
RESEARCH ARTICLE

full-FORCE: A target-based method for

training recurrent networks

Brian DePasquale1¤*, Christopher J. Cueva1, Kanaka Rajan2,3, G. Sean Escola4, L.

F. Abbott1,5

1 Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States of

America, 2 Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics,

Princeton University, Princeton, NJ, United States of America, 3 Friedman Brain Institute, Icahn School of

Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, United States of America, 4 Department

of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States of

America, 5 Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and

Surgeons, New York, NY, United States of America

¤ Current address: Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of

America

* depasquale@princeton.edu

Abstract

Trained recurrent networks are powerful tools for modeling dynamic neural computations.

We present a target-based method for modifying the full connectivity matrix of a recurrent

network to train it to perform tasks involving temporally complex input/output transforma-

tions. The method introduces a second network during training to provide suitable “target”

dynamics useful for performing the task. Because it exploits the full recurrent connectivity,

the method produces networks that perform tasks with fewer neurons and greater noise

robustness than traditional least-squares (FORCE) approaches. In addition, we show how

introducing additional input signals into the target-generating network, which act as task

hints, greatly extends the range of tasks that can be learned and provides control over the

complexity and nature of the dynamics of the trained, task-performing network.

Introduction

A principle focus in systems and circuits neuroscience is to understand how the neuronal rep-

resentations of external stimuli and internal intentions generate actions appropriate for a par-

ticular task. One fruitful approach for addressing this question is to construct (or “train”)

model neural networks to perform analogous tasks. Training a network model is done by

adjusting its parameters until it generates desired “target” outputs in response to a given set of

inputs. For layered or recurrent networks, this is difficult because no targets are provided for

the “interior” (also known as hidden) units, those not directly producing the output. This is

the infamous credit-assignment problem. The most widely used procedure for overcoming

this challenge is stochastic gradient-decent using backpropagation (see, for example, [1]),

which uses sequential differentiation to modify interior connection weights solely on the basis

of the discrepancy between the actual and target outputs. Although enormously successful, this

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: DePasquale B, Cueva CJ, Rajan K, Escola

GS, Abbott LF (2018) full-FORCE: A target-based

method for training recurrent networks. PLoS ONE

13(2): e0191527. https://doi.org/10.1371/journal.

pone.0191527

Editor: Maurice J. Chacron, McGill University

Department of Physiology, CANADA

Received: November 3, 2017

Accepted: January 5, 2018

Published: February 7, 2018

Copyright: © 2018 DePasquale et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The software used in

this study was written in the MATLAB

programming language. Implementations of the

algorithm presented in this manuscript have been

uploaded to Zenodo and are available using the

following DOI: 10.5281/zenodo.1154965.

Funding: Research supported by NIH grant

MH093338, the Gatsby Charitable Foundation

(http://www.gatsby.org.uk/neuroscience/

programmes/neuroscience-at-columbia-university-

new-york), the Simons Foundation (https://www.

simonsfoundation.org/collaborations/global-brain/)



procedure is no panacea, especially for the types of networks and tasks we consider [2]. In par-

ticular, we construct continuous-time networks that perform tasks where inputs are silent over

thousands of model integration time steps. Using backpropagation through time [3] in such

cases requires unfolding the network dynamics into thousands of effective network layers and

obtaining gradients during time periods during which, as far as the input is concerned, noth-

ing is happening. In addition, we are interested in methods that extend to spiking network

models [4]. As an alternative to gradient-based approaches, we present a method based on

deriving targets not only for the output but also for interior units, and then using a recursive

least-squares algorithm [5] to fit the activity of each unit to its target.

Target- rather than backpropagation-based learning has been proposed for feedforward

network architectures [6]. Before discussing a number of target-based methods for recurrent

networks and presenting ours, we describe the network model we consider and define its vari-

ables and parameters. We use recurrently connected networks of continuous variable “firing-

rate” units that do not generate action potentials (although see [4]). The activity of an N-unit

model network (Fig 1a) is described by an N-component vector x that evolves in continuous

time according to

t
dx
dt

¼ � x þ JHðxÞ þ uinfinðtÞ ; ð1Þ

where τ sets the time scale of the network dynamics (for the examples we show, τ = 10 ms). H
is a nonlinear function that maps the vector of network activities x into a corresponding vector

of “firing rates” H(x) (we use H(x) = tanh(x)). J is an N ×N matrix of recurrent connections

between network units. An input fin(t) is provided to the network units through a vector of

input weights uin. The output of the network, z(t), is defined as a sum of unit firing rates

weighted by a vector w,

zðtÞ ¼ wTHðxðtÞÞ : ð2Þ

Tasks performed by this network are specified by maps between a given input fin(t) and a

desired or target output fout(t). Successful performance of the task requires that z(t) � fout(t) to

a desired degree of accuracy.

A network is trained to perform a particular task by adjusting its parameters. In the most

general case, this amounts to adjusting J, w and uin, but we will not consider modifications of

uin. Instead, the elements of uin are chosen independently from a uniform distribution

Fig 1. Network architecture. (a) Task-performing network. The network receives fin(t) as an input. Training modifies the elements of

J and w so that the network output z(t) matches a desired target output function fout(t). (b) Target-generating network. The network

receives fout(t) and fin(t) as inputs. Input connections u, uin and recurrent connections JD are fixed and random. To verify that the

dynamics of the target-generating network are sufficient for performing the task, an optional linear projection of the activity, zD(t), can

be constructed by learning output weights wD, but this is a check, not an essential step in the algorithm.

https://doi.org/10.1371/journal.pone.0191527.g001

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 2 / 18

and NSF NeuroNex Award DBI-1707398 (LFA). BD

supported by a NSF Graduate Research Fellowship

(https://www.nsfgrfp.org).

Competing interests: The authors have declared

that no competing interests exist.



between -1 and 1 and left fixed. The cost function being minimized is

Cw ¼ ðzðtÞ � foutðtÞÞ
2


 �
; ð3Þ

where the angle brackets denote an average over time during a trial and training examples.

The credit assignment problem discussed above arises because we only have a target for the

output z, namely fout, and not for the vector x of network activities. Along with backpropaga-

tion, a number of approaches have been used to train recurrent networks of this type. A num-

ber of of these involve either ways of circumventing the credit assignment problem or

methods for deducing targets for x(t).
In liquid- or echo-state networks [7–9], no internal targets are required because modifica-

tion of the internal connections J is avoided entirely. Instead, modification only involves the

output weights w. In this case, minimizing Cw is a simple least-squares problem with a well-

known solution for the optimal w. The price paid for this simplicity in learning, however, is

limited performance from the resulting networks.

An important next step [10] was based on modifying the basic network eq 1 by feeding the

output back into the network through a vector of randomly chosen weights u,

t
dx
dt

¼ � x þ JHðxÞ þ uinfinðtÞ þ uzðtÞ : ð4Þ

Because z = wTH(x), this is equivalent to replacing the matrix of connections J in Eq 1 by

J + uwT. Learning is restricted, as in liquid- and echo-state networks, to modification of the

output weight vector w but, because of the additional term uwT, this also generates a limited

modification in the effective connections of the network. Modification of the effective connec-

tion matrix is limited in two ways; it is low rank (rank one in this example), and it is tied to the

modification of the output weight vector. Nevertheless, when combined with a recursive least-

squares algorithm for minimizing Cw, this process, known as FORCE learning, is an effective

way to train recurrent networks [11].

Although the FORCE approach greatly expands the capabilities of trained recurrent net-

works, it does not take advantage of the full recurrent connectivity because of the restrictions

on the rank and form of the modifications it implements. Some studies have found that net-

works trained by FORCE to perform complex “real-world” problems such as speech recogni-

tion require many more units to match the performance of networks trained by gradient-

based methods [12]. In addition, because of the reliance of FORCE on random connectivity,

the activity of the resulting trained networks can be overly complex compared, for example, to

experimental recordings [13].

A suggestion has been made for extending the FORCE algorithm to permit more general

internal learning [11, 14]. The idea is to use the desired output fout to generate targets for every

internal unit in the network. In this approach, the output is not fed back into the network,

which is thus governed by Eq 1 not Eq 4. Instead a random vector u is used to generate targets,

and J is adjusted by a recursive least-squares algorithm that minimizes

CeF
J ¼ jJHðxðtÞÞ � ufoutðtÞj

2

 �

: ð5Þ

Although this “extended” FORCE procedure can produce functioning networks, minimiz-

ing the above cost function is a rather unusual learning goal, If learning could set CeF
J ¼ 0, the

effective equation of the network would be τdx/dt = −x + ufout(t) + uinfin(t). This equation is

incompatible with the output z(t) being equal to fout(t) because fout(t) cannot, in general, be

constructed from a low-pass filtered version of itself. Thus, the success of this scheme relies on

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 3 / 18



failing to make CeF
J too small, but succeeding enough to assure that the target output is a partial

component in the response of each unit.

Laje & Buonomano [15] proposed a scheme that uses a second “target-generating” network

to produce targets for the activities of the network being constructed. They reasoned that the

rich dynamics of a randomly connected network operating in the chaotic regime [16] would

provide a general basis for many dynamic tasks, but they also noted that the sensitivity of cha-

otic dynamics to initial conditions and noise ruled out chaotic networks as a source of this

basis (see also [17]). To solve this problem, they used the activities of the chaotic target-gener-

ating network, which we denote as xchaos(t), as targets for the actual network they wished to

construct (which we call the “task-performing” network). They adjusted J to minimized the

cost function

CLB
J ¼ jHðxðtÞÞ � HðxchaosðtÞÞj

2

 �

: ð6Þ

After learning, the task-performing network matches the activity of the target-generating

network, but it does so in a non-chaotic “stable” way, alleviating the sensitivity to initial condi-

tions and noise of a truly chaotic system. Once this stabilization has been achieved, the target

output is reproduced as accurately as possible by adjusting the output weights w to minimize

the cost function 3.

Like the approach of Laje & Buonomano [15], our proposal uses a second network to gener-

ate targets, but this target-generating network operates in a driven, non-chaotic regime. Specif-

ically, the target-generating network is a randomly connected recurrent network driven by

external input that is strong enough to suppress chaos [18]. The input to the target-generating

network is proportional to the target output fout(t), which gives our approach some similarities

to the extended FORCE idea discussed above [11, 14]. However, in contrast to that approach,

the goal here is to minimize the cost function as much as possible rather than relying on lim-

ited learning. Because our scheme allows general modifications of the full connection matrix J,

but otherwise has similarities to the FORCE approach, we call it full-FORCE.

In the following, we provide a detailed description of full-FORCE and illustrate its opera-

tion in a number of examples. We show that full-FORCE can construct networks that success-

fully perform tasks with fewer units and more noise resistance than networks constructed

using the FORCE algorithm. Networks constructed by full-FORCE have the desirable property

of degrading smoothly as the number of units is decreased or noise is increased. We discuss

the reasons for these features. Finally, we note that additional signals can be added to the tar-

get-generating network, providing “hints” to the task-performing network about how the task

should be performed [19, 20]. Introducing task hints greatly improves network learning and

significantly extends the range of tasks that can be learned. It also allows for the construction

of models that span the full range from the more complex dynamics inherited from random

recurrent networks to the often simple dynamics of “hand-built” solutions.

Materials and methods

The full-FORCE algorithm

As outlined in the introduction, the full-FORCE approach involves two different networks, a

target-generating network used only during training and a task-performing network that is the

sole final product of the training procedure. The target-generating network is a random recur-

rent network that is not modified by learning. We denote the variables and parameters of the

target-generating network by a superscript D standing for “driven”. This is because the target-

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 4 / 18



generating network receives the target output signal as an input that takes part in driving its

activity.

The activities in the N-unit target-generating network (Fig 1b), described by the vector xD,

are determined by

t
dxD

dt
¼ � xD þ JDHðxDÞ þ ufoutðtÞ þ uinfinðtÞ : ð7Þ

The final term in this equation is identical to the input term in Eq 1. The connection matrix

JD is random with elements chose i.i.d. from a Gaussian distribution with zero mean and vari-

ance g2/N. We generally use a g value slightly greater than 1 (for all of the examples we present

here, g = 1.5), meaning that, in the absence of any input, the target-generating network would

exhibit chaotic activity [16]. However, importantly, this chaotic activity is suppressed by the

two inputs included in Eq 7. The new input term, not present in Eq 1, delivers the target output

fout(t) into the network through a vector of weights u. The components of u, like those of uin,

are chosen i.i.d. from a uniform distribution between -1 and 1. For all of the examples we pres-

ent, the numbers of units in the driven and task-generating networks are the same, but we con-

sider the possibility of relaxing this condition in the discussion.

The idea behind the target-generating network described by Eq 7 is that we want the final

task-performing network, described by Eq 1, to mix the dynamics of its recurrent activity with

signals corresponding to the target output fout(t). If this occurs, it seems likely that a linear

readout of the form 2 should be able to extract the target output from this mixture. Through

Eq 7, we assure that the activities of the target-generating network reflect exactly such a mix-

ture. For the target-generating network, the presence of signals related to fout(t) is imposed by

including this function as a driving input. This input is not present in Eq 1 describing the task-

performing network; it must generate this signal internally. Thus, learning in full-FORCE

amounts to modifying J so that the task-performing network generates signals related to the

target output internally in a manner that matches the mixing that occurs in the target-generat-

ing network when fout(t) is provided externally. More explicitly, we want the combination of

internal and external signals in the target-generating network, JD H(xD) + ufout(t), to be

matched by the purely internal signal in the task-performing network, JH(x). This is achieved

by adjusting J to minimize the cost function

CfF
J ¼ jJHðxðtÞÞ � JDHðxDðtÞÞ � ufoutðtÞj

2

 �

: ð8Þ

This is done, as in FORCE, by using the recursive least-squares algorithm. Before learning,

J is not required to be the same as JD (for the examples we show, J = 0 before learning).

Defining the full-FORCE error at time t as

eðtÞ ¼ Jðt � DtÞHðxðtÞÞ � JDHðxDðtÞÞ � ufoutðtÞ ; ð9Þ

the RLS algorithm updates J according to

JðtÞ ¼ Jðt � DtÞ � eðtÞTPðtÞHðxðtÞÞ ; ð10Þ

where P(t) is a running estimate of the inverse of the correlation matrix of H(x(t)). P(t) is

updated at each RLS step according to

PðtÞ ¼ Pðt � DtÞ �
Pðt � DtÞHðxðtÞÞHðxðtÞÞ

TPðt � DtÞ
1 þ HðxðtÞÞ

TPðt � DtÞHðxðtÞÞ
: ð11Þ

P is initialized to P(0) = I/α, where I is the identity matrix. The parameter α, which can

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 5 / 18



potentially take on values over several orders of magnitude, sets the scale of an ℓ2-regulariza-

tion term in the least squares cost function and acts as an effective learning rate. Adjusting α
can improve learning. In all of our examples α = 1. Times between learning updates, corre-

sponding to Δt in Eq 9, are chosen randomly (with an average of 2 ms) to avoid redundant

sampling in periodic tasks.

The primary assumption underlying full-FORCE is that the target output can be extracted

by a linear readout from the mixture of internal and external signals within the activities of the

target-generating network once they are transferred to the task-performing network. It is

important to note that this assumption can be checked (although this is not a required step in

the algorithm) by adding a readout to the target-generating network (Fig 1b) and determining

whether it can extract the desired output. In other words, it should be possible to find a set of

weights wD (this can be done by recursive or batch least-squares) for which (wD)TH(xD) =

zD(t) � fout(t) to a desired degree of accuracy. This readout, combined with the fact that fout(t)
is an input to the target-generating network, means that we are requiring the target-generating

network to act as an auto-encoder of the signal fout(t) despite the fact that it is a strongly-cou-

pled nonlinear network.

In recurrent networks, learning must not only produce activity that supports the desired

network output, it must also suppress any instabilities that might cause small fluctuations in

the network activity to grow until they destroy performance. Indeed, stability is the most criti-

cal and difficult part of learning in recurrent networks with non-trivial dynamics [11, 15, 17].

As we will show, the stabilization properties of full-FORCE are one of its attractive features.

The networks we use often, at least initially, display chaotic activity. Sometimes, especially

in cases where the input consists of temporally separated pulses, we shift the target output

away from zero. This constant offset acts to suppress the chaotic activity.

Results

Differences between full-FORCE and FORCE learning

The connection matrix J that minimizes the cost function of Eq 8 is given by

J ¼ ðJDhHðxDÞHðxTÞi þ uhfoutHðxTÞiÞhHðxÞHðxTÞi
� 1

: ð12Þ

If the activities of the target-generating and task-performing networks were the same,

xD = x, and the output of the task-performing network was perfect, wTH(x) = fout, Eq 12 would

reduce to J = JD + uwT, which is exactly what the FORCE algorithm would produce if its origi-

nal recurrent connection matrix was JD. Of course, we cannot expect the match between the

two networks and between the actual and desired outputs to be perfect, but this result might

suggest that if these matches are close, J will be close to JD + uwT and full-FORCE will be prac-

tically equivalent to FORCE. This expectation is, however, incorrect.

To clarify what is going on, we focus on the first term in Eq 12 (the term involving JD; the

argument concerning the second term is virtually identical). This term involves the expression

hH(xD)H(xT)i hH(x)H(xT)i−1, which obviously reduces to the identity matrix if x = xD (and

thus the term we are discussing reduces to JD). Nevertheless, this expression can be quite dif-

ferent from the identity matrix when x is close to but not equal to xD, which is what happens in

practice. To see why, it is useful to use a basis in which the correlation matrix of task-perform-

ing network firing rates is diagonal, which is the principle component (PC) basis. In this basis,

the difference between hH(xD)H(xT)i hH(x)H(xT)i−1 and the identity matrix is expressed as a

sum over PCs. The magnitude of the term in this sum corresponding to the nth PC is equal to

the projection of H(xD) −H(x) onto that PC divided by the square root of its PC eigenvalue λn.
This means that deviations in the projection of the difference between the rates of the target-

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 6 / 18



generating and task-performing networks along the nth PC only have to be of order
ffiffiffiffiffi
ln

p
to

pull hH(xD)H(xT)i hH(x)H(xT)i−1 significantly away from the identity matrix. The spectrum of

eigenvalues of the correlation matrix of the activities in the networks we are discussing falls

exponentially with increasing n [21]. Therefore, small deviations between H(xD) and H(x) can

generate large differences between J and JD. We illustrate these differences in a later section by

examining the eigenvalue spectrum of J and JD + uwT for two networks trained for a specific

example task.

According to the above analysis, the deviations that cause the results of FORCE and full-

FORCE to differ lie in spaces spanned by PCs that account for very little of the variance of the

full network activity. This might make them appear irrelevant. However, as discussed above,

stabilizing fluctuations is a major task for learning in recurrent networks, and the most diffi-

cult fluctuations to stabilize are those in this space. The good stabilization properties of full-

FORCE are a result of the fact that deviations aligned with PCs that account for small variances

modify J way from JD.

An oscillation task

To illustrate how full-FORCE works and to evaluate its performance, we considered a task in

which a brief input pulse triggers a frequency-modulated oscillation in fout(t), and this pattern

repeats periodically every 2 s. Specifically, fout(t) = sin(ω(t)t) with ω(t) increasing linearly from

2π to 6π Hz for the first half of the oscillation period, and then the signal is reflected in time

around the midpoint of the period, resulting in a periodic accordian-like curve (Fig 2a, black

dotted trace). This task was chosen because it is challenging but possible for recurrent network

models to achieve. The input pulse was included to prevent a slow drift of the oscillation gener-

ated by the network, after training, from the target oscillation, which occurs inevitably in a

fully autonomous system.

A full-FORCE-trained network of 300 units can perform this task, whereas a network of

this size trained with traditional FORCE cannot (Fig 2). The random connectivity of the

FORCE network was set equal to JD, so the target-generating network used for full-FORCE is

equivalent to a teacher-forced version of the FORCE network (a network in which the target

rather than the actual output is feed back). The FORCE network fails because its units cannot

generate the activity that teacher-forcing demands (Fig 2d). We examined more generally how

learning is affected by the number of units for both algorithms (Fig 3). Test error was com-

puted over 50 periods of network output as the optimized value of the cost function of Eq 3

divided by the variance of fout.

A network trained using full-FORCE can solve the oscillation task reliably using 200 units,

whereas FORCE learning required 400 units. In addition, the performance of networks trained

by full-FORCE degrades more gradually as N is decreased than for FORCE-trained networks,

for which there is a more abrupt transition between good and bad performance. This is due to

the superior stability properties of full-FORCE discussed above. Networks trained with full-

FORCE can be inaccurate but still stable. With FORCE, instabilities are the limiting factor so

networks tend to be either stable and performing well or unstable and, as a result, highly

inaccurate.

To check whether long periods of learning could modify these results, we trained networks

on this task using either full-FORCE or FORCE with training sets of increasing size (Fig 4).

We trained both networks, using up to 100 training batches, where each batch consisted of 100

periods of the oscillation. In cases when training does not result in a successful network, long

training does not appreciably improve performance for either algorithm. For both algorithms

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 7 / 18



there appears to be a minimum required network size independent of training duration, and

this size is smaller for full-FORCE than for FORCE.

Noise robustness. We examined the noise robustness of the networks we trained to per-

form the frequency-modulated oscillator task. Independent Gaussian white-noise was added

as an input to each network unit during both learning and testing. We studied a range of net-

work sizes and five different magnitudes of white noise with diffusion coefficient satisfying

2D = 10−3, 10−2, 10−2, 10−1 and 100 /ms (Fig 5). The full-FORCE networks are more resistant

to noise and their performance degrades more continuously as a function of both N (similar to

what is seen in Fig 3) and the noise level. The robustness to noise for full-FORCE is qualita-

tively similar to results observed for networks based on stabilized chaotic activity [15].

Curiously, over a region of N values when noise is applied, the performance of the FORCE-

trained networks decreases with increasing N (Fig 5b). This happens because partial learning

Fig 2. Example outputs and unit activities. A network of 300 units trained with full-FORCE (a & b) and FORCE (c & d) on the oscillation task. (a)

fout(t) (black dotted) and z(t) (orange) for a network trained with full-FORCE. (b) Unit activities (orange) for 5 units from the full-FORCE-trained

network compared with the target activities for these units provided by the target-generating network (black dotted). (c) fout(t) (black dotted) and z
(t) (blue) for a network trained with FORCE. (d) Unit activities (orange) for 5 units from the FORCE-trained network compared with same target

activities shown in b (black dotted). Because the random matrix used in the FORCE network was JD, activities in a functioning FORCE network

should match the activities from the target-generating network.

https://doi.org/10.1371/journal.pone.0191527.g002

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 8 / 18



Fig 3. Test error as a function of number of units. Normalized test error following network training for full-FORCE (a) and FORCE (b) as a function of

network size. Each dot represents the test error for one random initialization of JD. Test error was computed for 100 random initializations of JD for each

value of N. The line indicates the median value across all simulations, and the size of each dot is proportional to the difference of that point from the

median value for the specified network size.

https://doi.org/10.1371/journal.pone.0191527.g003

Fig 4. Testing does not improve with more training. Median test error for full-FORCE (a) and FORCE (b) computed across 200 random initializations

of JD for networks trained on the oscillation task. Three different size networks are shown, 100, 200 and 400 units, where larger networks correspond to

lighter colors. The horizontal axis shows the number of batches used to train the network, where each batch corresponds to 100 oscillation periods.

https://doi.org/10.1371/journal.pone.0191527.g004

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 9 / 18



makes the network more sensitive to noise. This effect goes away once learning successfully

produces the correct output. This does not occur for full-FORCE, presumably because of its

superior stability properties.

Eigenvalues of the recurrent connectivity after learning. To understand the source of

the improved performance of full-FORCE compared to FORCE learning, we examined the

eigenvalues of the recurrent connectivity matrix J after training on the oscillations task and

compared them with the eigenvalues of both JD and JD + uwT, the connectivity relevant for the

FORCE-trained network (Fig 6). The results are for a FORCE and full-FORCE trained net-

work of 300 units that were both successfully trained to perform the oscillations task (for the

FORCE network, we used one of the rare cases from Fig 3 where FORCE was successful in

training the task).

Mean test error was 1.2 × 10−4 and 1.0 × 10−4 for FORCE and full-FORCE respectively. The

eigenvalues of the FORCE trained network are only modestly perturbed relative to the eigen-

value distribution of the initial connectivity JD, for which the eigenvalues lie approximately

within a circle of radius g = 1.5 [22]. The eigenvalues of the full-FORCE network are more sig-

nificantly changed by learning. Most noticeably, the range of most of the eigenvalues in the

complex plane has been shrunk from the circle of radius 1.5 to a smaller area (Fig 6a). Equiva-

lently, the norm of most of the eigenvalues is smaller than for the FORCE-trained network (Fig

6c). The pulling back of eigenvalues that originally had real parts greater than 1 toward real

parts closer to 0 reflects the stabilization feature of full-FORCE mentioned previously. By modi-

fying the full connectivity matrix, full-FORCE allows us to take advantage of the expressivity of

a strongly recurrent network while culling back unused and potentially harmful modes.

Using additional input to the target-generating networks as hints

The target-generating network of the full-FORCE algorithm uses the “answer” for the task,

fout, to suggest a target pattern of activity for the task-performing network. In the procedure

Fig 5. Noise robustness. Median test error for full-FORCE (a) and FORCE (b) computed across 200 random draws of JD for various white-noise levels.

Increasing noise amplitude corresponds to lighter colors. Levels of noise were determined by log(2D) = -3, -2, -1, and 0, with D in units of ms−1.

https://doi.org/10.1371/journal.pone.0191527.g005

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 10 / 18



we have described thus far, fout is the only supervisory information provided to the target-gen-

erating network. This raises the question: why not provide more? In other words, if we are

aware of other dynamic features that would help to solve the task or that would lead to a partic-

ular type of network solution that we might prefer, why not provide this information to the tar-

get-generator and let it be passed on to the task-performing network during training. This

extra information takes the form of “hints” [19, 20].

Information about the desired output is provided as an input to the target-generating net-

work, so it makes sense to incorporate a hint in the same way. In other words, we add an extra

input term to Eq 7 describing the target-generating network, so now

t
dxD

dt
¼ � xD þ JDHðxDÞ þ ufoutðtÞ þ uinfinðtÞ þ uhintfhintðtÞ : ð13Þ

The weight vector uhint is drawn randomly in the same way as u and uin. The key to the suc-

cess of this scheme lies in choosing the function fhint appropriately. There is no fixed procedure

for this, it requires insight into the dynamics needed to solve the task. If the task requires inte-

grating the input, for example, fhint might be the needed integral. If the task requires timing, as

in one of the examples to follow, fhint might be a ramping signal. The point is that whatever

fhint is, this signal will be internally generated by the task-performing network after successful

Fig 6. Eigenvalue spectra. (a & b) Eigenvalues of learned connectivity J and JD + uwT for full-FORCE (a) and FORCE

(b) respectively. (c & d) Complex norm of eigenvalues for full-FORCE (c) and FORCE (d) respectively. The dotted

circle in a and b and dotted line in c and d shows the range of eigenvalues for a large random matrix constructed in the

same way as JD.

https://doi.org/10.1371/journal.pone.0191527.g006

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 11 / 18



training, and it can then be used to help solve the task. The cost functions used during training

with hints are Eq 3 and

CfFhint
J ¼ jJHðxðtÞÞ � JDHðxDðtÞÞ � ufoutðtÞ � uhintfhintðtÞj

2

 �

: ð14Þ

To illustrate the utility of task hints, we present examples of networks inspired by two stan-

dard tasks used in systems neuroscience: interval matching and delayed comparison. In both

cases, including task hints drastically improves the performance of the trained network. We

also show that using hints allows trained networks to extrapolate solutions of a task beyond the

domain on which they were trained. It is worth emphasizing that the hint input is only fed to

the target-generating network and only used during training. The hint is not provided to the

task-performing network at any time.

Interval matching task. As our first example, we present a network performing an inter-

val matching task (Fig 7) inspired by the “ready-set-go” task investigated by Jazayeri & Shadlen

[23]. In this task, the network receives a pair of input pulses fin(t) of amplitude 1.0 and dura-

tion 50 ms. The job of the network is to generate an output response at a delay after the second

Fig 7. Performance results for networks trained on the interval timing task. (a & b) fin(t) (grey), fhint(t) (grey

dotted), fout(t) (black dotted) and z(t) (orange) for a network of 1000 units. Networks trained with full-FORCE

learning without (a) and with (b) a hint for various interpulse intervals (100, 600, 1100, 1600 and 2100 ms from bottom

to top). (c & d) Target response time plotted against the generated response time without (c) and with (d) hints. Each

dot represents the timing of the peak of the network output response on a single test trial. Grey dots indicate that the

network output did not meet the conditions to be considered a “correct” trial (see main text). Red dots show correct

trials.

https://doi.org/10.1371/journal.pone.0191527.g007

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 12 / 18



pulse equal to the interval between the first and second pulses. The time interval separating the

two input pulses is selected at random on each trial from a uniform distribution between 0.1

and 2.1 seconds. Following the input pulses, the network must respond with an output pulse

fout(t) that is a smooth, bump-like function (generated from a beta distribution with parame-

ters α = β = 4) of duration 500 ms and peak amplitude 1.5. Trials begin at random times, with

an inter-trial interval drawn from an exponential distribution with a mean of 2.4 seconds. This

task is difficult for any form on recurrent network learning because of the long (in terms of the

10 ms network time constant) waiting period during which no external signal is received by

the network.

To assess the performance of a trained network, we classified test trials as “correct” if the

network output matched the target output with a normalized error less than 0.25 within a win-

dow of 250 ms around the correct output time. A network of 1000 neurons, trained by full-

FORCE without using a hint performs this task poorly, only correctly responding on 4% of test

trials (Fig 7a). The network responded correctly only on those trials for which the interpulse

interval was short, less than 300 ms (Fig 7c). This is because, when the desired output pulse

fout(t) is the only input provided, the dynamics of the target-generating network during the

waiting period for long intervals are insufficient to maintain timing information. Therefore,

we added a hint input to the target-generating network to make its dynamics more appropriate

for solving the task. Specifically, we chose fhint to be a function that ramped linearly in time

between the first and second pulses and then decreased linearly at the same rate following

the second pulse (Fig 7b, grey dotted line). The rate of increase is the same for all trials. A tem-

poral signal of this form should be useful because it ensures that the task-performing network

encodes both the elapsed time during the delay and the time when the waiting period is over

(indicated by its second zero crossing).

Providing a hint improves performance significantly. An identical network trained with

full-FORCE when this hint is included correctly responded to 91% of test trials (Fig 7b). The

bulk of the errors made by the network trained with hints were modest timing errors, predom-

inantly occurring on trials with very long delays, as can be seen in Fig 7d. These results illus-

trate the power of using task hints in our network training framework: including a hint

allowed a network to transition from performing the task extremely poorly to performing

almost perfectly.

Delayed comparison task. In the previous example, we illustrated the utility of hints on a

task that could not be trained without using one. However, not all tasks require hints to be per-

formed successfully. Is there any benefit to include hints for tasks that can be performed with-

out them? Here we train networks on a task that can be performed reasonable well without

hints and show that only a network trained with a hint can extrapolate beyond the domain of

the training data. Extrapolation is an important feature because it indicates that a more gen-

eral, and therefore potentially more robust, task solution has been constructed.

We present a version of a delayed comparison task that has been studied extensively by

both the experimental and theoretical neuroscience communities [24–26]. In this task, a net-

work receives a pair of input pulses fin(t) of duration 50 ms. Each pulse has an amplitude that

varies randomly from trial to trial, selected from a uniform distribution between 0.125 and

1.875. Furthermore, during training the time interval separating the two input pulses is

selected at random from a uniform distribution between 0.1 and 1 second, thereby preventing

the network from being able to anticipate the timing of the second pulse. Following the pulses,

the network must respond with an output pulse fout(t) defined as for the interval timing task,

but positive if the difference in magnitude of the two input pulses is positive (“ + ” trials) and

negative if the difference was negative (“-” trials) (Fig 8a & 8b). Trials on which the input pulse

height difference is small are clearly difficult because smalls errors will cause the network to

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 13 / 18



misclassify the input. As in the interval timing task, trials begin at random times with inter-

trial intervals of random duration.

To assess the performance of a trained network, we classified test trials as “correct” if the

network output matched the target output with a normalized error less than 0.25 and “incor-

rect” if the network output matched the opposite class target output with a normalized error

less than 0.25. Trials where the network output did not meet either of these criteria were classi-

fied as undetermined and were not included in test performance. Networks trained without a

hint correctly classified 71% of test trials. Three example trials are shown in Fig 8a and a sum-

mary of test performance can be seen in Fig 8c.

Next we trained an identical network with a hint to see if doing so could increase and

extend task performance. The hint signal for this task was a constant input equal to the magni-

tude of the first pulse that lasted for the entire interpulse interval. A hint of this form has the

effect of driving the network dynamics to an input specific fixed-point, thereby constructing a

memory signal of the value of the first pulse. Including a task hint increased performance on

this task, where the hint trained network could correctly classify 95% of test trials (Fig 8b).

More importantly, it allowed the network to extrapolate.

Fig 8. Performance results for networks trained on the delayed comparison task. (a & b) fin(t) (grey), fhint(t) (grey

dotted), fout(t) (black dotted) and z(t) (orange) for a network of 1000 units. Networks trained with full-FORCE

learning without (a) and with (b) hints. Three different trials are shown from bottom to top: an easy “ + ” trial, a

difficult “-” trial, and an easy “-” trial. (c & d) Test performance for networks trained without (c) and with (d) a hint.

Each dot indicates a test trial and the dot color indicates the reported output class (“ + ” cyan or “-” red). The

horizontal axis is the interpulse delay and the yellow region indicates the training domain. The vertical axis indicates

the pulse amplitude difference.

https://doi.org/10.1371/journal.pone.0191527.g008

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 14 / 18



To examine the ability of both trained networks to extrapolate beyond the range of training

data, we tested performance with interpulse delays selected uniformly between 20 ms and 2

seconds. Intervals less than 100 ms and greater than 1 second were never seen by the network

during training. The network trained without a task hint performed just above chance on

these trials, correctly classifying only 53% of trials. The performance of the network trained

with the hint, on the other hand, was hardly diminished when compared to its performance

over the range for which it was trained; 94% compared to 95% over the training range (Fig 8d).

These results illustrate the potential for task hints to simplify the dynamics used by a network

to solve a task, thereby allowing a more general solution to emerge, one that supports extrapo-

lation beyond the training data.

Discussion

We have presented a new target-based method for training recurrently connected neural net-

works. Because this method modifies the full recurrent connectivity, the networks it constructs

can perform complex tasks with a small number of units and considerable noise robustness.

The speed and simplicity of the recursive least-squares algorithm makes this an attractive

approach to network training. In addition, by dividing the problem of target generation and

task performance across two separate networks, full-FORCE provides a straightforward way to

introduce additional input signals that act as hints during training. Utilizing hints can improve

post-training network performance by assuring that the dynamics are appropriate for the task.

Like an animal or human subject, a network can fail to perform a task either because it is truly

incapable of meeting its demands, or because it fails to “understand” the nature of the task. In

the former case, nothing can be done, but in the latter the use of a well-chosen hint during

training can improve performance dramatically. Indeed, we have used full-FORCE with hints

to train networks to perform challenging tasks that we previously had considered beyond the

range of the recurrent networks we use.

The dominant method for training recurrent neural networks in the machine learning

community is backpropagation through time [3]. Backpropagation-based learning has been

used successfully on a wide range of challenging tasks including language modeling, speech

recognition and handwriting generation ([1] and references therein) but these tasks differ

from the interval timing and delayed comparison tasks we investigate in that they do not have

long periods during which the input to the network is silent. This lack of input requires the

network dynamics alone to provide a memory trace for task completion, precisely the function

of our hint signal. When using backpropagation through time, the network needs to be

unrolled a sufficient number of time steps to capture long time-scale dependencies, which, for

our tasks, would mean unrolling the network at least the maximum length of the silent periods,

or greater than 2,000 time steps. Given well-known gradient instability problems [27], this is a

challenging number of unrollings. While we make no claim that gradient-based learning is

unable to learn tasks such as those we study, full-FORCE’s success when a well-selected hint is

used is striking given the algorithmic simplicity of RLS and architectural simplicity of the units

we use. Although we have highlighted the use of hints in the full-FORCE approach, it is worth

noting that hints of the same form can be used in other types of learning including traditional

FORCE learning and backpropagation-based learning [19, 20]. In these cases, fhint(t) would be

added as a second target output, along with fout(t). By requiring the learning procedure to

match this extra output, the network dynamics can be shaped appropriately. Within backpro-

pagation-based learning, doing so might avoid gradient instability problems and perhaps

release these methods from a reliance on more complex networks units such as LSTMs (Long

Short-Term Memory units; [28]).

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 15 / 18



Studies of recurrent neural networks that perform tasks vary considerably in their degree of

“design”. At one end of this spectrum are hand-tuned models in which a particular solution is

hard-wired into the network by construction (examples of this include [26, 29]). Networks of

this type have the advantage of being easy to understand, but their dynamics tends to be sim-

pler than what is seen in the activity of real neurons [24, 30]. At the other extreme are networks

that rely on dynamics close to the chaos of a randomly connected network [16], a category

that includes the work of Laje & Buonomano [15] and much of the work in FORCE and echo-

state networks. This approach is useful because it constructs a solution for a task in a fairly

unbiased way, which can lead to new insights. Networks of this type tend to exhibit fairly com-

plex dynamics, an interesting feature [31] but, from a neuroscience perspective, this complex-

ity can exceed that of the data [13, 24]. This has led some researchers to resort to gradient-

based methods where regularizers can be included to reduce dynamic complexity to more real-

istic levels [13]. Another approach is to use experimental data directly in the construction of

the model [32, 33]. Regularization and adherence to the data can be achieved in full-FORCE

through the use of well-chosen hints imposed on the target-generating network. More gener-

ally, hints can be used for a range of purposes, from imposing a design on the trained network

to regulating its dynamics. Thus, they supply a method for controlling where a model lies on

the designed-to-random spectrum.

By splitting the requirements of target generation and task performance across two net-

works, full-FORCE introduces a freedom that we have not fully exploited. The dimension of

the dynamics of a typical recurrent network is considerably less than its size N [21]. This

implies that the dynamics of the target-generating network can be described by a smaller num-

ber of factors such as principle components, and these factors, rather than the full activity of

the target-generating network, can be used to produce targets, for example by linear combina-

tion. Furthermore, in the examples we provided, the target-generating network was similar to

the task-performing network in structure, parameters (τ = 10 ms for both) and size. We also

made a standard choice for JD to construct a randomly connected target-generating network.

None of these choices is mandatory, and a more creative approach to the construction of the

target-generating network (different τ, different size, modified JD, etc.) could enhance the

properties and performance of networks trained by full-FORCE, as well as extending the range

of tasks that they can perform.

Acknowledgments

We thank Raoul-Martin Memmesheimer for fruitful discussions regarding an earlier version

of this work. We thank Ben Dongsung Huh for suggesting the name full-FORCE that inte-

grates the original FORCE acronym and David Sussillo, Omri Barak and Vishwa Goudar for

helpful suggestions and conversations. We also thank Eli Pollock for providing a Python

implementation of our algorithm. Research supported by NIH grant MH093338, the Gatsby

Charitable Foundation and the Simons Foundation. BD supported by a NSF Graduate

Research Fellowship.

Author Contributions

Conceptualization: Brian DePasquale, Kanaka Rajan, G. Sean Escola, L. F. Abbott.

Data curation: Brian DePasquale.

Formal analysis: Brian DePasquale, Christopher J. Cueva, G. Sean Escola.

Funding acquisition: L. F. Abbott.

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 16 / 18



Investigation: Brian DePasquale, Christopher J. Cueva, G. Sean Escola.

Methodology: Brian DePasquale.

Software: Brian DePasquale, Christopher J. Cueva, G. Sean Escola.

Supervision: L. F. Abbott.

Validation: Brian DePasquale.

Visualization: Brian DePasquale.

Writing – original draft: Brian DePasquale, L. F. Abbott.

Writing – review & editing: Brian DePasquale, Christopher J. Cueva, Kanaka Rajan, G. Sean

Escola, L. F. Abbott.

References
1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436–444. https://doi.org/10.1038/

nature14539 PMID: 26017442

2. Sussillo D. Neural circuits as computational dynamical systems. Curr. Opin. Neurobiol. 2014; 25: 156–

163. https://doi.org/10.1016/j.conb.2014.01.008 PMID: 24509098

3. Werbos PJ. Generalization of backpropagation with application to a recurrent gas market model. Neural

Networks. 1988; 1: 339–356. https://doi.org/10.1016/0893-6080(88)90007-X

4. Abbott LF, DePasquale B, Memmesheimer R-M. Building functional networks of spiking model neurons.

Nature Neurosci. 2016; 19: 350–355. https://doi.org/10.1038/nn.4241 PMID: 26906501

5. Haykin S. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice Hall; 2002.

6. Lee D-H, Zhang S, Fischer A, Bengio Y. Difference target propagation; 2015. Preprint. Available from:

arXiv:1412.7525v5. Cited 25 Nov 2015.

7. Buonomano DV, Merzenich MM. Temporal information transformed into a spatial code by a neural net-

work with realistic properties. Science. 1995; 267: 1028–1030. https://doi.org/10.1126/science.

7863330 PMID: 7863330

8. Jaeger H. Adaptive nonlinear system identification with echo state networks. In: Becker S, Thrun S,

Obermayer K, editors. Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT

Press; 2003. pp. 609–616.

9. Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for

neural computation based on perturbations. Neural Computation. 2002; 14: 2531–2560. https://doi.org/

10.1162/089976602760407955 PMID: 12433288

10. Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless

communication. Science. 2004; 304: 78–80. https://doi.org/10.1126/science.1091277 PMID: 15064413

11. Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron.

2009; 63(4): 544–557. https://doi.org/10.1016/j.neuron.2009.07.018 PMID: 19709635

12. Triefenbach F, Jalalvand A, Schrauwen B, Martens J. Phoneme recognition with large hierarchical res-

ervoirs. Advances in neural information processing systems. 2010; 23:2307–2315.

13. Sussillo D, Churchland M, Kaufman M, Shenoy K. A neural network that finds a naturalistic solution for

the production of muscle activity. Nature neurosci. 2015; 18(7): 1025–1033. https://doi.org/10.1038/nn.

4042 PMID: 26075643

14. Sussillo D, Abbott LF. Transferring learning from external to internal weights in echo-state networks

with sparse connectivity. PLoS One. 2012; 7: e37372. https://doi.org/10.1371/journal.pone.0037372

PMID: 22655041

15. Laje R, Buonomano DV. Robust timing and motor patterns by taming chaos in recurrent neural net-

works. Nat. Neurosci. 2013; 16: 925–933. https://doi.org/10.1038/nn.3405 PMID: 23708144

16. Sompolinsky H, Crisanti A, Sommers HJ. Chaos in random neural networks. Phys. Rev. Lett. 1988; 61:

259–262. https://doi.org/10.1103/PhysRevLett.61.259 PMID: 10039285

17. Vincent-Lamarre P, Lajoie G, Thivierge J-P. Driving reservoir models with oscillations: a solution to the

extreme structural sensitivity of chaotic networks. J. Comput. Neurosci. 2016; https://doi.org/10.1007/

s10827-016-0619-3 PMID: 27585661

18. Rajan K, Abbott LF, Sompolinsky H. Stimulus-dependent suppression of chaos in recurrent neural net-

works. Phys. Rev. E. 2010; 82: 011903. https://doi.org/10.1103/PhysRevE.82.011903

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 17 / 18



19. Abu-Mostafa YS. Learning from hints. Journal of Complexity. 1994; 10: 165–178. https://doi.org/10.

1006/jcom.1994.1007

20. Abu-Mostafa YS. Hints. Neural Computation. 1995; 7: 639–671. https://doi.org/10.1162/neco.1995.7.4.

639 PMID: 7584883

21. Rajan K, Abbott LF, Sompolinsky H. Inferring Stimulus Selectivity from the Spatial Structure of Neural

Network Dynamics. In: Lafferty J., Williams C. K. I., Shawe-Taylor J., Zemel R.S. and Culotta A. editors.

Advances in Neural Information Processing Systems 23. 2010.

22. Girko VL. Circular law. Theory Probab. Appl. 1984; 29: 694–706. https://doi.org/10.1137/1129095

23. Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat. Neurosci. 2010; 13: 1020–

1026. https://doi.org/10.1038/nn.2590 PMID: 20581842

24. Barak O, Sussillo D, Romo R, Tsodyks M, Abbott LF. From fixed points to chaos: three models of

delayed discrimination. Prog. in Neurobiology. 2013; 103: 214–222.

25. Romo R, Brody CD, Hernandez A, Lemus L. Neuronal correlates of parametric working memory in the

prefrontal cortex. Nature. 1999; 399: 470–473.

26. Machens CK, Romo R, Brody CD. Flexible control of mutual inhibition: a neural model of two-interval

discrimination. Science. 2005; 307: 1121–1124.

27. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult.

IEEE Transactions on Neural Networks. 1994; 5(2): 157–166. https://doi.org/10.1109/72.279181 PMID:

18267787

28. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation. 1997; 9: 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

29. Seung HS How the brain keeps the eyes still. Proc. Natl. Acad. Sci. 1996; 93: 13339–13344. https://doi.

org/10.1073/pnas.93.23.13339 PMID: 8917592

30. Miller P, Brody CD, Romo R, Wang XJ. A recurrent network model of somatosensory parametric work-

ing memory in the prefrontal cortex. Cerebral Cortex. 2003; 13: 1208–1218. https://doi.org/10.1093/

cercor/bhg101 PMID: 14576212

31. Sussillo D, Barak O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent

neural networks. Neural Comp. 2013; 25(3): 626–649. https://doi.org/10.1162/NECO_a_00409

32. Fisher D, Olasagasti I, Tank DW, Aksay ERF, Goldman MS. A modeling framework for deriving the

structural and functional architecture of a short-term memory microcircuit. Neuron. 2013; 79: 987–1000.

https://doi.org/10.1016/j.neuron.2013.06.041 PMID: 24012010

33. Rajan K, Harvey C, Tank D. Recurrent network models of sequence generation and memory. Neuron.

2016; 90: 128–142. https://doi.org/10.1016/j.neuron.2016.02.009 PMID: 26971945

full-FORCE: A target-based method for training recurrent networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191527 February 7, 2018 18 / 18


