@' PLOS | ONE

Check for
updates

G OPEN ACCESS

Citation: Bittner SR, Williamson RC, Snyder AC,
Litwin-Kumar A, Doiron B, Chase SM, et al. (2017)
Population activity structure of excitatory and
inhibitory neurons. PLoS ONE 12(8): e0181773.
https://doi.org/10.1371/journal.pone.0181773

Editor: Konrad P. Kording, Northwestern
University, UNITED STATES

Received: September 11, 2016
Accepted: July 6, 2017
Published: August 17, 2017

Copyright: © 2017 Bittner et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All neural recordings
are publicly available in the following repository:
http://doi.org/10.6080/KONC5Z4X. Code for
simulating spike trains from the network models
can be found at https://github.com/shittner12/
litwin-kumar_doiron_cluster_2012/. Code for spike
waveform classification can be found at https://
github.com/adam-neuro/waveformClassification.

Funding: Funding for this work was provided by
the Carnegie Mellon University CNBC
Undergraduate Research Fellowship in
Computational Neuroscience (S.R.B.), National

RESEARCH ARTICLE
Population activity structure of excitatory and
inhibitory neurons

Sean R. Bittner'-3, Ryan C. Williamson®®, Adam C. Snyder'>7, Ashok Litwin-Kumars,
Brent Doiron®%, Steven M. Chase?3®, Matthew A. Smith®*”®, Byron M. Yu'-23%*

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,
United States of America, 2 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States of America, 3 Center for the Neural Basis of Cognition, Carnegie Mellon
University, Pittsburgh, Pennsylvania, United States of America, 4 Department of Bioengineering, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 5 School of Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 6 Department of Mathematics, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 7 Department of Ophthamology, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 8 Center for Theoretical Neuroscience,
Columbia University, New York, New York, United States of America

® These authors contributed equally to this work.
* byronyu@cmu.edu

Abstract

Many studies use population analysis approaches, such as dimensionality reduction, to
characterize the activity of large groups of neurons. To date, these methods have treated
each neuron equally, without taking into account whether neurons are excitatory or inhibi-
tory. We studied population activity structure as a function of neuron type by applying factor
analysis to spontaneous activity from spiking networks with balanced excitation and inhibi-
tion. Throughout the study, we characterized population activity structure by measuring its
dimensionality and the percentage of overall activity variance that is shared among neurons.
First, by sampling only excitatory or only inhibitory neurons, we found that the activity struc-
tures of these two populations in balanced networks are measurably different. We also
found that the population activity structure is dependent on the ratio of excitatory to inhibitory
neurons sampled. Finally we classified neurons from extracellular recordings in the primary
visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform
classification, and found similarities with the neuron type-specific population activity struc-
ture of a balanced network with excitatory clustering. These results imply that knowledge of
neuron type is important, and allows for stronger statistical tests, when interpreting popula-
tion activity structure.

Introduction

Excitatory and inhibitory neurons appear to perform distinct roles in cortical networks. Excit-
atory neurons form long range synaptic projections and have clustered connectivity with other
excitatory neurons [1-4]; inhibitory neurons form local, dense, and non-specific connections
[5-7]. Excitatory neurons are almost exclusively pyramidal cells, while inhibitory neurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0181773  August 17, 2017

1/27



@' PLOS | ONE

Population activity structure of excitatory and inhibitory neurons

Science Foundation grants DGE-16-44869 (S.R.B.),
DMS-1313225 (B.D.), DMS-1517082 (B.D.), 10S-
1553252 (S.M.C.), BCS-1533672 (S.M.C., B.M.Y.),
National Institutes of Health grants T32 GM008208
(R.C.W.), T90 DA022762 (R.C.W.), K99 EY025768
(A.C.S.), F32 DC014387 (A.L.-K.), R0O1 EY022928
(M.A.S.), P30 EY008098 (M.A.S.), R01 HD071686
(S.M.C., B.M.Y.), Richard King Mellon Foundation
(R.C.W.), Research to Prevent Blindness (M.A.S.),
Simons Foundation Collaboration on the Global
Brain 325293 (B.D.) and 364994 (B.M.Y.), Eye and
Ear Foundation of Pittsburgh (M.A.S.), and a
Carnegie Mellon University ProSEED / Brainhub
seed grant (B.D., M.A.S., B.M.Y.).

Competing interests: The authors have declared
that no competing interests exist.

form a diverse class with multiple subtypes [8-10]. In many cases, inhibitory neurons exhibit
greater firing rates than excitatory neurons [11, 12], more attentional modulation [13, 14], and
a lesser degree of burstiness [15, 16]. Excitatory neurons are thought to be critical for long-
term synaptic potentiation [17], whereas inhibitory neurons are instead postulated to modu-
late stimulus response gain, sharpen tuning to stimuli, and pace cortical oscillations [18].
Despite these anatomical, statistical, and functional differences, the network-level roles of exci-
tation and inhibition and their interaction are incompletely understood.

In this study, we sought to understand how the patterns of activity produced by a popula-
tion of neurons (referred to as population activity structure) depend on neuron type. Such
insights would help to bridge the gap between single-neuron (and pairwise) response proper-
ties of different neuron types and their network-level interactions. We leveraged spiking
network models, where the type of each neuron and the network connectivity is known, to
address this question. We considered two types of balanced networks: one with uniform con-
nectivity (“non-clustered network”) and one with clustered connectivity among excitatory
neurons (“clustered network”). This allows us to assess how our results depend on the underly-
ing architecture. Classic non-clustered networks balance excitatory and inhibitory input
currents and have been widely studied. The model neurons exhibit Poisson-like spiking vari-
ability and zero-mean spike count correlations [19-21]. Clustered balanced networks repro-
duce additional properties of the spiking variability of biological neurons and have more
realistic anatomical structure [22-24]. In this study, we analyzed one representative network
of each type, and refer to them as the clustered network and the non-clustered network.

One way to characterize population activity structure is through the use of dimensionality
reduction [25]. Dimensionality reduction methods have been utilized to examine neural popu-
lation activity during motor control [26, 27], decision-making [28, 29], visual attention [30],
and other behavioral tasks [31-35]. These methods characterize the multi-dimensional pat-
terns of activity produced by a population of neurons, which can then be related to stimulus or
behavior. For this study, we used factor analysis (FA), which is well-suited for analyzing spik-
ing variability because it separates spiking variability into a component that is shared among
neurons and one that is independent across neurons [36, 37]. Shared variability is of particular
importance because it is the most likely to be transmitted to downstream neurons and affect
neuronal coding [38]. We used FA to measure two characteristics of population activity: shared
dimensionality and percent shared variance. Shared dimensionality measures the number of
dimensions in which the shared activity resides. Large values of shared dimensionality indicate
arichness to the interactions among neurons, while values of zero indicate approximate inde-
pendence. Percent shared variance assesses the degree to which the shared activity explains the
total variability in the population.

We started by characterizing the activity structure of excitatory and inhibitory populations
in the balanced networks by applying FA to samplings of only-excitatory and only-inhibitory
neurons while varying the number of neurons and trials sampled. This extends our recent
study of only excitatory neurons in model networks [39], and allowed us to compare the
multi-dimensional activity structure of the two neuron types in both networks. Then, using
the same two networks, we considered samplings of mixed neuron type by varying the ratio
of excitatory to inhibitory neurons sampled from each network. By applying factor analysis to
the population activity, we observed measurably different population activity structure for var-
ious neuron type samplings. In order to ground these model network results with real data, we
applied the same analysis to the activity of a population of neurons recorded from the primary
visual cortex. By classifying neurons based on waveform shape [14], we found that the broad-
spiking and narrow-spiking neurons have similar activity structure as the excitatory and
inhibitory populations, respectively, in the clustered network. These results suggest that the
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identification of neuron types in experimental data can provide a more nuanced understand-
ing of population activity structure.

Results

To study the organization of neural responses in populations of excitatory and inhibitory neu-
rons, we examined the properties of the spontaneous activity of model excitatory and inhibi-
tory neurons in balanced networks. Two types of balanced networks were analyzed in this
study: one with clustering among excitatory neurons (Fig 1A, “clustered” network) and one
with uniform connectivity (Fig 1B, “non-clustered” network). Each balanced network con-
tained 4,000 excitatory and 1,000 inhibitory neurons. In the clustered network, the excitatory
neurons were partitioned into 50 non-overlapping clusters of 80 neurons, where same-cluster
neurons had a higher probability of connection than out-of-cluster excitatory neurons. In the
non-clustered network, excitatory neurons connected with uniform probability to other excit-
atory neurons. Connectivity within the inhibitory population, as well as connectivity between
the excitatory and inhibitory populations was uniform in each network.

Both networks exhibit features similar to physiological recordings. The average firing rate
of inhibitory neurons was greater than that of excitatory neurons in both model networks (Fig
1A and 1B, right) [11, 12]. Same-cluster excitatory neurons in the clustered network recur-
rently excite each other, acting similarly to a bistable unit with high and low activity states (Fig
1E) resulting in positive noise correlations which have been observed among nearby neurons
[40]. The non-clustered network does not have this property (Fig 1F).

Excitatory and inhibitory populations of balanced networks have different
activity structure

To understand how neuron type impacts population-level metrics of shared variability, we
applied FA to spike counts taken in a one second window of spontaneous activity (referred to
as a “trial”) from each network. FA decomposes the spike count covariance of neurons into

a shared and independent component (Fig 2A), which enables the computation of shared
dimensionality (dg,4,eq) and percent shared variance (see Methods). Shared dimensionality is
the number of modes of shared co-fluctuations of the population activity (Fig 2B). It is a mea-
sure of the complexity of these shared co-fluctuations. Percent shared variance measures how
much of each neuron’s spike count variability is shared with at least one other sampled neuron
(Fig 2C). By investigating how these metrics depend on the number of neurons and trials sam-
pled, we characterized the scaling properties of the excitatory and inhibitory population activ-
ity structure. Note that shared dimensionality and percent shared variance need not go up and
down together [39].

We focused here on a spike count window of one second, consistent with many previous
studies of spike count correlation [13, 40-43]. To further justify this choice, we found that neu-
rons in both model networks and the in vivo recordings exhibited non-zero autocorrelation at
lags throughout the range of zero to one second (S1 Fig). In addition, we replicated our analy-
ses with a 100 ms window and found the same trends as with a one second window (see details
below).

The excitatory and inhibitory populations had notable differences in how shared
dimensionality scaled with increasing neuron count in both networks. We began by applying
FA to only-excitatory (red) and only-inhibitory (blue) neuron samplings of the clustered (Fig
3A) and non-clustered (Fig 3B) networks. The shared dimensionality of the excitatory popula-
tion saturated with increasing neuron count in the clustered network (Fig 3A, top, red), but
not in the non-clustered network (Fig 3B, top, red) [39]. In contrast, the shared dimensionality
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Fig 1. Basic properties of excitatory and inhibitory neurons in balanced networks. (A) Clustered network connectivity (left) of inhibitory-inhibitory

(p"), excitatory-to-inhibitory (p'%), inhibitory-to-excitatory (pF'), same-cluster excitatory-excitatory (p5%), and out-of-cluster excitatory-excitatory (pZZ ;)

neuron pairs. Average firing rates (right) of excitatory (red, 3.2 + 2.9 Hz, mean + standard deviation) and inhibitory (blue, 4.1 + 2.7 Hz) neurons. (B) Non-
clustered network connectivity (left) and average firing rates (right) of excitatory (red, 2.0 + 1.7 Hz) and inhibitory (blue, 2.9 + 1.9 Hz) neurons. (C)
Clustered network spike count correlations (one second time bins) between same-cluster excitatory-excitatory pairs (EE;,, red, r=0.72 £ 0.27,

mean # standard deviation), out-of-cluster excitatory-excitatory pairs (EE,.; green, r=-0.0085 + 0.11), excitatory-inhibitory pairs (El, purple, r= 9.0 %
0.14), and inhibitory-inhibitory pairs (//, blue, r=4.57* + 0.15). (D) Non-clustered network spike count correlations (one second spike bins) between
excitatory-excitatory pairs (EE, red, r=1.97° + 0.11), excitatory-inhibitory pairs (El, purple, r=2.1"*+ 0.018), and inhibitory-inhibitory pairs (//, blue, r=
-7.37*£0.025). Note that the horizontal axis differs between panels C and D. (E) Clustered network spiking activity. A representative sample of 500
neurons (100 inhibitory neurons and 400 excitatory neurons ordered by cluster membership. (F) Non-clustered network spiking activity. A representative
sample of 500 neurons (100 inhibitory and 400 excitatory).

https://doi.org/10.1371/journal.pone.0181773.g001
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Fig 2. Calculation of dimensionality and percent shared variance. (A) Factor analysis partitions the spike count covariance of sampled
excitatory and inhibitory neurons together into shared and independent components. (B) Shared dimensionality (dshareq) is the minimum
number of eigenvectors of the shared variance matrix necessary to explain 95% of shared variance. Modes are sorted by shared variance
explained along the x-axis. (C) Percent shared variance is the ratio of shared to total variance (i.e., shared / (shared + independent)). The
percent shared variance is first computed for each neuron, then averaged across all neurons of the same type.

https://doi.org/10.1371/journal.pone.0181773.9002

of the inhibitory population continued to increase with neuron count regardless of whether
the excitatory population was clustered or not (Fig 3A and 3B, top, blue). These scaling proper-
ties are related to the connectivity of the neurons. For those populations with uniform connec-
tivity (inhibitory in both networks and excitatory in the non-clustered network), more
dimensions are revealed as more neurons are sampled. In contrast, the shared activity among
the excitatory neurons in the clustered network is dominated by the between-cluster interac-
tion. We previously showed that, although there are 50 modes describing the interaction
among the 50 clusters, the top 20 modes explain 95% of the shared variance [39]. Thus, the
asymptotic number of shared dimensions (20) is smaller than the number of clusters (50).

To further characterize the excitatory and inhibitory population activity structure, we sought
to measure the prominence of the shared co-fluctuations described by the identified dimen-
sions. We measured the percentage of each neuron’s spike count variance that was explained by
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Fig 3. Excitatory and inhibitory population activity structure. (A) Clustered and (B) non-clustered
network shared dimensionality (top panels) and percent shared variance (bottom panels) with increasing
neuron count with 10,000 trials. Dots (red: excitatory neurons, blue: inhibitory neurons) indicate the mean
across five non-overlapping sets of sampled neurons and five non-overlapping sets of trials (25 sets total),
and standard error bars are smaller than the dot size in all cases. To assess shared dimensionality and
percent shared variance for a larger number of neurons, we grouped the five non-overlapping sets of 150
neurons from each neuron type population of each network into 750-neuron samplings. For 750-neuron
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samplings of the clustered network (10,000 trials), the excitatory population had a shared dimensionality of
23.95 + 0.05 and percent shared variance of 91.43% + 0.06%, while the inhibitory population had a shared
dimensionality of 246.7 + 2.5 and a percent shared variance of 79.56% + 0.22%. For 750-neuron samplings of
the non-clustered network (10,000 trials), the excitatory population had a shared dimensionality of 139.4 + 3.8
and percent shared variance of 20.70% + 0.43%, while the inhibitory population had a shared dimensionality
of 347.2 + 4.2 and a percent shared variance of 59.74% + 0.47%. (C-D) same conventions as A and B, but for
increasing trial count with 100 neurons.

https://doi.org/10.1371/journal.pone.0181773.9003

the shared dimensions. Note that, for a given shared dimensionality, the percent shared variance
can be large or small depending on how strongly those dimensions modulate each neuron’s
activity. We found that the excitatory population had greater percent shared variance than the
inhibitory population in the clustered network (Fig 3A, bottom). This is reasonable because the
clustering of the excitatory population leads to same-cluster neurons increasing and decreasing
their activity together (cf. Fig 1C), which would tend to increase the amount of one neuron’s
variability that can be explained by other neurons in the same cluster. Conversely, in the non-
clustered network, the inhibitory population had greater percent shared variance than the excit-
atory population (Fig 3B, bottom). This observation is related to the greater variance of the
spike count correlation distribution for inhibitory-inhibitory than excitatory-excitatory neuron
pairs (cf. Fig 1D). We suspected that these observations were connected, since increasing the
variance of a zero-mean spike count correlation distribution implies an increase in the number
of neuron pairs with non-zero spike count correlation, which consequently increases percent
shared variance. To demonstrate this, we generated population spike counts corresponding to
spike count correlation distributions of different variances using the method described in [44].
We found that percent shared variance indeed increases with the variance of the spike count
correlation distribution (S2 Fig). Furthermore, we observed that the percent shared variance of
the inhibitory neurons increased with neuron count for both networks (Fig 3A and 3B, bottom,
blue), in contrast to that of excitatory neurons which saturated with increasing neuron count
(Fig 3A and 3B, bottom, red) [39]. In other words, more of the spike count variability among
inhibitory neurons was explained as more inhibitory neurons were sampled.

Having examined how shared dimensionality and percent shared variance changed with
neuron count for excitatory versus inhibitory population samplings, we next examined how
these two quantities changed with trial count, while keeping the number of neurons fixed. This
can help us understand how much data is required to fully identify the shared activity of the
sampled neurons. For both neuron types in both networks, the shared dimensionality and per-
cent shared variance saturated with increasing trials sampled. The number of trials at which
shared dimensionality or percent shared variance saturated was related to how “salient” the
shared population activity structure was in the raw spike counts. When the shared population
activity structure was more salient, fewer trials were needed to identify the shared structure. In
the clustered network, the shared dimensionality and percent shared variance of the excitatory
population (Fig 3C, red) saturated at fewer trials than the inhibitory population (Fig 3C, blue).
This is related to the fact that the excitatory population had greater percent shared variance,
and therefore more salient shared activity structure, than the inhibitory population. In the
non-clustered network, we saw the opposite trend: inhibitory population samplings (Fig 3D,
blue) saturated in dimensionality and percent shared variance with fewer trials than the excit-
atory population samplings (Fig 3D, red). In the non-clustered network, the inhibitory popula-
tion had more salient shared activity structure than the excitatory population, as indicated by
the higher percent shared variance of the inhibitory population. The asymptotic dimensionali-
ties in Fig 3C and 3D depend on the number of neurons analyzed (in this case, 100 neurons).
If more neurons are included, the asymptotic dimensionality would be higher for inhibitory
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neurons in the clustered network and both types of neurons in the non-clustered network, as
indicated by Fig 3A and 3B.

Because the activity of same-cluster excitatory neurons tends to increase and decrease
together, we expected excitatory neurons to have greater percent shared variance in the clus-
tered than in the non-clustered network (compare red curves in Fig 3C and 3D, bottom).
Interestingly, we found that this was also true for the inhibitory neurons (compare blue curves
in Fig 3C and 3D, bottom), even though the probability of connections involving inhibitory
neurons was the same in the two networks. Thus clustering structure among excitatory neu-
rons resulted in shared variability that propagated to the inhibitory population, resulting in
increased shared variability in the inhibitory population. This is consistent with the greater
variance of the distribution of spike count correlations between inhibitory-inhibitory neuron
pairs in the clustered network (cf. Fig 1C, blue) than those in the non-clustered network (cf.
Fig 1D, blue). All the trends observed in Fig 3 with one second spike count windows remained
true with 100 ms spike count windows (S3 Fig).

Excitatory clustering affects modes of shared activity in both the
excitatory and inhibitory populations

To further characterize the excitatory and inhibitory population activity structure, we studied
the modes (or dimensions) of shared activity of each population in the two networks. For pop-
ulations of each neuron type from each network architecture, the ten most dominant modes
of shared activity (eigenvectors of the shared covariance matrix) are displayed in order of the
amount of shared variance explained by each mode. (Fig 4A). The excitatory neurons are
ordered by cluster membership (Fig 4A, top-left). Same-cluster neurons had similar values
within each mode for the excitatory population of the clustered network, indicating that the
dominant modes describe co-varying activity between clusters. In contrast, the excitatory pop-
ulation of the non-clustered network (Fig 4A, top-right) and both inhibitory populations (Fig
4A, bottom) did not exhibit any obvious structure in the modes of shared activity.

Although there were no differences in mean inhibitory connection properties between the
clustered and non-clustered networks, we found that excitatory clustering changes the promi-
nence of the dominant modes of shared activity in the inhibitory population. In previous
work, we found that dominant modes of shared activity in the excitatory population of the
clustered network explained large proportions of shared variance (Fig 4B, left, red), in contrast
to those in the excitatory population in the non-clustered network where shared variance
was distributed more equally across modes (Fig 4B, right, red) [39]. The five most dominant
modes of shared activity explained 64.5% * 1.5% of shared variance in the clustered network
and 31.2% + 0.8% of shared variance in the non-clustered network. Interestingly, we found
that the dominant modes of the inhibitory population in the clustered network also explained
a greater percentage of shared variance (Fig 4B, left, blue) than in the non-clustered network
(Fig 4B, right, blue). For inhibitory populations, the five most dominant modes of shared activ-
ity explained 54.3% =+ 0.4% of shared variance in the clustered network and only 20.1% + 0.2%
of shared variance in the non-clustered network. Using FA, we were able to observe that
shared activity structure induced by clustering in the excitatory population also propagated to
the inhibitory population, which had the same connectivity structure in the two models.

Ratio of excitatory to inhibitory neurons affects population activity
structure of mixed-type samplings

While sampling strictly from populations of a single neuron type is useful for characterizing
the role of neuron type in balanced network activity, realistic population samplings likely
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neurons than other clusters due to random sampling. (B) Percent of shared variance explained by each mode
for 100-neuron analyses of the excitatory (red) and inhibitory (blue) populations in the clustered (left) and non-
clustered (right) networks with 10,000 trials. Dots indicate the mean across five non-overlapping sets of
neurons and five non-overlapping sets of trials (25 sets total) and error bars indicate standard error (not visible
for most data points).

https://doi.org/10.1371/journal.pone.0181773.9004

contain a mixture of both excitatory and inhibitory neurons. In this section, we explore how
the population activity structure depends on the ratio of excitatory to inhibitory neurons sam-
pled from the clustered and non-clustered networks. The same networks with 4,000 excitatory
and 1,000 inhibitory neurons were used, but we analyzed 100-neuron samplings with different
ratios of excitatory to inhibitory neurons.

The ratio of excitatory to inhibitory neurons affected the shared dimensionality of popula-
tion samplings. As we replaced excitatory neurons with inhibitory neurons (Fig 5, moving left
to right along the horizontal axis), shared dimensionality increased from the only-excitatory
neuron sampling to the only-inhibitory neuron sampling for the clustered and non-clustered
networks with 10,000 trials (Fig 5B, top). The endpoints of these curves are the shared dimen-
sionalities of the purely excitatory (cf. Fig 3A and 3B, 100 neurons, top, red) and purely inhibi-
tory (cf. Fig 3A and 3B, 100 neurons, top, blue) populations considered before.

The ratio of excitatory to inhibitory neurons sampled affected the percent shared variance
of excitatory (red) and inhibitory (blue) neurons in the clustered (dashed) and non-clustered
(solid) networks with 10,000 trials (Fig 5B, bottom). Since percent shared variance measures
how much of a neuron’s activity covaries with at least one other sampled neuron, it is possible
for the percent shared variance of excitatory and inhibitory neurons to change based on how
many of each type of neuron is also sampled. Consider the percent shared variance of excit-
atory neurons when going from only-excitatory samplings to only-inhibitory samplings (left
to right along the horizontal axis). As excitatory neurons are replaced by inhibitory neurons,
the percent shared variance of the remaining excitatory neurons would decrease if they are
more highly correlated with excitatory neurons being replaced in the sampling than the newly
sampled inhibitory neurons. Conversely, the percent shared variance of the remaining excit-
atory neurons would increase if they are more highly correlated with the newly sampled inhib-
itory neurons than the replaced excitatory neurons. In the clustered network, we found that as
we replaced excitatory neurons with inhibitory neurons, the percent shared variance for excit-
atory neurons decreased (Fig 5B, bottom, dashed red). This indicated that excitatory neurons
in the clustered network shared more of their activity with other excitatory neurons. In con-
trast, the percent shared variance of excitatory neurons in the non-clustered network (Fig 5B,
bottom, solid red) increased as more inhibitory neurons were sampled. This showed that in
the non-clustered network, excitatory neurons shared more of their activity with inhibitory
neurons than other excitatory neurons. The percent shared variance of inhibitory neurons in
both networks was mostly independent of neuron type sampling ratio (Fig 5B, bottom, blue),
showing that inhibitory neurons shared their spike count variance equally with excitatory
and inhibitory neurons. One might have expected the percent shared variance of inhibitory
neurons in the non-clustered network to have greater percent shared variance with other
inhibitory neurons than with excitatory neurons, because the distribution of spike count corre-
lations had greater variance for inhibitory-inhibitory pairs (cf. Fig 1D, blue) than for excit-
atory-inhibitory pairs (cf. Fig 1D, purple). However, the excitatory and inhibitory populations
had different distributions of spike count variance, so the relationship between the variance of
the spike count correlation distribution and the percent shared variance was more complicated
when sampling from both populations instead of one.
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https://doi.org/10.1371/journal.pone.0181773.g005

We then investigated how the results in (Fig 5B) depend on the number of trials sampled by
performing the same analysis with 1,200 (Fig 5A) and 20,000 (Fig 5C) trials. In the non-clus-
tered network, since shared dimensionality and percent shared variance of the excitatory pop-
ulation did not saturate by 10,000 trials (cf. Fig 3D, red), we expected higher and lower trial
counts to exhibit different trends of shared dimensionality and percent shared variance with
neuron type sampling ratio. With 1,200 trials, the non-clustered network shared dimensional-
ity (Fig 5A, top, solid), as well as the percent shared variance of excitatory (Fig 5A, bottom,
solid red) and inhibitory (Fig 5A, bottom, solid blue) neurons, were small for all ratios. With
20,000 trials, the non-clustered dimensionality was flatter than with 10,000 trials, since the
shared dimensionality of excitatory neuron dominated ratios had increased nearly to the same
level as the inhibitory dominated ratios (Fig 5C, solid). This is consistent with Fig 3D (top),
where the excitatory and inhibitory shared dimensionalities were similar for high trial counts.
As with 10,000 trials, with 20,000 trials, excitatory neurons shared more of their spike count
variance with inhibitory neurons than other excitatory neurons (Fig 5C, bottom, solid red),
and inhibitory neurons shared their spike count variance equally with each neuron type (Fig
5C, bottom, solid blue).

In the clustered network, the trends of shared dimensionality and percent shared variance
with neuron type sampling ratio did not change from 10,000 to 20,000 trials (compare Fig 5B,
dashed with Fig 5C, dashed), since shared dimensionality and percent shared variance satu-
rated by 10,000 trials for the excitatory and inhibitory populations (cf. Fig 3C). However,
with only 1,200 trials instead of 10,000 trials, the shared dimensionality for inhibitory neuron
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dominated ratios dropped (Fig 5A, top, dashed), and percent shared variance of excitatory and
inhibitory neurons slightly decreased (Fig 5A, bottom, dashed), consistent with Fig 3C. With
20,000 trials, as with 10,000 trials, excitatory neurons shared more of their spike count variance
with other excitatory neurons than inhibitory neurons (Fig 5C, bottom, dashed red), and
inhibitory neurons shared their spike count variance equally between both neuron types (Fig
5C, bottom, dashed blue). Using a spike count window size of 100 ms (54 Fig), we observed
the same trends as in Fig 5.

Neuron-type information reduces uncertainty of population activity
metrics

In practice, we are often blind to the types of the neurons we sample, so we can expect variabil-
ity in population activity metrics to arise from the variability in the sampled ratio of neuron
type. Unknown sampling ratios of neuron type can confound comparisons of population
activity structure between two datasets. Consider the conclusion from Fig 5B (top) that the
shared dimensionality of the non-clustered network is greater than that of the clustered net-
work. As an extreme example to illustrate the concept, let’s say that only excitatory neurons
are sampled from the non-clustered network and only inhibitory neurons are sampled from
the clustered network. We would conclude that the clustered network has higher dimensional-
ity than the non-clustered network. Therefore, it is important to know the excitatory versus
inhibitory composition of the sampled population to appropriately interpret the measured
shared dimensionality.

In less extreme cases, the comparison of shared dimensionality (or percent shared variance)
can involve multiple sets of recordings, each of which has a different composition of excitatory
and inhibitory neurons. Statistical tests will depend on the variance of the measured shared
dimensionality (or percent shared variance) across recordings. If the neuron type composition
is unknown, the measurement of shared dimensionality (or percent shared variance) can have
high variance, thereby leading to a weak statistical test. However, if the neuron type composi-
tion is known, then this can be controlled for in the comparison, leading to a stronger statisti-
cal test. To make this concrete, consider randomly sampling 100 neurons from a network with
4,000 excitatory neurons and 1,000 inhibitory neurons, as in the two balanced networks we are
working with. The probability of sampling k excitatory neurons in an #-neuron sample is

k n—k
n

for a network with N excitatory neurons and N; inhibitory neurons. This distribution is
depicted in Fig 6A for Ng = 4,000, N; = 1,000, and n = 100. We computed shared dimensional-
ity (Fig 6B) and percent shared variance (Fig 6C) for 100 neuron, 10,000 trial samplings of the
clustered and non-clustered networks which were blind to neuron type. The clustered network
exhibited shared dimensionality of 20.3 + 1.8 (Fig 6B, dashed, black, mean + standard devia-
tion) and percent shared variance of 85.8% + 1.4% (Fig 6C, dashed, black). The non-clustered
network exhibited shared dimensionality of 43.1 + 8.2 (Fig 6B, solid, black) and percent shared
variance of 23.7% + 5.3% (Fig 6C, solid, black).

Now, suppose that we seek to perform a statistical test involving shared dimensionality for

the non-clustered network. If neurons are randomly sampled from the network, the standard
deviation is 8.2 (Fig 6B, solid, black). However, if the neuron type composition is known and

Pr(k | NEaNIan) =
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https://doi.org/10.1371/journal.pone.0181773.9006

controlled for (in this case, 80 E and 20 I), the standard deviation decreases to 6.8 (Fig 6B,
solid, green). Similarly, the percent shared variance of the clustered and non-clustered net-
works decreases when neuron type composition is controlled from 2.3 to 1.0 (Fig 6C, dashed)
and from 5.2 to 4.5 (Fig 6C, solid), respectively. When sampling neurons randomly from the
clustered network, the standard deviation of shared dimensionality is 2.0 (Fig 6B, dashed,
black), which is the same as when neuron type ratio is controlled (Fig 6B, dashed, green). This
is consistent with the fact that the shared dimensionality of the clustered network is nearly
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constant (cf. Fig 5B, top, dashed) in the regime of neuron types ratios that are likely to arise
from random sampling (Fig 6A). In practice, we cannot usually specify how many excitatory
and inhibitory neurons are recorded in an experiment, but we can subsample the neurons
after the experiment to obtain the desired neuron type ratio.

V1 recordings show similar population activity structure as the clustered
network

We sought to determine whether the differences we observed in model networks were present
in the measured activity of excitatory and inhibitory populations in vivo. To investigate this,
we analyzed spontaneous activity recorded from the primary visual cortex (V1) of anesthetized
macaque monkeys [40]. Although the neuron type (excitatory vs. inhibitory) was not known
with certainty in these extracellular recordings, previous studies have demonstrated a link
between excitatory and inhibitory neuron classes and their extracellular waveform shape [45-
47]. This classification approach has revealed a number of functional differences between puta-
tive excitatory and inhibitory neurons [13-16, 48]. We therefore adopted this approach (see
Methods) to classify broad-spiking neurons (also known as regular-spiking, or putative excit-
atory) and narrow-spiking neurons (also known as fast-spiking, or putative inhibitory) using a
recently published methodology [14]. We analyzed data from arrays implanted in four hemi-
spheres of three animals. Each neuron from these recordings was assigned a probability of
being in the broad-spiking or narrow-spiking class based on its average spike waveform (S5
Fig). We identified sets of putative excitatory and inhibitory neurons in these recordings (23 to
47 broad-spiking, 25 to 72 narrow-spiking) by selecting neurons with probability greater than
85% of being in the broad-spiking or narrow-spiking class. In each of the four datasets, there
were at least 23 neurons of each type and 1,200 “trials” (i.e., one second windows of spontane-
ous activity). We fit FA to samplings of only broad-spiking (red) and only narrow-spiking
(blue) neurons, which had different average waveforms, for various numbers of neurons and
trials sampled (in the same manner as in Fig 3) (Fig 7A and 7D). For comparison, we per-
formed the same analysis on the clustered (Fig 7B and 7E) and non-clustered (Fig 7C and 7F)
networks using the same numbers of neurons and trials as in the real data.

The V1 recordings had similar population activity structure to the corresponding popula-
tions in the clustered network when compared with 23 neurons of each type and 1,200 trials
sampled. The shared dimensionality of the broad-spiking population (red) and narrow-spiking
population (blue) increased with increasing neuron count (Fig 7A, top), as did the excitatory
(red) and inhibitory (blue) populations of the clustered network (Fig 7B, top). In the non-clus-
tered network, the excitatory and inhibitory populations show no trends in shared dimension-
ality (Fig 7C, top). The percent shared variance of the broad-spiking and narrow-spiking
populations initially increased with neuron count, then plateaued (Fig 7A, bottom). The per-
cent shared variance of both neurons types in the clustered network also increased, and con-
tinued to increase in the experimental regime of neuron counts (Fig 7B, bottom). In contrast,
the non-clustered network was different from both the V1 recordings and clustered network
in that it showed nearly zero shared dimensionality and percent shared variance for both neu-
ron types (Fig 7C).

We also investigated how the activity structure of the narrow-spiking and broad-spiking
populations of the V1 recordings varied with trial count. The shared dimensionality of both
neuron types in the V1 recordings (Fig 7D, top), as well as the clustered network (Fig 7E, top),
increased and eventually plateaued with increasing trial count. Similarly the percent shared
variance of both populations plateaued with increasing trial count in both the V1 recordings
(Fig 7D, bottom) and the clustered network (Fig 7E, bottom). As in Fig 7C, the non-clustered
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network showed no trends in shared dimensionality or percent shared variance due to the
small number of trials (Fig 7F).

Overall, the trends of the V1 recordings were similar to those of the clustered network.
However, there were two notable discrepancies between the V1 recordings and clustered net-
work. First, whereas the excitatory neurons showed higher percent shared variance than inhib-
itory neurons in the clustered network (Fig 7B and 7E, bottom), this was not seen in the V1
recordings (Fig 7A and 7D, bottom). We speculate that this difference could be due to the con-
nectivity structure of the clustered network, or our ability to classify neurons accurately based
on waveform shape (see Discussion). Second, the mode that explained the largest amount of
shared variance (referred to as the “dominant mode”) in the V1 recordings described the pop-
ulation increasing and decreasing its activity together (S6 Fig, left column of heatmaps have
nearly all elements of the same sign). Previous studies have demonstrated this by analyzing all
recorded neurons together [39, 49]; here, we showed that this is also true when analyzing
broad-spiking and narrow-spiking populations separately. However, the dominant modes for
the excitatory and inhibitory populations in the clustered network (Fig 4A, left) did not exhibit
this property.

Discussion

In this work, we used spiking network models to examine how the patterns of activity pro-
duced by a population of neurons depend on neuron type (excitatory and inhibitory). We
found that excitatory and inhibitory neurons showed different population activity structure.
Notably, the inhibitory population expressed more modes of shared activity than the excitatory
population in both networks that we implemented. Furthermore, the population activity struc-
ture depended on the ratio of excitatory to inhibitory neurons sampled. To ground the net-
work results with real data, we classified V1 neurons based on waveform and found that the
population activity structure of each neuron type in the in vivo recordings better resembled
that of the clustered network. Overall, these results demonstrate that knowledge of neuron
type is important, and allows for stronger statistical tests, when interpreting population activity
structure.

Although many spiking network models have been proposed, we considered models where
strong excitation is balanced by an equally strong and opposing inhibition. Previous work on
balanced networks has focused on the response properties of the excitatory population [20, 21,
39, 50, 51] because, in balanced networks, the inhibitory population simply tracks the excit-
atory population. The tracking property of the inhibitory population is essential for network
stability and yields network activity that is asynchronous [21]. Thus, analyzing inhibition
should not, in principle, provide any further insight about network dynamics than the excit-
atory population. This intuition is developed from the theory of balanced networks with
homogeneous connectivity (i.e., non-clustered) where typically spike train statistics are only
studied in the limits of large network size and large trial counts [20, 21, 24]. In our study, we
compared and contrasted the network spiking statistics of a non-clustered balanced network
to one with clustered excitatory connectivity [22]. Counter to classical intuition, analysis of
both networks shows significant differences in the activity structure of the excitatory and
inhibitory populations.

We focused on the trends in shared dimensionality and percent shared variance to com-
pare the population activity structures of different neuron types. Absolute levels of shared
dimensionality and percent shared variance obtained for the model networks are likely to
depend on model parameters, such as the number of clusters, the synaptic weights, and the
probability of synaptic connection. We used the parameters described in [22], and we did
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not try to fit these parameters so that the results would match those found from experimental
data. Understanding the trade-offs among the different model parameters necessary to
reproduce the values of shared dimensionality and percent shared variance measured for the
in vivo recordings would be an interesting avenue of future research.

In our previous work, we attempted to group the neurons from the V1 recordings into clus-
ters based on the modes of shared activity [39]. However, we did not find clear groups of neu-
rons. In a separate analysis, using the clustered network, we asked how the number of clusters
represented in the neuron sample affects the population activity structure [39]. We found that
the shared dimensionality increases with the number of clusters represented, but the percent
shared variance does not depend on the number of clusters represented.

Recently, several studies have found that networks with heterogenerous connectivity can
better reproduce the variability and dynamics of cortical activity [22-24, 52]. The clustered
network that we studied here is an example of such a heterogeneous network. While inhibitory
projections do not appear to be structured [7], there may be structured projections from excit-
atory clusters to an inhibitory target [53]. How structured projections from excitatory to inhib-
itory neurons shape the structure of population activity would be an interesting line of further
research. In a similar vein, balanced network models with connectivity that depends upon the
spatial distance between neurons have been developed [54] and can serve as an interesting
platform for future studies of neural population activity structure. A complete understanding
of these differences between balanced networks with homogeneous and heterogeneous wiring
will require a full theory of heterogeneous balanced networks [24].

A central goal of network modeling is to construct models which produce activity that
resemble in vivo recordings. To date, most studies have compared network models with real
data at the level of individual neurons (e.g., averaged firing rate across neurons or Fano factor)
and pairs of neurons (e.g., pairwise correlation) [20-22, 55]. To move beyond single-neuron
and pairwise metrics, we compare here the joint activity patterns across a population of neu-
rons, as in recent studies [23, 39, 52, 56]. This comparison is facilitated by dimensionality
reduction methods (in this case, factor analysis), which produce summary statistics (in this
case, shared dimensionality and percent shared variance) of the population activity structure.
This approach is likely to be beneficial for the design of future network models. In addition to
matching single-neuron and pairwise metrics, network models should reproduce the popula-
tion activity structure of in vivo recordings.

The balanced networks studied here are deterministic and chaotic. Although the model
neurons do not each have an independent noise source, FA identifies “independent variance”
for each neuron’s activity that cannot be predicted from the other sampled neurons using a lin-
ear predictor. The independent component of variability arises from the fact that i) only a sub-
set of the neurons in the network are sampled, and ii) the balanced networks have non-linear
dynamics that are not captured by a linear and static FA model.

In our V1 recordings, the difference in population activity structure between broad-spiking
neurons and narrow-spiking neurons was small (cf. Fig 6). One possibility is that there is no
difference in the population activity structure between excitatory and inhibitory neurons in
cortical networks. Another possibility (which we think is more likely) is that there is a differ-
ence, but we were not able to see it in our data for two reasons. First, we were limited in sam-
pled neurons (23) and trials (1,200). In the clustered network, we observed that there was a
substantial difference in population activity structure between excitatory and inhibitory neu-
rons for large numbers of neurons (100) and trials (10,000) (cf. Fig 3). However, when the
number of neurons and trials was reduced to that available in V1 recordings (23 neurons and
1,200 trials), the difference between excitatory and inhibitory neurons was much smaller (cf.
Fig 6). This is consistent with the trends observed in the V1 recordings. Another possible
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reason is that neurons might be misclassified based on waveform shape. New technologies are
being developed that can identify neuron type more definitively in vivo using optogenetics
(e.g., [57, 58]) or selectively expressing fluorescent indicators in certain neuron types for opti-
cal imaging (e.g., [59, 60]). Given the rapid development and adoption of these technologies,
there is an ever-growing need for methods and analyses like those presented here to under-
stand how excitatory and inhibitory populations interact [61].

The properties of excitatory versus inhibitory neurons have largely been studied at the cel-
lular or sub-cellular levels. Applying dimensionality reduction methods to samplings of the
same neuron type allows us to link differences at the sub-cellular and cellular levels to popula-
tion-level effects at the network level. Differences in connectivity patterns, projection lengths,
and firing variability may all contribute to differences in population activity structure. Our
study connects two disparate, yet related, fields of neuroscience by studying population activity
as a function of neuron type sampling.

Classifying neurons as excitatory or inhibitory is only a first-level characterization of neu-
ron type. There exist multiple types of inhibitory neurons which vary in terms of morphologi-
cal, physiological, and neurochemical characteristics [62]. These different subtypes have been
implicated in different roles at the network level [63, 64], and are being incorporated in net-
work models [65]. The current study can be extended to assess whether there are signatures of
the different inhibitory neuron types in the population activity structure, and whether it is nec-
essary to sample all types of inhibitory neurons to understand network function. Furthermore,
we focused on spontaneous activity for the models networks (i.e., zero inputs) and in vivo
recordings (i.e., no visual stimulus). The approach presented here can be used to compare the
population activity structure of excitatory and inhibitory neurons for evoked activity, i.e.,
model networks with non-zero inputs and neural responses to visual stimuli.

Materials and methods
Balanced spiking networks

We considered two spiking networks: a classic balanced network (“non-clustered network”)
and a network in which the excitatory neurons exhibited clustered structure (“clustered net-
work”). Spiking network activity was generated using the same parameters as in [22]. Both net-
works contained 4,000 excitatory and 1,000 inhibitory leaky integrate-and-fire neurons. In the
clustered network, there were 50 clusters, each with 80 excitatory neurons. The same-cluster
excitatory neurons had higher probability of connection (p=£ = 0.485) than out-of-cluster
excitatory neurons (pg,, = 0.194). In the non-clustered network, all excitatory neurons had a
uniform probability of connection (p** = 0.2). All other neuron type connection probabilities
were uniform for both networks (p* = p™ = p" = 0.5). The membrane potential V of each neu-
ron was modeled by the following differential equation

V= (- V) )

syn

where y is the voltage bias, I, is the synaptic input current, and 7 is a time constant that is
dependent on neural type (15 ms for excitatory neurons, 10 ms for inhibitory neurons). When
V =V, = 1, the neuron fires, and is set to V,, = 0 for a refractory period of 5 ms. The synaptic
input current to a particular neuron i from population x was modeled via

Z!’”Fy 5]t (3)

where J;” is the synaptic weight to neuron i in population x from neuron j in population y, P is
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the synaptic filter of neurons from population y, and s} (t) is an impulse train representing the
spikes of neuron j from population y. The synaptic filter of excitatory and inhibitory neurons
was modeled by a difference of exponentials via

P(t) = ; (e*f/fz _ e*’/ﬂ) (4)
To—Th
where 7, is 3 ms and 2 ms for excitatory and inhibitory neurons, respectively, 7; is 1 ms for
both neuron types, and t only takes positive values.
In the clustered network, same-cluster excitatory synaptic weights were set to /> = 0.0456,
out-of-cluster weights were set to JE£,. = 0.024, and the rest of the weights were set to J*' =

—0.045, J'E = 0.014, and J” = —0.057. In the non-clustered network JE = ovr = 0.024, and the
remaining synaptic weights were the same as in the clustered network.

Factor analysis

In this study, population activity structure was characterized using factor analysis (FA) [27, 28,
36, 66, 67]. Unlike principal component analysis (PCA), FA partitions the spike count variance
of each neuron into shared and independent components. This makes it possible for us to
assess the shared population activity structure (i.e., the shared component), which can be
obscured by Poisson-like spiking variability (i.e., the independent component). For this rea-
son, FA is more appropriate than PCA for analyzing single-trial spike counts [37]. FA is
defined as:

x~N(p, LL" +P) (5)

where x € R™" is a vector of spike counts across the 7 simultaneously-recorded neurons,

u € R is a vector of mean spike counts, L € R"*" is the loading matrix relating m latent var-
iables to the neural activity, and ¥ € R™" is a diagonal matrix of independent variances for
each neuron. The model parameters g, L, and ‘¥ were estimated using the expectation maximi-
zation (EM) algorithm [68].

As shown in Fig 2A, FA separates spike count variance into a shared component LL" and
an independent component . The rank of LL” is m, the number of latent dimensions needed
to explain the shared population activity structure. To determine m, FA is applied to spike
counts for various candidate values of m, and then we select the m that maximizes the cross-
validated data likelihood using four folds.

In this study, we used two key metrics to summarize population activity structure: shared
dimensionality (dg,4req) and percent shared variance. First, we measured the number of dimen-
sions in the shared covariance as a metric for the complexity of the population activity. We fol-
lowed a two step procedure to obtain this metric. We first found the m that maximized the
cross-validated data likelihood, as is standard practice. We then defined d, ;.4 as the number
of dimensions that were needed to explain 95% of the shared variance based on the eigenvalues
of LLT (Fig 2B). We did this for the following reason. In simulations, we found that, when
training data were abundant, there was not a strong effect of overfitting and the cross-validated
data likelihood curve saturated at large dimensionalities. As a result, the peak data-likelihood
appeared at widely varying dimensionalities along the flat portion of the curve, leading to vari-
ability in the value of m from one run to the next. In contrast, we found that defining d;4,.q as
described above provided a more reliable estimate of dimensionality across analyses, even if it
underestimates the true dimensionality.

Second, we measured the amount of each neuron’s variance that was shared with at least
one other neuron in the sampled population (Fig 2C). Mathematically, percent shared variance
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for the k" neuron was computed as:

LLg

—_— 6
LLI +V¥, (6)

Percent shared variance for neuron k =
where L is the k™ row of L and W, is the independent variance for the k" neuron. In Figs 3,5
and 6, we report averages over all neurons of the same type in a given analysis. For Figs 2B and
4B, we computed a separate metric, the percent of overall shared variance explained by each
mode. This was used to quantify the relative dominance of each mode for explaining shared
variability. The percent of shared variance explained by the i mode was computed as:

Percent of shared variance explained by mode i = Z:}—’; (7)
=1 %

where 1, is the eigenvalue of LL” corresponding to the i mode and m is the rank of L. Note

that this metric does not take into account the independent variances. For Fig 4, FA was

applied with the cross-validated shared dimensionality to all 10,000 trials. Throughout this

work, we refer to a particular mode as “dominant” to another mode if it explains a larger per-

cent of shared variance.

Varying neuron and trial count

We investigated how dg,,,.q and percent shared variance vary with neuron and trial counts for
excitatory and inhibitory populations in spiking network models and V1 recordings. To do so,
we sampled increasing numbers of neurons or trials from either the network simulations or
V1 recordings. FA was then applied to the selected neurons and trials to obtain dg,,,.; and per-
cent shared variance.

In the analysis of model networks in Fig 3, to increase neuron count, we augmented the
next smaller sample of neurons with additional randomly selected neurons. For example, we
first randomly selected 10 neurons, computed dg,,,.q and percent shared variance for this set,
and then added 10 additional randomly-selected neurons to obtain the next sample of neu-
rons. We repeated this procedure 25 times at each neuron count using 5 non-overlapping sets
of neurons and 5 non-overlapping sets of trials, using 10,000 trials for each neuron count. We
studied how dg,,,.q and percent shared variance change with trial count by performing the
same procedure as described above, except that trials were increased rather than neurons.

For the V1 recording analysis in Fig 6A, we limited our analysis to 23 neurons of each type,
since this was the minimum number of neurons of a particular type across the four arrays. For
each neuron count, we took as many non-overlapping samples of neurons for that neuron
count as possible, and applied FA to compute dg,,,.s and percent shared variance. We applied
the same sampling procedure to analyze how d,,,.s and percent shared variance change with
increasing trial count, while limited to 1,200 trials. We repeated this procedure for each of the
four arrays.

Mixed neuron type sampling

Since realistic population samplings include a mixture of both excitatory and inhibitory neu-
rons, we analyzed how the ratio of excitatory to inhibitory neurons sampled affects population
activity structure. To do assess this, we fit FA to spiking network activity samplings of 100 neu-
rons to compute dg,.4 and percent shared variance for ratios of 0:100, 10:90, 20:80, and so on
until 100:0 excitatory to inhibitory neurons were sampled. Starting with the ratio of 0:100
excitatory to inhibitory neurons, we replaced 10 of the 100 inhibitory neurons with 10 excit-
atory neurons for a ratio of 10:90 excitatory to inhibitory neurons. Then, we replaced another
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10 inhibitory neurons with 10 excitatory neurons (while keeping the 10 excitatory neurons just
added to the sampling) for a ratio of 20:80 excitatory to inhibitory neurons sampled. Excitatory
neurons replaced inhibitory neurons in increments of 10, until the entire sampling comprised
zero inhibitory neurons and 100 excitatory neurons. We repeated this analysis 25 times for five
non-overlapping sets of 100 excitatory and 100 inhibitory neurons and five non-overlapping
sets of trials.

Neural recordings

A detailed description of the recording methodology can be found in [40, 69]. Briefly, neurons
were recorded in the primary visual cortex of three anesthetized macaque monkeys. Anesthesia
was maintained for 5-7 days with sufentanil citrate (6-18 pg/kg/hr) through continuous intra-
venous infusion, and eye movements were reduced through continuous intravenous infusion
of vecuronium bromide (100-150 ug/kg/hr).

Multi-electrode arrays were implanted in four primary visual cortex hemispheres of three
anesthetized macaque monkeys, and neural activity was recorded for 20-30 minutes during
presentation of a gray computer screen. Spiking waveform snippets from the recordings were
sorted off-line using a mixture-decomposition method [70]. This automatic sorting was
refined manually, taking into account waveform shape and inter-spike interval distributions.
For our analysis, we only used neurons which had average firing rate greater than one spike
per second, and signal-to-noise ratio (SNR), computed as the average waveform amplitude
divided by the standard deviation across waveforms, greater than 1.33. Median SNR values
were 2.96, 2.75, 2.50, and 2.31 for each of the four arrays. Spiking activity was divided into one
second epochs, which we refer to as “trials” throughout this work. An analysis of a superset of
these data can be found in [40].

Animal protocols were approved by the institutional animal care and use committees of
New York University and Albert Einstein College of Medicine of Yeshiva University. Monkeys
were fed nutrient-rich biscuits and frequently (1-2 times per day) given supplemental treats
(e.g. fresh and dried fruit, nuts, etc). Enrichment activities included foraging for treats, music,
movies, human interaction, and standard toys including mirrors. Animals were typically pair
housed and, when this was not the case, animals were always housed in the same room as con-
specifics, allowing frequent visual and auditory interactions. Professional veterinary staff and
lab personnel monitored animal health and well-being on a daily basis.

Neuron type classification

We classified the recorded neurons as putative excitatory or putative inhibitory neurons based
on average waveform shape (S5 Fig). Compared to excitatory neurons, inhibitory neurons
tend to have shorter latencies to peak depolarization [45-47], brief hyperpolarization dura-
tions [45, 46], and rapid peak rates of repolarization [45]. Neurons with any of these three
properties are considered “narrow-spiking” (or fast-spiking), while neurons with slower action
potential dynamics are considered “broad-spiking” (or regular-spiking). To classify neurons
from our extracellular recordings as broad- or narrow-spiking (putative excitatory and puta-
tive inhibitory, respectively), we computed the time of peak depolarization, duration of
hyperpolarization, and rate of repolarization for the average waveform of each neuron. We
measured these three waveform statistics for the 75% of the neurons that across all recording
sessions with the greaf SNR, and fit a mixture of two Gaussians to the scatter of waveforms,
where each waveform was represented by its waveform statistics in the three-dimensional
space [14]. The average waveforms of four neurons exhibited large increases in normalized
amplitude before spike depolarization making them difficult to parameterize, so they were not
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used to train the mixture of Gaussians classifier or in the analyses. The class with the smaller
mean time of peak depolarization was designated as the narrow-spiking class, and the other as
the broad-spiking class. We used the fitted mixture of Gaussian parameters to compute the
likelihood of a neuron being a part of either class. To focus on neurons that had a high proba-
bility of belonging to either class, we analyzed only neurons with probability greater than 85%
of belonging to either class. This resulted in the following distributions of classified neuron
types for the four arrays: 24 broad-spiking and 39 narrow-spiking, 41 broad-spiking and 72
narrow-spiking, 23 broad-spiking and 60 narrow-spiking, and 47 broad-spiking and 25 nar-
row-spiking neurons. These samples contain a smaller proportion of putative excitatory neu-
rons than the 75-80% excitatory pyramidal cells found in histochemical analysis [71, 72].
Possible reasons for this include differences between the physiological and anatomical sam-
pling distributions of neurons, ambiguity in classification due to the presence of some broad-
spiking inhibitory neurons, differences in laminar distributions between cell types, and ran-
domness in neural sampling for each array implant. Previous studies have not explored the
large-scale distribution of cell types using this classification method, and this will be an impor-
tant area for future research. Using the classifications we determined for each array implant,
we restricted our analysis to a randomly-chosen set of 23 neurons for each neuron type for
each array.

Supporting information

S1 Fig. Timescale of neuronal correlations. Autocorrelation of excitatory and inhibitory
neurons using a 10 ms spike count window. Curves were averaged across neurons and have

a maximum of one at zero time lag. (A) Clustered network: autocorrelation of excitatory
neurons (red), inhibitory neurons (blue), and excitatory neurons broken down by cluster
(orange). (B) Non-clustered network: autocorrelation of excitatory (red) and inhibitory (blue)
neurons. (C) V1 recordings: autocorrelation of broad-spiking (red) and narrow-spiking (blue)
neurons.

(EPS)

S2 Fig. Relationship of percent shared variance to pairwise spike count correlation. To
study the relationship of the width of a zero-mean spike count correlation distribution to
shared variance, we generated simulated spike counts with near-zero mean spike count
correlation distributions of various widths using the method described in [44]. We began by
drawing spike count correlations from a normal distribution with mean zero and a selected
standard deviation. They were used to form a correlation matrix, where the correlation values
were placed randomly in the upper half of the matrix and were copied to the lower half of the
matrix to ensure symmetry. For the correlation distribution widths tested here, all of the gen-
erated correlation matrices were positive semi-definite. The spike count means and variances
of the model neurons were matched to randomly-sampled inhibitory neurons in the non-clus-
tered network. We then generated 100,000 spike counts for 100 model neurons. We computed
the percent shared variance for simulated spike counts for various correlation distribution
widths. The widths 0.011 and 0.025 correspond to the excitatory (red) and inhibitory (blue)
populations, respectively, in the non-clustered network (cf. Fig 1D, EE and II), and are thus
highlighted. Standard error bars are shown for five sets of 20,000 trials, where each set is an
independent draw from the distribution of spike count correlations.

(EPS)

S3 Fig. Excitatory and inhibitory population activity structure using 100 ms spike count
windows. Same analysis as shown in Fig 3 using a 100 ms spike count window. The same
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neurons and trials of the clustered and non-clustered networks were used. Spike counts were
taken in the first 100 ms of the original one second trial.
(EPS)

$4 Fig. Mixed neuron type samplings using 100 ms spike count windows. Same analysis as
shown in Fig 5 using a 100 ms spike count window. The same neurons and trials of the clus-
tered and non-clustered networks were used. Spike counts were taken in the first 100 ms of the
original one second trials.

(EPS)

S5 Fig. Neuron type classification. (A) Normalized average waveforms of neurons with aver-
age firing rates greater than one spike per second. Each waveform corresponds to one neuron
and is colored by the probability that it belongs to the broad-spiking class (toward red) or the
narrow-spiking class (toward blue). (B) Posterior probability of neurons belonging to either
class. Neurons are ordered along the horizontal axis based on their relative probability of
belonging to the broad-spiking class (red) and narrow-spiking class (blue). Dashed vertical
lines indicate 85% probability thresholds used for determining neurons that clearly belong to
each class. (C) Waveform shape averaged across all broad-spiking neurons (red) and all nar-
row-spiking neurons (blue) that passed the 85% probability threshold.

(EPS)

S6 Fig. Modes of shared activity for V1 recordings. (A) Modes for broad-spiking neurons.
The columns of the heatmap represent the eigenvectors of the shared covariance matrix,
ordered by the amount of shared variance explained. (B) Same conventions as A for narrow-
spiking neurons. (C) Percent of total shared variance of broad-spiking (red) and narrow-spik-
ing (blue) neurons explained by each mode.

(EPS)
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