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Structure in neural population recordings: an expected
byproduct of simpler phenomena?

Gamaleldin F Elsayed!3® & John P Cunningham!-34C

Neuroscientists increasingly analyze the joint activity

of multineuron recordings to identify population-level
structures believed to be significant and scientifically novel.
Claims of significant population structure support hypotheses
in many brain areas. However, these claims require first
investigating the possibility that the population structure in
question is an expected byproduct of simpler features known
to exist in data. Classically, this critical examination can

be either intuited or addressed with conventional controls.
However, these approaches fail when considering population
data, raising concerns about the scientific merit of population-
level studies. Here we develop a framework to test the
novelty of population-level findings against simpler features
such as correlations across times, neurons and conditions.
We apply this framework to test two recent population
findings in prefrontal and motor cortices, providing essential
context to those studies. More broadly, the methodologies

we introduce provide a general neural population control

for many population-level hypotheses.

A fundamental challenge of neuroscience is to understand how inter-
connected populations of neurons give rise to the remarkable compu-
tational abilities of our brains. To answer this challenge, advances in
recording technologies have produced datasets containing the activity
oflarge neural populations. Population-level analysis techniques have
similarly proliferated!~? to draw scientific insight from this class of
data, and as a result, researchers now generate and study hypotheses
about structure in neural population activity. These ‘population struc-
tures’ describe scientifically interesting findings at the population level
that elucidate properties or features of neural activity that, ostensibly,
can neither be studied with traditional single-neuron analyses nor be
predicted from existing knowledge about single-neuron responses.
Claims of significant population structures support results in many
brain areas including the retina, the olfactory system®*, frontal cor-
tex”¥, motor cortex™1?, parietal cortex!' 1% and morel:”.

While promising, these advances are also perilous. Population
datasets are remarkably complex, and the population structures
found in these data are often the result of novel data analysis meth-
ods with unclear behavior or guarantees. Specifically, many analysis
techniques do not consider the very real concern that the observed
population structure may be an expected byproduct of some simpler,

already-known feature of single-neuron responses. Figure 1 shows
four examples of population structure from the literature, to demon-
strate how this concern may arise. In rodent posterior parietal cortex
(Fig. 1a), Raposo and colleagues!! recorded single neurons tuned'41°
to multiple task parameters (often called mixed selectivity!®): neural
responses in a decision-making task modulated to both the choice
and stimulus modality (auditory or visual). They used a machine-
learning algorithm to find individual readouts of the population that
represented choice only and modality only (plotted against each other
in Fig. 1a). However, one might ask, is this population structure truly
a novel finding, or should we expect to find such readouts given our
knowledge that single neurons are tuned to choice and modality? In
primate prefrontal cortex (PFC), Murray and colleagues!” analyzed a
neural population during a working-memory task and found a read-
out that is more stable in time than the single-neuron responses them-
selves (Fig. 1b). Again we may ask, is this stability significant, oris it
expected as a byproduct of the temporal smoothness (or, correlations)
of single-neuron responses? Population-level neural dynamics have
also been studied: low-dimensional projections of neural population
responses seemingly evolve over time depending on their response
history and initial conditions; examples include the locust antennal
lobe!® (Fig. 1¢) and primate motor cortex” (Fig. 1d). Are these popu-
lation findings novel signatures of dynamical systems®?°, or is this
structure an expected byproduct of the temporal, neural and condi-
tion correlations of the neural data? This and the previous concerns
of course depend on the subjective assumption that these simpler
features are known a priori (Le., not a consequence of the population
structure, to which some researchers give primacy). Nonetheless, in
the face of these concerns and a spate of prominent population-level
results, the neuroscience community has begun to raise significant
doubts about the extent to which population-level findings are an
expected byproduct of simpler phenomena. This debate will remain
unresolved in the absence of rigorous methodology for evaluating the
novelty of population findings.

To address this challenge, we developed a methodological frame-
work—the “neural population control’—to test whether or not a given
population structure is an expected byproduct of a set of primary
features: the tuning of single neurons'*1%, temporal correlations of
firing rates (regardless of whether one views that temporal correla-
tion as fundamental or a result of smoothing?!~??) and signal correla-
tions across neurons?*?* (also called the low dimensionality of neural
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populations!®?%). The central element ofthis neural population con-
trol is a set of algorithms that generate surrogate datasets that share
the specified set of primary features with the original neural data but
are otherwise random. Accordingly, these surrogates will express any
population structure to the extent expected by the specified primary
features (since there is by definition no additional structure). We
extended Fisher randomization and maximum entropy modeling to
generate these surrogate datasets, and we chose the primary features
to be the mean and covariance of the data across times, neurons and
experimental conditions. This choice is justified: the use of first'®
and second?*%?” moments is standard in neuroscience, and further,
these are the lowest-order moments that can produce responses with
qualitative similarity to real data in terms of temporal smoothness,
low dimensionality and tuning to conditions. These surrogate data-
sets formed the basis for a statistical test, giving a precise probability
(a P value) that a population structure is an expected byproduct of
the specified primary features. Critically, careful inspection of this
problem also revealed the inadequacy of typical statistical controls
and validation techniques, and our results showed the extent to which
ignoring such primary features can misstate statistical confidence,
pethaps drastically, in a population-level result.

The neural population control can be applied to population structures
and to datasets from almost any brain area. To show its utility, we used it
to test two recent influential results. First, using data from macaque PFC
engaged in a working memory task?®??, we found that the presence of
strong stimulus-specific population readouts is expected from the robust
tuning of single neurons. In contrast, we found that the decision-specific
readouts are not expected. Second, using multielectrode array record-
ings from the macaque motor cortex’, we found that population-level
dynamical structure®” is not an expected byproduct. The results of the
neural population control framework contextualize and clarify these
studies, quantitatively resolving skepticism and pointing to how this
framework can be used throughout systems neuroscience.

RESULTS
Motivation for the neural population control
Consideration of conventional controls clarifies the need for the neural
population control. Traditionally, one begins with a choice of a sum-
mary statistic, a number that quantifies the structure in question. In
population studies, some common choices are variance explained!! ora
goodness-of fit metric such as the coefficient of determination®!?. This
statistic is calculated for the data and then compared to a null distribu-
tion, producing a P value, which gives the likelihood of that statistic
value (or greater) arising by chance under the null hypothesis. Critically,
one requires a null distribution, and the most common approach is to
shuffle the neural data so as to disrupt any special coordination that
might have given rise to the population structure in question. Then,
the summary statistic is calculated for each shuffled surrogate dataset,
and the null distribution is built from the calculated statistics of many
surrogate datasets. Should the summary statistic of the original data
be likely under the null distribution, then, the argument goes, popula-
tion structure was not surprisingly different than expected by chance.
In principle, this procedure is appropriate only if the surrogate data-
sets conserve all the primary features of the original neural data, such
that the surrogates remain a plausible comparison. However, often this
essential requirement is not met, in which case one has a major problem
of interpretation: is the difference in the summary statistic between
the original and surrogate datasets due to disruption of the population
structure itself, due to distortion of the primary features, or both?
Failureto account for known features presents a significant challenge
and can lead to misinterpreting results. To elucidate this pitfall and
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highlight what the neural population control offers, Figure 2 presents
two illustrative examples. Figure 2a shows responses from two simu-
lated neurons, each tuned to eight stimuli Suppose a population-level
analysis found a readout (Fig. 2a) in which the data was well tuned to
the stimulus and that this subspace accounted for a great deal of the
population signal (99% of data variance captured, here). Of course (by
construction) this finding is an expected byproduct of the fact that
both neurons are well tuned to this stimulus. However, a standard shuf-
fle (Fig. 2b) will corrupt tuning and suggest that population structure
is in fact significant (variance of that tuned readout has dropped to
61%). Indeed, repeated shuffles produce a null distribution (Fig. 2¢)
erroneously implying significance (with P < 0.001). The neural popula-
tion control, using algorithms we will shortly introduce, produces sur-
rogates that maintain neural tuning and other primary features, leading
to the correct conclusion both qualitatively (Fig. 2b) and quantitatively
(Fig. 2¢): here the variance explained by this subspace is an expected
byproduct of tuning, not a novel population-level result.

Even when a population-level result is not an expected byproduct of
simpler features, conventional controls can meaningfully misstate confi-
dence. Figure 2d shows two simulated neurons coupled as an oscillator,
where eight stimuli set initial states of the given differential equations.
Population-level neural responses thus evolve in time according to a
dynamical flow field (Fig. 2d). Under standard shuffling (Fig. 2e), cor-
relations across neurons and conditions change, and the consistency
with the dynamical flow field is considerably reduced, both qualitatively
(Fig. 2e) and quantitatively (using the coefficient of determination R?;
Fig. 2f). The neural population control produces surrogate data with
the appropriate primary features, producing the correct null distribu-
tion and confidence level (Fig. 2f). Thus, the essential remaining chal-
lenge for rigorously testing the novelty of population-level results is to
develop methods for producing random surrogate datasets (Fig. 2b,e)
that match the primary features of the original data.

Corrected Fisher randomization and tensor maximum entropy

We need to generate surrogate datasets that share the primary features
of the original neural data but are otherwise random. We developed
two complementary methods that achieve that goal, termed corrected
Fisher randomization’ (CFR) and ‘tensor maximum entropy’ (TME).
CFR adds an optimization step to traditional shuffling, to maintain
the primary features, whereas TME samples random datasets from
a probability distribution with the correct average primary features
(Online Methods). The high-level mechanics of these methods are
llustrated schematically in Supplementary Figure 1. As in traditional
shuffling, the first step of CFR is to randomly shuffle the responses of
each neuron across experimental conditions. Because this standard
shuffling step destroys the primary features of the original data,
we then construct and apply an optimized neural readout, a matrix
that reweighs the shuffled neural responses, to minimize the error
between the primary features of the new shuffled responses and the
primary features of the original neural data. The strength of CFR
is that each surrogate dataset preserves the primary features of the
original data (up to the optimization error, which is empirically quite
minor; Supplementary Figs. 2 and 3). However, as with most shuf-
fling techniques, CFR is conservative as it operates on a finite dataset
(i.e., it shuffles the finite set of recorded neural responses). Hence,
some structures that are not stipulated by the null hypothesis may
persist in shuffled data (e.g., if a neural trace is nonsmooth at one
time point, the trace after shuffling will still be nonsmooth at this
time point). Owing to this potential shortcoming, we also extended
the maximum entropy principle (which has been widely used in
neuroscience®”*-3%) to develop the complementary TME method.
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Figure 1 Population structure in systems neuroscience: examples from studies investigating structure at the level of the population. (a) Left: an
example firing rate response from a rat posterior parietal cortex (PPC) neuron during a multimodality decision-making task (adapted from Raposo

et al.ll, Nature Publishing Group). The single-neuron responses show mixed selectivities to cue modality (blue, visual cue; green, auditory cue)

and decision (dashed lines, right lick port; solid lines, left lick port). Right: a two-dimensional projection of the population response, where choice
information is separated along dimension 1 (Dim.1; horizontal) from the modality information, which is separated along dimension 2 (Dim. 2; vertical).
(b) Left: an example firing rate response from a primate PFC neuron during a working-memory task (adapted from Murray et al.!’, National Academy of
Sciences). The single-neuron responses to the six stimuli (illustrated by different colors) show temporal dynamics. Right: a two-dimensional projection
of the population, in which stimulus information is stably represented across time. (¢) Left: an example firing rate response from a locust antennal lobe
(AL) projection neuron responding to two odors (adapted from Broome et al.18, Elsevier). Right: a three-dimensional projection of the population data
with neural trajectories corresponding to the two odor stimuli. (d) Left: an example firing rate response from a primate motor cortex (M1) neuron during
a delayed-reach task (adapted from Churchland et al.%, Nature Publishing Group). Right: a two-dimensional projection of the population data, with

neural trajectories corresponding to each reaching condition.

We derived a probability distribution defined over random tensors
(datasets) that maximizes Shannon entropy, subject to the constraints
that the expected primary features of the distribution are those of the
original neural data (Online Methods). This distribution is a non-
trivial and (to our knowledge) novel extension of classic maximum
entropy distributions, both in terms of extending to tensor random
variables and in terms of the computational techniques required to
sample from this distribution. The primary strength of the maximum
entropy principle is that higher-order structures in surrogate datasets
are completely determined by the primary features (the distribution is
by definition maximally unstructured beyond those primary feature
constraints). On the other hand, since the constraints are enforced
in expectation, variations in the primary features of each surrogate
dataset will appear due to finite sampling. Thus, CFR and TME offer
complementary and well-balanced techniques for generating surro-
gate datasets properly according to the null hypothesis.

To demonstrate the framework, we used CFR and TME to generate
surrogate datasets based on neural responses recorded from primate
PFC during a working memory task (Fig. 3a). Figure 3b shows the firing
rates of one example neuron from the original neural data along with its
primary covariance features. To illustrate the ability of CFR and TME
to preserve the primary features, we generated three types of surrogate
datasets (Online Methods). The first we term surrogate-T, which pre-
serves only the primary features across time similar to the conventional
shuffle control from Figure 2. The second, surrogate-TN, preserves
the primary features across both times and neurons. The third, surro-
gate-TNC, simultaneously preserves the primary features across times,
neurons and conditions. Qualitatively, single-neuron responses from
the surrogate datasets appear realistic (Fig. 3c—e and Supplementary
Figs. 4 and 5). Quantitatively, the estimated covariances across times

from all surrogate types were similar to the covariance across times
of the original neural data (X Fig. 3b-e and Supplementary Figs. 2
and 3). Additionally, the estimated covariances across neurons from
surrogate-TN and surrogate-TNC were similar to the covariance across
neurons of the original data (Xy; Fig. 3b-e and Supplementary Figs. 2
and 3). Finally, the estimated covariances across conditions from sur-
rogate-TNC were also similar to the covariance across conditions of
the original data (Z¢; Fig. 3b-e and Supplementary Figs. 2 and 3).
Thus, both CFR and TME successfully generated random surrogate
data that preserved the specified primary features. These surrogate
datasets are then appropriate for generating suitable null distributions
for a statistical test of population structures.

In all that follows, we consider surrogate-TNC as the basis for the
neural population control, as it addresses the full null hypothesis
that temporal, neural and condition means and covariances give rise
to the population structures in question. That said, the inclusion of
surrogate-T and surrogate-TN here remains important: first, surro-
gate-T connects to conventional shuffling and will demonstrate the
inadequacies of that standard method; second, surrogate-TN demon-
strates an alternative null hypothesis that is appropriate in other set-
tings*#, and it allows us to analyze empirically the benefits of adding
each of the primary features to the null hypothesis. It is worth noting
that other surrogate types, such as surrogate-NC, are easily generated
(our software implementation accepts this choice as an input), but
they appear visually implausible due to the standard of plotting
responses over time.

Population representations and mixed selectivity in PFC
Previous studies have demonstrated that neurons in a number of
brain areas respond to multiple task parameters”-11:16:29,35.36 Thege
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Figure 2 Motivation for the neural population control. (@) Simulated firing rates (7 from two neurons encoding a hypothetical stimulus at eight conditions
(high, moderate and low stimuli correspond to red, black and green traces, respectively), along with the corresponding neural trajectories in the population
space (here two-dimensional). Black diagonal line illustrates a one-dimensional projection of the data that represents stimulus, identified by the target
dimensional ity reduction method (from Mante ef 7.8). The data variance (var.) explained by this projection is shown (as a percentage). (b) Top: shuffled
surrogate data generated by shuffling the single neuron responses from a across conditions. The same data analysis method was then used to identify

a one-dimensional projection of the data (black line) that represents the stimulus in the shuffled data. Bottom: random surrogate data from the neural
population control (Online Methods) and the identified projection that represents the stimulus (black line). The data variance (var.) explained by this
projection is shown as a percentage, as ina. (¢ Distribution of variance-explained values from stimulus projections identified from 1,000 surrogate
datasets (gray) and another distribution of variance values from 1,000 surrogate datasets from the neural population control (brown). Black line is the
percentage of variance explained from the neural data from a. Box-and-whisker plots summarize the two distributions (Tukey conventions; box lower border,
middle line and upper border show 25th percantile, median, and 75th percentile, respectively, and whiskers show lowest and highest points within 1.5x
the interquartile range). (d) Firing rates for two neurons are solutions () to the given differential equations (modeling an oscillator), with eight different
initial conditions. The fit of these data to a linear system (F2) is shown. (@) Shuffled data (top) and surrogate data from the neural population control.

(f) Distributions of /2 values from 1,000 shuffled datasets and 1,000 surrogate datasets from the neural population control (conventions as in €.
Smoothed Gaussian noise was added to all simulated data. In ¢, Fand all subsequent figures, *P< 0,05, **P < 0.01 and ***F < 0,001,
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mixed responses may obscure representation at the level of single  other examples in which separation would be possible but only with
neurons. Dimensionality reduction methods®37 are widely used to  small variance explained (i.e., in the noise). The suggestion then typi-
identify neural readouts (projections of the population) that separate  cally follows that these robust readouts are thus evidence of a collec-
the representation of each task parameter. Further, these readouts  tive code in the population: neural responses are coordinated insuch
often are found to explain substantial data variance. Should we always  a way to produce these readouts, though that coordination is invisible
expect such a finding from any collection of neurons that have these  at the level of single neurons. However, this line of reasoning misses
mixed responses? Not necessarily: one can produce toy examples in  the critical concern that these task-parameter-specific readouts may

which the representations fundamentally cannot be separated and  bean expected byproduct of simpler features in the data itself: tuning,
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Figure 3 CFR and TME surrogate datasets preserve the specified primary features. (a) Working-memory task (adapted from Romo and Salinas38,
Nature Publishing Group). (b) Example neuron (neuron number 15 of 571 total) from PFC. Each trace is the trial-averaged firing of the 12 task
conditions (six stimuli and two decisions; one trace color and style for each). Horizontal bars denote the times of first (F1) and second (F2) vibrotactile
stimuli. Heatmaps in the inset show three covariance matrices across times (X7, neurons (£y) and conditions (£¢) of all neurons in this dataset.

(c—e) Example neurons from one (c) surrogate-T, (d) surrogate-TN and (e) surrogate-TNC dataset, respectively; conventions as in b. Top panels are
surrogate datasets generated using CFR and bottom panels are surrogate datasets generated using TME. Covariance matrices in the insets are obtained

by averaging the primary features from 100 surrogate datasets.

temporal smoothness and neural correlations. Asserting this claim of
collective code requires the neural population control.

We tested recordings from PFC during a working-memory task38
(Fig. 3a). In this task, subjects (two rhesus macaques) received two
vibrotactile stimuli with different frequencies. A delay period sepa-
rated the presentation of the two stimuli, during which the monkeys
were required to maintain a memory of the first stimulus. After the
delay period, subjects reported whether the frequency of the first stim-
ulus was higher or lower than the frequency of the second stimulus.
Thus, the two relevant task parameters encoded by PFC were the
decision and the first stimulus frequency.

Responses in PFC showed mixed selectivity to the two task param-
eters (Fig. 3b). We used demixed principal component analysis?? to
identify decision-specific and stimulus-specific population readouts
in both the original neural dataset and our surrogate datasets. The
projection of the population activity onto the decision (stimulus) rea-
dout reflects the population representation of the decision (stimulus).
We then compared these projections to those found in surrogate data-
sets generated by CFR and TME. Qualitatively, the projections, from

both the original and the surrogate-TNC datasets, appeared to be
tuned to the decision and the stimulus (Fig. 4a-d). Quantitatively,
we calculated the percentage variance explained by the decision and
stimulus projections, which summarized the degree to which each
projection accounts for the population response.

Figure 4e demonstrates that the variance captured by the decision
projection from the original neural data was significantly higher than
the variance captured by the decision projections from the surrogate
datasets (P = 0.015 for RR15 TME surrogate-TNC; P < 0.001 in all
other subjects and tests). This finding demonstrates that the popula-
tion representation of the decision was not an expected byproduct of
the primary features. However, the same procedure for the stimulus
projection demonstrates that the population representation of the
stimulus could not be distinguished from an expected byproduct of
the primary features, as surrogate-TNC data generated with only
those primary features displayed comparable population structure
(Fig. 4f). The variance captured by the stimulus projection from the
original neural data reached significance only when compared to the
variance captured by the stimulus projections from surrogate-T and
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Figure 4 Decision (or stimulus) readouts in PFC are not (or are) an expected byproduct. Population readouts for decision and stimulus identified using
demixed principal component analysis. (a) Projections of the original population responses from monkey RR15 onto the top decision-specific readout.

(b} Frojections of neural responses from monkey RR15 onto the top stimulus-specific readout. Trace colors and style follow the same conventions as

in Figure 3b. (c) Az in a but for decision readouts from surrogate datasets generated by CFE (top) and TME (bottom). We show surrogates at various points in
the distribution of variance explained (25th, 50th and 75th percentiles; 200 surrogate datasets). (d) As in b but for the surrogate datasets from CFE (fop) and
TME (bottom] methods; as in ¢ the 25th, 50th and 75th percentile examples are shown (200 surrogate datasets). Scale bars and color scheme in b—d asina.
(e] Parcent variance-explained of the population projection onto the top decision readout. Black lines show the percent variance explained from the original
neural data; colored box-and-whisker plots show the variance explained distribution from 200 surrogate samples (significance levels denoted by asterisks;
conventions as in Fig. 2c,f; upper-tail test). The variance of the decision projection is calculated during the decision epoch (from 100 ms after the second
stimulus onset until the second stimulus offset). (F) As in e but for percent variance explained of the population projection onto the top stimulus readout.

The variance of the stimulus projection is calculated during the stimulus epoch (from 100 ms after first stimulus onset until the second stimulus onset).

surrogate- TN datasets but not when compared to surrogate-TNC
datasets. This result was similar when we repeated the same analysis
using another statistic (the explained variance metric used in Kobak
et al.’”; Supplementary Fig. 6). This negative result contextualizes
our understanding of population-level representations: sometimes,
despite qualitative appearances of a collective population code, such a
readout can exist simply because of a powerful algorithm and simpler
known features in the data. Note that this result does not mean that
the stimulus readout is absent or wrong in any way but rather that it
is expected, given the primary features of the data.

One advantage of this framework is that the contribution of each
primary feature to the population structure can be quantified by
studying the null distributions across different surrogate types. This
inspection indicates that tuning across conditions was probably the
feature giving rise to the stimulus readout. Although single neurons in
PFC showed mixed responses to the stimulus and decision, the tuning
of the stimulus was prominent (Supplementary Fig. 7). Due to the
task structure, neurons in PFC responded to the first stimulus at all
times of the task, except during the brief period starting at the sec-
ond stimulus onset (Fig. 3a,b). Thus, the population representation
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Figure 5 Motor cortex responses during a delayed-reach task.

(a) Delayed-reach task. Monkeys performed straight and curved reaches
to targets displayed on a frontoparallel screen. Trajectories represent
the average hand position during each of 108 reaching conditions.

(b) Example neuron (neuron number 175 of 218 total) recorded from
the motor cortex of one monkey during the delayed-reach task.

Each trace is the smoothed, trial-averaged firing rate during one of the
reaching conditions. The trace color indicates the reach condition
from a. Heatmaps in the inset represent three covariance matrices
that quantify the primary features across time (£7), neurons (Zy) and
conditions (X¢) of the entire population dataset.

of the stimulus arose from the prominent tuning of single neurons,
as expressed by the mean and covariance across conditions. Unlike
the stimulus, the neural responses to the decision were briefer (only
after the second stimulus onset) and overlapped with (and were
dominated by) the neural responses to the stimulus (Fig. 3a,b and
Supplementary Fig. 7). Hence, the population representation of
the decision is not an expected byproduct of the underlying primary
features and as such uncovers additional information about the
representation of decision in PFC.

Population representations of task parameters are often useful for
summarizing large datasets, and novel and rigorous methods like
demixed principal component analysis are effective in finding those
representations. The present result reminds us that care should be
taken when interpreting the population representations found by
these methods: in some cases, these representations may be an impor-
tant indication of collective population codes hidden at the single-
neuron level, while in other cases they may be simply a redescription
of single-neuron tuning.

Primary features alone do not explain dynamical structure

in motor cortex

To highlight the broad applicability of our framework, we next applied
the neural population control to motor cortex responses during a
delayed-reach task (Fig. 5a,b) to test the dynamical systems hypothe-
sis>%. Classical studies have assumed motor cortex activity represents
movement kinematics!'®. Other studies have argued that the complexity
of neural responses is beyond what is expected from coding models*-4!
and is more consistent with dynamical systems models®3>. In this view,
motor cortex generates simple dynamical patterns of activity that are
initialized by preparatory activity®>4243, and these patterns are then
combined to produce complex muscle activity*>#%. As in Figure 2d,
a dynamical system implies a particular population structure, and
recent studies have shown neural trajectories evolving (approximately)
according to alow-dimensional linear dynamical system®3°. However,
despite controls and comparisons with other hypotheses”3%%, the
concern persists that this population structure may be an expected
byproduct of simpler features in the data. That counterargument goes
as follows: the temporal smoothness of neural responses in motor
cortex data will give rise to temporally smooth neural trajectories,
and correlated responses across neurons and conditions will give rise
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Figure 6 Population dynamics in motor cortex are not an expected
byproduct. We projected 400 ms of movement-related neural activity in the
motor cortex on the top principal components (PCs) and then fitted them
to a linear dynamical system. (a) Quality of fit (R2) of the original neural
responses projected onto the top 28 PCs (determined by cross validation;
Supplementary Fig. 8) to the dynamical system model. Black lines denote
the RZ from the original neural data. Colored box-and-whisker plots denote
the RZ distributions from 100 surrogate datasets from each surrogate type
(conventions as in Fig. 2¢,f). Asterisks denote significantly higher RZ than
the surrogates (*** P < 0.001; upper-tail test). (b) Leave-one-condition-out
cross-validation (LOOCV) for the RZ measure of fitting data to a dynamical
system model with various choices of model dimensionalities (numbers of
PCs). Black trace denotes the R value from the original neural data and
colored traces are the mean R2 values from the surrogate datasets (color
conventions as in a; shaded areas represent £2 s.d.).

to low-dimensional neural trajectories that are also spatially smooth
(in the sense that tuning implies that each neuron’s response changes
smoothly from one condition to the next, and thus population tra-
jectories must also change smoothly in neural space from one condi-
tion to the next). Together, it is quite reasonable to suppose that this
population structure (low-dimensional linear dynamical system fit)
will arise as an expected byproduct of primary features of data.

We fit low-dimensional linear dynamical systems to population
responses from multiple monkeys (dimensionality was chosen by cross-
validation; Supplementary Fig. 8) and quantified the quality of fit by the
coefficient of determination R? (Online Methods). We then generated a
null distribution of R? values by fitting surrogate datasets generated by
CFR and TME to the same dynamical model. Our results show that the
R?from the original neural data was significantly higher than the R? from
every surrogate type (Fig. 6a; P < 0.001). This result was consistent across
different monkeys during different reaching tasks (Supplementary
Fig.9) and held similarly for oscillatorylinear dynamics (Supplementary
Fig. 10). Our neural population control demonstrates that the recently
reported dynamical structure in motor cortical responses is not an
expected byproduct of the specified primary features.

We can again use the different surrogate types (surrogate-T, -TN
and -TNC) to quantify the contribution of each primary feature.
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R?values from the surrogate-T and surrogate- TN datasets are similar,
whereas the R” values from surrogate- TNC are much higher (Fig. 6a).
The surrogate- TNC datasets are the only ones that preserve tuning (to
experimental reach condition), from which we conclude that tuning
contributes meaningfully to any appearance of dynamical structure
in surrogate data (albeit substantially less than the original data).
In other words, tuning inherently produces some degree of spatial
smoothness that, if ignored, would have led to meaningful overstate-
ment of the test significance of this dynamical structure.

To assess the sensitivity of this test result to model dimensionality,
we performed leave-one-condition-out cross-validation and quanti-
fied the R? values of test conditions, both from the original neural
data and the surrogate datasets, based on dynamical models with
different dimensionalities. The same results hold: the R value from
the original neural data was still significantly higher than the R? val-
ues from all types of surrogate data, across a wide range of model
dimensionalities (Fig. 6b; P < 0.001 for all dimensionalities above 6).
While a very low-dimensional model leads to low R? values in both the
original neural data and the surrogate datasets, as model dimension-
ality increases, the R? value of the original neural dataset increases
disproportionately, separating from the surrogate datasets.

The structure we investigated here is consistent with a simple class
of dynamical systems!?4€, but certainly the underlying mechanism
generating population responses is more complex. It is essential to
note that the present neural population control does not attempt
to distinguish between linear dynamical models and other models
(dynamical or otherwise); it specifically tests whether there is more
linear dynamical structure than expected from the primary features
in neural data.

DISCUSSION

Neural populations are increasingly studied, compelling the anal-
vsis of large neural datasets and the consideration of new scien-
tific hypotheses. However, the future of these analyses hinges on
our ability to reliably distinguish novel population-level findings
from redescriptions of simpler features of the data. To that end, we
developed a neural population control to statistically test whether
a population-level result is an expected byproduct of the primary
features of temporal, neural and condition correlations. The CFR
and TME methods generate surrogate datasets that preserve the pri-
mary features but are otherwise random and can thus be meaning-
fully compared to the original neural data. We applied the neural
population control to data from PFC during a working memory
task. We found that the presence of a neural readout specific to the
decision was significant and may be an interesting form of collective
code, whereas the presence of a neural readout specific to the stimu-
lus could be explained by the tuning of single-neurons. Further,
we applied this framework to data from motor cortex during a
reaching task, demonstrating that population-level dynamics are not
an expected byproduct of primary features.

When applying the neural population control framework, interpre-
tational precision is critical. Specifically, consider our finding that the
presence of a stimulus readout in PFC is expected from single-neuron
tuning. First, this finding does not assert that the stimulus readout
is incorrect or absent, nor does it indicate any technical flaw in the
analysis method; rather it indicates that we cannot rule out the pos-
sibility that the readout is merely a redescription of tuning and thus
that we should not necessarily infer evidence of a collective code.
Second, and more subtly, any claim that a population-level readout
is an expected byproduct is conditioned on the subjective belief that
single-neuron tuning is known to be a fundamental feature that exists

TECHNICAL REPORTS

in data. Should one believe that, instead, the population-level readout
of the stimulus is the fundamental feature, one could instead ask if
single-neuron tuning is an expected byproduct to that assumption
(indeed, some might quite sensibly argue this direction to be more
scientifically plausible). Our framework makes no claims as to which
features are fundamental but rather quantifies the extent to which
structure will appear at the level of the population as a result of a set
of specified primary features. Indeed, our framework is conservative,
as it assumes the existence of primary features without any mecha-
nistic underpinning; in other words, we do not require the existence
of a competing scientific model to produce data with these features
(and finding such a model might be difficult). This assumption
presents a high bar when compared to specific mechanistic models
that correspond to the population structure in question.

At the broadest interpretational level, rejection of the null hypoth-
esis does not prove the existence of a specific population structure.
Instead, such a finding rules out a simpler explanation of observing
that structure in data. We do not claim that a test that fails to reject
this null hypothesis would somehow negate the scientific significance
of a population structure. Indeed, these simpler explanations may
themselves be scientifically interesting. For example, studies have
demonstrated that minimal models of correlations among neurons
provide accurate and nontrivial predictions of population activity
patterns in primate®»?® and other vertebrate’” retina. Additionally,
failing to reject this null hypothesis may simply imply that current
data or the complexity of experimental behavior is inadequate to elu-
cidate that structure?.

Atatechnical level, the CFR and TME methods are complementary
and exploit principles that have along history in neuroscience®”1 3%,
These methods can be applied interchangeably, and their minor dif-
ferences have little effect on the hypothesis being tested. That said,
certainly each method possesses its advantages. CFR generally better
preserves the primary features for each surrogate dataset, while TME
has the exact primary features in expectation (Supplementary Figs. 2
and 3). On the other hand, TME produces more thoroughly rand-
omized surrogates than does CFR. By construction, CFR operates on
a finite set of original neural responses, which may allow structure
to persist in the surrogate datasets even if it was not stipulated by the
null hypothesis. In contrast, TME surrogate datasets are maximally
random in the Shannon entropy sense and have no unintended struc-
ture. Thus, if it is most crucial to eliminate any structure beyond the
primary features, TME is preferred. Ifit is most important that each
surrogate dataset preserves the primary features of the original neural
data as close as possible, CFR is preferred. For practical purposes, note
also that CFR is more computationally expensive because it requires
optimization for each surrogate dataset, whereas TME requires
an optimization only once (Online Methods). On another techni-
cal point, in this work both the prefrontal and motor applications
involved firing rates that were averaged across trials within a given
condition. One natural technical question is how this framework
works in the single-trial setting. If one works with single-trial time
histograms (a single-trial peristimulus time histogram) or rate esti-
mates (as is often done* %), then the neural population control works
without further modification. Should one wish to work with spike
trains directly, then further assumptions must be made so that means
and covariances can be meaningfully calculated (as these features
do not apply to point-process data). A rate estimate is one choice;
other nonrate choices such as a spike train metric®® would require
further development.

When studying population-level questions in neuroscience, it is
important for our hypotheses to be consistent with existing, simpler
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features of neural data. Here we have found that it is equally important
to quantitatively investigate whether these simpler features themselves
reproduce the population structure being considered by that hypoth-
esis. The neural population control may be applied to test a wide range
of population hypotheses from essentially any brain area and thus
provides a general framework for rigorously resolving debates in the
field about the novelty of population level results.

METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Nete: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Experimental design and recordings. Motor cortex data was recorded and
described in previous work®. In brief, four male rhesus monkevs (J, N, A and
B) performed delayed reaches to radially arranged targets on a frontoparallel
screen. Monkeys A and B performed straight reaches with different speeds
and distances {28 reaching conditions); monkeys | and N performed both
straight and curved reaches (108 reaching conditions). Recordings were made
from primary motor and dorsal premotor cortices with single electrodes
(datasets A, B, 11, 12, 13, T4 and N) and chronically implanted 96-electrode
arrays (datasets J-array and N-array). Large populations were recorded (64,
74, 50, 58, 55, 50, 170, 118 and 218 neurons for datasets A, B, T1, T2, 13, T4,
J-array, N and N-array, respectively). Firing rates were calculated by aver-
aging spiking activity across trials for each reaching condition, smoothing
with a 24-ms Gaussian kernel and sampling the result at 10-ms intervals. See
Churchland et al.? for all further details about subjects and experiment. We
further excluded one outlier neuron from monkey A that had an unrealisti-
cally high firing rate.

PFC data was recorded and described in previous work2®2%, In brief, two
male rhesus monkeys (RR15 and RR14) performed a working-memory task.
Two vibrotactile stimuli were delivered to one digit of the hand for 500 ms
each, separated by an interstimulus delay period. Monkeys received a juice
reward for discriminating and reporting the relative frequency of the two
stimuli. Neural responses were recorded from PFC via an array of seven inde-
pendent microelectrodes. See Romo ef 4/.2% and Brody ef al?® for all further
details about subjects and experiment. We followed the neuron selection cri-
teria and firing rates computation method reported in Kobak ef a7, First,
we selected only the sessions in which all six frequencies (10, 14, 18, 24, 30
and 34 Hz) were used for the first stimulus and in which the monkeys made
the correct choice. Second, we included only neurons that had responses in
all 12 possible conditions (all combination of 6 stimuli and 2 choices) with
at least 5 trials per condition and firing rates of less than 50 spikes per s (571
and 217 neurons from monkey RR15 and monkey RR14, respectively). Third,
firing rates were calculated by averaging spiking activity across trials for each
stimulus condition, smoothing with a 50-ms Gaussian kernel and sampling
the result at 10-ms intervals.

For all datasets, the sample sizes were similar to those reported in the field
and no randomization or blinding was used to assign subjects and conditions
(see further details in Churchland ef 4L°, Romo ef ¢L*® and Brody ef al.*%).
We followed two further preprocessing steps used in previous work®, First,
responses for each neuron were soft-normalized to approximately unity fir-
ing rate range (divided by a normalization factor equal to the firing rate range
+ 5 spikes per s). Second, responses for each neuron were mean-centered at
each time by subtracting the mean activity across all conditions from each
condition’s response, because the analyses in this work focus on aspects of
population responses that differ across conditions. In our statistical tests, no
assumptions were made about the normality or other assumptions on the
distribution of surrogate data (see additional information in the attached Life
Sciences Reporting Summary).

Quantifying primary features across different modes of the data. Each dataset,
processed as above, formed a tensor, X € RT*¥*C across T'time points, C condi-
tions and N neurons. To quantify the primary temporal, neural and condition
features, we calculated the marginal mean and covariance across each of these
three modes. Regarding the mean, we followed standard practlce and, without
loss of generality, centered the data to form a tensor X e R , €. which had
zero mean across the temporal mode

NCZEX( me) =0

n=1c=1

and similar for the neuron and condition modes. This mean-centering opera-
tion can be accomplished by sequentially calculating and subtracting the mean
vectors across each mode (in any mode order) or equivalently by calculating
and subtracting the least-norm marginal mean tensor M ¢ RT* N =<, such
that X = X — M (Supplementary Note 1).

With this zero-mean dataset X, we then calculated the covariance matrices
across times, neurons and conditions, specifically:

N C =T
= 2 EX(:,n,c))_((:,?LE)TE R

n=1lc=1

EEXI‘,,C

f=1c=1

f,,c) E]R

T N
Io= Y Y XtndXEn) e RO

t=1n=1

The marginal mean tensor and covariance matrices quantify the basic univari-
ate and pairwise structure of the data across each of the temporal, neural and
condition modes. As a technical point, note that other ways of estimating these
moments can also be used without any change to the neural population control.
For example, regularized covariance estimators are often computed to incorpo-
rate prior beliefs about these moments; should one use such a method, the null
hypothesis of neural population control would embody the posterior belief of
these moments, given the data.

Generating surrogate data with the corrected Fisher randomization ( CFRC)
method. Starting from the zero marginal mean data tensor X € B s
we randomized the data by shuffling: we permuted the condition labels for the
responses of each neuron across time. The standard shuffling procedure was done
independently across neurons, resulting in a shuffled tensor S§; £ R HH
Forming this tensor will also have destroyed the first- order and second- order fea-
tures of the original neural data. To retain these primary features, we introduced
areadoutweight matrix, K& R *¥, such that the resulting surrogate tensor S €
RT*¥*C had the correct marginal means and covariances. That is, the surrogate
tensor Sis the readout:

S(500) = Syl 50K, Ve e [L,....C]
S=5+M

where Sy(0) € B s one condition of the shuffled tensor Sp correspond-
ing to condition ¢ and M is the marginal mean tensor. To ensure that 5 has
mean zero across all modes, we constrained K to have unit eigenvector with zero
eigenvalue (Supplementary Note 2). This constraint ensures that the shuffled §
has zero marginal mean across all the tensor modes. What remains is to optimize
K such that the marginal covariances of the surrogate datasets are as matched as
possible to those of the original data. We quantified the deviation of the original
marginal covariances with the following three cost functions:

T z‘fcc=1§0(:’ KK Fplune) F
" 2:;1‘31“(1‘)
EN—KT[sz 0(u o) Splns, )} 1
e EKNZIBN(ﬂ)
foe Zc 72f 1 Sofhss ) KK '8yltan: )i
. Ecczl ec(c)

where I3 E3yand Z-are the temporal, neural and condition covariance matrices,
respectively, with eigenvalue vectors en ey and ec. To find the desired linear
readout (K), we solved:

k= argminKERNxN {fr + fn + fc), subjectto K1=10

This objective can be optimized using any standard gradient descent package
{we used the Manopt and LDR libraries®!*?) and will result in a readout matrix

doi:10.1038/nn.4617
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that retains the marginal covariance of the original neural data to the extent
possible. The resulting surrogates will thus be random in the sense that population
structure beyond these primary features should be absent, but constrained in the
sense that the same primary features as in the original neural data are maintained
(up to the minimum error achieved by the optimization). As an implementation
note, we chose the readout to be in the neural space because it is commonly used
in systems neuroscience, but the above approach could be implemented similarly
by reading out the condition or temporal modes {our software implementation
takes that choice as an input). On a similar point of technical detail, above we
chose to initially shutfle neurons across conditions as it is a standard choice (and
one that agrees with the applications in prefrontal and motor cortices shown
in the results), but again our software implementation takes the shuffle mode
(conditions, neurons or time) asan input.

Generating surrogate data with the tensor maximum entropy (TME) method.
A complementary approach to generating surrogate datasets that preserve the
primary features of the neural data is to follow the principle of maximum entropy
modeling. In this context, that principle dictates that surrogate data should be
drawn from the distribution that is maximally random (i.e., which requires the
fewest additional assumptions) but obeys the constraints of having the correct
first-order and second-order marginal moments. Specifically, our maximum
entropy objective was:

$(S) = argmax pg) — [ piS)log(p(5))dS, subject to

Jp(S)dS:l
E,l8]=M
§=8-M

N C _ _
E, Y ZS(:,n,c)S(:,n,C)T =Zr

T < 3
Ep| 2 Y Sttt =2y

T N _ B
B, Y Es(t,n,:)s(t,n:)T =ZIg

t=1n=1

where §= RT*M* s the surrogate random variable, and Ey[.] denotes expecta-
tion with respect to the distribution p. Intuitively, with firstand second moment
constraints, one expects this distribution to be A’ Gaussian. While that is true,
the solution is nontrivial {Supplementary Notes 3 and 4). Using the standard
Lagrangian method and Kronecker algebra, we derived the maximum entropy
distribution:

pivec(S)) = A (vec(M), ')

e %(Qc@’QN ®QrNAC® AN AT QOO

1
zﬂz1 EIAT o+ lN( A € Tl

T C
;1 250 premen LI
e i 1 »
,Ez:“ 2:‘ BT A )+/'LC(C)’ celL....C]

where Q7 Qpyand Q. are the known eigenvector matrices, and en e,y and e are
the known eigenvalues of the true marginal covariance matrices £ Zyyand Z
respectively. An Ayrand Acare diagonal matrices with diagonal elements Az Az
and A, respectively (the Lagrange multipliers). We numerically solved for the

multiplier values in terms of the given eigenvalues and reached the exact solution
(i.e, zero errog, to machine precision). Note that this distribution is defined over a
tensor variable, and thus its covariance matrix'¥' € R SR easilybeon
the order of 10° x 10 for a modest dataset (e.g., a dataset with 100 neurons and
100 conditions recorded from 100 timepoints), which is prohibitively large for
memory and runtime considerations. Left unaddressed, sampling surrogate data
from this distribution would be infeasible. To address this challenge, we exploited
the Kronecker structure® to efficiently operate with these matrices and exactly
sample from this tensor distribution. It is worth noting that, in contrast to the
CFR method, the samples from this maximum entropy distribution maintain the
specified primary features in expectation (i.e., each individual surrogate sample
will have differences in the primary features due to finite sampling along each
mode). On the other hand, TME has the key virtue that, by construction, surro-
gates will have no structure beyond what is specified, whereas CFR only partially
achieves this goal via shuffling.

Extensions to other surrogate types. The procedures described so far generate
surrogate- TNC datasets that preserve the primary features across times, neu-
rons and conditions. To constrain for only temporal features, or temporal and
neural features, slight modifications were required. In CFR, the optimization
objective was accordingly modified (surrogate-T: optimized only frand added
only the temporal mean; surrogate- TN: optimized both frand fi;and added the
temporal and neural means). Similarly in TME, the constraints were modified
{(surrogate-T: constrained only temporal covariance and added only the tempo-
ral mean; surrogate-TN: constrained both temporal and neural covariance and
added both the temporal and neural means). This discussion also makes clear
thatboth methods can be easily extended to other modes (and to any number of
modes) that mightbe available in other recording contexts bya similar approach;
our software implementation directly handles additional modes.

Quantifying structure in motor cortex: low-dimensional dvnamical systems.
Per standard practice, we analyzed data during the 400-ms duration reflecting
the movement response (1) and projected the data onto the top N principal
compaonents {PCs) of the data to produce areduced tensor X cR* Txh=C , where
N < N obtained by cross-validation (Supplementary Fig. 8). The linear dynamical
system models the temporal evolution of these low-dimensional neural trajecto-
ries as fixed across conditions, namely:

X(:,:,E) =X{n,0, Vee[l,..,Cl

where J £ RN %Y s the dynamics matrix determining the flow field. N thus

determines the dimensionality of the model. We fit the model with:

3 IECL0 - XenaT |k
ZC_ 1||X(1 15)“F

Je= argmin]ERyxy

The solution of the above objective function can be analytically obtained by
least-squares, and the quality of the fit is quantified by the coefficient of determi-
nation (R2), which equals one minus the minimum normalized error achieved.
We also quantified the generalization performance of the model by performing
leave-one- COI’ldlthI‘l out cross-validation (LOOCV) on the reconstruction of
X hest) from J, which was appropriately estimated from data that did not
include ... We repeated this procedure for ¢t = [1,....C], yielding a LOOCV
R? statistic.

Quantifying structure in PFC: identifying population readouts. To identify
stimulus- and decision-specific population readouts in PFC, we used demixed
principal component analysis (dPCA). In brief, dPCA starts by performing differ-
ent marginalization procedures of data to produce multiple datasets, each reflect-
ing one of the task parameters. Then, dPCA identifies dimensions {dPCs) that
minimize the reconstruction error of each marginalization of data. Unlike PCA,
which maximizes variance, dPCA produces projections with high variance and
good demixing of the specified covariates {see Kobak ef 4.>” for JPCA details).

For the original data and for each surrogate dataset, we allowed dPCA to find
atmost 30 dPCs, after which we selected the top component that represented the
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stimulus and the top component that represented the decision in each dataset. We
projected the original and surrogate responses onto their top dPCs and guanti-
fied the variance captured by these projections during the relevant epochs. The
stimulus-projection variance was based on the epoch starting 100 ms after the
first stimulus presentation and ending at the onset of the second stimulus. The
decision-projection variance was based on the epoch starting 100 ms after the
second stimulus presentation and ending at the second stimulus offset. In addi-
tion to the conventional percentage variance explained, we computed another
variance statistic, the percentage reconstruction variance (as used in Kobak
ef al*7), defined as:

2 T 1)
1 Xplle = | X2y — vd Xy ||z

X ”2 * 100%
N IIF

where Xpye BN *TC is the data reshaped along the neuron mode, d £ B is the
topdPC and ve B is the decoder vector mapping the prajection (dTXy) to the
neural space (see Kobak et 217 for the encoder and decoder description).

Drata availability. The datasets from motor cortex analyzed in the current study
are available upon reasonable request from the authors of Churchland ef a.°. The
datasets from PFC analyzed during the current study are available at https://crens.
org/data-sets/pfc/pfc-4.

Code availability. A code package for the CFR method is available at https://
github.com/gamaleldin/CFR. A code package for the TME method is available
at https://github.com/gamaleldin/TME.
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» Experimental design

1. Sample size

Describe how sample size was determined. The sample size are comparable to, or higher, than those generally employed in
the field.

2. Dataexclusions
Describe any data exclusions. The criteria is described in Methods {subsection 1)
3. Replication

Describe whether the experimental findings were N/,
reliably reproduced.

4. Randomization

Describe how samples/organisms/participants were No randomization was used.
allocated into experimental groups.

5. Blinding

Describe whether the investigators were blinded to Mo blinding used.
group allocation during data collection and/or analysis,

Note: all studies involving animals and/or hurman research participants must disclose whether blinding and randomization were used.

o

Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are presentin relevant figure legends {orin the
Methods section if additional space is needed).

n/a | Confirmed

& The exact samiple size {n) for each experimental group/condition, given as a discrete number and unit of measurement {animals, litters, cultures, etc.)

D A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

g A statement indicating how many times each experimant was replicated

IZ] The statistical test{s) used and whether they are one- or two-sided {note: only common tests should be described solely by name; more
complex technigues should be described in the Methods section)

& A description of any assumptions or corrections, such as an adjustment for multiple comparisons

g The test results {e.g. Pvalues) given as exact values whenever possible and with confidence intervals noted

g A clear description of statistics including central tendency {e.g. median, mean) and variation {e.g. standard deviation, interquartile range)
Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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» Software

Policy Information ahout avallability of computer code

7. Software
Describe the software used to analyze the data in this There are two main custom software packages that were designed and used in this
study. study {CFR and TME packages).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub}. Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

» Materials and reagents

Policy information ahout availahility of materials

8. Materials availability

Indicate whether there are restrictions on availabilityof  N/A
unigque materials or if these materials are only availahle
for distribution hy a for-profit company.

9. Antibodies

Describe the antthodies used and how they were validated  N/A
for use in the systemn under study (i.e. assay and species).

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. N/A

b. Describe the method of cell line authentication used.  N/A

¢. Report whether the cell lines were tested for N/A
mycoplasma contamination.

d. Ifany of the cell lines used are listed in the database N/A
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

» Animals and human research participants

Policy information ahout studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Frovide details on animals and/or animal-derived N/A
materials used in the study.
Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population N/A
characteristics of the human research participants.
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