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Computational neuroscience is, to first order, dominated by
two approaches: the ‘bottom-up’ approach, which searches
for statistical patterns in large-scale neural recordings, and the
‘top-down’ approach, which begins with a theory of
computation and considers plausible neural implementations.
While this division is not clear-cut, we argue that these
approaches should be much more intimately linked. From a
Bayesian perspective, computational theories provide
constrained prior distributions on neural data — albeit highly
sophisticated ones. By connecting theory to observation via a
probabilistic model, we provide the link necessary to test,
evaluate, and revise our theories in a data-driven and
statistically rigorous fashion. This review highlights examples of
this theory-driven pipeline for neural data analysis in recent
literature and illustrates it with a worked example based on the
temporal difference learning model of dopamine.
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Introduction

"T'he statistical toolbox for neuroscience has been steadily
growing in sophistication — relaxing restrictive assump-
tions, increasing expressiveness, and enhancing compu-
tational efficiency. These advances have enabled a recent
blossoming of ‘data-driven’ approaches to neuroscience,
which aim to provide insight into neural mechanisms
without testing specific computational theories. Data-
driven approaches are appealing, at least in principle,
for several reasons: they do not require the scientist to
explicitly specify a set of hypotheses, they are unpreju-
diced by the scientist’s theoretical dispositions, and they
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avoid the problem that many computational theories are
difficult to fit to real data.

In this paper, we argue that such faith in data-driven
approaches is misplaced. Far from escaping the explicit
specification of hypotheses, any statistical model of neural
data inevitably makes assumptions about the structure of
the data, and there is no principled distinction between
statistical assumptions and scientific hypotheses. (Admit-
tedly, a purely data-driven approach is something of a
straw-man, but we pursue this line of argument for
pedagogical purposes.) A corollary of this point is that
theoretical dispositions are inescapable: it is impossible to
specify a statistical model without making assumptions.
The question then becomes what assumptions to make.
We argue that these assumptions should be derived from
computational theories (which provide strong and princi-
pled constraints), coupled with flexible statistical para-
metrizations that compensate for inaccuracy and under-
specification of the theories.

This is not a radically novel perspective; indeed, these
ideas date back decades in classical statistics [1-3] and
find their roots in the works of Popper [4]. This combi-
nation of top-down and bottom-up modeling is becoming
more common in neursocience — as recently reviewed by
Durstewitz ez al. [5] — though it is still the exception
rather than the rule. Our goal is to espouse this type of
approach, to simplify it by breaking it down into well
defined blocks, to illustrate it through examples, and to
highlight some of the recent work in the Bayesian ma-
chine learning and statistics communities that could aid in
various steps of the process.

We illustrate this approach with a worked example, using
a paradigmatic neurocomputational theory: the temporal
difference learning model of dopamine. We show how the
computational theory can be augmented with modern
statistical tools to produce a powerful data analysis meth-
odology. This approach generates a more complete and
flexible specification of the theory. Moreover, we show
that this approach offers insights into the mechanisms
underlying neural data that are inaccessible to purely
data-driven approaches.

A theory-driven pipeline for neural data
analysis

Neural data analysis is an iterative process that begins
with a data set and an idea of the underlying processes
that shaped it. The first step, and arguably the most
important one, is to turn that idea into a model. With a

Current Opinion in Neurobiology 2017, 46:14-24

www.sciencedirect.com


http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2017.06.004&domain=pdf
mailto:gershman@fas.harvard.edu
http://www.sciencedirect.com/science/journal/09594388/46
http://dx.doi.org/10.1016/j.conb.2017.09.009
http://dx.doi.org/10.1016/j.conb.2017.06.004
http://www.sciencedirect.com/science/journal/09594388

Computational theory and statistical models of neural data Linderman and Gershman 15

Figure 1

Computational Theory

Vir

Revise and Repeat

Criticize Model

T-t

T K

zyur= E {27 fz,z+k} <
k=0

Tot = rot+ ¥ Votsr — Vit

Statistical Model

Bayesian Inference

p(T(s))

A S

test statistic T(s)

Analyze Posterior

!

< _, 0RO6 ©
o el
+
Measured Data Experimental Design
mr i 1t _
* 11110 | Collect More Data = N
I 11 11 ) n
time stimulus and reward S, r

Current Opinion in Neurobiology

A theory-driven pipeline for neural data analysis based on ‘Box’s Loop’ [3,6]. This review illustrates many examples of translating theory into
statistical model (red box). The benefits are many. Given a model, we may leverage a powerful toolbox of statistical techniques for inference,
model criticism, and experimental design. Equally important, theory constrains the space of models and provides a critical lens through which to
interpret the posterior. We will discuss advances in each stage of this pipeline.

model in hand, we fit it to the data and investigate the
learned parameters, searching for patterns that shed new
light on the system under study. But the process does not
end here; we then interrogate our model, see where it
captures the data well and where it fails, and use these
criticisms to suggest model enhancements or subsequent
experiments. Thus, model criticism leads to a new model
and another iteration of the process.

Statisticians have formalized and automated many pieces
of this pipeline: models are joint distributions over data,
latent variables and parameters; ‘fitting’ is performed by
posterior inference; criticism is carried out with statistical
tests; and optimal experimental design suggests what
experiment to run next. This cyclic process of probabi-
listic modeling, inference, and statistical criticism is
known as ‘Box’s loop’ [1-3,6], and later sections of this
review will discuss many recent advances in each stage of
the pipeline (Figure 1).

Still, the art of carving a tractable class of models from the
infinite space of possibilities remains the province of the
practitioner. It is here that computational theory can play
a vital role, since theories suggest what structure and
patterns may exist in the data. In doing so, theories
constrain the class of models and make it easier to search,
and provide a lens through which to interpret model

parameters. These benefits are reciprocated: once a the-
ory has been translated into a probabilistic model, a vast
statistical toolbox can be harnessed to test and refine it in
light of data.

Theory-driven statistical models are the norm in many
fields, most notably in physics, where strong quantitative
predictions can be derived from first principles. For
example, the discovery of the Higgs boson relied on
statistical tests based on predictions of the standard model
[7]. Perhaps it is unsurprising, then, that some of the best
examples of theory-driven statistical analyses in neuro-
science arise from detailed, biophysical models of single
cells. For example, Huys and Paninski [8] use the Hodg-
kin—Huxley model to derive a probabilistic model for
noisy membrane potential recordings. The conductances
of various ion channels are free parameters of their model,
and the time-varying channel activations are their latent
states. Given the membrane potential, their goal is to
infer the conductances, integrating over possible activa-
tion states. The highly nonlinear nature of the Hodgkin—
Huxley dynamics and the potentially large number of
different channel types present a formidable challenge,
but biophysical constraints limit the space of feasible
parameters. In recent work, these methods have been
extended to data in which only spike trains are observed
[9], which present an even greater challenge.
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16 Computational neuroscience

Many models in neuroscience are phenomenological
rather than mechanistic in nature. One step up from
biophysical models are firing rate models like autoregres-
sive Poisson models, a form of generalized linear model
(GLM) [10-12]. Recent work has extended these classical
models to make them more flexible [13], more biophy-
sically inspired [14], and more interpretable [15°]. While
the GLM omits many mechanistic details, in fully-ob-
served networks its weights can be roughly interpreted as
synaptic strengths [16,17]. However, the weights of the
standard GLLM are static, even though synaptic plasticity
may be at work in many neural recordings. While the
space of all possible dynamic GLLM’s is intractably large,
theories of synaptic plasticity place strong constraints on
how synaptic weights evolve over time in response to
preceding activity. A number of authors have leveraged
these constraints to develop theory-driven GLM’s with
time-varying weights and have shown how alternative
models of synaptic plasticity can be compared on the basis
of their fit to spike train data [18-20].

This approach extends to computational theories as well,
and is exemplified in the work of Latimer ez a/. [21°°]. The
authors reconsider the long-standing theory of evidence
accumulation in lateral intraparietal (LIP) cortex [22], and
ask whether patterns that emerge in trial-averaged data
are borne out in individual trials. Specifically, do the firing
rates of neurons in LIP slowly ramp as evidence is
accumulated, or do they exhibit a discrete jump in firing
rate? Theory suggests the former, whereas the latter
would indicate that LIP may not be the site of integration
(with the caveat that integration might still be imple-
mented in LIP at the population level without all neurons
behaving like integrators). Critically, both theories would
yield the appearance of a ramp in trial-averaged firing
rate. Latimer ¢ a/. [21°°] formulate both theories as
probabilistic models for single trial data, fit these models
with Bayesian inference, compare them on the basis of
the marginal likelihood of the data, and find that a large
fraction of neurons are better explained by the discrete
jump model. This provides statistical evidence with
which to assess and reevaluate canonical theory. Indeed,
this work has prompted further assessments of their
modeling assumptions and the validity of their conclu-
sions [23] — a prime example of Box’s loop in action post-
publication.

Integrative approaches to computational theory and
statistical analysis have also been pursued in higher-
level cognition. Detre and colleagues [24] used Bayesian
inference to identify a nonmonotonic relationship be-
tween memory activation (as measured by functional
MRI) and subsequent memory, as predicted by a com-
petition-dependent theory of episodic memory [25].
The same analytical approach was used to identify
other nonmonotonic effects of retrieval strength on
memory [26,27].

The aforementioned examples stand in contrast to many
dimensionality reduction methods like PCA, tSNE [28],
and others [29], and differ as well from general-purpose
state space models [30-32] and recurrent neural network
models [e.g. 33°°] for neural data. Such methods start with
very weak assumptions — linear embeddings or low-di-
mensional dynamics — and, in this sense, allow the data
to speak freely. Thus, they are invaluable exploratory
tools. However, in the absence of a theory, the inferred
low-dimensional states and projections require careful
interpretation. In many cases, theories correspond to
special cases of these general-purpose models, and thus
help address issues of interpretability.

The landscape of neural data-analysis is not as strictly
divided into top-down and bottom-up approaches as the
preceding discussion may suggest. Indeed, many models
fall somewhere in the middle, incorporating aspects of
theory while allowing flexibility in aspects that are less
certain. Wiltschko ez a/. [34] strike such a balance in their
model for depth videos of freely behaving mice. Starting
with the classic ethological theory that behavior is com-
posed of a sequence of discrete, reusable units, or ‘syl-
lables,” the authors propose an autoregressive hidden
Markov model to discover these syllables from raw data.
Since the number of syllables is not known @ priori, the
authors use a Bayesian nonparametric prior distribution
[35] to determine the number of states in a data-driven
manner.

These works exhibit a diverse array of ‘theory-driven’
neural data analyses, but the best way to understand this
pipeline is through an example.

A worked example

There is no single recipe for translating computational
theories into probabilistic models of data, but the conver-
sion necessarily involves answering a few basic questions.
Which theoretical variables and parameters are observed
and which are latent? How are they encoded by the neural
system under study? How do these variables evolve over
time? What are the sources of noise in the system and in
the measurements? The answers to these questions in-
form statistical models of data that in turn define dis-
tributions of likely patterns of neural activity. We will
illustrate this translation with a simple worked example.’

Temporal difference (TD) learning [37] is a classical
algorithm by which agents, over the course of many trials,
learn to use sensory cues to predict the discounted sum of
future rewards. Assume that there are L trials, each lasting
T time steps. On trial £, the agent receives a sequence of
stimuli, which are stored and encoded as vectors, #,,, and
a corresponding sequence of rewards, 7y, . . ., 77,7, most of

! Code to run this example and reproduce Figures 2 and 3 is available
at hteps://github.com/slinderman/tdlds.
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which may be zero. In a classical conditioning experi-
ment, the stimulus may be a light at time 7 followed by a
reward some number of time steps in the future, and #,,
may encode, for example, the number of time steps since
the bell was heard. The agent then uses this encoding to
compute a value function for the given trial and time step,

Vf,z = ng”€,1~ (1)

In reinforcement learning, the value is the total amount of
future reward to be expected after receiving input
us,. However, according to the theory, the reward is
discounted by how long one must wait before receiving
it. For example, a reward £ time steps into the future is
down-weighted by a factor of ¥, where y € [0, 1] is the
discount factor. The agent’s goal is to adjust the weights® of
its value function, 2, such that the value function approx-
imates this discounted sum of expected future rewards,

T—1
Ve,m Vi =E|Y Vrosl|- )
#=0

If the environment is a Markov decision process, the
target value function can be written recursively as
Ve, = Elre, + ¥Vis1]. When the value function equals
the cumulative discounted reward, the reward prediction
error,

Xer =T0r + VVﬂ,H-l —Vf./a 3)

will equal zero. Intuitively, the reward prediction error
provides an instantancous estimate of how well the value
function predicts the received reward. Thus, to improve
its value function, the agent should adjust its weights to
reduce this error. Indeed, this is accomplished by the
simple learning rule,

T
211 = 3¢+ aezxe,rw,n “4)
=1
which can be seen as a form of stochastic gradient descent
on the (squared) reward prediction error with learning
rates oy, ..., @;. In the following experiments, we will
consider two learning schedules: a power-law schedule,
op=(+1)"7, and a constant schedule, oy = 71. In both
cases, assume t € [0, 1].

Schultz ef al. [38] found that the firing rates of dopami-
nergic neurons in the ventral tegmental area (VTA)
mimic the reward prediction errors essential to the
"I'D-learning algorithm. Moreover, it is hypothesized that
cortex represents the stimulus, striatum represents the
value function estimate, and VTA activity modulates
plasticity of synapses from cortex to striatum [39]. Still,
many important questions remain, like how learning
schedules, which affect this plasticity, vary from trial to
trial in real neural circuits. As a didactic exercise, we will
we use the TD learning theory to construct a probabilistic

2 We denote the weights by z instead of something more traditional,
like @, since this will highlight the connection to state space models.

model for neural data, and use that model to compare
between different learning schedules in a statistically
rigorous manner.

Suppose that we have access to simultaneous noisy
recordings of a VT'A neuron and an upstream population
of N cortical neurons. As has been hypothesized, we will
assume the VT'A neuron encodes reward prediction error,
x¢,, and the cortical neurons carry the stimulus encoding,
#s, Moreover, assume we know the reward signal,
¢, These assumptions may not be warranted in practice,
and they must be tested, as we discuss below. According
to the TD learning theory, the cortical and VTA signals
are related via a value function, which is determined by an
unobserved and dynamic set of weights at each trial. In
other words, the theory implies that the reward prediction
errors follow a latent state space model whose hidden
states are the weights, 24, and whose parameters vary from
trial to trial according to the cortical inputs, rewards, and
prediction errors. If we assume Gaussian noise in the
weight updates and observations, the theory implies that
the VTA activity follows a Gaussian linear dynamical
system (LDS) with non-stationary parameters.

To see this equivalence, we rewrite the TD learning
updates in standard state space notation:

1 NN(A[%[ + by, E]), (5)

x(N./\/'(Cng—l—dg, U[). (6)

Here, the latent states are the weights, 2, € RN, and their
dynamics are determined by A,=[1 and
by = agzlilxg’,u&,. That is, the weights follow a random
walk biased by the learning rate, error signal, and inputs.
The emissions are vectors of observed VTA activity,
x¢=[xp1, ..., %,7—1], and they are determined by the
matrix €y = [CZI; .. .;€ZT71}, where o, = Yitg o1 — Uop,
and by the bias vector dy=1[d;1, ..., dpr_1], where
do;=rys1. Note that both the dynamics and emission
parameters are non-stationary; that is, they vary from trial
to trial. The noise in the weight updates is governed by €,
and the noise in the observations is governed by
o. Referring back to Eqns 1-4, we see that the exact
T'D learning model is recovered in the noise-free limit.
The free parameters are 6 = (7, y, €, 0) — the learning rate
parameters, discount factor, and noise variances.

We call this constrained model a temporal difference
LDS (TD-LDS). Importantly, by translating the TD
learning theory into a constrained Gaussian LDS, we
have reduced it to an essentially solved model with very
mature estimation and interpretation procedures [40]. In
the next section we will show how to infer the states and
parameters of the TD-LDS from data.

What assumptions did we make in deriving the TD-LDS?
First, we assumed Gaussian noise in both the observed

www.sciencedirect.com
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reward prediction errors and the weight dynamics. If we
observed spike counts instead, the resulting model would
be more akin to a Poisson linear dynamical system
(PLDS) [30,31]. If we had assumed a nonlinear model
for the value function, thatis, V,, = Az, #,,), then both the
dynamics and observation models would be nonlinear in
2¢, which would necessitate more sophisticated inference
procedures. We will only consider the linear Gaussian
case in this didactic example.

Bayesian inference

Bayesian inference algorithms take as input the observed
data, x, and a probabilistic model, p(x, 2, 0), and output the
posterior distribution over the latent variables and pa-
rameters of the model, p(z, 0| x). By Bayes’ rule, this
posterior distribution is given by,

P(x]2,0)p(210)p(6)
p(x)
_ Pz, 0)p(210)p(6)
Jo(xlz,0)p(2]0)p(6) dzd6”

With this posterior distribution in hand, we can answer a
host of scientific questions. We can estimate the posterior
mean and mode (the maximum & posterior: estimate), and
we can provide Bayesian credible intervals by computing
the quantiles of the posterior distribution. Moreover, we
can predict what future data would look like with the
posterior predictive distribution,

p(,0lx) =

(7

Plx) = / (], 0)p(="0)p(6, 2lx) d” dz . (®)

which integrates over the space of parameters and latent
variables, weighting them by their posterior probability
given the data seen thus far. As we will show below, these
functions of the posterior distribution provide principled
means of comparing and checking models.

Unfortunately, the normalizing constant on the right-
hand side of Bayes’ rule, p(x), also known as the marginal
likelihood, requires an integral over all possible parame-
ters. This integral is intractable for all but the simplest
models, so in practice we must resort to approximate
techniques like Markov chain Monte Carlo (MCMC)
[41] or variational inference [42,43]. MCMC algorithms
approximate the posterior distribution with a collection of
samples collected by a Markov chain that randomly walks
over the space of parameters. With a carefully tuned
random walk, the stationary distribution of the Markov
chain is equal to the desired posterior distribution so that,
once the chain has converged, parameters are visited
according to their posterior probability. In contrast, varia-
tional inference algorithms specify a family of ‘simpler’
distributions and search for the member of this family that
best approximates the desired posterior. Thus, they con-
vert an integration problem of computing the denomina-
tor of Bayes’ rule into an optimization problem of

searching over the variational family. Of course, both
approaches present challenges — how to tell if a Markov
chain has converged? How to select and search over a
variational family and diagnose errors in the obtained
approximation? — making Bayesian inference both an
art and a science.

Fortunately for the practitioner, as probabilistic program-
ming packages grow in sophistication, the nuances of
approximate inference play a lesser role. Probabilistic
programming languages like Anglican [44], Stan [45],
Venture [46], and Edward [47] remove the burden of
deriving and implementing an inference algorithm, and
simply require the practitioner to specify their probabi-
listic model and supply their data. Under the hood, these
packages automatically derive suitable MCMC or varia-
tional inference algorithms. In practice, some care must
be taken to ensure these systems provide accurate infer-
ences, and these tools still cannot compete with well-
tuned, model-specific inference algorithms. However,
they can dramatically accelerate the scientific process
by enabling rapid iteration over models. Once a model
has been selected, time may be invested in deriving
bespoke inference algorithms for peak performance.

We have taken an intermediate approach to inference in
our working example. After reducing T'D learning theory
to a canonical state space model, we leverage off-the-shelf
inference algorithms for the latent states and develop
model-specific updates only for the parameters. Specifi-
cally, given the discount factor and the learning schedule,
the posterior distribution over latent states is found with a
standard message passing algorithm [43]. Given a distri-
bution over latent states, we estimate the most likely
learning schedule parameters and discount factor with
hand-derived updates. We alternate these two steps —
updating the latent states and re-estimating the param-
eters — in our variational inference algorithm.

Figure 2 illustrates some of the results of our Bayesian
inference algorithm. Panel (e) shows the posterior mean
of the states, which in this model correspond to the
weights of the value function. From the posterior distri-
bution over weights, we derive the distribution over the
value function, which is linear in the weights (c.f. 1).
Panel (f) shows the true and inferred value function at
early (blue), middle (red), and late (yellow) trials, along
with the uncertainty under the posterior. Likewise, panel
(g) shows the inferred learning rate under two different
models: a model with constant rates and a model with
rates that decay according to a power law (the true model
in this case). Posterior visualizations like these play a
critical role in the scientific process, providing views of
the low-dimensional structure of complex data. However,
these visualizations are only useful to the extent that the
model captures meaningful structure. Panel (h) exempli-
fies this point: a standard LDS with the same latent

Current Opinion in Neurobiology 2017, 46:14-24
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dimension as the TD-LDS provides a very good fit to the
data, but its latent states look like pure noise. Without a
theoretical structure with which to interpret this low-
dimensional projection, the latent states are meaningless.

Bayesian inference is only one method of estimation, and
it stands in contrast to other approaches like maximum
likelihood and the method of moments. These could have
been substituted in the center panel of Figure 1, but the
model criticism and experimental design methods dis-
cussed below assume access to the posterior distribution.
Avoiding statistical dogmatism, our view is simply that
the posterior distribution of parameters and latent vari-
ables is often the object of interest, and this is the central
object of study in the Bayesian approach. However, this
requires a choice of prior distribution, which must be
checked, just like the rest of the model, and it requires a
challenging approximate computation, whose accuracy
must also be assessed. The next section addresses the
former; a number of previous works have addressed the
latter [e.g. 48-51]. Finally, we note that posterior predic-
tive checks discussed in the following section are essen-
tially frequentist tests of Bayesian estimators, a pragmatic
blend of approaches.

Model criticism and comparison

Bayesian inference is not the end of the scientific process,
but rather an intermediate step in the iterative loop of
hypothesizing, fitting, criticizing, and revising a model.
Still, posterior inference provides a rigorous and quantifi-
able method of guiding model criticism and revision.
Intuitively, if the model is a good match for the data,
then samples from the fit model should ‘look like’ the
observed data. Posterior predictive checks (PPC’s) [3,52-54],
which are essentially Bayesian goodness-of-fit tests, for-
malize this intuition in a statistically rigorous manner. Our
presentation here parallels that of Blei [6].

PPCs compare the observed data to datasets sampled
from the posterior predictive distribution 8 of the model.
If the sampled data differs from the observed along
important dimensions, the model fails the PPC. These
‘important dimensions’ are determined by the practitio-
ner’s choice of a test statistic, 7(x): a function that
identifies a particular aspect of the data, x. For example,
in our 'T'D learning simulations, a salient characteristic is
the propagation of error signal from the onset of reward to
the presentation of the cue. Thus, a simple statistic is
amplitude of the error signal in particular trials and time
bins. The PPC is defined as the probability that the test
statistic of sampled data exceeds that of observed data,
PPC = Pr(7(x") > T(x) | x).

The choice of test statistic is left to the practitioner.
Clearly, probabilistic modeling under computational con-
straints necessitates trade-offs and assumptions; no model
is perfect. PPCs are a diagnostic tool for assessing whether

the model recapitulates salient features of the data, as
determined by the practitioner. In this sense, PPCs
provide a targeted means of criticizing models, shining
spotlights on the most important parts. Moreover, there is
no limit to the number of PPCs that may be applied, and
the marginal cost of estimating multiple PPCs is negligi-
ble since they can all be estimated using the same
sampled data.

Figure 3 illustrates a very simple posterior predictive
check for the TD learning model. Panels (a—c) show
the observed data (black) and the quantiles of the poste-
rior predictive distribution for the tenth trial, estimated
with 1000 samples from the posterior predictive distribu-
tions. In this case, the true model uses a power law
learning rate, and indeed this is the only model that
consistently captures the data. The constant model over-
estimates the response to the reward (time 60) and the
standard L.DS incorrectly predicts a response at cue onset.
We quantify this with PPC’s for the simplest statistics,
T, Ax) = x;,. Panels (d—f) show the PPCs for each trial and
time bin. This reveals the delayed responses of the
constant model in early trials, and the tendency of the
standard LLDS to predict a response at cue onset regard-
less of trial. Under the true model, these PPCs are
uniformly distributed on [0, 1]. Panels (g—f) show that
only the power law achieves this.

While PPCs, in absolute terms, how well the model fits
the data, in some cases we seek a relative comparison of
two models instead. For example, we often cascade
models of increasing complexity — factor analysis is a
special case of an LLDS, which in turn is a special case of a
switching LDS — and we need means of justifying this
increased capacity. The most straightforward approach is
to measure predictive likelihood on held-out data. A
better model should assign higher posterior predictive
probability, p(x* | %), to the held-out data. We see that the
predictive probability 8 is an expectation with respect to
the posterior. Since this is typically intractable, we esti-
mate the predictive probability with samples from the
approximate posterior.

"T'his is by no means the only method of comparing models.
In ‘fully Bayesian’ analyses, it is common to compare
models on the basis of their marginal likelihood, p(x)
[55,56]. Recall that this is the denominator in Bayes’ rule
7, and it is generally intractable. Variational methods pro-
vide a lower bound on this quantity, and Monte Carlo
estimates like annealed importance sampling [57] can yield
unbiased estimates of it. In general, however, marginal
likelihood estimation is an active area of research [58-60].

Model criticism suggests not only new theories to test, but
also new experiments to run. Specifically, we should
choose an experiment that is most likely to reduce the
uncertainty of the posterior. Equivalently, we should
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An illustrative example of using the theory of TD learning to constrain a probabilistic state space model for neural data. (a) Simulated example of a
dopamine neuron encoding reward prediction error in VTA. Over many trials, the response shifts from the delivery of reward (at t = 60) to the onset
of stimulus (at t = 10, dashed line). (b) Hypothetical cortical neurons encode time since stimulus onset with a set of temporal tuning curves, as has
been suggested [36]. (c) Thus, on each trial, the cortical neurons exhibit a cascade of activity. (d) We use TD learning theory to constrain a state
space model for the activity of cortex and VTA, whose graphical model is shown here (rewards omitted). The latent states are the weights relating
cortical activity to an unobserved value function. (e) The posterior mean of the latent states of the TD learning state space model. Though not
particularly insightful on their own, when combined with cortical activity, the weights determine the posterior distribution of the value function

(f). Colors correspond to trials 1, 30, and 150, as in (a). Dotted black line: ground truth. (g) We also learn the learning rate, «;, under two different
models: a constant model and a power-law decay model. (h) In contrast to the TD-LDS, fitting a standard LDS to the VTA activity yields accurate

predictions, but its latent states are uninformative and do not correspond to weights of a value function.

perform the experiment that vyields the maximal
information gain in expectation. This intuition is the basis
of Bayesian optimal experimental design [55,61-63] and is
also the guiding principle underlying Bayesian optimiza-
tion [64]. In our working example, these methods could
suggest the combination of stimulus and reward patterns
that would be most informative of the underlying learning
rate. These methods have been proposed for sampling the
voltage on dendritic trees in high-noise settings [65], as
well as for designing training regimes for animals [66°].

Just as probabilistic programming languages and auto-
mated inference algorithms are relieving the burden of
Bayesian inference, recent work has attempted to

automate model criticism and model comparison. Auto-
matic two-sample tests [67,68] search for test statistics
that best discriminate between the observed data and a
model’s samples. In this sense, these approaches are
similar to generative adversarial networks [69], which
simultaneously train competing generator and discrimi-
nator networks. Likewise, automatic model composition
methods [70,71] iteratively construct models, adding in-
creasingly sophisticated structure to capture nuances of
the data and comparing on the basis of marginal likeli-
hood. While these advances have still not taken the
human ‘out of the loop,’ recent work suggests that these
approaches do indeed mimic the process by which
humans learn the complex structure of data [72].
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@) Power Law () Constant © Standard LDS
1.0 1.0 1.0
0.8 0.8 0.8 — 50%
0.6 0.6 0.6 — data
S 04 S 04 S 04 5-95%
%02 % 02 % 0.2 25-75%
0.0 0.0 0.0
-0.2 -0.2 -0.2
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time Time
(d) (e) )
Power Law Standard LDS
0 ,-__‘%_Hmo
20 : {I] 090
0.8
40 0.7
6
5 5 = 8 2o
— 80 — — . D.
[ [ [ 04 &
100 100 | 100 03
120 120 | 120 0.2
140 | S VTN | = : 140 Erifs 5 = | 01
3 —_— e = L — e = S S 0.0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time Time
@ Power Law () Constant @ Standard LDS
c c c
=} =} =}
o o o
O O ®)
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
PPC PPC PPC
Current Opinion in Neurobiology

Model criticism using posterior predictive checks (PPCs). (a—c) PPC of the data on trial 10 for three models: the TD-LDS with a power-law learning
schedule (i.e. the true model that generated the data); the TD-LDS with a constant learning rate; and a standard LDS. Blue line: posterior
predictive median; blue shading: posterior predictive quantiles; black line: observed data. The constant learning rate fails the PPC because it
generates a much larger prediction error at time t = 59. The standard LDS fails because it always predicts large signals at t = 10, regardless of
trial. (d-f) A summary view of the PPC for all trials and time points. Color denotes the PPC value estimated from 1000 generated trajectories. Blue:

model predictions larger than data; red: data larger than model predictions.

Values close to zero or one indicate model mismatch. (g-i) A

histogram of values in (d-f), respectively. The true model should yield uniformly distributed PPCs (dotted line), as indeed the power law does. The

other models generated data that systematically differs from the true data.

Finally, in our worked example, we skipped one of the
hardest steps: how does one arrive at the theory of
temporal difference learning in the first place, not to
mention these hypotheses of where and how various
signals are encoded? We relied on these assumptions to
place critical constraints on the space of models, and when
they were taken into account, we obtained a very differ-
ent view of the data than with the standard L.LDS. How-
ever, in the regime with few constraints and only vague
ideas of how the systems under study work, standard
models are invaluable tools for exploratory analysis [73].
T'hat is, in the early stages of the pipeline, when compu-
tational theory is lacking, relatively unconstrained models

are invaluable tools for generating hypotheses than can
then be and refined with this pipeline.

Conclusions

The idea of combining statistical models with computa-
tional theories is not new [c.f. 5], but researchers are only
beginning to appreciate the range of possibilities that
have opened up with advances in probabilistic modeling.
Richly expressive probabilistic programming languages,
efficient inference algorithms, and flexible Bayesian non-
parametric priors allow complex models to be specified
and fit to data much more easily than in the past. Model
criticism and comparison techniques can be used to guide
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the refinement of modeling assumptions, as in Box’s loop.
We have shown how this statistical toolbox can be seam-
lessly integrated with computational theory, using a
worked example from reinforcement learning. The key
lesson from this modeling exercise is that data-driven and
theory-driven approaches to neuroscience need not be
mutually exclusive; indeed, the most powerful insights
can be gained by using computational theories as con-
straints on data-driven statistical models.

Conversely, flexible statistical models can enrich compu-
tational theories. Historically, computational tractability
has biased the kinds of models we fit towards simplicity
(conjugacy, convex optimization problems, unimodal pos-
teriors, low-dimensional parametrizations). With faster
computers, larger datasets and new algorithms, machine
learning has increasingly pushed the envelope towards
much more complex models [33°°,74,75], altering the usual
tradeoff between neuroscientific realism and computation-
al tractability. We are now in a position to start experimen-
tally testing a vast range of computational theories.

Although we have emphasized probabilistic models in this
paper, the same ideas apply to deterministic models,
where apparent randomness is due to ignorance of latent
variables and measurement noise. For example, although
spike generation is often modeled as a random process,
neurophysiological experiments suggest that spike gener-
ation may be highly reliable when a neuron is stimulated
with white noise inputs [76]. Thus, neurons seezz random
until we condition on the relevant latent variables. The
Bayesian framework does not require an ontological com-
mitment to randomness; uncertainty can be purely episte-
mic. The practical motivation for building probabilistic
models of deterministic processes is that it allows us to
parse the different sources of uncertainty. Once we know
that spike generation can be highly reliable, we should
push our uncertainty into other parts of the model (syn-
aptic inputs, ion channels, etc.). Constraining uncertainty
in this way can be a driving force for the discovery of new
latent variables that explain away residual randomness.
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