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SUMMARY

Correlated variability in cortical activity is ubiqui-
tously quenched following stimulus onset, in a stim-
ulus-dependent manner. These modulations have
been attributed to circuit dynamics involving either
multiple stable states (“attractors”™) or chaotic
activity. Here we show that a qualitatively different
dynamical regime, involving fluctuations about a sin-
gle, stimulus-driven attractor in a loosely balanced
excitatory-inhibitory network {the stochastic “stabi-
lized supralinear network”), best explains these
modulations. Given the supralinear input/output
functions of cortical neurons, increased stimulus
drive strengthens effective network connectivity.
This shifts the balance from interactions that
amplify variability to suppressive inhibitory feed-
back, quenching correlated variability around more
strongly driven steady states. Comparing to previ-
ously published and original data analyses, we
show that this mechanism, unlike previous pro-
posals, uniquely accounts for the spatial patterns
and fast temporal dynamics of variability suppres-
sion. Specifying the cortical operating regime is
key to understanding the computations underlying
perception.

INTRODUCTION

Neuronal activity throughout cerebral cortex is variable, both
temporally during epochs of stationary dynamics and across
repeated trials despite constant stimulus or task conditions
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{Softky and Koch, 1993; Churchland et al., 2010). Moreover, vari-
ability is modulated by a variety of factors, most notably by
external sensory stimuli (Churchland et al., 2010; Kehn and
Smith, 2005; Ponce-Alvarez et al., 2013), planning and execution
of limb movements (Churchland et al., 2008, 2010), and attention
{Cohen and Maunsell, 2009; Mitchell et al., 2009). Modulation of
variability occurs at the level of single-neuron activity, e.g., mem-
brane potentials or spike counts (Finn et al., 2007; Pouletand Pe-
tersen, 2008; Cardin et al., 2008; Gentet et al., 2010; Churchland
etal., 2010; Tan et al., 2014), as well as in the patterns of jointac-
tivity across populations, as seen in multiunit activity or the local
field potential (LFP) (Tan et al., 2014; Chen et al., 2014; Lin et al.,
2015). Variability modulation shows stereotypical patterns. First,
the onset of a stimulus quenches variability overall and, in partic-
ular, correlated variability in firing rates that is “shared™” across
many neurons (Lin et al., 2015; Goris et al., 2014; Ecker et al.,
2014, 2016; Churchland et al., 2010). Moreover, the degree of
variability reduction can depend systematically on the tuning of
individual cells. For example, in area MT, variability is quenched
more strongly in cells that respond best to the stimulus, and cor-
relations decrease more among neurons with similar stimulus
preferences (Ponce-Alvarez et al, 2013; Lombardo et al.,
2015). Although these patterned modulations of variability are
increasingly included in quantitative analyses of neural record-
ings (Renart and Machens, 2014; Orban et al., 20186), it is still
unclear what they imply about the dynamical regime in which
the cortex operates.

There have been two dynamical mechanisms proposed to
explain selected aspects of the modulation of cortical variability
by stimuli. In “multi-attractor” models, the network operates
in a multi-stable regime in the absence of a stimulus, such
that it noisily wanders among multiple possible stable states
(“attractors”). This wandering among attractors occurs in a
concerted way across the population, resulting in substantial
shared variability (Figure 1A, top). Stimuli then suppress this
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Figure 1. Three Different Dynamical Re-
gimes that Could Explain Variability Modu-
lation by Stimuli

(A-C) Two schematic neural trajectories (red and
green) corresponding to twe separate trials are
plotted for each dynamical regime, before (top)
and after (bottemn) stimulus cnset. Spontanecus
activity is redrawn in gray beneath evoked activity
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to allow comparison of variability. Dotted ellipses
cutline activity covariances around the fixed
point(s) of the dynamics (if any exist).

(A) Multi-attractor dynamics: spentaneous activity
wanders stochastically between a set of atiractor
states (three shown), resulting in large trial-by-trial
variability (top). Stimulus cnset constrains fluctu-

respense, neurcn 1 response, neurcn 1
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aticns to the vicinity of a single attractor, reducing
variability acress both time and trials (bottom).

(B) Chaos suppression: chaos vields large across-trial variability in spontaneous dynamics (top), which is suppressed by the stimulus, leading to a reduction cof

variability acress trials but not necessarily across time (bottem).

(C) Stochastic S8N: both spontaneous and evoked dynamics are stable with a single fixed point, but the stimulus can shrink the effective size of the basin of
attraction of the fixed point (as well as shifling its lecation), resulting in a reduction of both across-time and across-trial variability.

shared variability by pinning fluctuations to the vicinity of one
particular attractor (Figure 1A, bottom; Blumenfeld et al., 2006;
Litwin-Kumar and Doiron, 2012; Deco and Hugues, 2012; Burak
and Fiete, 2012; Ponce-Alvarez et al., 2013; Doiron and Litwin-
Kumar, 2014; Mochol et al., 2015). In chaotic network models
(Sompolinsky et al., 1988), firing rates exhibit strong chaotic fluc-
tuations, and certain types of stimuli can suppress chaos by
forcing the dynamical state of the network to follow a specific tra-
jectory, thus quenching across-trial variability (Figure 1B; Molge-
dey et al., 1992; Bertschinger and Natschlager, 2004; Sussillo
and Abbott, 2009; Rajan et al., 2010). While both the multi-attrac-
tor and the chaotic mechanisms can explain the general phe-
nomenon of stimulus-induced reduction of variability, only the
former has been proposed to explain the stimulus-tuning of
variability reduction. However, even in that case, a considerable
fine-tuning of parameters or very strong noise was needed to
keep the network in the regime with multiple attractors, such
that the system stays near attractors, yet noise can move the
system between them (Ponce-Alvarez et al., 2013).

Here, we explore a qualitatively different regime of cortical dy-
namics. We describe activity fluctuations as being driven by
noise but shaped by nonlinear, recurrent interactions. Incontrast
to previous models, our network operates around a single stable
point that depends on the stimulus (Figure 1C). Crucially, individ-
ual neurons have supralinear (expansive) input/output functions.
This causes the gains of neurons, and thus the effective synaptic
strengths in the network, to increase with network activation.
This is a stochastic generalization of the stabilized supralinear
network (SSN) model that has successfully accounted for a
range of phenomena related to the stimulus dependence of
trial-averaged responses in visual cortex {Ahmadian et al.,
2013; Rubin et al., 2015). Introducing stochasticity allows us
to model the variability of responses and thus use data on neural
variability to identify hallmarks of this regime and distinguish it
from previous proposals.

In our network, stimulus-dependent changes in effective con-
nectivity shape the magnitude and structure of activity fluctua-
tions in the network. Specifically, stimuli change the balance of

two opposing effects of recurrent network dynamics on vari-
ability: hidden feedforward interactions (“balanced amplifica-
tion™; Murphy and Miller, 2009; Hennequin et al., 2014) and
recurrent excitation, which amplify variability and dominate for
very weak (spontaneous) inputs; and stabilizing inhibitory feed-
back, which quenches variability (Renart et al.,, 2010; Tetzlaff
et al., 2012) and dominates for stronger inputs.

By studying this network mechanism in a progression of
recurrent architectures with increasingly detailed structure, we
find that it naturally and robustly explains the modulation of
shared cortical variability by stimuli, including its tuning depen-
dence. We first analyze variability in the simplest instantiation
of the model, with two unstructured populations of excitatory
(E) and inhibitory {l) cells, and find that an external stimulus
can strongly modulate the variability of population activities. In
particular, the model predicts stimulus-induced quenching of
variability, as well as a reduction of the low-temporal-frequency
coherence between local population activity and single-cell re-
sponses, as found experimentally (Poulet and Petersen, 2008;
Churchland et al., 2010; Chen et al., 2014; Tan et al., 2014).
Next, we extend our analysis to a more detailed architecture
with structured connectivity to account for the tuning-depen-
dent modulations of Fano factors and noise correlations by
stimuli. Critically, these results reveal robust qualitative differ-
ences between the predictions of our model and those of previ-
ously proposed network mechanisms, based on multi-attractor
or chaotic dynamics, for both the spatial patterns and temporal
dynamics of variability suppression. We tested these predic-
tions against experimental data and found the SSN model to
be the most consistent with previously analyzed data from
primary visual cortex (V1) and MT (Churchland et al., 2010;
Ponce-Alvarez et al., 2013) as well as with our novel analyses
of published V1 recordings in the awake monkey (Ecker et al,,
2010). Such comparisons of different models are crucial for
guiding future experiments that can make targeted measure-
ments to fully resolve the dynamical regime in which the cortex
operates—a key first step in identifying the computational stra-
tegies underlying perception.
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Figure 2. Activity Variability
Btochastic SSN

(A) The network is composed of two recurrently connected units, summarizing
the activity of two populations of excitatory (red) and inhibitory (llue) neurons.
Both units receive private input noise and a common constant input A.

(B) Thresheld-quadratic neural input/output functicn determining the rela-
tienship between membrane potential and momentary firing rate of model
neurcns (Equation 2).

(C) Bample Vg, traces for the two units (top), as the inputis increased in steps
from h=0tc 2 mV to 15 mV (bottom).

(D) Dependence of population activity statistics on stimulus strength h. Tep:
mean E (red) and | (blue) firing rates; middle: mean Vg,; bottom: standard
deviation of Vg, fluctuations. The comparison with a purely feedforward
network (W =0} receiving the sameinput f1is shownin gray. Dets are based on
numerical simulations of 500 trials. Solid lines show analytical appreximaticns
(Hennequin and Lengyel, 2016).

in a Reduced, Two-Population

RESULTS

We used a standard model to study the dynamical evolution of
momentary firing rates in a recurrently coupled network of excit-
atory and inhibitory neurons (Figure 2A; Dayan and Abbott, 2001,
see also STAR Methods). In this model, neurons integrate their
external and recurrent inputs linearly in their membrane poten-
tials, Vi, but their cutput firing rates, r, are a nonlinear function
of the voltage: r =f{V,,) (Figure 2B). Crucially, we studied vari-
ants of this model in which the nonlinearity f is an expansive
(supralinear) function (Figure 2B) and in which inhibition was
both sufficiently fast and strong and appropriately structured
to stabilize the network in the face of recurrent excitation and
the supralinear input/output function. This is the stabilized supra-
linear network (SSN) model (Ahmadian et al., 2013). In order to
study response variability, we added to this model a stochastic
component (slow noise) in the membrane potential dynamics
of all cells. Stabilization meant that the network operated around
a single steady state, albeit a stimulus-dependent one.
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Real neurons, of course, have an input/output function that ul-
timately saturates. We focus on an expansive, non-saturating
input/output function because V1 cortical neurons show such a
relationship between mean voltage and firing rate across their
full dynamic range, without saturation even for the strongest vi-
sual stimuli (Priebe and Ferster, 2008). Thus, saturation does
not appear to play a role in stabilizing cortical activity, a fact
that we capture by using a non-saturating input/output function.
Such an expansive input/output function arises in spiking neu-
rons when their firing is driven by voltage fluctuations, with the
mean voltage sub- or peri-threshold (Hansel and van Vreeswijk,
2002; Miller and Troyer, 2002), a firing regime that produces the
highly variable spiking seen in cortical neurons (Troyer and Miller,
1997, Amit and Brunel, 1997). We assume that the voltage fluc-
tuations giving rise to the expansive input/output function are
fast compared to the timescales of variability studied here and
do not explicitly model them.

We focused on analyzing how the intrinsic dynamics of
the network shaped fixed input noise to give rise to stimulus-
dependent patterns of response variability. We studied a pro-
gression of connectivity architectures of increasing complexity,
all involving two separate populations of excitatory and inhibitory
neurcns. We also validated our results in large-scale simulations
of spiking neuronal networks.

Variability of Population Activity: Modulation by

External Input

We first considered a simple circuit motif: an excitatory (E) unit
and an inhibitory () unit, recurrently coupled and receiving the
same mean external input i as well as their own independent
noise (Figure 2A). In this reduced model, the two units represent
two randomly connected populations of E and | neurons, a
canonical model of cortical networks (Amit and Brunel, 1997;
Vogels et al,, 2005). Thus, their time-varying activity, Ve(f)
and V{t), represents the momentary population-average mem-
brane potential of all the E and | cells, respectively. Despite its
simplicity, this architecture accounted well for the overall popu-
lation response properties in the larger networks, with more
detailed connectivity patterns, that we analyzed later.

Activity in the network exhibited temporal variability due to the
stochastic component of the dynamics. We found that this
{correlated) variability of Vg and V, fluctuations, together with
their means, VEﬂ, was strongly modulated by the external steady
input /2 (Figures 2C and 2D). When h = 0, there was no input to
drive the network, and Vg and V| both hovered arcund
Viest= — 70 mV, fluctuating virtually independently, with stan-
dard deviations essentially matching those that would arise
without recurrent connections (gray line in Figure 2D, bottom).
For a somewhat larger input, =2 mV, both E and | populations
fired at moderate rates (3—4 Hz) (Figure 2D, top), but now also ex-
hibited large and synchronous population V), fluctuations (Fig-
ure 2C, black circle mark). For yet larger inputs (h =15 mV), fluc-
tuations remained highly correlated, but their magnitude was
strongly quenched (Figure 2C, green circle mark).

Figure 2D shows how the temporal (or, equivalently, the
across-trial) mean and variability of activities varied over a broad
range of input strengths. We observed that population mean V,,
increased monotonically with growing external input, first linearly



or supralinearly for small inputs, but strongly sublinearly for larger
inputs, with V; growing faster than Vg (Figure 2D, middle; Ahma-
dianetal., 2013; Rubin et al., 2015). In contrast, variability in both
Ve and V) typically increased for smallinputs, peaking around this
transition between supralinear and sublinear growth, and then
decreased with increasing input (Figure 2D, bottom). Importantly,
input modulation of variability required recurrent network interac-
tions. This was revealed by comparing our network to a purely
feedforward circuit that exhibited qualitatively different behavior
(Figure 2D, gray). In the feedforward circuit, mean V,,, remained
linear in A, so that mean rates rose quadratically with Vi, or i (re-
flecting the input/output nonlinearity; Figure 2B), and fluctuations
in Vi no longer depended on the input strength.

Variability Suppression with a Single Stable State Is a
Robust Phenomenon

In order to demonstrate that the overall dynamical regime of the
stabilized supralinear network, rather than just a particular
instantiation of our model, underlies variability modulation, we
used a combination of numerical simulations and analytical re-
sults to confirm the robustness of our findings.

We simulated 1,000 model networks with random parameter
values within wide brackets. We found that variability suppres-
sion was robust over a broad range of network parameters
(connection weights, input strengths and correlations, and the
exponent and scale of the firing-rate nonlinearity), as long as
they ensured dynamical stability even for strong inputs (Figures
S1 and S2). Although the precise amplitude and position of the
peak of Vi, variance depended on network parameters, the over-
all non-monotonic shape of variability modulation was largely
conserved. In particular, we could show analytically that vari-
ability suppression occurs earlier (for smaller input /) in networks
with strong connections or, for fixed overall connection strength,
in networks that are more dominated by feedback inhibition
(Methods S3). More generally, we found that the firing rates at
the peak of variability are typically low (2.5 Hz on average over
athousand randomly parameterized stable networks and below
6 Hz for 90% of them; cf. Methods 52). As these rates are com-
parable to cortical spontaneous firing rates, this predicts that
increased sensory drive should generally result in variability
quenching in cortical LFPs.

In order to better understand the robustness of variability sup-
pression in the model, we took advantage of the fact that our
network was characterized by a single attractor at each level of
the input, k1, and analyzed the dynamics of small activity fluctua-
tions, 8V, around this stable state (suchthatV = ¥{h) + 6V, where
Vih) is the mean activity in the stable state; STAR Methods).
These dynamics are governed by a set of effective connection
weights, W™, that quantify the impact of a small momentary
change in the Vy, of the presynaptic neuron on the total input to
its postsynaptic partner. The dependence of the effective
connection weights on the stable state and thus on the external
input, 71, that determines the stable state is simply given by:

WeT (1) o< Wy Vi (1) (Equation 1)
where Wy is the strength of the “biophysical” connection from
unit § to unit§, and £ is the slope of the single-neuron firing-rate

nonlinearity at the stable state. Importantly, £ increases with
increasing V{h), because fis an expansive, convex nonlinearity
(Figure 2B). Thus, in general, effective connectivity increases
with increasing h, reflecting the growth of V(h) (Figure 2D,
middle).

An increase in effective connectivity can have conflicting ef-
fects: it can increase excitatory or driving effects that amplify
fluctuations and increase variability (Murphy and Miller, 2009;
Hennequin et al., 2014), but it can also increase inhibitory feed-
back, suppressing fluctuations and decreasing variability (Re-
nart et al., 2010; Tetzlaff et al., 2012). Thus, understanding how
changes in effective connectivity translate into changes in vari-
ability required further analysis (Methods S3). We found that
the net behavior of the network indeed included a combination
of both effects (Figure S3). Asthe input grew from zero, variability
first rapidly increased, due primarily to the growth of effective
feedforward weights (“balanced amplification”; Murphy and
Miller, 2009) but also of recurrent excitatory loops. Then, begin-
ning at firing rates comparable to spontaneous activity as
described above, variability steadily decreased with increasing
stimulus strength due to increasingly strong inhibitory feedback
(Figure 2D, bottom).

Crucially, we were able to show analytically that variability
quenching effects must ultimately dominate, leading to progres-
sively stronger quenching of variability as the input increases.
This is due to the faster growth of | activity relative to E activity
in the network, which is a robust cutcome of dynamic stabiliza-
tion by feedback inhibition (Figure S1; Ahmadian et al., 2013; Ru-
bin etal., 2015) and which has been observed in rodent S1 (Shao
et al., 2013)and V1 (Adesnik, 2017). We also found that ignoring
the variability-increasing effects, which are characteristic of
excitatory-inhibitory dynamics (Kriener et al.,, 2008; Murphy
and Miller, 2009) and thus largely absent from models that do
not include separate excitatory and inhibitory populations, can
fail to capture the full extent of variability modulation and lead
to an underestimation of the level of spontaneous variability ob-
tained at zero-to-weak input levels (Figure S4).

Variability Quenching and Synchronization in Single
Neurons
In order to study variability in single neurcons and at the level of
spike counts, we implemented the two-population architecture
of Figure 2A in a network of spiking neurons (Figure 3; STAR
Methods). The network consisted of 4,000 E neurons and
1,000 | neurons, randomly connected with low probability and
with synaptic weights chosen such that the overall connectivity
matched that of the reduced model. Each neuron emitted action
potentials stochastically with an instantaneous rate given by
Equation 3 (this additional stochasticity accounted for the effects
of unmodelled fluctuations in synaptic inputs that occur on time-
scales faster than the 30 ms effective time resolution of our
model; Methods S4). The external input to the network again
included a constant term, h, and a noise term that was tempo-
rally correlated on a 50 ms timescale with uniform spatial comre-
lations of strength 0.2.

At the population level, the network behaved as predicted by
the reduced model. Neurons fired irregularly (Figure 3A, top),
with firing rates that grew superlinearly with small input £ but

Neuron 98, 846-860, May 16, 2018 849



A B model experiment Figure 3. Modulation of Variability in
a Randomly Connected Stochastic Spi-
— spontaneous -
L5 oo | — evoked Il king SSN
%E P (A) Top: raster plot of spiking activity, for 40 (out of

._E_W kB E 102 7\,_“ .4,0.0(.)) excitatory neurons (red) am.i 10 (out of 1,000)

WL, [T} R inhibitory neurons (blue). Upper middle: momentary

2 £ 104 4

g.% = E and | populaticn firing rates. Lower middle: LFP
[ ——rrrr—rm .

a (momentary populaticn-averaged V,,). Bottom: Vy,
g 0.6 - 1 of two randemly chesen excitatory neurons. The
O & g 04 4 i dashed vertical line marks the onset of stimulus,
Y -2 . | when h switches from 2 mV to 15 mV. Population

1 H =g 0.2+ i 1 firing rates, LFP, and V,,, traces were smoothed with
g0 | neuron 1, neuron 2 | [+ 1
% | mwhﬁmf o i a Gaussian kernel of 50 ms width.
';E' =70 - v’\\/\/\ﬁ\[ﬂ\f\" A 1 10 1 10 (B) Top, normalized LFP power in spentanecus
. 1s slimulu.s onset fraquency [Hz] frequency [Hz] (black) and evcked (green) conditions; bottom,

sublinearly with stronger input (Figure S5). Moreover, fluctua-
tions in E and | population activities were strongly synchronized
(Figure 3A, upper middle), and LFP variability decreased with
increasing h (Figure 3A, lower middle). Importantly, variability
gquenching also occurred at the level of individual neurons’ Vi,
accompanied by a reduction of pairwise correlations (Figure 3A,
bottom; these required that single neurons shared part of their
input noise; Methods 53).

The model primarily suppressed shared rather than private (to
individual neurons) variability (Figure S5), as in experiments
(Churchland et al., 2010). This was because the spatially uniform
average connectivity of the network meant that its dynamics were
only significantly coupled to patterns of uniform activity across E
or across | cells. These patterns were thus the ones affected by
stimulus-induced changes in effective connectivity (Figure S3).
Correlated noise drove such uniform patterns so that they carried
significant variability. Thus, these shared excitatory and inhibitory
activity patterns behaved as the activity of the individual units of
the previous reduced two-population model, and so variability
suppression in the reduced model implied the suppression spe-
cifically of shared variability in this more detailed model.

Our model also accounted for the stimulus-induced modula-
tion of the power spectrum and cross-coherence of LFP and sin-
gle-cell V,, fluctuations, as cbhserved in V1 of the awake monkey
(Figure 3B; Tan et al., 2014). Strong external input reduced the
LFP power at low frequencies, due to enhanced effects of feed-
back inhibition; increased it at intermediate frequencies, due to
the faster timescales associated with relatively enhanced inhibi-
tion; and also increased it at high frequencies, due to the larger
firing rates, which contributed additional, high-frequency fluctu-
ations in synaptic drive (Figure 3B, top left). This asymmetric
modulation of LFP power at low and high frequencies is
also seen in experiments (Figure 3B, top right). Moreover, as
increasing inputs suppressed variability at the population
level, the private noise in the activity of each neuron had a pro-
portionately larger contribution to its overall variability, leading
to a drop in pairwise comelations (Figure 3A) and V,,-LFP
coherence specifically at low frequencies where the suppres-
sion of population variability occurred, as seen in experiments
(Figure 3B, bottom).
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average (+ SEM) spectral coherence between
single-cell ¥, and the LFP; left, model; right, data
from V1 of the awake monkey, reproduced from
Tan et al. (2014).

Stimulus-Tuning of Variability Suppression in V1

Neuronal recordings in visual areas have shown that Fano fac-
tors drop at the onset of the stimulus (drifting gratings or plaids)
in almost every neuron, which was well accounted for by the
randomly connected network we studied above. However, in
the experiments, variability did not drop uniformly across cells,
but exhibited systematic dependencies on stimulus tuning
(Ponce-Alvarez et al., 2013; Lombardo et al., 2015; Lin et al.,
2015). This could not be explained by randomly connected
architectures, so we extended our model to include tuning
dependence in connectivity and input noise correlations.

We studied an architecture in which the preferred stimulus of
E/l neuron pairs varied systematically around a “ring” represent-
ing an angular stimulus variable, such as stimulus orientation in
V1 or motion direction in MT (Figure 4A; STAR Methods). We
describe the case in which the variable is orientation, which
ranges from O to 180°; identical results describe direction if all
angles are doubled. The average input to a cell (either E or [}
was composed of a constant baseline, which drove sponta-
neous activity in the network, and a term that depended on the
angular distance between the stimulus orientation and the
preferred orientation (PO) of the cell, and that scaled with image
contrast, ¢ (Figure 4C). Input noise comrelations depended on
tuning differences (STAR Methods): cells with more similar tun-
ing received more strongly corelated inputs. The strength of
recurrent connections depended on the difference in preferred
orientation between pre- and postsynaptic neurons and whether
they were excitatory or inhibitory (Figure 4B).

The bump of stimulus-driven input drove a similar, but nar-
rower, bump of network response (Figures 4D and 4G). Although
this architecture appears similar to a form of multi-attractor
model that has a continuum of attractors—a bump of activity
that {in the absence of stimuli) can be centered at any location
(the so-called “ring attractor model”; Goldberg et al., 2004,
Ben-Yishai et al., 1995; Ponce-Alvarez et al., 2013)— our model
was actually quite different. While multi-attractor networks
show a bump of sustained activity even once the stimulus is
removed (leaving only non-specific background excitation), in
our network the bump of activity depends on the similar bump
of stimulus-driven input. When the stimulus is removed, our
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preferred crientaticn [PO] indicated on the axes of the "full” matrix, bettom right), obtained frem (the outer preduct of) the differential patterns on the right of (B).
Insets show Vi, covariance implied by each template for pairs of identically tuned cells (crange, PO difference =0°) and crthegonally tuned cells (gray, PO
difference = 90°), as a function of stimulus crientation relative to the average PO of the twe cells. The two templates sum up to a total covariance matrix (“bump
kinetics™), which captures the key qualitative features of the full ¥, covariance matrix (“full”). The covariance matrix of the input neise (“input”) is alsc shown

above for reference. The stimulus is at 0° throughout.

model. We found that Fano factor and Vi, variance were always
most strongly suppressed inthe neurons that were most strongly
driven by the stimulus (the “dip™ of the U shape) consistent with
the V1 data (see above). Interestingly, there were some cases
when neurons tuned to the opposite stimulus also showed a
strong reduction of Fano factor (though not of membrane poten-
tial variance; Figure S7)—consistent with recent findings of an
M-shaped modulation of Fano factors (and spike count correla-
tions of similarly tuned cells) in area MT of the awake macaque
(Figure S7; Ponce-Alvarez et al., 2013). However, while such
an M-shaped modulation was previously attributed to marginally
stable multi-attractor dynamics (Ben-Yishai et al., 1995; Ponce-
Alvarez et al., 2013), our model still produced this with a single
stable attractor: the spike count variability of oppositely tuned
cells dropped when input tuning in the model was as narrow
as, or narrower than, the tuning of recurrent connections. In
this configuration, oppositely tuned cells received so small a
net input on average that their membrane potential fluctuations
barely crossed the threshold of the firing rate nonlinearity, thus
producing very little spiking variability. In turn, this loss of firing
rate variance even overcame the effect of dividing by very small
firing rates in computing Fano factors for these neurons. Under
the same conditions, a similar M shape was apparent for spike
count correlations between similarly tuned neurons, as a func-
tion of their (common) preferred orientation (Figure S7).

Patterns of Noise Variability Arise from

Low-Dimensional Bump Kinetics

Next, we analyzed the origin and mechanism of the stimulus-tun-
ing of noise variability in the ring architecture. As mentioned
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above, for a fixed stimulus, the most prominent feature of popu-
lation activity was a “bump™ of high V,,, in the cells with preferred
orientations near the stimulus orientation and a lower baseline of
activity in the surround (Figure 5A, left and middle). In general,
variability in the bump and the baseline captured most of the net-
work's variance and its suppression with increasing stimulus
strength (Figure S8). Here and in the next section we specifically
focus on the structure of the quenched noise variability after
stimulus onset.

After stimulus onset, most of the shared variability (87%; Fig-
ure S8) arose from variability in the location, p, and width, o, of
the bump of activity (Figure S5A, middle and right). Notably, fluctu-
ations in bump amplitude and width scaled inversely with one
another, as the nonlinear interactions among neurons in our
network resulted in strong normalization (Ahmadian et al.,
2013; Rubinetal., 2015), preserving overall activity. Each ofthese
small transformations resulted in a characteristic pattern of
momentary deviation of network activity from the mean bump
(Figure 5B). In turn, these two patterns of momentary fluctuations
(Figure 5C) contributed two distinct spatial covariance templates
(Figure 50). For example, sideways motion of the bump
increased the firing rates of all the cells with preferred orienta-
tions on one side of the stimulus orientation and decreased firing
rates for all cells onthe other side (Figure 5B, top). This resulted in
positive covariances between cells with preferred orientations on
the same side of the stimulus orientation and negative covari-
ances for cells on opposite sides (Figure 5D, top: p-template;
Moreno-Bote et al., 2014). Conversely, an increase in bump width
{and thus a decrease in amplitude) increased the activities of cells
on the flanks of the bump, tuned away from the stimulus, while
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Figure 6. Stimulus Tuning of Spike Gount Correlations in the Ring
58N versus the Multi-attractor Ring Model

(A) Spike count correlation matrix in the ring SSN during evoked activity (100%
contrast). Color map shows correlations between cells with preferred orien-
taticn (PO) indicated on the axes, relative to stimulus crientaticn at 0°. Arrows
indicate axes along which cell pairs are similarly (crange) cr orthcgenally tuned
(gray). Spike count correlaticns along the diagonal show correlation for iden-
tically tuned cells, rather than for identical cells, and are thus less than one due
to private spiking ncise.

(B) Average spike count correlations in the SSN, for pairs of similarly tuned
cells (orange, PO difference less than 45°) and orthogonally tuned cells (gray,
PO difference greater than 45°), as a functicn of stimulus crientation relative to
the average PO of the two cells.

(C and D) Same as {A) and (B), for the multi-attractor ring network.

(E) Same as (B) and (D), for data from awake monkey V1 (Ecker et al., 2010).
Data were symmetrized for negative and positive stimulus orientations.
Shaded regicns denote 95% Cl. 88N simulations in this figure used the same
parameters as in Figures 4 and 5.

decreasing the activity of cells near the peak, tuned for the stim-
ulus (Figure 5B, bottom). This generated positive covariances
within each of these groups and negative covariances between
the two groups (Figure 5D, bottom: o-template).

Taken together, the ongoing jitter in bump location and width
contributed a highly structured pattern of response covariances,
which accounted for most of the structure in the full covariance
matrix of the network (Figure 50, compare “bump kinetics”
with “full™). In particular, bump kinetics correctly predicted the
Vin variances of cells (given by the diagonal of the full covariance
matrix indicated by the filled arrow in Figure 5D), showing less
variance for cells tuned to the stimulus orientation of 0° than
for cells tuned to orthogonal orientations (see Figure 4G, bottom,
green), and hence explained the U-shaped modulation of Fano
factors (Figure 4G, middle, green). Moreover, the recurrent dy-
namics generated negative correlations in the V,, fluctuations
of cells with orthogonal tuning, despite such pairs receiving
positively correlated inputs (Figure 50, “input” versus “bump
kinetics,” secondary diagonal with open arrow).

Experimental Predictions: Stimulus Tuning

For a direct comparison of the dynamical regime of the SSN with
previously proposed mechanisms for variability modulation,
based on marginally stable or chaotic dynamics, we first studied

the predictions of the models for the spatial patterns of spike
count noise correlations. Chaotic models have not (Rajan
etal., 2010), and probably can not, predict the tuning of meanre-
sponses, let alone that of variability suppression, so we focused
on a comparison with a multi-attractor ring model. This model
has been suggested to account for stimulus-modulated changes
in variability in area MT (Ponce-Alvarez et al., 2013). We matched
it to our model such that it produced similar tuning curves and
overall levels of variability (Figure S9).

While there were several differences apparent in the detailed
correlations predicted by the two models (Figures 6A and 6C),
many of these could be explained away by trivial factors that
neither model captured fully. For example, the average comela-
tion was substantially larger in the SSN than in the attractor
network— but this difference could be eliminated by invoking,
in the attractor model, an additional (potentially extrinsic) mech-
anism that adds a single source of shared variability across
neurons, resulting in a uniform (possibly stimulus strength-
dependent) positive offset to all correlations (Lin et al., 2015).
As another example, the attractor network always exhibited
an M-shaped modulation of correlations, whereas, just as for
Fano factors (see above), the SSN mostly showed a U-shaped
modulation but could show an M shape for particular parameters
{Figure 37).

Therefore, we focused on distinctions that were robust to
model details and followed from a fundamental difference of
bump kinetics in the two models: in contrast to the richer pat-
terns of variability generated by the SSN, multi-attractor dy-
namics showed a more limited repertoire, dominated by side-
ways motion of the bump with barely any fluctuations in bump
width (Figure 59; Burak and Fiete, 2012). As fluctuations in
bump location and width had opposite effects on the comela-
tions between orthogonally tuned cells in the SSN model (Fig-
ure S5O0 insets, gray), their cancellation made these correlations
only very weakly modulated by the stimulus (Figure 6A, gray
arow; Figure 6B, gray). In particular, this modulation was
much shallower than that for similarly tuned cells (Figure 6A, or-
ange arrow; Figure 6B, orange), for which variability in bump
location and width had congruent effects (Figure 5D insets, or-
ange) that added to rather than cancelled each other. In contrast,
in the attractor model, there was no such cancellation even for
orthogonally tuned cells due to the absence of fluctuations in
bump width (Figure S9). This meant that correlations between
orthogonally tuned cells were just as deeply modulated as those
between similarly tuned cells (Figures 6C and D).

Previous reports on the stimulus-tuning of noise correlations
examined only similarly tuned cells and reported mostly
M-shaped modulation, which does not distinguish between the
models. Therefore, we conducted our own analyses of a previ-
ously published dataset of V1 responses in the awake monkey
{Ecker et al., 2010) (Figure 6E). The modulation of these comrela-
tions by the stimulus could only be accounted for by the SSN.
First, we found that correlations between similarly tuned cells
were significantly modulated by the stimulus (Figure 6E, orange;
repeated-measures ANOVA F(2,274) = 5.29, p = 0.006), and
this modulation had a U rather than an M shape. More critically,
also in agreement with the predictions of the SSN but not of the
attractor model, correlations between orthogonally tuned cells
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were unaffected by the stimulus (Figure 6E, gray; repeated-mea-
sures ANOVA F(2,274) = 0.04, p = 0.961). While the magnitude
of correlations in either model was overall larger than in the data,
this simply reflected the relatively small number of neurons in the
models {model corelations could be decreased without
affecting the shape and extent of their stimulus tuning by
substituting each model unit by several neurons with indepen-
dent spiking noise).

Experimental Predictions: Temporal Dynamics of
Variability Modulation

We hypothesized that the fundamentally different mechanisms
responsible for variability modulation in the 83N, the multi-
attractor, and the chaotic dynamical regimes (Figure 1) should
berevealed inthe dynamics of variability suppression at stimulus
onset and of variability recovery at stimulus offset. In order to test
this, we used the same models for the SSN and multi-attractor
models as above, and we implemented the classical chaotic
model of Rajan et al. (2010) (STAR Methods), in which variability
suppression had previously been shown to occur. We then
measured the across-trial variability (averaged across neurons)
following the onset and offset of a step stimulus in each model
(Figures TA-7C, shaded areas), as we parametrically varied the
amplitude of the stimulus and therefore the degree of variability
suppression (Figures 7TA-7C, dark to light colors).

Inthe SSN, the timescales on which both suppression and re-
covery of variability occurred were nearly as fast as the single-
neuron time constant (20 ms in these simulations; Figures 7D
and 7E, green). In contrast, in chaotic networks, both these time-
scales were several (4-15) times longer than the single-neuron
membrane time constant (Figures 7D and 7E, blue). More impor-
tantly, recovery times were much longer than suppression times
in the chaotic network and increased with increasing stimulus
strength and thus increasing amount of variability suppression
during the stimulus period, neither of which was the case in the
SSN. In the multi-attractor network, both the dynamics of the
network activity and those of variability were much slower than
in the SSN (Figures 7D and 7E, red). Moreover, we found that, un-
like in the SSN or the chaotic model, variability increased tran-
siently immediately following stimulus onset (before eventually
decreasing to its new steady state; Figure 7C). The cause of
this behavior was the slow rotation of the activity bump from
its random position at the time of stimulus onset to the location
where cells’ preferred orientation matched the stimulus orienta-
tion (Figure S10). Thus, we expect this behavior to be generic at
least to the subclass of multi-attractor models that have a contin-
uous ring of attractors and thus show such rotational response,
which likely include those that can address the orientation- or di-
rection-tuning of variability reduction in V1 and MT.

The timescales of variability suppression and recovery found
experimentally in anaesthetized cat V1 and awake monkey MT
(Figures 7D and 7E, open square and circle; Churchland et al.,
2010) and by our own analysis of awake monkey V1 data (Figures
7D and 7E, dotted square; Ecker et al., 2010) were short and
nearly identical. Moreover, recovery times showed little depen-
dence on the amount of variability suppression (comparing
across areas), and there was no transient increase in variability
at stimulus onset (Figure 4F; Churchland et al., 2010). These re-
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sults confirm the predictions of the SSN and are at odds with the
dynamics of variability modulation as predicted by the multi-
attractor and chaotic regimes.

DISCUSSION

We studied the modulation of variability in a stochastic, nonlinear
model of cortical circuit dynamics. We focused on a simple cir-
cuit motif that captured the essence of cortical networks: noisy
excitatory and inhibitory populations interacting in a recurrent
but stable way despite expansive single-neuron nonlinearities.
This stochastic stabilized supralinear network (SSN) reproduced
key aspects of variability in the cortex. During spontaneous ac-
tivity, i.e., for weak external inputs, model neurons showed large
and relatively slow synchronous fluctuations in their membrane
potentials. These fluctuations were considerably amplified by
the network relative to that expected from the input alone and
were quickly quenched and decorrelated by stimuli. The model
thus explains and unifies a large body of experimental observa-
tions made in diverse systems under various conditions (Church-
land et al., 2006, 2010; Finn et al., 2007; Poulet and Petersen,
2008; Gentet et al., 2010; Poulet et al., 2012; Tan et al., 2014;
Chen et al., 2014). Moreover, the drop in variability was tuned
to specific stimulus features in a model of V1/MT, also capturing
recent experimental findings (Ponce-Alvarez et al., 2013; Lin
et al., 2015; Lombardo et al., 2015) as well as our own analyses
of a previously published dataset (Ecker et al., 2010).

The main insight of our analysis was that in a network of
nonlinear neurons with an expansive firing rate nonlinearity,
increasing the input increases the effective connection strengths
of the network, which in turn modulates the variability of re-
sponses. We identified two opposing effects of increasing effec-
tive connectivity on variability: the amplification of variability by
excitatory-inhibitory interactions (balanced amplification), which
dominates at very low (spontanecus) levels of input, and the
quenching of variability by increased inhibitory feedback, which
dominates for stimulus-driven input. Critically, these network ef-
fects preferentially act on smooth patterns of activity that are
aligned with the anatomical connectivity of the network, so that
it is the shared component of variability that is suppressed and
modulated by stimuli. Taken together, we showed that these
mechanisms robustly produced experimentally observed spatial
and temporal patterns of variability quenching and modulation,
whereas the dynamics of the network always remained in
the vicinity of a single attractor state, unlike previously proposed
mechanisms based on multi-attractor or chaotic dynamical
regimes.

Scources and Effects of Stochasticity

We focused on how the network shapes variability and assumed
that the variability originates in correlated noise input to the
network; such input correlations could arise due to upstream
areas already exhibiting noise correlations (e.g., thalamic input
to V1, Sadagopan and Ferster, 2012) and/or because of feedfor-
ward connectivity implying shared inputs {e.g., Kanitscheider
et al., 2015). In contrast, other models have focused on how cir-
cuits intrinsically generate slow correlated variability (Litwin-Ku-
mar and Doiron, 2012; Stringer et al., 2016). Nevertheless, our
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model also points to an important mechanism for creating
shared variability, namely the strong amplification of the input
noise by balanced amplification (see also Kriener et al., 2008;
Murphy and Miller, 2009; Hennequin et al., 2014).

Although most of our analyses were based on rates, rather
than spikes, the effect of fast fluctuations resulting from spiking
noise were not ignored, but were incorporated implicitly in the
power-law input/output nonlinearity of neurons in the model
(Equation 3) and in the stochastic spike-generation mechanism
used in our spiking network simulations (Figure 3, STAR
Methods). Theoretical work (Miller and Troyer, 2002; Hansel
and van Vreeswijk, 2002) shows that these fast fluctuations are
the key factor causing momentary firing rates (on the 30-50 ms
timescale of Vi, fluctuations considered here) to be a supralinear,
power-law function of mean voltages, a critical feature of our
model. As experiments, as well as our model, show that only
the shared but not the private part of variability is modulated
by stimuli (Churchland et al., 2010), we expect our assumption
that the exponent of the threshold power-law nonlinearity can
be considered constant (implying that fast private spiking fluctu-
ations are not affected by stimuli) to be valid to a good approxi-
mation. We also expect that a more detailed model explicitly
including these fast fluctuations would allow a more systematic
study of the effects of stimuli on high-frequency (gamma) oscil-
lations (Ray and Maunsell, 2010}, which our current model could
only partially account for (Figure 3B).

Tight versus Leose E-l Balance

While we focused on the sources and modulation of slower,
correlated fluctuations, a classical model of cortical variability,
the “balanced network™ (van Vreeswilk and Sompolinsky,

1998), focused on the origin of fast fluctuations from spiking
noise. In that model, very large external and recurrent inputs
cancel or “balance” to yield a much smaller net input. This mech-
anism can self-consistently generate the voltage variability to
generate iregular spiking. However, the very strong, very fast
inhibitory feedback in the balanced network suppresses cormre-
lated rate fluctuations away from the stable state (van Vreeswijk
and Sompolinsky, 1998; Renart et al., 2010; Tetzlaff et al., 2012),
leaving only fast, private variability due to irregular spiking
{though “breaking balance" can restore correlated variability;
Litwin-Kumar and Doiren, 2012; Rosenbaum et al, 2017).
Because the shared variability is already eliminated, stimuli
cannot modulate that variability.

As opposed to the “tight balance™ between excitation and in-
hibition in the classical balanced network model, the SSN in the
stimulus-driven regime is “loosely balanced™: the same mathe-
matical cancellation of external and recurrent input occurs, but
in a regime in which inputs are not large and the net input after
cancellation is comparable in size to the factors that cancel (Ah-
madian et al., 2013). This regime is supported by observations
that external input is comparable to, rather than very much larger
than, the net input received by cortical cells (Ferster et al., 1996;
Chung and Ferster, 1998; Lien and Scanziani, 2013; Li et al,,
2013). This loose balance allows correlated variability to persist
and be modulated by stimuli. Variability quenching in the sto-
chastic SSN robustly occurred as the input pushed the dynamics
to stronger and stronger inhibitory dominance. Consistent with
this, with increasing strength of external input, the ratio of inhibi-
tionto recurrent excitation received by neurons in the network in-
creases (Rubin et al., 2015), as observed in layers 2/3 of mouse
S1 (Shao et al., 2013) and V1 (Adesnik, 2017). In the balanced
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network, the ratio of inhibitory to excitatory activity would be
fixed regardless of the strength of activation. The balanced
network also only yields responses that are linear functions of
the input (though see Mongillo et al., 2012), whereas the loosely
balanced regime replicates many nonlinear cortical response
properties (Rubin et al.,, 2015), including the profound depen-
dence of comelated variability on stimuli. Although our model
does not focus on the origins of fast spiking variability, spiking
models in the loosely balanced SSN regime can, given noisy in-
puts (e.g., Sadagopan and Ferster, 2012), yield the iregular
spiking characteristic of cortex (unpublished data).

Further Factors Modulating Variability

We analyzed variability modulation solely as arising from intrinsic
network interactions, but other factors may also contribute
(Doiron et al., 2016). External inputs may be modulated; for
example, the drop with contrast in Fano factors in the lateral
geniculate nucleus (LGN) has been argued to underlie Vi, vari-
ability decreases in V1 simple cells (Sadagopan and Ferster,
2012; but see Malina et al., 2016). However, since high-contrast
stimuli also cause firing rates to increase in LGN, the total vari-
ance of LGN-to-V1 inputs (scaling with the product of the LGN
Fano factor and mean rate) is modulated far less by contrast.
This provides some justification for our model choice that input
variance did not scale with contrast. Changes in input correla-
tions have also been suggested as a potential mechanism under-
lying variability modulation (Bujan et al., 2015). However, the pro-
posed mechanism would require a stimulus to specifically
increase the correlations of the different inputs onto individual
cells (and this increase should be tuned to the stimulus) while
leaving the correlation of inputs between cells unchanged. This
seems difficult to achieve in cortex, where nearby cells are likely
to share a significant amount of input and correlations are gener-
ally observed to decrease, rather than increase, with stimulus
strength (Churchland et al., 2010).

Cne particular form of external input modulation, that involving
changes in brain state, has been proposed to directly contribute
to correlated variability in both awake (Poulet and Petersen,
2008; Ecker et al., 2016) and anesthetized cortex (Ecker et al.,
2014; Goris et al.,, 2014, Lin et al., 2015; Mochol et al., 2015),
so that a reduction of state switching would underlie the reduc-
tion of shared variability (Mochol et al., 2015; Ecker et al., 2018).
To the extent that correlated noise in the input to our model is
aligned with a uniform activity pattern, this input can also be re-
garded as having a single scalar “brain state”-like component
that is changing in time. However, our analysis suggests that
the variability of this component needs not be modulated directly
by the stimulus to account for variability quenching in network re-
sponses. Instead, our network used its intrinsic mechanisms to
quench variability in response to a stimulus. Importantly, these
intrinsic mechanisms not only quenched this uniform component
of variability (Figure S8), but also produced more complex pat-
terns of variability modulation via “bump™ kinetics that a single
brain state-dependent mechanism could not account for.

Cellular factors may also modulate variability. For example,
inhibitory reversal potential or spike threshold may set bound-
aries limiting voltage fluctuations, which would more strongly
limit voltage fluctuations in more hyperpolarized or more depo-
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larized states, respectively; conductance increases will reduce
voltage fluctuations; and dendritic spikes may contribute more
to voltage fluctuations in some states than others (Stuart and
Spruston, 2015). A joint treatment of external input, cellular,
and recurrent effects may be needed to explain, for example,
why Vi, variability appears strongest near the preferred stimulus
inanaesthetized cat V1 (Finn et al., 2007) or why overall V},, vari-
ability grows with visual stimulation in some neurons of awake
macaque V1 (Tan et al., 2014),

Cellular properties may themselves be subject to change
over time, thereby causing changes in variability. For example,
various mechanisms (e.g., attention, intrinsic and synaptic plas-
ticity, neuromodulators, anesthetics) can change the input/
output gain of single neurons and the synaptic efficacies of the
network. As all these changes eventually lead to changes in
effective connectivity, our work offers a principled approach to
study their effects on variability and is thus complementary to
previous studies that focused on the consequences of different
anatomical connectivity patterns on correlations (Kriener et al.,
2008; Tetzlaff et al., 2012; Ostojic, 2014; Hennequin et al., 2014).

Effects of Normalization on Variability

The nonlinear response properties of our network were crucial
for the modulation of variability by stimuli. These nonlinearities
had been shown to capture ubiquitous phenomena involving
nonlinear response summation to multiple stimuli, including
normalization, surround suppression, and their dependencies
on stimulus contrast (Rubin et al., 2015; Ahmadian et al.,
2013). As such, the SSN reproduces much of the phenomenol-
ogy of the “normalization model” of cortical responses (Caran-
dini and Heeger, 2011) and provides a circuit substrate for it.

However, while response normalization has previously been
studied for deterministic steady-state responses, our results
can be interpreted as showing that it also plays a role in the sup-
pression of ongoing variability by stimuli, as well as shaping the
structure of stimulus-evoked noise correlations. Specifically, in
the deterministic SSN, steady-state responses to multiple stimuli
add sublinearly, and as one stimulus becomes stronger than
another, the response to their simultaneous presentation be-
comes “winner take all,” i.e., dominated by the response to
the stronger stimulus alone (Rubin et al.,, 2015). This provides
an alternative conceptual explanation of why, in the stochastic
SSN, a stronger mean input drive relative to the noise input leads
to greater suppression of the noise's contribution to the total
network response, thus quenching variability.

Our results go beyond what could be predicted based on this
simple qualitative link between steady-state normalization and
variability quenching. First, we found a specific quantitative
form of normalization in our network: an approximate conserva-
tion of the integrated activity across a bump of activity that forms
around cells tuned to the stimulus orientation, despite fluctua-
tions in its width. In turn, this predicted a specific pattern of noise
comelations that we found contributed substantially to noise
variability in V1 of the awake monkey (Figure 6). Second, we
were able to study the dynamics with which variability was
suppressed following stimulus onset and recovered following
stimulus offset and found a good match to experimental data
{Figure 7).



The Origin and Role of Inhibitory Dominance
We found that an increase in inhibitory dominance was necessary
for the suppression of variability and correlations in the SSN. In
line with that, Stringer et al. (2016) studied rodent A1 and V1 in
various awake and anesthetized brain states and found that de-
synchronized states with weaker correlations were accompanied
by enhanced activity of putative fast-spiking inhibitory neurons.
By fitting a recurrent spiking E-l network model to the data,
they found that enhanced inhibitory feedback was the key
factor capturing the suppression of correlations. However, the
enhanced dominance of inhibition with increasing network activa-
tion, which suppresses correlations, was artificially incorporated
into the model by making the inhibitory conductance an exponen-
tial function of the inhibitory spike count. In contrast, our model
provides a dynamical mechanism by which inhibition becomes
increasingly dominant with increasing network activation.
Kanashiro et al. (2017) proposed a mechanism similar to ours
for the top-down suppression of correlated variability by atten-
tion, rather than bottom-up suppression by a stimulus. They
also proposed that this arises from enhanced inhibitory feedback
resulting from increased effective connectivity due to expan-
sive input/output functions. However, their conclusions differed
significantly from ours. They found that, for attention to suppress
variability, attentional input had to be directed dominantly
to inhibitory cells, while for attention to increase the gain of
response to stimuli, stimuli had to give input dominantly to excit-
atory cells. Note that this implies that stimuli would not suppress
variability. We have found that neither of these conditions are
necessary (Methods S4) and that stimuli robustly suppress vari-
ability. In particular, increasing input strength decreased vari-
ability across a wide range of relative strengths of input to excit-
atory versus inhibitory cells (Figure S2). The main reason for
these differences in conclusions is the special, non-generic
parametrization of the model studied by Kanashiro et al. (2017)
in which a neuron’s projections to excitatory and to inhibitory
neurcns were statistically identical, which precluded the SSN
regime (Methods 52).

The Dynamical Regime of Cortical Activity

Two proposals have been made previously to explain quenching
of variability by a stimulus: a stimulus may quench multi-attractor
dynamics to create single-attractor dynamics (Blumenfeld et al.,
20086; Litwin-Kumar and Doiron, 2012; Deco and Hugues, 2012;
Ponce-Alvarez et al., 2013; Doiron and Litwin-Kumar, 2014; Mo-
chol et al., 2015), and a stimulus may quench chaotic dynamics
to produce non-chaotic dynamics (Molgedey et al., 1992; Bert-
schinger and Natschlager, 2004; Sussillo and Abbott, 2009;
Rajan et al., 2010; Laje and Buonomano, 2013). Our results pro-
pose a very different dynamical regime underlying variability
gquenching, which can be distinguished from the multi-attractor
or chaos-suppression models.

Conceptually, the stochastic SSN differs from previous models
of stimulus-driven quenching of shared variability in exhibiting a
single stable state in all conditions —spontaneous, weakly driven,
strongly driven—whereas the others show this only when strongly
driven. Furthermore, quenching of variability and correlations in
the SSN is highly robust, arising from two basic properties of
cortical circuits: inhibitory stabilization of strong excitatory feed-

back (Tsodyks et al., 1997; Ozeki et al., 2009) and supralinear
input/output functions in single neurons (Priebe and Ferster,
2008). In contrast, models of multi-attractor or chaotic dynamics
can either account only for the modulation of average pairwise
correlations (Mochol et al.,, 2015) or else require considerable
fine tuning of connections (Litwin-Kumar and Doiron, 2012;
Ponce-Alvarez et al., 2013) to account for more detailed correla-
tion patterns. Moreover, as studied thus far (Rajan et al., 2010;
Ponce-Alvarez et al., 2013; Mochol et al., 2015; but see Harish
and Hansel, 2015; Kadmoen and Sompolinsky, 2015; Mastrogiu-
seppe and Ostojic, 2017), they typically ignore Dale’s law (the sep-
aration of E and | neurons) and its consequences for variability,
e.g., balanced amplification. These differences between the SSN
and previous models also lead to two mainexperimentally testable
features that we used to distinguish their respective dynamical
regimes: the tuning and the timing of variability modulation.

With respect to the stimulus tuning of spike count Fano factors
and noise correlations, we found that multi-attractor networks
could only predict an M-shaped modulation while the SSN could
produce either M- or U-shaped modulations depending on the
tuning width of inputs relative to that of connectivity. Indeed,
while most types of stimuli in MT were found to result in an
M-shaped modulation (Ponce-Alvarez et al., 2013), coherent
plaids (Ponce-Alvarez et al,, 2013) and random moving dots
{(Lombardo et al., 2015) in the macaque as well as moving dot
fields and drifting gratings in the marmoset (Selina Solomon,
personal communication; Solomon et al., 2015) result in a pro-
nounced U-shaped modulation of Fano factors in MT, and our
own analyses of V1 data also revealed a U-shaped modulation.
Interestingly, our results also suggested that irrespective of the
precise shape of the modulation of spike count statistics, mem-
brane potential variability in the SSN should always exhibit a
U-shaped profile (Figure 4}, which could be tested in future ex-
periments. Critically, we also identified a rarely analyzed aspect
of spatial correlation patterns that could most clearly distinguish
between different models: the modulation of correlations be-
tween orthogonally tuned cells. The SSN predicted only very
weak modulation for such cell pairs, while multi-attractor dy-
namics resulted in modulations that were as deep as for pairs
of similarly tuned cells. We found that data from awake macaque
V1 supported the SSN.

Another distinctive feature of the SSN regime is the speed of
its dynamics, and in particular the speed with which variability
is modulated as the stimulus is changed. In contrast to multi-at-
tractor and chaotic dynamics, in which variability modulation
happens on timescales that are considerably slower than the
single neuron time constant, the SSN produces fast variability
modulation on a timescale comparable to the neural time
constant. The timescales of variability modulation we extracted
from data recorded in monkey visual cortical areas (Churchland
et al., 2010; Ecker et al., 2010) were fast, on the order of
20-50 ms, providing further support to the SSN.

In summary, the SSN robustly captures multiple aspects of
stimulus modulation of correlated variability and suggests a
dynamical regime that uniquely captures a wide array of behav-
iors of sensory cortex. In turn, our work suggests a principled
approach to use data on cortical variability to identify the dynam-
ical regime in which the cortex operates.
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STARxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOQURGE SOURCE IDENTIFIER

Deposited Data

Awake monkey V1 dataset Ecker et al., 2010 hitp://bethgelab.org/datasets/v1 gratings
Software and Algorithms

OCaml (for all simulations) Open source http://www.ocaml.org

Sqlited (for V1 data analysis) Sglite Consortium https://=qlite.org/index.html
Mathematica Wolfram https //www wolfram.com/mathematica
Gnuplot Open source hitp:/fwww.gnuplot.info

CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Guillaume Hennequin is responsible for all reagent and resource requests. Please contact Guillaume Hennequin
at g.hennequin@eng.cam.ac.uk with requests and inquiries.

METHOD DETAILS

The values of all the parameters mentioned below are listed in the tables below. All differential equations detailed below were
integrated using a simple Euler scheme with time step 0.1 ms.

Parameters Used in the SSN Simulations

Symbol Figure 2 Figure 3 Figures 4, 5, 6, and 7 Unit Description

Ng 1 4,000 50 - Number of excitatory units

Ny 1 1,000 50 - Number of inhibitory units

TE 20 ms Membrane time constant (E neurons)

T 10 ms Membrane time constant {| neurons)

Ml —70 my Resting memkrane potential

Vo =7 my Rectification threshold potential

k 0.3 my~" . 57! Nonlinearity gain

n 2 - Nonlinearity exponent

Wee 1.25 my-s E — E connection weight (or sum thereof)
Wie 1.2 mv-s E — | connection weight (or sum thereof)
Wy 0.65 my - s |— E connection weight {or sum thereof}
Wy B my - s |- connection weight (or sum thereof)
Tholse 50 ms MNoise correlation time constant

OoE 0.2 1 my Noise standard deviation (E neurons)

o1 0.1 05 my Noise standard deviation (| neurcns)

Pe - 0.1 - - DOutgoing connection probakility (E neurons)
o] - 04 - - Outgoing connection prokakility (| neurons)
Teyn - &2 - ms Synaptic time constants

A - 05 - ms Axonal delay

o - 45 deg. Connectivity length scale

8o - 60 deg. MNoise correlation length scale

Ratim - 60 deg. Stimulus tuning length scale of the input

b - 2 my Input baseline

A - 20 my Maximum input modulation (100% contrast)
Betim - 0 deg. Stimulus direction
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Parameters Used in the Multi-attractor Network Simulations

Symbaol Figures 6 and 7 Unit Description

N 100 = Number of units

T 10 ms Membrane time constant

k 0.1 my 1 Nonlinearity gain

e 100 ms~! - mv~!  Maximal firing rate

w —A0/G my . s Average connection weight

Wa 33/9mmax my . s Tuning-dependent modulation of connection weight
B e 50 ms Noise correlation time constant

g 0.15 my Noise standard deviation

Biias 60 deg. Noise correlation length scale

Letim 18] deg. Stimulus tuning length scale of the input
b 2 my Input baseline

A 0.1 my Depth of input tuning

Betim 0 deg. Stimulus direction

Parameters Used in the Chaotic Network Simulations

Symbol Figure 7 Unit Description

N 2,000 - Number of units
T 10 ms Memkbrane time constant
Ty 2 - Standard deviation of connection weights

SSN model
Our rate-based networks contained Ne excitatory and N inhibitory units, yielding a total N = Ng + N units. The circuit dynamics were
governed by (see also Methods S1):

avi

Ti g = — Vit Viea t byl + (8 + STWyr(V) - Y Wr(vy, (Equation 2)

jeE cells felcells

where V; denotes the V,, of neuron i, 7; is its membrane time constant, V.., is a resting potential, W} is the (positive or zero) strength
of the synaptic connection from neuron j to neuron i, and k;(t) is the potentially time-varying but deterministic component (the mean)
of external input to which a noise term =;(f) is added (see below, “Input noise™). The momentary firing rate of cell j was given by a
threshold-powerlaw function of its membrane potential:

r(V)=k |V, - VOJIL- (Equation 3)

Experiments support Equation 3 when both membrane potentials and spike counts are averaged in 30 ms time bins (Priebe and
Ferster, 2008). Accordingly, V; in Equation 2 can be understood as the coarse-grained (low-pass filtered) version of the raw somatic
membrane potential; in particular it does not incorporate the action potentials themselves. Thus the effective time resolution of our
model was around 30 ms which allowed studying the effects of inputs that did not change significantly on timescales shorter than
that. Accordingly, in Equation 2 we assumed that external noise had a time constant tneise = 30 ms, in line with membrane potential
and spike count autocorrelation timescales found across the cortex (Azouz and Gray, 1999; Berkes et al., 2011; Murray et al., 2014).

Equations 2 and 3 together define the stabilized supralinear network model studied in Ahmadian et al. (2013)and Rubin et al. (2015),
but formulated with voltages rather than rates as the dynamical variables (the two formulations are mathematically equivalent when
all neurons have the same time constant, Miller and Fumarola, 2012) and with the crucial addition of noise that enables us to study
variability. In all the figures of the main text, the exponent of the power-law nonlinearity was set to n=2 (but see Figure S2 forn > 2).
Methods 52 explores more general scenarios.

Mean external input
Inthe reduced rate model of Figure 2, each unit received the same constant mean input £, Inthe ring model, the mean input to neuron
i was the sum of two components,

M) (Equation 4

h,-(é?snm)_b+c-Amax-exp( z

stim
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The first term b=2 mV is a constant baseline which drives spontaneous activity. The second term models the presence of a
stimulus with orientation #im in the visual field as a circular-Gaussian input bump of “half width” #.4yv centered around fgim and
scaled by a factor ¢ (increasing ¢ represents increasing stimulus contrast), taking values from 0 to 1, times a maximum amplitude
Arax. We assumed for simplicity that E and | cells are driven equally strongly by the stimulus, though this could be relaxed.

Input noise
The input noise term »;(f) in Equation 2 was modeled as a multivariate Ornstein-Uhlenbeck process:

Tnoisadn: - Tldf"' V 2THDiSEEnmSE dE: (Equati0n 5)

where df is a collection of N independent Wiener processes and ¥ is an Nx N input covariance matrix (see below). Note that
Equation 5 implies {n;(t) 5;(t +7)}, = Z*E%e I7l/70eee,

In the reduced two-population model (Figure 2), noise terms were chosen to be uncorrelated, i.e., E}}“ise = Jﬁ(f) 3 (where gy =1 ifi=j
and 0 otherwise), wii)e {E, I} is the E/l type of neuron i, and o2 is the variance of noise fed to population « (see Equation 7 below). Inthe
spiking two-population model (Figure 3), input noise covariance was uniform, such that E;}Oise = 7207 (1 = p) + p), with the pair-
wise correlation coefficient set to p=0.2 {see Figure S5 for the dependence of our results on p). In the ring model (Figures 4, 5, 6,
and 7), the noise had spatial structure, with correlations among neurons decreasing with the difference in their preferred directions

following a circular-Gaussian:

M) 5 (Eq uation 6)

E:}"mise =0y Tup) EXP ( z
nolse

where 8 and §; are the preferred orientations of neurons / and j (exc. or inh.), and £ is the correlation length (see table “Parameters
Used inthe SSN Simulations™). The noise amplitude has the natural scaling

Tu=00a 1)1 +—2— (0e {E,1}) (Equation 7)
Thoise

such that, in the absence of recurrent connectivity (W = 0), the input noise alone would drive Vi, fluctuations of standard deviation
ogg OF oy, measured in mV, in the E or | cells, respectively. We chose values of #p¢ that yielded spontaneous Fano factors
in the range 1.3-1.5 where appropriate, and chose g5;=90£/2 to make up for the difference in membrane time constants
between E and | cells {(see table “Parameters Used in the SSN Simulations™).

Connectivity
The synaptic weight matrix in the reduced model was given by
WEE _WEI x
W= Equation 8
( e ) (Equation 8)

where Wz is the magnitude of the connection from the unit of type B (E or I} to that of type A (see table “Parameters Used in the SSN
Simulations” for parameter values). In the ring model, connectivity fell off with angular distance on the ring, following a circular-
Gaussian profile:

M) ; (Eq uation 9)

Wy ocexp =
Lo

where §; and 4, are the preferred orientations of neurons/and j (exc. orinh.), and £s, sets the length scale over which synaptic weights
decay (seetable “Parameters Used in the SSN Simulations”). The connectivity matrix W was further rescaled in each row and in each
quadrant, such that the sum of incoming E and | weights onto each E and | neuron (4 cases) matched the values of Weg, Wie, —Wg
and —W), in the reduced model. Thus, all connectivity matrices used in the SSN model obeyed Dale’s law.

Simulated spike counis

To relate the firing rate model to spiking data in Figures 4 and 6, we assumed that action potentials were emitted as inhomogeneous
(doubly stochastic) Poisson processes with time-varying rate r{\4;,) given by Equation 3. Unlike in the full spiking model (see below),
spikes did not “re-enter” the dynamics of Equation 2, according to which neurons influence each other through their firing rates.
Spikes were counted in 100 ms time bins and spike count statistics such as Fano factors and pairwise corelations were computed
as standard.
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Spiking SSN model
Dynamics
In the spiking model (Figure 3}, neuron i emitted spikes stochastically with an instantaneous probability equal to dt r{V;), with time-
varying rate r(V;) given by Equation 3, consistent with how (hypothetical) spikes were modeled in the rate-based case (cf. above).
Presynaptic spikes were filtered by synaptic dynamics into exponentially decaying postsynaptic currents (E or )

daj- _ =h

dt Fiam

+> dt—t—A), {Equation 10)

T

where the §'s are the firing times of neuronj, rey =2 ms is the synaptic time constant, and A =0.5 ms is a small axonal transmission
delay (which enabled the distribution of the simulations onto multiple compute cores; Morrison et al., 2005). Synaptic currents then
contributed to membrane potential dynamics according to

T %: —Vi+ Viea + (B + () + Z Jy ait) — Z Jy a(t), (Equation 11)

feE cells fel cells

where the synaptic efficacies J; are described below, and the noise term »; was modeled exactly as described above.
Connectivity
For each neuron i, we drew peNg excitatory and p;N; inhibitory presynaptic partners, uniformly at random. Connection probabilities
were set to pe=0.1 and pr=0.4 respectively. The corresponding synaptic weights took on values J; =W.s /{1 s Ng) where
{«, 8} {E, !} denote the populations to which neuron / and j belong respectively, and W,z are the connections in the reduced model
(see table “Parameters Used in the SSN Simulations™). This choice was such that, for a given set of mean firing rates in the E and |
populations, average E and | synaptic inputs to E and | cells matched the corresponding recurrent inputs in the rate-based model.
Synapses that were not drawn were obviously setto J; = 0.
Local field potential
As a proxy for LFP in Figure 3, we took the momentary population-averaged V), (Mazzoni et al., 2015 simulated various proxies and,
although some proxies were more accurate, they found the average Vi, to be reasonably accurate).

Multi-attractor model

We compared our ring SSN model to a version of the ring attractor model published by Ponce-Alvarez et al. (2013). The ring attractor
model had a single population with a similar ring topology, and — using the same notation as above—the connectivity took the form
(cf. Equation )

— W

Wi = W+WACOS(3,- - 8), (Equation 12)

where N =100 is the number of neurons, and W and W, are two parameters that control the average connection strength and

modulation with tuning dissimilarity, respectively. Note that, in general, this connectivity matrix could viclate Dale’s law but with

the specific parameters used here it did not (see table “Parameters Used in the Multi-attractor Network Simulations”). Instead, all

connections were inhibitory to keep the system in the marginally stable regime (as in Ponce-Alvarez et al., 2013). The dynamics of
the network obeyed a similar stochastic differential equation as for the ring SSN (Equation 2), namely

dV; ;
T d—t’: — Vi+h{t) + () + E,:WU V), {(Equation 13)

with the momentary firing rate of cell / given by a rectified saturating firing rate nonlinearity (cf. Equation 3):
r(V;) = gmextanh (k A ) , (Equation 14)

and a noise process n identical to the one we used in the SSN {same spatial and temporal correlations, Equations 5 and 8), with a
variance adjusted so as to obtain Fano factors of about 1.5 during spontaneous activity (Figure S9B, black). The external input had
both a constant baseline, &, and a contrast-dependent modulated component (cf. Equation 4):

hi=b+c-(1 —A+Acos(#i — faim)), (Equation 15)

where A controlled the depth of the modulation, and ¢ represents stimulus strength.

Note that although the phenomenology and dynamical regime of this model was consistent with that of Ponce-Alvarez et al. (2013}
(Figure 59), the model differed from their original implementation in some of the details: our dynamics were written in voltage form, not
in rate form, we had only one unit at each location on the ring (as opposed to small pools of neurons), and our input noise process had
spatial correlations to allow for a more direct and consistent comparison with the ring SSN.

Qur analysis of variability in this ring attractor network is presented in Figure 59 in a format identical to that of Figure 5, and shows
that shared variability is entirely dominated by the fluctuations in the location of an otherwise very stable bump of activity.
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Chaos suppression model
We also implemented a chaotic rate network of size N =2, 000 with the following (deterministic) dynamics (cf. Equations 2 and 13):
dV;

5 d—t’: —Vithit)+ > Wy r(V), (Equation 16)
i

with an (unrectified) saturating firing rate nonlinearity (cf. Equations 3 and 14)
r(V;) =tanh(V}) {Equation 17)

(which could thus go negative as well as positive). Elements of the synaptic weight matrix were sampled i.i.d. from a normal distri-
bution (thus violating Dale's law, cf. Equations 9 and 12):

Wy ~ N (0, gy /N, {Equation 18)

with oy = 2, which placed the network in the chaotic regime (Sompolinsky etal., 1988). The externalinput was a constant input vector
of the form (cf. Equations 4 and 15)

hy=c-cos{g;), (Equation 19)

where ¢; is a phase sampled i.i.d. from a uniform distribution between 0 and 2=, and ¢ represents stimulus strength. See table
“Parameters Used in the Chaotic Network Simulations” for all parameter values. As shown in Rajan et al. (2010), chaosis suppressed
for large enough c¢.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dataset

We analyzed neural recordings from the V1 of two awake monkeys (Figures 4, 6, and 7). A full description of the experimental protocol
and recordings can be found in the original publication (Ecker et al., 2010). We discarded all cells that were poorly isolated (contam-
ination »5%), leaving us with 330 cells to analyze. The stimuli consisted of moving gratings of various orientations, all at 100%
contrast. We fitted orientation tuning curves (Figure S11; average firing rate in the first 500 ms following stimulus onset, as a function
of stimulus orientation) of the form 7{#) =1y + finexp[x{cos(2(# — 8uer)) — 1)], where 8 is the stimulus orientation {thus, we neglected
the direction of motion, which could be in either of the two directions orthogonal to the orientation of the grating). The fit was achieved
using nonlinear least-squares regression.

For each neuron, we calculated an orientation tuning index (OTI), defined based on the fitted tuning curve as

f(gpref) = f(‘gcrlh)
f(‘gpref) + f(gorth) !

where fon = fprer + /2. Asthering architecture we studied in Figures 4, 5, 6, and 7 only applied to neurons with well-defined tuning
curves, we excluded cells that had OTI < 0.75 as well as average evoked rates (measured during the stimulus period) below 1 spike/
sec. This left us with 99 well-tuned cells to analyze.

Our analysis of the stimulus tuning of Fano factors and pairwise spike-count correlations was based on a time window of 100 ms
starting at stimulus onset.

OTl = {(Equation 20)

Factor analysis

We performed factor analysis of spike counts, either for a single stimulus condition in the model (the model had a natural rotational
symmetry), or separately for each stimulus condition (direction) in the V1 dataset, subsequently averaging the reported quantities
across conditions. We worked with normalized spike counts, defined as Ci = cic/+/ (Ck),, Where cx is the spike count of neuron / in
trial kand (-}, denotes averaging across trials. Note that the variances of these normalized spike counts are exactly the Fano factors,
i.e., the usual measure of spike count variability. This prevented the normalized spike count covariance matrix C from being contam-
inated by a rank-1 pattern of network covariance merely reflecting the tuning of single-neuron firing rates (the “Poisson™ part of vari-
ability, which tends to scale with the mean count). Factor analysis decomposes C as the sum of a rank-k covariance matrix Cehared rep-
resenting k modes of network covariances, and a diagonal matrix Cpypaze- Inthe rate model, we could near-perfectly estimate the splke
count covariance matrix, so we performed factor analysis by direct eigendecomposition of C thus defining Cepared _E, 1A,v,
whereby the top k eigenvectors vy, ..., v, of C contributed to shared variability in proportion of the corresponding eigenvalues A;. For
factor analysis of the monkey V1 data, we performed direct maximization of the data likelihood {Cunningham and Ghahramani,
2015), also keeping k factors. In Figure 4, we setk = 3, but we observed quenching of shared variability irrespective of k (Figure 512).

DATA AND SOFTWARE AVAILABILITY

The code used for model simulations and data analysis is available from the Lead Contact, Dr Guillaume Hennequin, upon request.
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