170 cue 2 populations are scaled by factors that reflect these biases (80 cells in each task
171 type population and 60 in each cue 2 population). The exact values of these weightings
172 do not have a significant impact on properties of interest in the model.

173 The second layer represents PFC cells. These cells get weighted input from a subset
174 of the first layer cells. Cells from the input layer to the PFC layer are connected with
175 probability .25 (unless otherwise stated), and weights for the existing connections are
176 drawn from a Gaussian distribution ($\mu_W = .207$, and $\sigma_W = \mu_W$ unless otherwise
177 stated. Because negative weights are set to 0, the actual connection probability and
178 σ_W may be slightly lower than given).

179 The activity of a PFC cell on each trial, t , is a sigmoidal function of the sum of its
 180 inputs:

$$r_i^t = k\phi\left(\sum_j w_{ij}x_j^t + \epsilon_A^t - \Theta_i\right)$$

$$\phi(z) = \frac{1}{1 + e^{-z}} \quad (1)$$

$$\epsilon_A^t \sim \mathcal{N}(0, \sigma_A^2) \quad \sigma_A = a\mu_W$$

181 where x_j is the activity (0 or 1) of the j^{th} input neuron and w_{ij} is the weight from
 182 the j^{th} input neuron to the i^{th} output neuron. Θ_i is the threshold for the i^{th} output
 183 neuron, which is calculated as a percentage of the total input it receives: $\Theta_i = \lambda \sum_j w_{ij}$.
 184 The λ value is constant across all cells, making Θ cell-dependent. k scales the responses
 185 so that the average model firing rate matches that of the data.

186 Two sources of noise are used to model trial-to-trial variability. ϵ_A is an additive
 187 synaptic noise term drawn independently on each trial for each cell from a Gaussian
 188 distribution with mean zero. The standard deviation for this distribution is controlled
 189 by the parameter a , which defines σ_A in units of the mean of the weight distribution,
 190 μ_W . The second noise source is multiplicative and depends on the activity of a given
 191 cell on each trial:

$$y_i^t \sim \mathcal{N}(r_i^t, \sigma_{M_i}^{t^2}) \quad (2)$$

$$\sigma_{M_i}^t = mr_i^t$$

192 Thus, the final activity of an output PFC cell on each trial, y_i^t , is drawn from a
 193 Gaussian with a standard deviation that is a function of r_i^t . This standard deviation is
 194 controlled by the parameter m . Both m and a are fit to make the model FFT match
 195 that of the data.

196 To make the model as comparable to the data as possible, ten trials are run for
 197 each condition and 90 model PFC cells are used for inclusion in the analysis.

198 2.7. Hebbian Learning

199 A simplified version of Hebbian learning is implemented in the network in a manner
 200 that captures the "rich get richer" nature of Hebbian learning while keeping the overall
 201 input to an individual cell constant. In traditional Hebbian learning, weight updates
 202 are a function of the activity levels of the pre- and post-synaptic neurons: $\Delta w_{ij} =$
 203 $g(x_j, y_i)$. In this simplified model we use connection strength as a proxy for joint
 204 activity levels: $\Delta w_{ij} = g(w_{ij})$. We also implement a weight normalization procedure
 205 so that the total input to a cell remains constant as weights change.

206 To do this, we first calculate the total amount of input each output cell, i , receives
 207 from each input population, p :

$$I_i^p = \sum_{j \in p} w_{ij} \quad (3)$$

208 The input populations (each corresponding to one task variable identity) are then

209 ranked according to this value. The top N_L populations according to this ranking
210 (that is, those with the strongest inputs onto the output cell) have the weights from
211 their constituent cells increased according to:

$$w_{ij} = (1 + \eta)w_{ij}, \quad j \in P_{1:N_L} \quad (4)$$

212 where η is the learning rate (set to .2 unless otherwise stated). After this, all weights
213 into the cell are normalized via:

$$\mathbf{w}_i = \mathbf{w}_i \frac{\sum_{p=1}^P I_i^p}{\sum_{j=1}^J w_{ij}} \quad (5)$$

214 Note, the numerator in the second term is the sum of all weights into the cell before
215 Eqn. 4 is applied and the denominator is the sum after it is applied.

216 In this work, two versions of Hebbian learning are tested. In the unrestricted, or
217 "free", learning condition described above, the top N_L populations are chosen freely
218 from all input populations (equivalently, all task variable identities) based solely on
219 the total input coming from each population after the random weights are assigned.
220 The alternative, "constrained" learning, is largely the same, but with a constraint
221 on how these top N_L populations are chosen: all task variables must be represented
222 before any can be repeated. So, two populations representing different identities of
223 the same task variable (e.g., cue 1 A and cue 1 B) will not both be included in the
224 N_L populations unless both other task variables already have a population included
225 (which would require that $N_L > 3$). So, with $N_L = 3$, exactly one population from
226 each task variable (task type, cue 1, cue 2) will have weights increased. This variant
227 of the learning procedure was designed to ensure that inputs could be mixed from
228 different task variables, to increase the likelihood that mixed selectivity would arise.
229 Both forms of learning are demonstrated for an example cell in Figure 4B.

230 In both forms of learning, the combination of weight updating and normalization
231 is applied to each cell once per learning step.

232 2.8. Toy Model Calculations

233 To make calculations and visualizations of the impacts of learning easier, we use a
234 further simplified toy model (see Figure 8A (left) for a schematic). A cell in this toy
235 model is similar to that in the full model, but instead of a sigmoidal nonlinearity, the
236 heaviside function is used. The toy model has two task variables (T1 and T2) and
237 each task variable has two possible identities (A or B). Four random weights connect
238 these input populations to the output cell: $W_{1A}, W_{1B}, W_{2A}, W_{2B}$. Just as in the full
239 model, on each condition, exactly one task variable identity from each task variable
240 is active (set to 1). This gives four possible conditions, each of which is plotted as a
241 point in the input space in Figure 2. The threshold is denoted by the dotted lines. If
242 the weighted sum of the inputs on a given condition is above the threshold, the cell is
243 active (green), otherwise it is not.

244 The toy model follows the same learning rules defined for the full model. Examples
245 of the impacts of learning on the representation of the 4 conditions are seen in Figure
246 2A and B. In A (top), random weights cause the cell to have pure selectivity to T2.
247 After a learning step that consists of increasing the weights from the two strongest
248 input populations, T2B and T1B, and then normalizing all weights ($N_L = 2$, learning

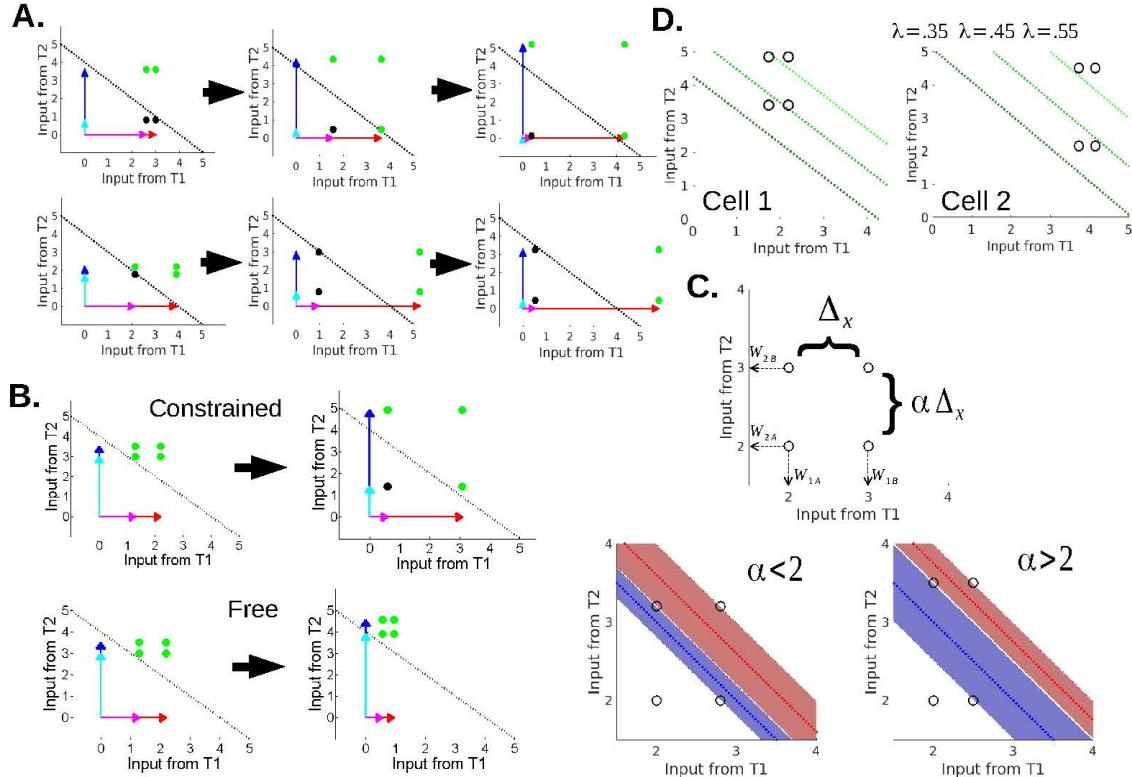


Figure 2: Signal and noise representation for the toy model shown in Figure 8A. Strength of weights from the 4 input populations are given as arrows in (A and B) and the threshold for the heaviside function is shown as a dotted line. The cell is active for conditions above the threshold (green). Weight arrows omitted for visibility in (C and D). A.) Learning causes the representation of conditions to change. This can change selectivity in multiple ways. Shown here: pure selectivity turns into mixed selectivity (top) and mixed selectivity turns into pure (bottom). B.) Constrained and free learning can lead to different signal changes. Constrained learning (top) guarantees that one population from each task variable is increased. This ensures that the representation spreads out. In this case, the cell goes from no selectivity to mixed selectivity. With these starting weights, free learning increases both populations from T2, and the cell does not gain selectivity. C.) Noise robustness can be thought of as the range of thresholds that can sustain a particular type of selectivity. Relative noise robustness of mixed and pure selectivity depends on the shape of the representation. α is the ratio of the differences between the weights from each task variable (top). In the two figures on the bottom, blue (red) dotted lines show optimal threshold for pure (mixed) selectivity and shaded areas show the range of thresholds created by trialwise additive noise that can exist without altering the selectivity. When $\alpha < 2$, mixed selectivity is robust to larger noise ranges (bottom left). When $\alpha > 2$, pure selectivity is more robust (bottom right). Given normally-distributed weights, $\alpha > 2$ is more common. D.) Two example cells showing how selectivity changes with changing λ . Sets of weights for both cells are drawn from the same distribution. The resulting thresholds at 3 different λ values (labeled on the right cell but identical for each) are shown for each cell.

249 rate is 1, weights sum to 10), the cell has lost its pure selectivity and now has nonlinear
 250 mixed selectivity. This happens because the T1B-T2A condition was pulled over the
 251 threshold by the increase in T1B weight. In another circumstance (bottom), the cell
 252 starts with nonlinear mixed selectivity. But the decrease in the weight from T1A
 253 with learning pulls the T1A-T2B condition beneath the threshold, resulting in pure
 254 selectivity. As the learning process continues until the weights plateau (right column),
 255 the new selectivities persist.

256 The changes in selectivity with learning are the result of the representation of the
 257 four conditions being expanded. Constrained learning is better able to achieve this
 258 expansion. The reason for this is shown in Figure 2B. Unlike Figure 2A, this cell
 259 starts off with its two strongest inputs coming from the same task variable (T2). In
 260 free learning (bottom), these inputs get increased while the two from T1 get decreased.
 261 This shrinks the representation along the T1 dimension and only increases it slightly
 262 along the T2 direction. Thus, the selectivity of this cell (no selectivity) doesn't change.
 263 With constrained learning (top), the representation is expanded in both directions (as
 264 one input from each task variable is increased and the other decreased), and the cell
 265 gains mixed selectivity.

266 While some cells will show changes in selectivity, changes in the representation also
 267 strongly impact noise robustness. Because additive noise functions like a change in
 268 threshold, it can cause a cell's response to flip. Trialwise additive noise drawn from a
 269 mean-zero distribution creates a range of effective thresholds centered on the original
 270 threshold value, and a cell's selectivity will only remain intact if the range of thresholds
 271 that support its selectivity is larger than the noise range. Therefore, a cell's selectivity
 272 is more noise robust if there is a larger range of threshold values for which its selectivity
 273 doesn't change. To explore noise robustness in this model, we will define:

$$\Delta_x \equiv W_{1B} - W_{1A} \quad \Delta_y \equiv W_{2B} - W_{2A} \quad \alpha \equiv \Delta_y / \Delta_x \geq 1 \quad (6)$$

274 Thus, α is the ratio of the side lengths of the rectangle formed by the four conditions
 275 (see Figure 2C, top). Without loss of generality, we define the larger of the two sides
 276 as associated with T2, $W_{2B} > W_{2A}$, and $W_{1B} > W_{1A}$.

277 For the cell to display pure selectivity to T2, the following inequality must hold:

$$W_{1B} + W_{2A} \leq \Theta < W_{1A} + W_{2B} \quad (7)$$

278 Therefore the range of thresholds that give rise to pure selectivity is:

$$\begin{aligned} (W_{1A} + W_{2B}) - (W_{1B} + W_{2A}) &= (W_{2B} - W_{2A}) + (W_{1A} - W_{1B}) \\ &= \Delta_y - \Delta_x = \Delta_x(\alpha - 1) \end{aligned} \quad (8)$$

279 The analogous calculations for mixed selectivity (assuming the T1B-T2B condition is
 280 active only, but results are identical for T1A-T2A being the only inactive condition)
 281 are:

$$\begin{aligned} W_{1A} + W_{2B} &\leq \Theta < W_{1B} + W_{2B} \\ W_{1B} + W_{2B} - (W_{1A} + W_{2B}) &= (W_{1B} - W_{1A}) = \Delta_x \end{aligned} \quad (9)$$

282 Thus, pure selectivity is more noise robust than mixed selectivity when $\alpha > 2$. This
283 imbalance can be seen in Figure 2C, where the bottom left panel shows that the range
284 of thresholds that support mixed selectivity (red shaded area) is larger than that of
285 pure selectivity (blue shaded area) when $\alpha < 2$. The right panel shows the reverse
286 pattern, when $\alpha > 2$. Here, the dotted colored lines show the optimal (most noise
287 robust) threshold for each selectivity type.

288 Now we show that, given weights drawn at random from a Gaussian distribution,
289 $\alpha > 2$ is more common than $\alpha < 2$. The argument goes as follows: because Δ_x
290 and Δ_y are differences of normally distributed variables, they are themselves normally
291 distributed (with $\mu = 0$, $\sigma = 2\sigma_w$). The ratio of these differences is thus given
292 by a Cauchy distribution. However, because α represents a ratio of lengths, we are
293 only interested in the magnitude of this ratio, which follows a standard half-Cauchy
294 distribution. Furthermore, α is defined such that the larger difference should always
295 be in the numerator. Thus,

$$P(\alpha > 2) = 1 - \int_{1/2}^2 \frac{2}{\pi(1+u^2)} = .5903 \quad (10)$$

296 Therefore, the majority of cells can be expected to have $\alpha > 2$ with random weights.
297 This means that most cells have a representation that leads to higher noise robustness
298 for pure selectivity than for mixed.

299 This comparison of noise robustness, however, assumes an optimal threshold for
300 each type of selectivity. But selectivity (in the absence of noise) and noise robustness
301 change as the threshold varies. Here, the threshold is defined as a fraction of the
302 total weight going into the cell: $\Theta = \lambda \Sigma W$. As we increase λ then, the threshold is
303 a line with slope of -1 that moves from the bottom left corner up to the top right.
304 Examples of this are shown in Figure 2D. With the smallest λ , neither example cell has
305 selectivity. With the middle λ value Cell 1 gains mixed. Cell 2 gains pure selectivity,
306 which it retains at the higher λ , while Cell 1 switches to the other type of mixed. A
307 low λ is thus conducive to the type of mixed selectivity where the cell is active in all
308 but one condition, while a high λ can create the opposite type of mixed selectivity.
309 Pure selectivity can come from a range of λ in the middle.

310 If λ is low, for example, a cell may still achieve pure selectivity, but it will likely
311 do so with low noise robustness, as the threshold will be very near to the condition for
312 mixed selectivity.

313 To investigate how noise robustness changes with λ , we generate a large (10000)
314 population of cells, each with four random input weights (drawn from a Gaussian with
315 positive mean). Qualitative results hold for many weight/variance pairs. Weights are
316 strictly non-negative), and calculate the size of the additive noise shift needed to cause
317 each cell to lose its selectivity (whichever it has). For each type of selectivity, we plot
318 these noise values in the form of a cumulative distribution function: Figure 7B plots
319 the fraction of cells that will lose their selectivity at a noise value less than or equal
320 to that given on the x-axis. This function depends on the threshold, and so is plotted
321 for different λ values.

322 To synthesize this, we plot the noise value at which 50% of cells have lost selectivity,
323 as a function of λ (Figure 7C, noise values are normalized by the maximum value).
324 On the same plot we show the percent of cells that have mixed and pure selectivity in
325 the absence of noise. The percent of cells that ultimately demonstrate selectivity will

326 depend on the percent present without noise and the noise robustness. For example,
327 starting at $\lambda = .25$ and going to $\lambda = .35$, the percent of cells with mixed selectivity
328 grows, while its noise robustness decreases. So, depending on the noise level, the
329 amount of cells with mixed selectivity may grow or shrink as λ changes this way. This
330 plot is used to understand the choice of threshold in the model.

331 Assuming a fixed threshold, we then explore how noise robustness varies with
332 learning. In doing so, it is important to note the effect of starting from a λ value
333 that has unequal noise robustness for pure and mixed selectivities. Given a fixed noise
334 value, if most cells with pure selectivity are already robust to it, an increase in noise
335 robustness for pure will only have a moderate effect on the population levels of pure
336 selectivity. Conversely, if most mixed cells have noise robustness less than the current
337 noise value, an increase in that robustness could strongly impact the population. In
338 the same vein, a decrease in robustness will impact the pure population more than the
339 mixed.

340 In the case of constrained learning with $N_L = 2$, Δ_x and Δ_y both increase. According
341 to Eqn. 7 and Eqn. 9, robustness to both selectivities increases with Δ_x , which is
342 why constrained learning causes increases in both mixed and pure selectivity (Figure
343 6A).

344 The relative increase in robustness will depend on how α changes. It can be shown
345 that if $\frac{W_{1B}}{W_{1A}} < \frac{W_{2B}}{W_{2A}}$ then Δ_x will expand more than Δ_y and α will decrease, meaning
346 the increase in noise robustness favors mixed selectivity. If $\frac{W_{1B}}{W_{1A}} > \frac{W_{2B}}{W_{2A}}$, then α will
347 grow, and the increase in noise robustness will be larger for pure than mixed. Because
348 the latter condition is less common, pure noise robustness doesn't increase as much as
349 mixed (see Figure 8C, where constrained learning with $N_L = 2$ is used.)

350 When $N_L = 1$, only one side length will increase and the other decrease, leading
351 ultimately to lower length of the shortest side but a larger ratio between the sides
352 (so more robustness to noise for pure selectivity and less for mixed). This is straight-
353 forward for $W_{2B} > W_{1B}$ (Δ_y grows and Δ_x shrinks) and contributes to the increase
354 in pure selectivity with $N_L = 1$ in Figure 6A. However, if $W_{1B} > W_{2B}$, α will first
355 decrease as Δ_x grows and Δ_y shrinks. This is good for mixed noise robustness. The
356 ratio then flips ($\Delta_x > \Delta_y$), and Δ_y (the side that is now shorter) is still shrinking and
357 Δ_x is growing. In this circumstance, if Δ_y/Δ_x becomes less than $\frac{1}{2}$, the representation
358 will favor pure noise robustness over mixed. This pattern is reflected in the shape
359 of the mixed selectivity changes seen with $N_L = 1$ in Figure 6A (mixed selectivity
360 increases then decreases). This flipping of α is possible for some cells when $N_L = 2$ if
361 $\frac{W_{1B}}{W_{1A}} < \frac{W_{2B}}{W_{2A}}$, but the weights would likely plateau before α became less than $\frac{1}{2}$, and so
362 the drop in mixed selectivity does not occur.

363 In free learning with $N_L = 2$, cells that have $W_{1A} > W_{2B}$, will see both weights
364 from T1 increase and (due to the weight normalization) both weights from T2 decrease.
365 Because the weights change in proportion to their value, Δ_x increases, Δ_y decreases
366 and so α goes down. This leads to more noise robustness for mixed and less for pure.
367 If $W_{2A} > W_{1B}$, these trends are reversed and the cell has more noise robustness for
368 pure and less for mixed.

369 3. Results

370 In this study, we analyzed various measures of selectivity of a population of PFC
371 cells recorded as an animal carried out a complex delayed match-to-sample task.

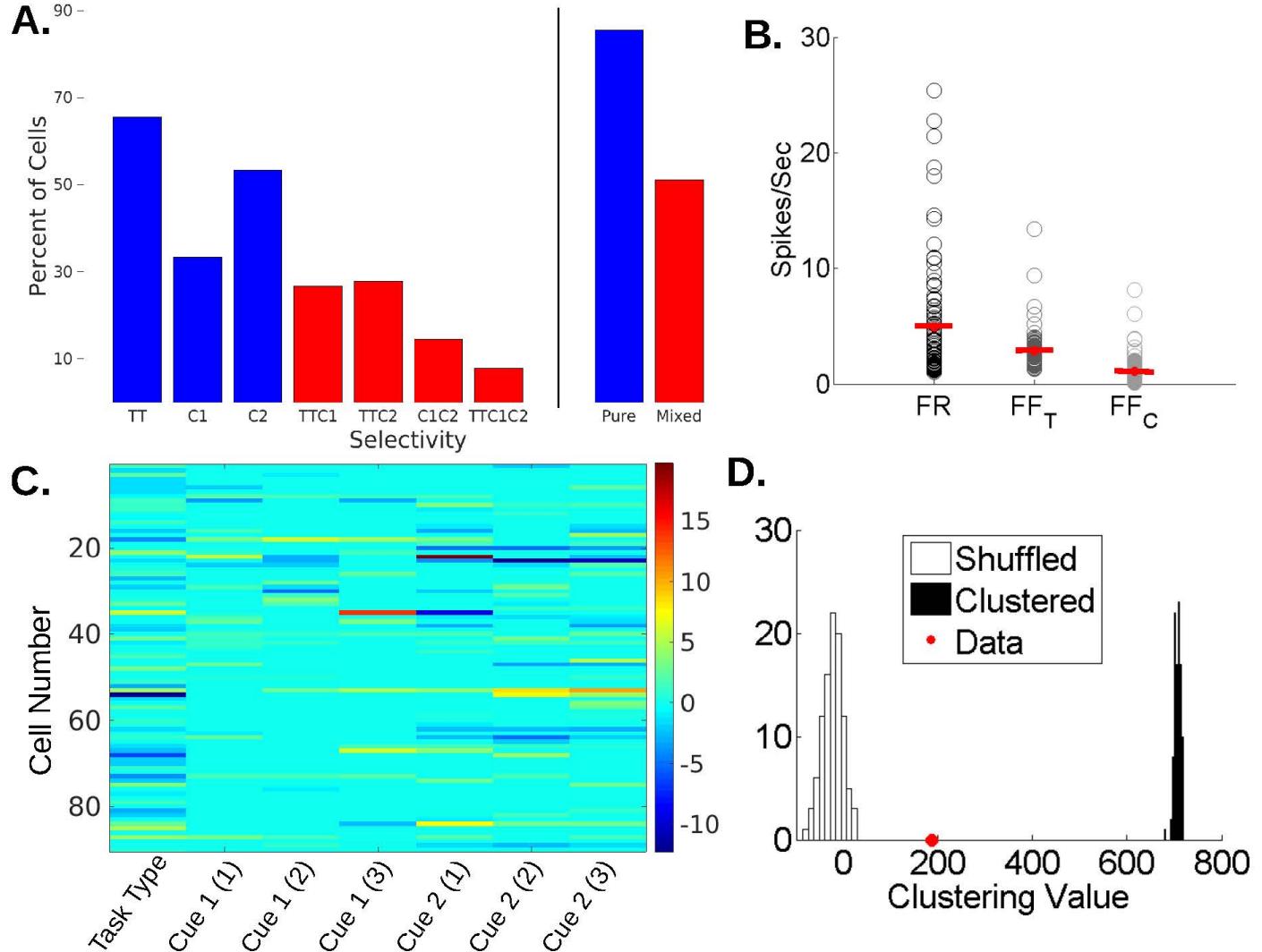


Figure 3: Results from the experimental data. A.) Selectivity profile of the 90 cells analyzed. A cell had pure selectivity to a given task variable if the term in the ANOVA associated with that task variable was significant ($p < .05$). A cell had nonlinear mixed selectivity to a combination of task variables if the interaction term for that combination was significant. On the right of the vertical bar are the percent of cells that had at least one type of pure selectivity (blue) and percent of cells that had at least one type of mixed selectivity (red). B.) Values of firing rate, FF_T , and FF_C for this data. Each open circle is a neuron and the red markers are the population means. C.) Beta coefficients from GLM fits for each cell. The first regressor corresponds to task type, regressors 2-4 correspond to cue 1 and 4-7 to cue 2. These values were used to determine the clustering value D.) Histograms of clustering values generated for different distributions. The shuffled data comes from shuffling the selectivity coefficients across cells. The clustered data is designed to have 3 different categories of cell types defined according to selectivity. The red dot shows the data value.

372 Through this process, several properties of the representation in PFC were discov-
373 ered and a simple circuit model that included Hebbian learning was able to replicate
374 them. These properties, combined with the modeling results, provide strong support
375 for the notion that PFC selectivities are the result of Hebbian learning in a random
376 network.

377 *3.1. PFC Population is Moderately Specialized and Selective*

378 The average firing rate of cells in this population was $4.90 + / - 5.14$ spikes/s.
379 Fano Factor analyses provided measurements of the noise and density of response
380 in the data (Figure 3B). The average value of the across-trial Fano Factor ($FF_T =$
381 $2.86 + / - 1.68$), shows that the data has elevated levels of noise compared to a Poisson
382 assumption. Looking at FF_C —a measure of how a cell’s response is distributed across
383 conditions—suggests that PFC cells are responding densely across the 24 conditions
384 ($FF_C = 1.11 + / - 1.19$, for comparison, at the observed average firing rates, a cell
385 that responded only to a single condition would have $FF_C \approx 120$, one that responded
386 to two conditions would have $FF_C \approx 57$). This finding suggests that these cells are
387 not responding sparsely and are not very specialized for the individual conditions of
388 this task.

389 Each condition is defined by a unique combination of 3 task variables: task type,
390 identity of image cue 1 and identity of image cue 2 (Figure 1A). Selectivity to task
391 variables was determined via a 3-way ANOVA. The results of this analysis are shown
392 in Figure 3A. This figure shows the percentage of cells with selectivity to each task
393 variable and combination of task variables (as determined by a significant ($p < .05$)
394 term in the ANOVA). A cell that has selectivity to any of the regular task variables
395 (task type, cue 1, cue 2) has pure selectivity, while a cell that has selectivity to any
396 of the interaction terms (combination of task variables such as task type-cue1, task
397 type-cue 2, etc) has nonlinear mixed selectivity. The final two bars in Figure 3A show
398 the number of cells with pure and mixed selectivity defined this way. Note that a cell
399 can have both pure and mixed selectivity, thus the two values sum to more than 100%.

400 The majority of cells (77/90) showed pure selectivity to at least one task variable.
401 But the population shows clear biases in the distribution of these pure selectivities:
402 task type selectivity is the most common (59 cells) and cue 2 is represented more than
403 cue 1 (48 vs. 30 cells) (these biases are observable in the GLM fits as well, see Figure
404 3C). This latter effect may be due to the time at which these rates were collected: these
405 rates were taken during the second delay, which comes directly after the presentation
406 of the second cue. The former effect is perhaps more surprising. While the task type is
407 changed in blocks and thus knowable to the animal on each trial (with the exclusion of
408 block changes), there is no explicit need for the animal to store this information: the
409 presence of a second sequence or an array of images will signal the task type without
410 the need for prior knowledge. However, regardless of its functional role in this task,
411 contextual encoding is a common occurrence ([10, 19]). Furthermore, the fact that
412 the recall task is more challenging than the recognition task may contribute to clear
413 representation of task type. That is, it is possible that the animals keep track of the
414 task type in order to know how much effort to exert during the task.

415 Approximately half of the cells (46) had some form of mixed selectivity, mostly to
416 combinations of two task variables. The small number of cells with selectivity to the
417 3-way interaction term (TT-C1-C2) is consistent with the relatively low value of FF_C
418 in this population, as a strong preference for an individual condition would lead to a

419 high FF_C . The number of cells with only mixed selectivity was low (only 1 out of 90
420 cells), 32 cells had only pure selectivity, and 12 cells had no selectivity.

421 We use a population-level analysis inspired by [35] to measure the extent to which
422 cell types are clustered into categories. Here, we used this analysis to determine if
423 cells cluster according to their responsiveness to different task variable identities (i.e.,
424 recognition vs recall). That is, are there groups of neurons which all prefer the same
425 task type and image identities, beyond what would be expected by chance? In order to
426 explore this, we first use a GLM, with task variable identities as regressors, to fit each
427 neuron individually. The beta coefficients from these fits define a neuron's position in
428 selectivity space (these beta coefficient values are shown in Figure 3C, and a schematic
429 of how the clustering measure works is shown in Figure 1D). The clustering measure
430 then determines the extent to which the population of neurons deviates from a uniform
431 distribution in this space. The data had a clustering value of 186.22. Comparing this to
432 the mean values of two distributions of artificially generated populations suggests the
433 data has a mild but significant deviation from random: the average clustering value for
434 populations generated by randomly shuffling the coefficient values is -22.59 ± 21.75 ,
435 and the average value of populations that have 3 distinct clusters of selectivity is
436 706.68 ± 6.84 . As the data clustering value sits in between these values and closer to
437 the shuffled data, we conclude that some structure does exist in the data, yet the cells
438 in this population do not appear to form strongly separable categories as defined by
439 task variable identity preference (Figure 3D).

440 *3.2. Circuit Model without Hebbian Learning Cannot Replicate Mix of Density and
441 Specialization*

442 A simple circuit model was made to replicate the selectivity properties found in
443 the data. The model contains two layers: an input layer consisting of binary neurons
444 that represent task variable identities and an output layer consisting of "PFC" neu-
445 rons which get randomly-weighted input from the first layer and whose activity is a
446 nonlinear function of the sum of that input. The model also has two forms of noise:
447 an additive term applied before the nonlinearity (which replicates input/background
448 noise, and implicitly shifts the threshold of the cell), and a multiplicative term applied
449 after (which enforces the observed relationship between firing rate and variance) (see
450 Methods and Figure 4A).

451 The output of the initial circuit model, prior to any Hebbian learning, was analyzed
452 in the same way as the data to determine if it matched the properties found in PFC.
453 The results of this can be found in Figure 5. First, in Figure 5A, we demonstrate the
454 impact of the noise parameters on FF_T , pure and mixed selectivity, and the clustering
455 value. As expected, increasing the additive and/or multiplicative noise terms increases
456 the FF_T , as this is a measure of trial variability. Increasing noise also makes it harder
457 for cells to reach significance, and thus the percentage of cells with pure and mixed
458 selectivity are inversely related to the noise parameters, (the relative sensitivities of
459 mixed and pure selectivity to noise will be discussed in depth later). For similar
460 reasons, clustering value also decreases with noise (cells need to display significant
461 preferences to task variable identities in order to form clusters based on that).

462 To determine the impact other properties of the model had on our measures of
463 interest, we varied several other parameters. Figure 5B shows what happens at differ-
464 ent values of the threshold parameter. Here, the threshold is given as the amount of
465 input the cell needs to reach half its maximal activity, expressed as a fraction of its

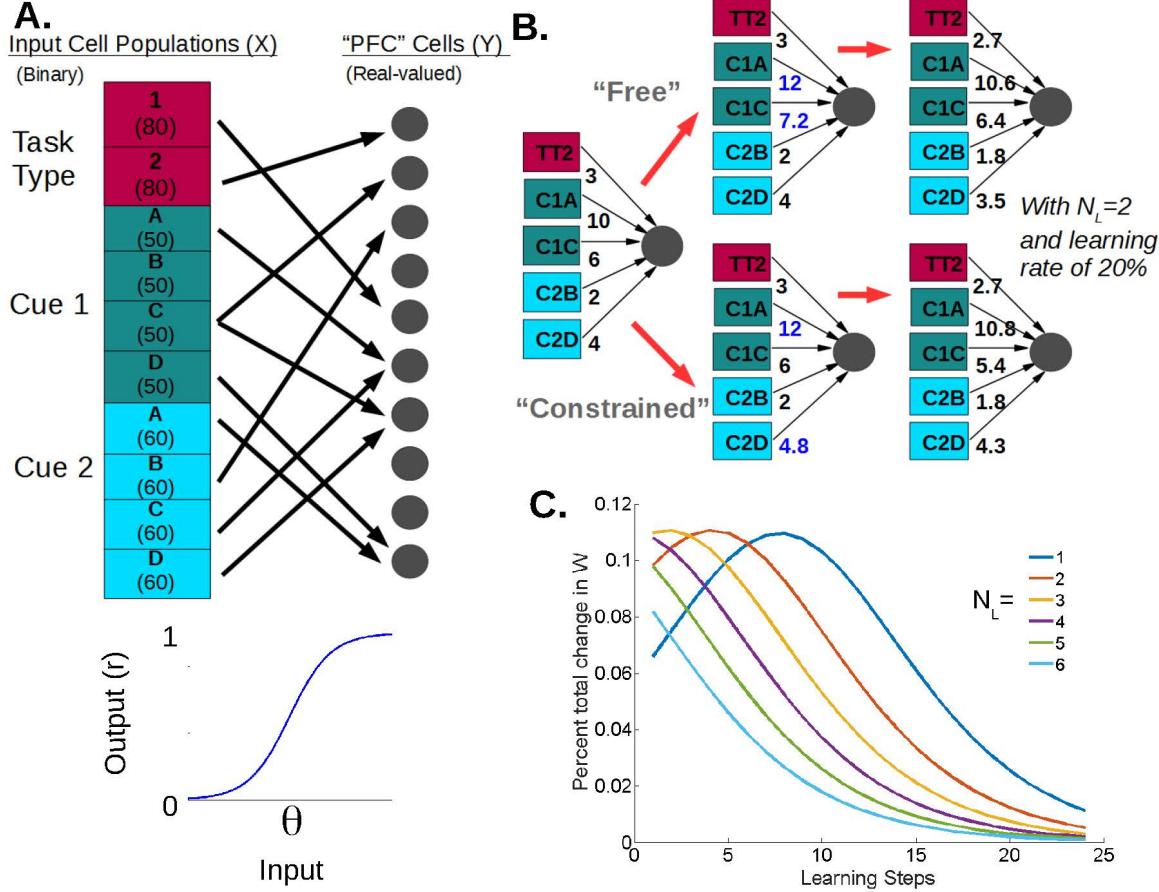


Figure 4: The full model and how learning occurs in it. A.) The model consists of groups of binary input neurons (colored blocks) that each represent a task variable identity. The number of neurons per group is given in parenthesis. Each PFC cell (gray circles) receives random input from the binary populations. Connection probability is 25% and weights are Gaussian-distributed and non-negative. The sum of inputs from the binary population and an additive noise term are combined as input to a sigmoidal function (bottom). The output of the PFC cell on a given trial is a function of the output of the sigmoidal function, r and a multiplicative noise term (see Methods). The threshold, Θ , is given as percentage of total input to each cell B.) Two styles of learning in the network, both of which are based on the idea that the input groups that initially give strong input to a PFC cell have their weights increased with learning (sum of weights from each population are given next to each block). In free learning, the top N_L input populations have their weights increased (marked in blue). In constrained learning, the top N_L populations are chosen with the constraint that they cannot come from the same task variable. In this case, that means that cue 2D is chosen over cue 1C despite the latter having a larger summed weight. In both cases, all weights are then normalized. C.) Learning curves as a function of learning steps for different values of N_L . Strength of changes in the weight matrix expressed as a percent of the sum total of the weight matrix are plotted for each learning step (a learning step consists of both the weight increase and normalization steps). Different colors represent different N_L s.

466 total input (keep in mind that, given the number of input cells in each population and
467 the task structure, roughly one-third of input cells are on per trial). The colored lines
468 are, for each measure, the extent to which the model differs from the data, expressed
469 in units of the model's standard deviation (calculated over 100 instantiations of the
470 model). Due to the impact of noise parameters discussed above, at each point in this
471 graph the noise parameters were fit to ensure the model was within +/- 1.5 standard
472 deviations of the data FF_T (this generally meant that it varied from ~ 2.8 to 2.9).

473 With an increasing threshold, the FF_C (green line in Figure 5B) increases. This
474 is because higher thresholds mean cells respond to only a few combinations of input,
475 rather than responding similarly to many, and the FF_C is a measure of variability
476 in response across conditions (note that while FF_C appears to peak at $\approx .35$ and
477 decrease, this particular trend is driven by an increase in FF_C standard deviation; the
478 mean continues to increase). The percentage of cells with mixed selectivity (red line)
479 also increases with threshold. With a higher threshold, the majority of conditions give
480 input to the cell that lies in the lower portion of the sigmoidal function (bottom of
481 Figure 4A). The nonlinearity is strong here—with some input producing little to no
482 response—thus, more cells can attain nonlinear mixed selectivity. Pure selectivity also
483 increases with threshold, and the percent of cells with pure selectivity goes quickly
484 to 100 (and the standard deviation of the model gets increasingly small). We go into
485 more detail about the reliance of selectivity on threshold later.

486 The clustering value relies on cells having preference for task variable identities
487 and so increases as selectivity increases initially. However, just having selectivity is
488 not enough to form clusters, and so the clustering value in the model levels off below
489 the data value even as the number of cells with pure selectivity reaches full capacity.
490 Thus, with the exception of the clustering value, the model can reach the values found
491 in the data by using different thresholds. As Figure 5B shows, however, at no value of
492 the threshold are all measures of PFC response in the model simultaneously aligned
493 with those in the data.

494 Figure 5C shows how the same measures change when the width of the weight
495 distribution from input to PFC cells is varied. Here, the standard deviation of the
496 distribution from which connection strengths are drawn (σ_W) is given as a factor of
497 the mean weight, μ_W . Increasing this value increases pure and mixed selectivity as well
498 as FF_C . Because a wider weight distribution increases the chances of a very strong
499 weight existing from an input cell to an output cell, it makes it easier for selectivity to
500 emerge (that is, the output cell's response will be strongly impacted by the task variable
501 identity the input cell represents). The FF_C increase occurs for similar reasons: a cell
502 may have uneven responses across conditions due to strong inputs from single input
503 cells. Clustering values, however, are unaffected by this parameter. At no point, then,
504 can the model recreate all aspects of the data by varying the weight distribution.
505 Furthermore, while values of mixed selectivity and FF_C approach the data values
506 with large σ_W/μ_W , such large values are likely unrealistic. Data show that a σ_W/μ_W
507 ratio of around 1 is consistent with observations of synaptic strengths from several
508 brain areas [3].

509 Varying other parameters such as the mean weight, number of cells per population,
510 and connection probability similarly doesn't allow the model to capture all properties
511 of the data (not shown).

512 Figure 5D shows the values of the model as compared to the data for the set of
513 parameters marked with arrows in Figure 5B and 5C. For reasons that will be discussed

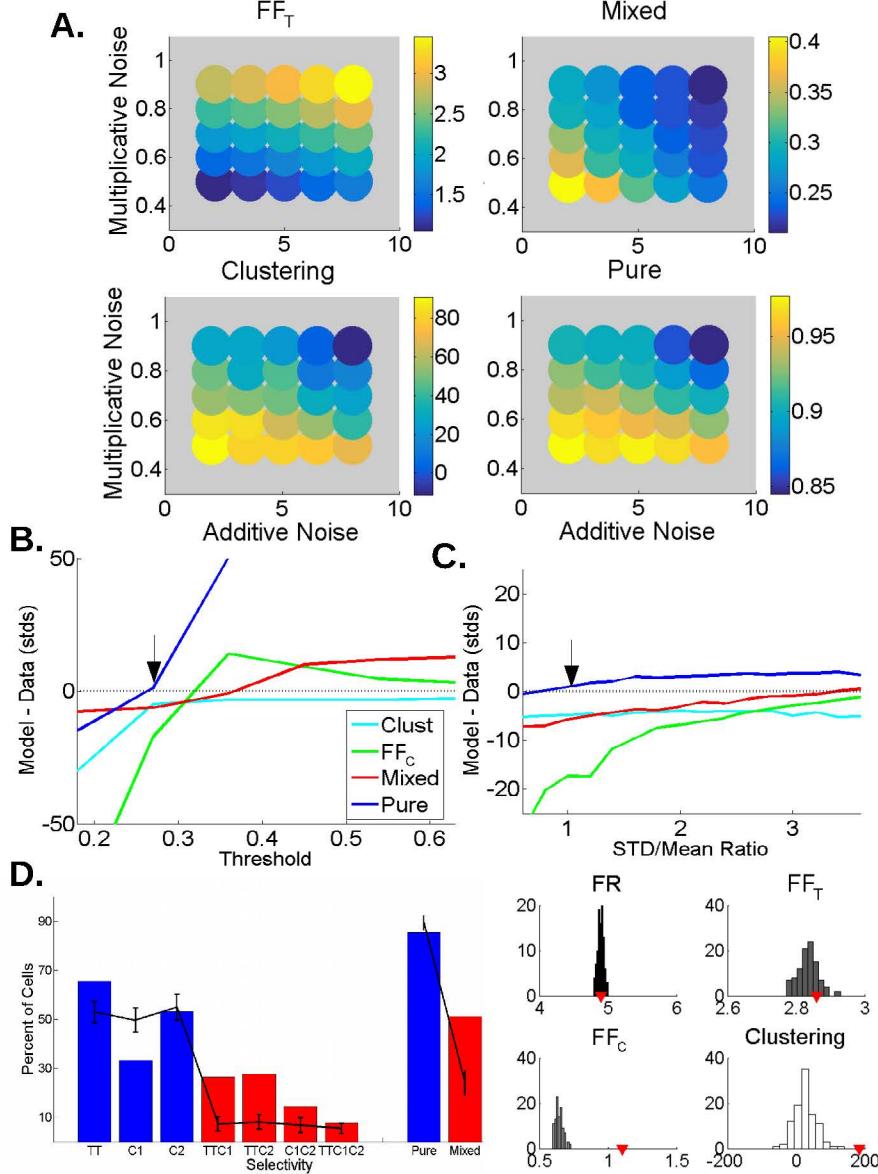


Figure 5: Results from the model without learning. A.) FF_T and other measures can be controlled by the additive and multiplicative noise parameters. Each circle's color shows the value for the given measure averaged over 25 networks, for a set of a and m values (see Methods). FF_T scales predictably with both noise parameters. Mixed selectivity, pure selectivity, and clustering scale inversely with the noise parameters. Other model parameters are taken from the arrow locations in (B) and (C). B.) How the threshold parameter, λ , affects measures of selectivity. Lines show how the average value of the given measure in the model (in units of standard deviations away from the data value) varies as a function of the threshold parameter λ , where $\Theta_i = \lambda \sum_j w_{ij}$. At each point noise parameters are fit to keep FF_T close to the data value. C.) Same as (B), but varying the width of the weight distribution rather than the threshold parameter. D.) Example of the model results at the points given by the black arrows in (B) and (C). On the left, blue and red bars are the data values as in Fig 2. The lines are model values (averaged over 100 networks, errorbars ± 1 std). On the right, histograms of model values over 100 networks. The red markers are data values. This model has no learning.

514 more later, these parameters were chosen because they were capable of capturing the
515 amount of pure selectivity in the model (any higher value of the threshold would lead
516 to too many cells with pure selectivity, for example). On the left are the percentage
517 of cells with different selectivities as in Figure 3C. The bars are the data and the lines
518 are the model. On the right, are histograms of model values from 100 instantiations,
519 with the red markers showing the data values. The model matches the average firing
520 rate and FF_T of the model, as it was fit to do so. Clustering, FF_C , and the amount
521 of mixed selectivity are too low in the model. We use these parameters as the starting
522 point for learning in this model.

523 3.3. Circuit Model with Hebbian Learning Captures PFC Responses

524 As described above, responses of PFC cells have a set of qualities that cannot be
525 explained by random connectivity. In particular, the inability of the random network to
526 simultaneously capture the values of FF_C , clustering, pure, and mixed selectivity shows
527 that PFC cells have a balance of specialization that may require learning to achieve.
528 Here, we tested two variants of Hebbian learning to determine if a network endowed
529 with synaptic plasticity can capture the elements of the data that the random network
530 could not. The simple form of Hebbian learning that we use is based on the idea that
531 the input populations that randomly start out giving strong inputs to a cell would likely
532 make that cell fire and thus have their weights increased. In both variants of learning
533 tested, each cell has the weights from a subset (N_L) of its input populations increased
534 while the rest are decreased to keep overall input constant (this is done via a weight
535 increase step and a normalization step). Mechanisms for such balancing of Hebbian
536 and homeostatic plasticity have been observed experimentally ([17]), particularly via
537 the type of synaptic up and down regulation used here ([5, 40, 21]).

538 The difference between the two variants of learning comes from which input pop-
539 ulations are increased. In general, the top N_L input populations from which the cell
540 already receives the most input have their weights increased (to capture the "rich get
541 richer" nature of Hebbian learning). In the "constrained" variant, however, weight
542 increases onto a PFC cell are restricted to populations of input cells that come from
543 different task variables (e.g., cue 1 and cue 2. For a detailed explanation see Methods).
544 This was done to ensure that cells had enough variety of inputs to create mixed selec-
545 tivity. In the free variant, the populations from which a cell receives increased input
546 due to learning are unrestricted. That is, they are determined only by the amount of
547 input that the cell originally received from each population as a result of the random
548 connectivity. This unrestricted form of learning is more biologically plausible as it
549 can be implemented locally, without knowledge of other inputs. A toy example of
550 each variant can be found in Figure 4B. Given random weights, free and constrained
551 learning will select the same input populations in some cells.

552 Figure 4C shows how the weight matrix changes with different N_L values (the
553 number of populations from which weights are increased during learning). The higher
554 the N_L the faster the matrix converges to its final state. When N_L is low, convergence
555 takes longer as all the weight is transferred to a small number of cells. This plot is
556 shown with a learning rate of .2.

557 The results of both forms of learning are shown in Figure 6A. The effects of learning
558 are dependent on N_L , and different N_L values are in different colors ($N_L = 1, 2, 3$ are
559 tested here). Free learning is shown with solid lines, and constrained with dotted lines,
560 except for the case of $N_L = 1$, where free and constrained learning do not differ and

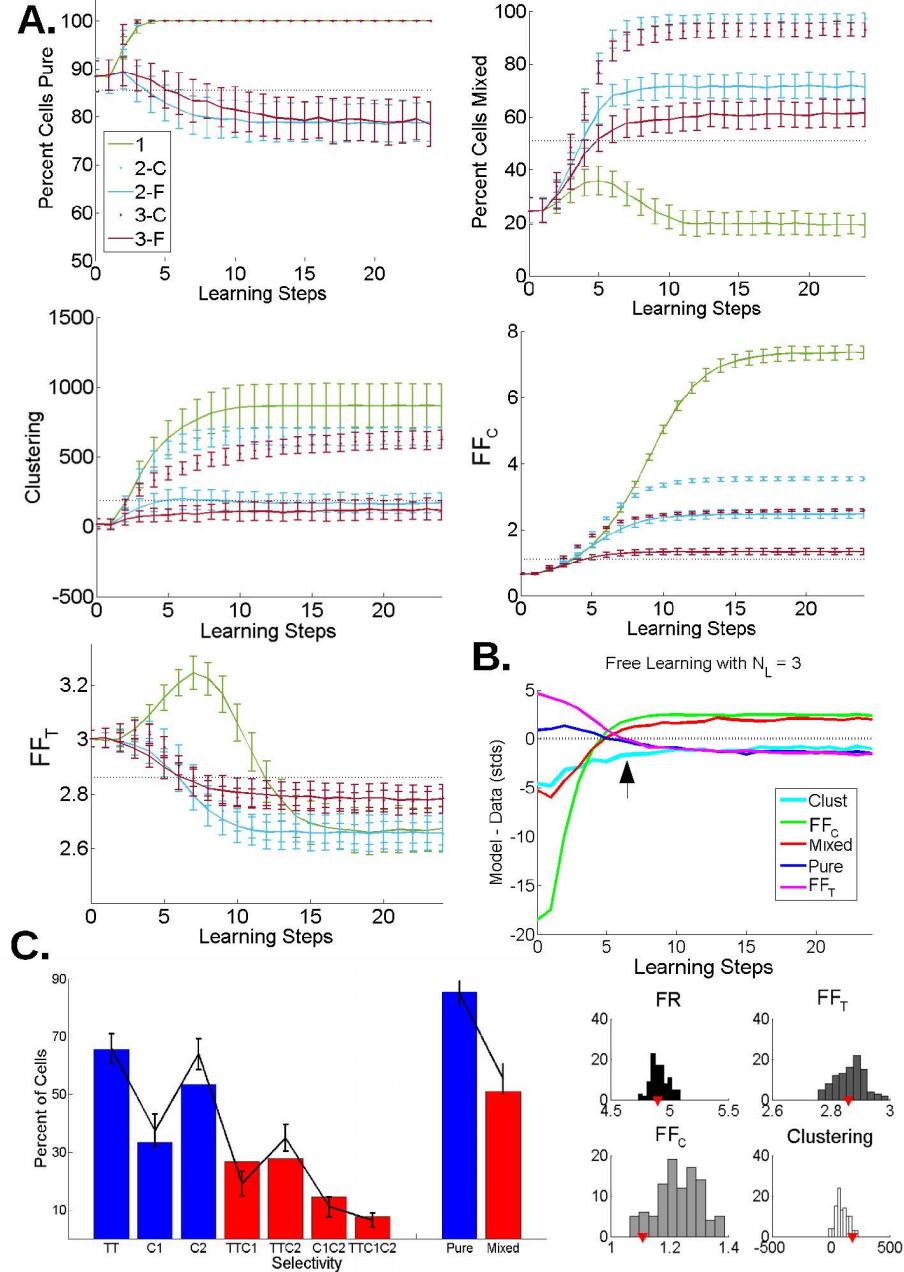


Figure 6: The model with learning. A.) How selectivity measures change with learning. In each plot, color represents N_L value, solid lines are free learning, and dotted lines are constrained learning (only one line is shown for $N_L = 1$ as the free and constrained learning collapse to the same model in this circumstance). Step 0 is the random network. Black dotted lines are data values and errorbars are ± 1 std over 100 networks. In the pure selectivity plot, with constrained learning and when $N_L = 1$, the value maxes out at 100% in essentially all networks, leading to vanishing errorbars. B.) All measures as a function of learning for the $N_L = 3$ free learning case. Values are given in units of model standard deviation away from the data value as in Figure 5B and C. C.) The model results at the learning step indicated with the black arrow in (B), same as in Figure 54D. Here, the model provides a much better match to the data.

561 only one line is shown. In each plot, the data value is shown as a small black dotted
562 line.

563 Clustering, mixed selectivity, and FF_C all increase with learning, for any value of
564 N_L and both learning variants. When $N_L = 1$ (green line), mixed selectivity peaks and
565 then plateaus at a lower value (as connections to all but one population are pruned),
566 while other values of N_L plateau at their highest values. As it was designed to do so,
567 constrained learning is very effective at increasing mixed selectivity, eventually getting
568 to nearly 100 percent of cells. Free learning produces more modest increases in mixed
569 selectivity, with $N_L = 2$ leading to slightly larger increases than $N_L = 3$.

570 A factor impacting selectivity in this model—and especially with this task structure—
571 is that cells that receive inputs from multiple populations from a single task variable
572 may not end up having significant selectivity to that variable. This is especially true
573 for the 'task type' variable, as cells can easily end up with input from both 'recall' and
574 'recognition' populations. If the inputs from these populations are somewhat similar in
575 strength, the cell does not respond preferentially to either. This can help understand
576 the discrepancy in how pure selectivity changes with free and constrained learning.
577 In constrained learning, pure selectivity necessarily increases with learning (to the
578 point where nearly all networks have 100% pure selectivity), whereas free learning can
579 have inputs that effectively cancel each other out. A more direct investigation of how
580 selectivity changes with learning occurs in the next section.

581 In these plots, both noise parameters are fixed, which allows us to see how FF_T
582 varies with learning (this is also why the values at step 0 in Figure 6A do not always
583 match those shown in Figure 5, as that model has noise parameters fit to match the
584 data). The changes in FF_T stem from both changes in robustness to the additive noise
585 and from changes in the mean responses, which impacts FF_T via the multiplicative
586 noise term. Figure 6A shows that the variant of learning has less of an impact on FF_T
587 than N_L does. In all cases, however, learning ultimately leads to lower trial variability
588 in the model. This is consistent with observation made in PFC during training [34].

589 Overall, low N_L leads to more acutely distributed weights and stronger structure
590 and selectivity in the model. Constrained learning, with its guarantee of enhancing
591 weights from different task variables, is also more efficient at enhancing structure
592 and selectivity. The prefrontal cortex data shows a moderate level of structure and
593 selectivity, therefore the approach that is best able to capture it is free learning with
594 $N_L = 3$. In Figure 6B, we show how all of the model values compare to the data as
595 this form of learning progresses. These plots, similar to Figure 5B and C, show values
596 in units of standard deviations away from the model. It is clear from these plots that
597 this form of learning leads all values in the model closer to those of the data, and all
598 values eventually plateau within ± 2.5 model standard deviations of the data. The
599 best fit to the data comes after 6 learning steps with a learning rate of .2 (marked
600 with a black arrow). At this point the ratio of the standard deviation to the mean of
601 the distribution has only slightly increased, remaining within a biologically plausible
602 range. We plot the values of the data in comparison to model in Figure 6C, similarly
603 to Figure 5D. At this point, the average percent of cells with only pure selectivity is
604 25.40 ± 4.16 , with only mixed 4.42 ± 2.15 , and with no selectivity 15.9 ± 4.08 (the
605 comparable data values are $\approx 36\%$, 1%, and 13%, respectively). Thus, the model with
606 learning is a much better fit to the data than the purely random network.

607 *3.4. Understanding Properties of Selectivity Before Learning*

608 We have shown that Hebbian learning can impact selectivity properties in a model
609 of PFC. Some of these impacts, particularly the increase in mixed selectivity, may seem
610 counterintuitive. Here we use a further simplified toy neuron model to understand the
611 properties of the network before learning and then demonstrate how learning causes
612 these changes.

613 A schematic of this toy model is in Figure 7A and 8A, and it is fully described in
614 the Methods. Briefly, the cell gets four total inputs—two (A and B) from each of two
615 task variables (T1 and T2). The output of the cell is binary: if the weighted sum of
616 the inputs is above the threshold, Θ , the cell is active and otherwise it is not. As in
617 the full model, Θ is defined as a fraction, λ , of the sum of the input weights.

618 This format makes it easy to spot nonlinear mixed selectivity: if the cell is active
619 (or inactive) for exactly one of the four conditions, it has nonlinear mixed selectivity
620 to the combination of T1-T2. If the cell’s output can be determined by the identity of
621 only one task variable, it has pure selectivity (and would be active for two of the four
622 conditions). Otherwise it has no selectivity (active or inactive for all conditions) (see
623 examples in Figure 2A and B).

624 Learning impacts selectivity by altering the way a cell represents these four conditions.
625 To say more about how this occurs, we must first describe the properties of the
626 representation in the random network before learning.

627 To be robust to noise, the cell’s response should be constant across conditions.
628 Additive noise can be thought of as a shift in the threshold, which may lead to a
629 change in the cell’s response. Thus, trialwise additive noise drawn from a distribution
630 centered on zero can be thought of as a range of effective thresholds centered on the
631 original one (gray shaded area in Figure 8A, black dotted line is the threshold without
632 noise). If the inputs for a given condition fall in this range, the response of the cell
633 will be noisy, i.e. flipping from trial to trial, and selectivity will be lost. Robustness to
634 noise, then, can be measured as the range of thresholds a representation can sustain
635 without any responses flipped, with a larger range implying higher noise robustness.

636 Assuming optimal threshold values for each, the relative noise robustness of mixed
637 and pure selectivity can be calculated (see Methods). We find that, thinking of the
638 four conditions as the corners of a rectangle (as visualized in Figure 2C), mixed se-
639 lectivity robustness depends on the length of the shorter side, while pure selectivity
640 noise robustness depends on the difference between the two side lengths. We also find
641 that, with random weights, most cells will have a representation that has higher noise
642 robustness for pure selectivity than for mixed (see Methods).

643 Noise robustness changes, however, as thresholds deviate from optimal. The type
644 of selectivity cells have in the absence of noise also varies with threshold (see Figure
645 2D for examples). To quantify these trends, we varied the threshold parameter λ and
646 determined both the probability of different types of selectivity as well as the noise
647 robustness for each type (see Methods for details). In Figure 7B, we show the fraction
648 of cells that lose selectivity at a given noise level, for three different values of λ . Noise
649 robustness (plotted as a function of λ in Figure 7C) is defined then as a normalized
650 measure of the noise value that causes 50% of cells to lose selectivity.

651 Figure 7C demonstrates why the random network from which we start learning is
652 necessarily in a condition of low mixed selectivity. The value of λ we choose to start
653 from is constrained by the fact that the data shows high levels of pure selectivity.
654 Therefore, we need a value that has high probability of pure selectivity and high

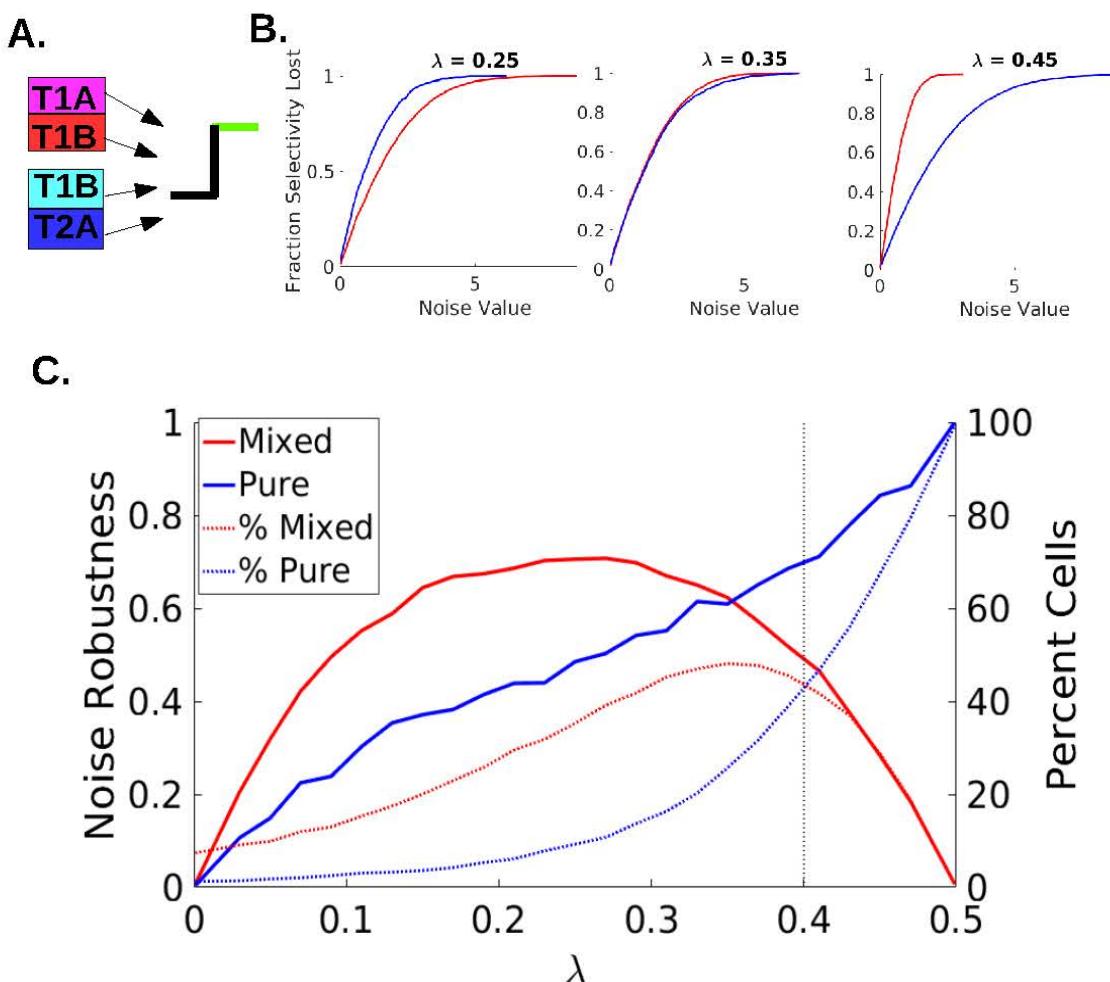


Figure 7: How noise robustness varies with threshold in a random network using the toy model A.) Schematic of the toy model: four input populations (two from each task variable) send weighted inputs to a cell with a threshold (Θ) nonlinearity B.) For a given noise value, the fraction of cells that would lose selectivity if that noise value were used. Values are separated for cells with pure (blue) and mixed (red) selectivity. Three λ values shown, where $\Theta = \lambda \sum W$. C.) Based on plots like those in (B), the noise value at which 50% of cells have lost selectivity is calculated ("Noise Robustness" refers to these values normalized by the peak value. Higher values are better) and plotted as a function of λ (solid lines). On the same plot, the percent of cells with each type of selectivity in the absence of noise is shown (dotted lines). The black dotted line marks a λ value at which the probability of mixed and pure selective cells is equal, but their noise robustness is unequal. This plot is mirror-symmetric around $\lambda = .5$

noise robustness for it. Values of λ that meet this condition are not favorable for mixed selectivity. Therefore, the best we can do is choose a value of, for example, .4, where probabilities of pure and mixed are even, but pure has higher noise robustness (therefore effective rates of pure selectivity are higher). The fact that mixed selectivity is less noise robust than pure in the full model can be seen in Figure 5A.

Note that while the λ used for the random version of the full model shown in Figure 5D was around .27, that value is not directly comparable to the λ values in these plots for many reasons. First, the full model has 3 task variables, compared to the 2 used in the toy model. This means that, from the perspective of mixed selectivity for 2 task variables, a given λ value will create a higher Θ in the full model with 3 task variables than in the toy one that has only 2 (because Θ is a function of the sum total

666 of all weights, not just those relevant for the 2-way selectivity). In addition, in the toy
667 model, 50% of the inputs are on for any given condition, whereas the nature of the
668 task in the full model means that only 25% of inputs are on when looking at C1-C2
669 mixed selectivity, while one-third are on for TT-C1, TT-C2, and TT-C1-C2 mixed
670 selectivity. The percentage of cells are also not directly comparable, as cells in the full
671 model are labeled as pure if they have any of 3 different types of pure selectivity, and
672 mixed if they have any of 4 different types of mixed. This toy model is thus meant to
673 provide intuition only.

674 *3.5. How Learning Impacts Selectivity*

675 For the reasons just discussed, the random model starts in a regime where pure
676 selectivity has high noise robustness and mixed does not. In order to match the amount
677 of mixed selectivity seen in the data, we must then rely on learning to increase noise
678 robustness for mixed selectivity, allowing more mixed cells to reach significance.

679 Learning impacts noise robustness by expanding the representation of the different
680 conditions. An example of this is in Figure 8A, where the gray shaded area repre-
681 sents the noise-induced range of the threshold. Before learning, the cell's response is
682 impacted by the noise. With learning, different conditions get pulled away from each
683 other and the threshold, creating a much more favorable condition for mixed selectivity
684 to be robust to noise. As can be seen, the responses are now outside the noise range.

685 For the same reason that learning increases noise robustness (because the expansion
686 increases the range of thresholds that support mixed selectivity), it can also increase
687 the probability of a cell having mixed selectivity in the absence of noise. This can
688 be seen in Figure 8C (left), where learning steps are indicated by increasing color
689 brightness (constrained learning with rate of .25). At lower λ values, cells that are
690 initially above threshold for all conditions (no selectivity) gain mixed selectivity with
691 learning. But for λ values that support higher levels of pure selectivity (e.g., $\lambda = .4$,
692 marked with a black dotted line), the percent of cells with mixed is not as impacted
693 by learning. The percent of cells with pure selectivity increases only slightly at most
694 λ values.

695 Noise robustness has a different pattern of changes with learning (Figure 8C, right).
696 In particular, at $\lambda = .4$, the noise robustness still increases with learning even when
697 the percent of cells with mixed doesn't change. Thus, changes in noise robustness are
698 more relevant for the increase in mixed selectivity observed in the full model.

699 In particular, constrained learning with $N_L = 2$ always increases the lengths of
700 both sides of the rectangle (as one weight from each task variable increases and the
701 other decreases). As mentioned above, noise robustness for mixed selectivity scales
702 with the length of the shorter side and so it necessarily increases with learning in this
703 condition. Under certain weight conditions, noise robustness will also increase for cells
704 with pure selectivity (this can be seen in Figure 8C, see Methods for details).

705 If $N_L = 1$, only one side length will increase and the other decrease. If the shorter
706 side decreases, mixed selectivity noise robustness decreases. If the shorter side in-
707 creases, mixed noise robustness increases, up until the point at which side lengths
708 are equal. At that point the shorter side is now the decreasing side and mixed noise
709 robustness goes down. This trend is reflected in the shape of the mixed selectivity
710 changes seen with $N_L = 1$ in Figure 6A (mixed selectivity increases then decreases).

711 When using free learning (with $N_L = 2$), a portion of the cells will by chance
712 have the same changes as with constrained learning. The remaining cells cause the

713 differences observed between the two versions of learning, and can be of two types.
714 In the first type, the larger side length increases and the smaller shrinks, causing a
715 decrease in mixed noise robustness. Free learning doesn't achieve the same levels of
716 mixed selectivity as constrained because these cells continue to be too noisy. In the
717 other type, the shorter side increases and the larger decreases, reducing the difference
718 between the two side lengths and thus reducing pure noise robustness. Free learning
719 loses pure selectivity as these cells become too noisy (as seen in 6A). More detailed
720 descriptions of changes with learning can be found in the Methods.

721 Inputs from additional task variables can be thought of as a source of noise as well.
722 In Figure 8B, we add a third task variable to the toy model. Now, in the case of the
723 T1B-T2A condition, the identity of T3 determines if the cell is active or not. From
724 the perspective of T1-T2 mixed selectivity, this has the same impact as shifting the
725 threshold, and thus creates noise. If both T3 inputs are weaker than the strongest
726 two inputs from T1 and T2 (as they are here), they will decrease with learning. This
727 means that not only do different T1-T2 conditions get pulled apart with learning, but
728 the same T1-T2 conditions become closer. This reduces the impact of "noise" from
729 other task variables, and explains why mixed increases more with $N_L = 2$ than with
730 $N_L = 3$ (Figure 6A).

731 In sum, learning changes a cell's representation of the task conditions. Depending
732 on the threshold value, this can create changes in the probability of mixed and pure
733 selectivity and the relative noise robustness for each. Here, in order to match the
734 high levels of pure selectivity seen in the data, we use a threshold regime where mixed
735 selectivity noise robustness increases with learning. This causes a gain in the number
736 of cells with mixed selectivity, such that it reaches the level seen in the data.

737 3.6. How Learning Impacts Other Properties

738 The visualization of this toy model gives intuition for why other properties change
739 with learning as well. FF_C , for example, increases with learning (Figure 6A). The ex-
740 pansion that comes with learning places different conditions at different distances from
741 the threshold. With a sigmoidal nonlinearity, this would translate to more variance in
742 the responses across conditions, increasing FF_C . Because constrained learning ensures
743 the most expansion, it increases FF_C more. These increases depend on N_L because
744 lower N_L allows for a more extreme skewing of weights, and thus a subset of conditions
745 will be far above threshold while the rest are below (leading to a high FF_C). FF_C has
746 a limit, however, because even with $N_L = 1$, the cell would still respond equally to a
747 quarter of the conditions (assuming an input from a cue variable)

748 Clustering values are also impacted by how selectivity changes. Clustering in the
749 data appears to be driven by task type selectivity (Figure 3C), and as task type
750 preferences develop in the model the clustering value increases. Here, the relative
751 sizes of the the input populations play a role. Because the input populations that
752 represent task type contain more cells (Figure 4A), these populations are more likely
753 to be among the strongest inputs to a cell, and thus have their weights increased (Note
754 that this bias in favor of task type could also arise from the fact that only two task
755 types are possible, and thus these inputs are on twice as often as cue inputs. Such a
756 mechanism cannot be implemented in this model, however, so we use uneven numbers
757 of input cells). Therefore, task type selectivity becomes common and clusters form
758 around the axis representing the first regressor (which captures task type preference).
759 This effect is weaker with free learning because both task type populations may have

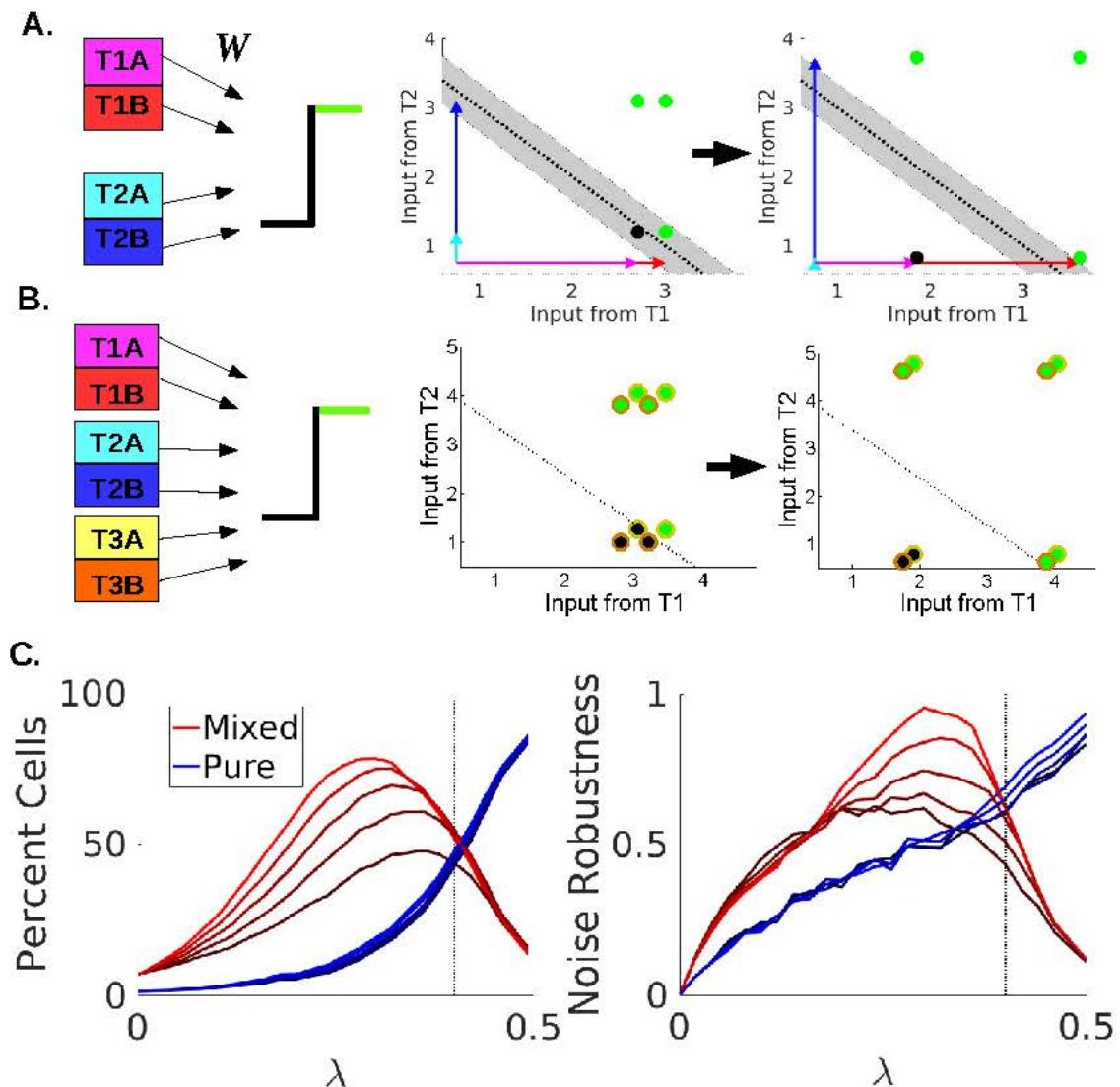


Figure 8: How learning impacts noise robustness A.) A simple toy cell (left) with 2 task variables is used to show the effects of learning. The 4 possible conditions are plotted as dots (green if above threshold, black if not), with the threshold as a dotted black line. Colored arrows represent the weights from each population. Before learning (middle), the cell's input on two of the conditions falls within the range of the shifting threshold created by additive noise (gray area). After learning, all conditions are outside the noise range. B.) A third task variable is added to the model and is another source of additive noise from the perspective of T1-T2 selectivity. The model's outputs are color-coded according to which T3 population is active. Weight arrows are omitted for visibility. After learning with $N_L = 2$, input strength from T3 populations are decreased and the points from the same T1-T2 condition are closer together (less noisy). C.) How the percent of cells with a given selectivity (left) and their noise robustness (right) change with constrained learning as a function of the threshold parameter λ . Learning steps are symbolized by increasing color brightness (the darkest line is the random model as displayed in Figure 7C, and the dashed line shows where the percent of mixed and pure are the same in the random model)

760 their weights increased, which diminishes the strength of task type preference. Lower
761 N_L , which minimizes preferences to other task variable identities, allows these clusters
762 to be tighter.

763 Finally, it is important to note that the strength of inputs shown in Figures 2
764 and 8 (the colored arrows) correspond to, in the full model, the summed input from
765 all cells representing a given task variable identity (i.e., I_i^p), not just to weights from
766 individual cells. These summed values are what need to change in order to expand the
767 representation and see the observed changes. This is important for why the Hebbian
768 procedure described here is effective at changing selectivity, as it assumes that many
769 cells, acting in unison to cause post-synaptic activity, would lead to the increase of their
770 individual synaptic weights, and thus an increase in the sum of those weights. Merely
771 increasing the variance of the individual weights does not cause such a coordinated
772 effect and would be less effective at driving these changes (as was shown in Figure 5C),
773 especially with larger input population size.

774 4. Discussion

775 Here, motivated by several theoretical proposals about properties that would ben-
776 efit encoding, we explored how prefrontal cortex represents task variables during a
777 complex task. In particular we were interested in measures of selectivity (particularly
778 nonlinear mixed selectivity), response density, and clustering of cell types according
779 to selectivity. By quantifying and measuring these properties in a PFC dataset, this
780 work connects theoretical literature with experimental data to give insight into how
781 PFC is able to support complex and flexible behavior. Furthermore, we explored how
782 these response properties could be generated by a simple network model. Through
783 this, we find evidence that the particular level of specialization and structure in the
784 PFC response is not achievable in a random network without Hebbian learning. After
785 Hebbian learning, the model—despite its relative simplicity—is able to capture many
786 response properties of PFC. The changes that come with learning act via an expansion
787 of the way cells represent conditions, and corresponding changes in noise robustness.

788 Interestingly, the variant of Hebbian learning that best matches the data is not the
789 most effective at increasing mixed selectivity. It may be that the more effective method
790 ("constrained" learning) would be too difficult to implement biologically, but perhaps
791 there is also a computational benefit to the balance of mixed and pure selectivity
792 found in the data. Particularly, in order to read out the task variable identity inputs
793 themselves, pure selectivity may be of more use. Retaining pure selectivity could be a
794 tool then for staying flexible.

795 In addition to retrospectively matching experimental results, this model also makes
796 predictions regarding how certain values should change with training. In particular,
797 clusters of cells defined by selectivity are expected to emerge with training and cell
798 responses should become less dense across conditions. Previous work [38] has shown
799 the value of mixed selectivity for the ability of a population to perform complex tasks.
800 This work shows that mixed selectivity increases with learning, and these changes
801 in PFC may correspond to increases in performance [33]. Perhaps surprisingly, this
802 model also predicts a concurrent, though small, decrease in pure selectivity. However,
803 studies that have tracked PFC responses during training show signs of these changes.
804 For example, in [27], the ability to decode the identity of the stimuli (in the comparable
805 portion of the trial) decreases slightly after training, suggesting a possible decrease in

806 pure selectivity. The ability to readout match/nonmatch of the two stimuli, however,
807 increases dramatically, suggesting an increase in mixed selectivity. In [26], the amount
808 of pure selectivity was measured directly pre- and post-training, and a significant drop
809 in the percent of cells with pure selectivity was indeed observed. In hippocampus,
810 an increase in mixed selectivity and slight decrease in pure was also observed with
811 learning ([18]).

812 Our model makes many simplifying assumptions. The inputs, for instance, are
813 binary cells that encode only the identity of different task variables. While this implies
814 that the cells representing cue identities already have mixed selectivity (responding to
815 the combination of the image and its place as either cue 1 or cue 2), it is still an
816 assumption that the cells providing input to PFC are otherwise unmixed. This is
817 something that, given current experimental evidence seems plausible [32], but would
818 benefit from further experimental exploration.

819 Another valuable endeavor would be to expand this model in the temporal domain.
820 Currently in the model, all the task variable inputs are given to the network simulta-
821 neously. In the experiment, of course, there is a delay between cue 1 and cue 2. Delay
822 activity is known to exist in areas like IT [45, 12], and so this information could be
823 being feed into PFC at the same time. But presumably, recurrent connections in PFC,
824 and even possibly between PFC and its input areas, can enhance or alter selectivity.
825 A recurrent model could also explore how PFC responses and representation vary over
826 the time course of the trial, as recent experimental work has provided insight on this
827 [31].

828 5. Acknowledgements

829 GWL was supported by a Google PhD Fellowship and NIH (T32 NS064929). SF
830 was supported by the Gatsby Charitable Foundation, the Simons Foundation, the
831 Kavli Foundation and the Grossman Foundation. EKM was supported by NIMH
832 (NIMH R37MH087027). Thanks to Brian Lau for supplying code that implements the
833 tests of uniformity on the hypersphere. The authors declare no competing financial
834 interests.

835 6. References

- 836 [1] Baktash Babadi and Haim Sompolinsky. Sparseness and expansion in sensory
837 representations. *Neuron*, 83(5):1213–1226, 2014.
- 838 [2] Omri Barak, Mattia Rigotti, and Stefano Fusi. The sparseness of mixed selectiv-
839 ity neurons controls the generalization–discrimination trade-off. *The Journal of*
840 *Neuroscience*, 33(9):3844–3856, 2013.
- 841 [3] Boris Barbour, Nicolas Brunel, Vincent Hakim, and Jean-Pierre Nadal. What
842 can we learn from synaptic weight distributions? *TRENDS in Neurosciences*, 30
843 (12):622–629, 2007.
- 844 [4] Matthew M Botvinick. Hierarchical models of behavior and prefrontal function.
845 *Trends in cognitive sciences*, 12(5):201–208, 2008.
- 846 [5] Jennifer N Bourne and Kristen M Harris. Coordination of size and number of
847 excitatory and inhibitory synapses results in a balanced structural plasticity along
848 mature hippocampal ca1 dendrites during ltp. *Hippocampus*, 21(4):354–373, 2011.

849 [6] Lior Bugatus, Kevin S Weiner, and Kalanit Grill-Spector. Task alters category
850 representations in prefrontal but not high-level visual cortex. *NeuroImage*, 2017.

851 [7] Dean V Buonomano and Wolfgang Maass. State-dependent computations: spa-
852 tiotemporal processing in cortical networks. *Nature Reviews Neuroscience*, 10(2):
853 113–125, 2009.

854 [8] Jean-René Duhamel, Carol L Colby, and Michael E Goldberg. Ventral intra-
855 parietal area of the macaque: congruent visual and somatic response properties.
856 *Journal of neurophysiology*, 79(1):126–136, 1998.

857 [9] John Duncan. An adaptive coding model of neural function in prefrontal cortex.
858 *Nature Reviews Neuroscience*, 2(11):820–829, 2001.

859 [10] Howard Eichenbaum, Andrew P Yonelinas, and Charan Ranganath. The medial
860 temporal lobe and recognition memory. *Annu. Rev. Neurosci.*, 30:123–152, 2007.

861 [11] Stefano Fusi, Earl K Miller, and Mattia Rigotti. Why neurons mix: high dimen-
862 sionality for higher cognition. *Current opinion in neurobiology*, 37:66–74, 2016.

863 [12] Joaquin M Fuster and John P Jervey. Neuronal firing in the inferotemporal cortex
864 of the monkey in a visual memory task. *Journal of Neuroscience*, 2(3):361–375,
865 1982.

866 [13] Evarist Giné. Invariant tests for uniformity on compact riemannian manifolds
867 based on sobolev norms. *The Annals of statistics*, pages 1243–1266, 1975.

868 [14] Michael J Goard, Gerald N Pho, Jonathan Woodson, and Mriganka Sur. Distinct
869 roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor
870 decisions. *Elife*, 5:e13764, 2016.

871 [15] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic
872 systems and saving energy in wireless communication. *science*, 304(5667):78–80,
873 2004.

874 [16] Ned H Kalin, Steven E Shelton, and Lorey K Takahashi. Defensive behaviors
875 in infant rhesus monkeys: ontogeny and context-dependent selective expression.
876 *Child development*, 62(5):1175–1183, 1991.

877 [17] Tara Keck, Taro Toyoizumi, Lu Chen, Brent Doiron, Daniel E Feldman, Kevin
878 Fox, Wulfram Gerstner, Philip G Haydon, Mark Hübener, Hey-Kyoung Lee, et al.
879 Integrating hebbian and homeostatic plasticity: the current state of the field and
880 future research directions. *Phil. Trans. R. Soc. B*, 372(1715):20160158, 2017.

881 [18] Robert W Komorowski, Joseph R Manns, and Howard Eichenbaum. Robust
882 conjunctive item–place coding by hippocampal neurons parallels learning what
883 happens where. *Journal of Neuroscience*, 29(31):9918–9929, 2009.

884 [19] Robert W Komorowski, Carolyn G Garcia, Alix Wilson, Shoai Hattori, Marc W
885 Howard, and Howard Eichenbaum. Ventral hippocampal neurons are shaped by
886 experience to represent behaviorally relevant contexts. *Journal of Neuroscience*,
887 33(18):8079–8087, 2013.

888 [20] Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky,
889 and LF Abbott. Optimal degrees of synaptic connectivity. *Neuron*, 2017.

890 [21] Yi-Jiuan Lo and Mu-ming Poo. Activity-dependent synaptic competition in vitro:
891 heterosynaptic suppression of developing synapses. *Science*, 254(5034):1019, 1991.

892 [22] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time comput-
893 ing without stable states: A new framework for neural computation based on
894 perturbations. *Neural computation*, 14(11):2531–2560, 2002.

895 [23] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome.
896 Context-dependent computation by recurrent dynamics in prefrontal cortex. *Nature*,
897 503(7474):78–84, 2013.

898 [24] Kanti V Mardia and Peter E Jupp. Distributions on spheres. *Directional Statistics*,
899 pages 159–192, 2000.

900 [25] Miriam LR Meister, Jay A Hennig, and Alexander C Huk. Signal multiplexing and
901 single-neuron computations in lateral intraparietal area during decision-making.
902 *Journal of Neuroscience*, 33(6):2254–2267, 2013.

903 [26] Travis Meyer, Xue-Lian Qi, Terrence R Stanford, and Christos Constantinidis.
904 Stimulus selectivity in dorsal and ventral prefrontal cortex after training in work-
905 ing memory tasks. *Journal of Neuroscience*, 31(17):6266–6276, 2011.

906 [27] Ethan M Meyers, Xue-Lian Qi, and Christos Constantinidis. Incorporation of
907 new information into prefrontal cortical activity after learning working memory
908 tasks. *Proceedings of the National Academy of Sciences*, 109(12):4651–4656, 2012.

909 [28] Brian T Miller and Mark D’Esposito. Searching for the top in top-down control.
910 *Neuron*, 48(4):535–538, 2005.

911 [29] Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex
912 function. *Annual review of neuroscience*, 24(1):167–202, 2001.

913 [30] Edvard I Moser, Emilio Kropff, and May-Britt Moser. Place cells, grid cells, and
914 the brain’s spatial representation system. *Annu. Rev. Neurosci.*, 31:69–89, 2008.

915 [31] John D Murray, Alberto Bernacchia, Nicholas A Roy, Christos Constantinidis,
916 Ranulfo Romo, and Xiao-Jing Wang. Stable population coding for working mem-
917 ory coexists with heterogeneous neural dynamics in prefrontal cortex. *Proceedings
918 of the National Academy of Sciences*, page 201619449, 2016.

919 [32] Marino Pagan, Luke S Urban, Margot P Wohl, and Nicole C Rust. Signals
920 in inferotemporal and perirhinal cortex suggest an untangling of visual target
921 information. *Nature neuroscience*, 16(8):1132–1139, 2013.

922 [33] Anitha Pasupathy and Earl K Miller. Different time courses of learning-related
923 activity in the prefrontal cortex and striatum. *Nature*, 433(7028):873–876, 2005.

924 [34] Xue-Lian Qi and Christos Constantinidis. Variability of prefrontal neuronal dis-
925 charges before and after training in a working memory task. *PLoS One*, 7(7):
926 e41053, 2012.

927 [35] David Raposo, Matthew T Kaufman, and Anne K Churchland. A category-free
928 neural population supports evolving demands during decision-making. *Nature*
929 *neuroscience*, 17(12):1784–1792, 2014.

930 [36] Drew Rendall, Robert M Seyfarth, Dorothy L Cheney, and Michael J Owren.
931 The meaning and function of grunt variants in baboons. *Animal Behaviour*, 57
932 (3):583–592, 1999.

933 [37] Mattia Rigotti, Daniel D Ben Dayan Rubin, Xiao-Jing Wang, and Stefano Fusi.
934 Internal representation of task rules by recurrent dynamics: the importance of
935 the diversity of neural responses. *Frontiers in computational neuroscience*, 4:24,
936 2010.

937 [38] Mattia Rigotti, Omri Barak, Melissa R Warden, Xiao-Jing Wang, Nathaniel D
938 Daw, Earl K Miller, and Stefano Fusi. The importance of mixed selectivity in
939 complex cognitive tasks. *Nature*, 497(7451):585–590, 2013.

940 [39] Maneesh Sahani and Jennifer F Linden. How linear are auditory cortical re-
941 sponds? *Advances in neural information processing systems*, pages 125–132,
942 2003.

943 [40] Massimo Scanziani, Robert C Malenka, and Roger A Nicoll. Role of intercellular
944 interactions in heterosynaptic long-term depression. *Nature*, 380(6573):446, 1996.

945 [41] Mark G Stokes, Makoto Kusunoki, Natasha Sigala, Hamed Nili, David Gaffan,
946 and John Duncan. Dynamic coding for cognitive control in prefrontal cortex.
947 *Neuron*, 78(2):364–375, 2013.

948 [42] Sara M Szczerpanski and Robert T Knight. Insights into human behavior from
949 lesions to the prefrontal cortex. *Neuron*, 83(5):1002–1018, 2014.

950 [43] Melissa R Warden and Earl K Miller. Task-dependent changes in short-term
951 memory in the prefrontal cortex. *The Journal of Neuroscience*, 30(47):15801–
952 15810, 2010.

953 [44] Michael L Waskom, Dharshan Kumaran, Alan M Gordon, Jesse Rissman, and
954 Anthony D Wagner. Frontoparietal representations of task context support the
955 flexible control of goal-directed cognition. *The Journal of Neuroscience*, 34(32):
956 10743–10755, 2014.

957 [45] Luke Woloszyn and David L Sheinberg. Neural dynamics in inferior temporal
958 cortex during a visual working memory task. *Journal of Neuroscience*, 29(17):
959 5494–5507, 2009.

960 [46] Jacqueline N Wood and Jordan Grafman. Human prefrontal cortex: processing
961 and representational perspectives. *Nature Reviews Neuroscience*, 4(2):139–147,
962 2003.