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Abstract

In recent years, two-photon calcium imaging has become a standard tool to probe the func-
tion of neural circuits and to study computations in neuronal populations. However, the
acquired signal is only an indirect measurement of neural activity due to the comparatively
slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike
rates from noisy calcium measurements have been proposed in the past, but it is an open
question how far performance can be improved. Here, we report the results of the spikefin-
derchallenge, launched to catalyze the development of new spike rate inference algorithms
through crowd-sourcing. We present ten of the submitted algorithms which show improved
performance compared to previously evaluated methods. Interestingly, the top-performing
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algorithms are based on a wide range of principles from deep neural networks to generative
models, yet provide highly correlated estimates of the neural activity. The competition
shows that benchmark challenges can drive algorithmic developments in neuroscience.

Author summary

Two-photon calcium imaging is one of the major tools to study the activity of large popu-
lations of neurons in the brain. In this technique, a fluorescent calcium indicator changes
its brightness when a neuron fires an action potential due to an associated increase in
intracellular calcium. However, while a number of algorithms have been proposed for
estimating spike rates from the measured signal, the problem is far from solved. We orga-
nized a public competition using a data set for which ground truth data was available. Par-
ticipants were given a training set to develop new algorithms, and the performance of the
algorithms was evaluated on a hidden test set. Here we report on the results of this compe-
tition and discuss the progress made towards better algorithms to infer spiking activity
from imaging data.

Introduction

Two-photon calcium imaging has become a standard tool to probe the function of neural cir-
cuits and to study computations in neuronal populations [1, 2]. Indeed, the latest advances in
scanning technologies make it now possible to record neural activity from hundreds or even
thousands of cells simultaneously [3-5]. However, the resulting fluorescence signal is only an
indirect measurement of the underlying spiking activity, as it reflects the comparatively slow
cellular dynamics of cellular calcium and the fluorescent calcium indicators [6-8]. Thus, to
relate large-scale population recordings to the spiking activity of neural circuits we fundamen-
tally require techniques to infer spike rates from the fluorescent traces.

Opver the past decade, a number of algorithms for solving this problem have been proposed.
Many of them assume a forward generative model of the calcium signal and attempt to invert
it to infer spike rates. Examples of this approach include deconvolution techniques [9, 10],
template-matching [4, 11] and approximate Bayesian inference [6, 12, 13]. Such forward mod-
els incorporate a priori assumptions about how the measured signal is generated, e.g. about
the shape of the calcium fluorescence signal induced by a single spike and the statistics of the
noise. In contrast, comparatively few groups have attempted to solve the problem through
supervised learning [14, 15], where a machine learning algorithm is trained to infer the spike
rate from calcium signal using simultaneously recorded spike and calcium data for training.

Despite this progress, it is still an open question whether current algorithms already achieve
the best possible performance for the task, or whether the observed performance can still be
improved upon by algorithmic developments. To answer this question, we organized the spike-
finder challenge. This challenge aimed at two goals: (1) provide a standardized framework to
evaluate existing spike inference algorithms on identical data and (2) catalyze the development
of new spike inference algorithms through crowd-sourcing. Such challenges have been used
successfully in machine learning, computer vision or physics to drive algorithmic develop-
ments [16, 17]. We present ten of the submitted algorithms which show improved perfor-
mance compared to previously evaluated methods [15]. Interestingly, the top-performing
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algorithms are based on a range of principles from deep neural networks to generative models,
yet provide highly correlated estimates of the neural activity.

Results

For the spikefinder challenge, we used five benchmark data sets consisting in total of 92
recordings from 73 neurons, acquired in the primary visual cortex and the retina of mice

(see Table 1). In brief, data sets I, IT and IV were collected with OGB-1 as a calcium dye, while
data sets IIT and V were collected with the genetically encoded indicator GCampé6s. Similarly,
there were differences in scanning method and scan rate between the data sets: For example,
data set I was recorded using 3D AOD scanners at very high scan rates [3], while data set II
was recorded using conventional galvo-scanners at fairly low speed. For all data sets, calcium
imaging had been performed simultaneously with electrophysiological recordings allowing to
evaluate the performance of spike rate inference algorithms on ground truth data [15]. Impor-
tantly, all data was acquired at a zoom factor typically used during population imaging experi-
ments, ensuring that all benchmark results reflect performance under the typical use-case
conditions.

For the challenge, we split the data into a training and a test set, making sure that all record-
ings from a single neuron were either assigned to the training or the test set. For the training
data, we made both the calcium and the spike traces publicly available, but kept the spike traces
secret for the test data. Additionally, the publicly available data sets provided by the GENIE
project [18] were available as training data. This allowed participants to adjust their models on
the training data set, while avoiding overfitting to the specific benchmark data set providing a
realistic estimate of the generalization performance. Participants could upload predictions for
the spike rate generated by their algorithm on a dedicated website (see Methods) and see their
performance on the training set during the competition phase. Results on the test set were not
accessible to the participants during the competition. The primary evaluation measure for the
competition was the Pearson correlation coefficient between the true spike trace and the pre-
diction sampled at 25 Hz (equivalent to 40 ms time bins) as previously described [15].

We obtained 37 submissions, from which we selected all algorithms performing better than
the spike-triggered-mixture model algorithm (STM), which had previously been shown to out-
perform other published algorithms on this data [15]. In addition, if there were multiple sub-
missions from the same group, we used the one with the highest correlation on the test set.
This resulted in a total of ten algorithms that we studied in greater detail and that are included
in this paper. Notebooks and code showing how to run the individual algorithms are available
at https://github.com/berenslab/spikefinder_analysis (see Table 2). While seven of these algo-
rithms were designed specifically for the purpose of the challenge, three were heavily based on
methods published previously (see Table 2 for overview).

Interestingly, these submissions include algorithms based on very different principles: some
of the algorithms built on the classical generative models of spike-induced calcium dynamics

Table 1. Overview over datasets with training and test data used in the competition.

Dataset Scan method
I 3D AOD
I galvo
111 resonant
v galvo
\% resonant

https://doi.org/10.1371/journal.pcbi.1006157 t001

Indicator Avg. scan rate (Hz) N in training set N in test set
OGB-1 322.5 11 5
OGB-1 11.8 21 10
GCampb6s 59.1 13 6
OGB-1 7.8 6 3
GCampb6s 59.1 9 8

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006157 May 21,2018 3/13



©'PLOS

COMPUTATIONAL

BIOLOGY

Benchmarking spike rate inference for two-photon calcium imaging

Table 2. Overview over submitted algorithms and key properties.

Team

https://doi.org/10.1371/journal.pcbi.1006157.t1002

1

O |0 (NN N G W N

—_
(=]

Contributors new? Language Type

T. Deneux -[12] Matlab generative
N. Chenkov, T. McColgan + Python supervised
A. Speiser, J. Macke, S. Turaga + Python supervised
P. Mineault + Python supervised
P. Rupprecht, S. Gerhard, R. W. Friedrich + Python supervised
]. Friedrich, L. Paninski -[13] Python generative
M. Pachitariu -[28] Matlab supervised
B. Bolte + Python supervised
T. Machado, L. Paninski + Python generative
D. Ringach + Matlab supervised

[6], while others relied on purely data-driven training of deep neural networks or pursued
hybrid strategies. Algorithms based on generative models of the calcium fluorescence include
the MLspike algorithm by Team 1 [12], which performs efficient Bayesian inference in a bio-
physical model of measured fluorescence including a drifting baseline and nonlinear calcium
to fluorescence conversion (for a detailed description of each algorithm, see S1 Text). Within
the same group of algorithms, Team 6 took a decidedly different approach, approximating the
calcium fluorescence by an autoregressive process and finding the spike trains by solving a
non-negative sparse optimization problem [13, 19]. A similar approach was taken by Team 7,
who used Ly-deconvolution in a linear model of calcium fluorescence with exponential cal-
cium filters.

In contrast, many other algorithms took a purely data-driven approach [15] and trained dif-
ferent variants of deep neural networks to learn the relationship between measured spike and
calcium traces. For example, the algorithm by Team 2 used a straightforward network archi-
tecture with eight convolutional layers with consecutively smaller convolutional filters and one
intermediate recurrent LSTM layer. The filters learned in the first layer provide a rich basis set
for different spike-calcium relationships (see S1 Text). Similarly, the algorithm by Team 5 used
fairly standard components, consisting of convolutional and max-pooling layers. In contrast,
the algorithms proposed by Teams 3, 4, and 8 combined more involved elements such as resid-
ual blocks [20] or inception cells [21]. The key features of the different DNN-based approaches
are summarized in Table 3.

The best algorithm increased the average correlation on the test set from 0.36 by 0.08 to
0.44 compared to the STM (Fig 1A and 1B; Table 4). This corresponds to an increase of more
than 40% in variance explained for the best algorithms, similar to the improvement seen
between the STM algorithm and f-oopsi (see Table 4 and ref. [15]). For all algorithms,

Table 3. Overview over different strategies used by DNN-based algorithms. Architecture briefly summarizes main components. conv: convolutional layers, typically
with non-linearity; Istm: recurrent long-short-term memory unit; residual: residual blocks; max: max-pooling layers; inception: inception cells. For details, refer to the
descriptions of the algorithms in the supplementary material.

Team

2

3
4
5
8

https://doi.org/10.1371/journal.pcbi.1006157.t003

Architecture
conv / Istm
RNN/CNN

residual / Istm
conv / max

inception

Optimizer Dropout Cost dataset specific
Adam yes correlation indicator
Adam cross-entropy separate
Adam yes scaled SSE transfer

Adagrad no MSE embedding
Adam yes correlation embedding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006157 May 21,2018 4/13



©-PLOS | Sotoer o

Benchmarking spike rate inference for two-photon calcium imaging

Team
8(000\10701#0)!\)—\

STM
f-oopsi

Team
SQOOO\IO')U'IAOON—\

STM

Dataset

o | 1l

o lll oIV
v

0.00

>0.20 _
0.16 °
0.12 ,
0.08 .
0.04 0.10 0.15 0.20

== OGB-1 - “w——
GCaMP6s E

0@ o0 e s

Team

o
NGO WN -

° . f-oopsi g

0.25 0.50 0.75 -0.2 0.0 0.2
Correlation coefficient N™correlation coefficient
B
Team E §- D o DNN-based
234567 8910w o other

0.20

0.15

[

«®

0.10

anjea-d
N correlation coefficient
test set

N correlation coefficient
training set

0.00

Fig 1. Contributed algorithms outperform state-of-the-art. A. Correlation coefficient of the spike rate predicted by the submitted algorithms
(evaluated at 25 Hz, 40 ms bins) on the test set. Colors indicate different data sets (for details, see Table 1). Data sets I, II, and IV were recorded
with OGB-1 as indicator, IIl and V with GCaMPés. Black dots are mean correlation coefficients across all N = 32 cells in the test set. Colored dots
are jittered for better visibility. STM: Spike-triggered mixture model [15]; f-oopsi: fast non-negative deconvolution [9] B. Difference in correlation
coefficient on the test set to the STM, split by the calcium indicator used in the data set. C. P-values for difference in mean correlation coefficient
on the test set for all pairs of algorithms (Repeated measured ANOVA, N = 32 cells, main effect of algorithm: P < 0.001, shown are p-values for
post-hoc pairwise comparisons, corrected using Holm-Bonferroni correction) D. Difference in correlation coefficient split by algorithm type on
the training and test set, respectively, to the f-oopsi-result correcting for systematic differences between the training and the test set.

https://doi.org/10.1371/journal.pcbi.1006157.9001

performance varied substantially between data sets with the best results observed on data set L.
Interestingly, performance gains were typically larger on GCaMP6 than on OGB-1 data sets
(Fig 1B). Surprisingly, the top group of six algorithms performed equally well, despite using
very different methodologies. Indeed, when we computed a repeated measures ANOVA, we
were not able to distinguish the first six algorithms during post-hoc testing (Fig 1C). In addi-
tion, we evaluated to what extent the algorithms overfitted the training data. For example, it is
possible that algorithms extracted peculiarities of the training data that did not transfer to the
test data, resulting in artificially high correlation coefficients on the training data. We found
that most algorithms showed similar performance for both the training and the test set, with
evidence for overfitting in some of the DNN-based algorithms (Fig 1D).

To explore the generality of our findings, we additionally analyzed the performance of the
algorithms at different temporal resolutions and using different evaluation measures. To this
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Table 4. Summary of algorithm performance. A correlation is computed as the mean difference in correlation coefficient compared to the STM algorithm. A var. exp. in
% is computed as the mean relative improvement variance explained (r*). Note that since variance explained is a nonlinear function of correlation, algorithms can be
ranked differently according to the two measures. All means are taken over N = 32 recordings in the test set, except for training correlation, which is computed over N = 60

recordings in the training set.

Team train correlation
1 0.4823
2 0.4727
3 0.4730
4 0.5374
5 0.4900
6 0.4752
7 0.4379
8 0.5063
9 0.4271
10 0.3992
STM 0.4024
f-oopsi 0.2964

https://doi.org/10.1371/journal.pcbi.1006157.1004

test correlation
0.4382
0.4378
0.4347
0.4325
0.4291
0.4188
0.3967
0.3833
0.3794
0.3629
0.3572
0.2538

A correlation
0.0810
0.0806
0.0775
0.0753
0.0719
0.0617
0.0395
0.0261
0.0222
0.0058

-0.1010

A var. exp. %
44.1
42.0
41.8
429
40.5
36.5
222
13.1
13.5
11.0

-40.4

AUC
0.846
0.846
0.851
0.815
0.842
0.822
0.829
0.816
0.815
0.784
0.821
0.658

Info
2.922
3.118
3.085
2.816
2.725
2.778
2.797
2.415
2.816
2.253
2.468
1.107

end, we computed the average correlation coefficient between the inferred and the true spike

rates for bins of 40, 83, 167 and 333 ms, respectively (Fig 2). As expected, the average correla-
tion increased with increasing bin width (e.g. for algorithm by team 1: 0.44 to 0.73). Interest-
ingly, the rank of the algorithms was consistent across bin widths. In addition, we evaluated

the performance of the algorithm using the AUC and information gain (Fig 3, Table 4, see

Methods). The AUC measures the accuracy with which the presence of spiking in a given bin
is detected, neglecting differences in the number of spikes. The information gain provides a

0.8

o
o

Correlation

0.4

0.2

40

25

83 167
Bin width (ms)
12.5 6.25

Sampling rate (Hz)

333

3.125

Team

=2 OoO~NOAaAPRrWN =

= f-oopsi

Fig 2. Temporal resolution does not change the ranking of algorithms. Mean correlation between inferred and true
spike rates evaluated at different temporal resolution/sampling rate on all N = 32 cells in the test set. Colors indicate
different algorithms. Colored dots are offset and connected for better visibility. STM: Spike-triggered mixture model
[15]; f-oopsi: fast non-negative deconvolution [9].

https://doi.org/10.1371/journal.pchi.1006157.g002
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Fig 3. Different spike inference metrics reach similar conclusions. A. Area under the curve (AUC) of the inferred spike rate used as a binary
predictor for the presence of spikes (evaluated at 25 Hz, 50 ms bins) on the test set. Colors indicate different datasets. Black dots are mean
correlation coefficients across all N = 32 cells in the test set. Colored dots are jittered for better visibility. STM: Spike-triggered mixture model
[15]; f-oopsi: fast non-negative deconvolution [9] B. Information gain of the inferred spike rate about the true spike rate on the test set
(evaluated at 25 Hz, 40 ms bins).

https://doi.org/10.1371/journal.pcbi.1006157.9003

model-based estimate of the amount of information about the spike rate extracted from the
calcium trace [15]. The ranking of the algorithms was broadly consistent with the ranking
based on correlation, despite minor differences.

As the algorithms in the top group used a range of algorithmic strategies, we wondered
whether they also made different predictions, e.g., each capturing certain aspects of the spike-
calcium relationship but not others. However, the predictions of the different algorithms were
typically very similar with an average pairwise correlation coefficient among the first six algo-
rithm of 0.82+.04 (mean + SD, Fig 4). Also, averaging the top six predictions in an ensembling
approach did not yield substantially better performance (¢ = 0.4436 compared to ¢ = 0.4382
for Team 1). This indicates that despite their different algorithmic strategies, all algorithms
captured similar aspects of the spike-fluorescence relationship.

Discussion

In summary, the spikefinder challenge has shown that a community competition making use
of suitable benchmark data can catalyze algorithmic developments in neuroscience. The chal-
lenge triggered a range of new and creative approaches towards solving the problem of spike
rate inference from calcium data and improved the state-of-the-art substantially. The challenge
did not distill the optimal strategy out of the different possible algorithmic approaches, some-
thing we had initially hoped for; rather, it showed that—given the current data—a range of
approaches yield very similar outcomes.

Different algorithmic strategies for spike rate inference

Interestingly, algorithms based on very different approaches yielded very similar performance.
For example, algorithms based on generative models such as those by Team 1 and 6 perform
on par with—in principle—more flexible deep learning-based approaches. Each algorithm
comes with their own advantages and disadvantages regarding speed, interpretability, and
incorporation of prior knowledge. For example, training the DNN-based models can be

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006157 May 21,2018 7/13
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Fig 4. Top algorithms make highly correlated predictions. A.-B. Example cells from the test set for dataset 1 (OGB-1) and dataset 3 (GCaMP6s) show highly
similar predictions between most algorithms. C. Average correlation coefficients between predictions of different algorithms across all cells in the test set at 25 Hz
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https://doi.org/10.1371/journal.pcbi.1006157.9004

computationally quite costly and their efficient use may require specialized hardware such as
GPUs. In practice, when a trained algorithm is applied to infer spike rates, we found all DNN-
based method comparably efficient with a run time of less than a second per recording. With
supervised methods, care has to be taken when using complex models to avoid overfitting the
training set, as this could lead to false confidence about the prediction performance on new
data. In fact, we observed quite heavy overfitting for two of the DNN-based approaches (Fig
1D). Nevertheless, supervised spike inference algorithms have been shown to generalize well
to new data sets for which no data had been used during training [15], indicating that adapting
supervised algorithms to new settings like indicators with different dynamics should be rea-
sonably straightforward. In contrast, the algorithms based on generative models may be less
easily adapted to novel settings as indicator dynamics, saturation or adaption effects and noise
properties need to first be accurately assessed—simply swapping the measured calcium tran-
sient from isolated spikes may not be sufficient. In addition, inference in such models can

be more time consuming as shown by the performance of the MLspike algorithm with an
average of 15 seconds per recording. Hybrid approaches such as pursued here by Team 9 or
more recently by [22] may offer a way towards combining the respective strengths of both
approaches.

Is spike rate inferences saturated?

The spikefinder challenge raises the question of what the actual performance bound of an ideal
decoder is. Model simulations can help to answer these questions [8, 12], but their interpreta-
tion is limited by the accuracy of the model regarding indicator dynamics, noise structure, and
other experimental factors [15]. For example, in vitro recordings zooming in on individual
neurons will have a different maximal performance than recordings in awake, behaving
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©PLOS

COMPUTATIONAL

BIOLOGY

Benchmarking spike rate inference for two-photon calcium imaging

animals. Of course, the achievable upper bound on performance always depends on the
desired temporal resolution (Fig 2) and experimental factors. For example, cells in data set I
recorded at very high sampling rates using 3D AOD scanning yielded on average much higher
correlation than neurons recorded using the same indicator in the same area with much lower
scan rate (Fig 1A). It remains to be seen whether new and larger data sets of simultaneously
recorded and imaged neurons will yield further improvements and distinguish more clearly
between different algorithmic strategies. It will also be interesting to see whether new indica-
tors will allow for more precise spike rate inference.

Evaluation of spike rate inference

We also considered the AUC and information gain as alternatives to our primary evaluation
measure, the correlation coefficient. While the latter is easy to interpret and more sensitive
than the AUG, it is still invariant under global scaling of the predicted spike rate [15]. Although
information gain as a model based measured is considered a canonical model comparison cri-
terion for probabilistic predictions [15, 23], it can be more difficult to interpret than correla-
tion coefficients or AUC.

In general, all three measures yielded similar estimates of the ranking of the algorithms,
with the AUC resolving the present differences least. In fact, different metrics can in principle
lead to different conclusions about which algorithm is optimal since the metric contains part
of the task specification [24]. Metrics for spike rate inference are a matter of current debate in
the literature—see for example refs. [5, 25] for recent proposals.

Design considerations for future challenges

In addition to improving on the state-of-the-art, competitions such as the spikefinder challenge
can boost standardization of algorithms, something that has been lacking from neuroscience
analysis [26]. For example, several of the processing choices made for this challenge triggered a
debate among the submitting teams as to their utility and practicality. For example, we resam-
pled all data to 100 Hz for ease of comparison, which induced problems for some of the sub-
mitted algorithms through the properties of the used filter. In addition, most participating
teams found it necessary to introduce means of adapting the model parameters to the specific
data set. These differences may have been introduced through different preprocessing proce-
dures in the labs that contributed data and even between different scanning methods and
speeds within the same lab (3D AOD vs. galvo scanning vs. resonant scanning). Even greater
care should be taken to avoid such confounds in future competitions on this topic. In particu-
lar, a future challenge should explicitly address the potential of each algorithm to easily adapt
to a data set not previously seen as part of the training set, testing for the transfer learning
capabilities of each algorithm. It would also be interesting to explicitly evaluate algorithms for
different recording conditions (e.g. in-vitro vs. awake), as the difference in recording condi-
tions could even make different algorithmic strategies optimal.

Finally, the challenge was performed on traces extracted from the raw imaging data by aver-
aging all the pixels within manually placed regions-of-interest (ROIs). It is thus possible that
the extracted signals contain contamination from the neuropil or were suboptimally placed, a
problem tackled by methods that combine ROI placement and calcium-trace extraction in a
single algorithm [27, 28]. However, at least for data with simultaneous imaging and
electrophysiological recordings, it is not clear how methods integrating ROI placement and
spike rate extraction should be evaluated and compared to regular data, since the recording
electrode is always present in the picture, adding a confound to automated ROI extraction
through the different image statistics.
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Conclusion

We believe that quantitative benchmarks are an essential ingredient for progress in the field,
providing a reference point for future developments and a common standard with regards to
how new algorithms should be evaluated. We strongly believe that many fields of computa-
tional neuroscience can benefit from community-based challenges to assess where the field
stands and how it should move forward. As for the problem of spike rate inference from two-
photon imaging, the spikefinder challenge should not be considered the last word in this mat-
ter: More comprehensive data sets and new functional indicators may require organizing
another round of community-based development, further pushing the boundaries of what is
attainable. Which algorithm to choose? The answer to that depends on a lot of factors, includ-
ing performance, desired programming language, envisioned run time and not the least the
simplicity of the method—certainly, an algorithm consisting of ten simple lines of code like
that by team 10 is more intuitive than a highly nonlinear DNN. The algorithms submitted as
part of this challenge offer a range of options regarding these criteria and will provide a solid
basis to further advance the field.

Methods
Data

The challenge was based on data sets collected for a previous benchmarking effort [15] and the
publicly available cai-1 data set from crcns.org [18]. Details about the recording region, scan
method, indicators, scan rate and cell numbers are summarized in Table 1 and described in
detail in Theis et al. (2016). All data was resampled to 100 Hz independent of the original sam-
pling rate. Upon request during the challenge, we made the data available at the native sam-
pling rate.

Challenge organization

For the challenge, we split the available data into training and test sets (see Table 1). The train-
ing set contained both calcium and spike data, while for the test set, only calcium data was
available during the challenge period. We made sure that multiple recordings from individual
neurons contained in some data sets were either assigned to the training or the test set. The
GENIE datasets were only used as training data, since they are completely publicly available
and consist of recordings from individual zoomed-in cells.

The data and instructions were available on a dedicated website, based on an open-source
web framework (https://github.com/codeneuro/spikefinder). There was a discussion board
linked from the website to allow for questions and discussion among participants. Each team
could make multiple submissions, but during the challenge period, only results on the training
set were shown. The challenge ran from 30/11/2016 to 04/05/2017.

Algorithms

The submitted algorithms are described in detail in the Appendix. For comparison, we used
publicly available implementations of the STM algorithm [15] and fast-oopsi [9]. STM param-
eters were optimized on the entire training set.

Evaluation

The evaluation of the submissions was done in Python using Jupyter notebooks. All evaluation
functions and notebooks are available at https://github.com/berenslab/spikefinder_analysis.
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We used the correlation coefficient ¢ between the inferred and the real traces resampled to
25 Hz (40 ms time bins) as primary quality measure. To make the observed increase in correla-
tion more interpretable, we converted it to variance explained r* and report the improvement
in performance as the average increase in variance explained compared to the STM algorithm:
2

4
100 (< = > —1)%

Cstv

Here, <> denotes an average over cells, omitting the dependence of ¢ on cells for clarity.
For completeness, we also computed the area under the ROC curve (AUC) and the informa-
tion gain as in ref. [15]. We used the roc_curve function from scikit-learn[29] to
compute the AUC for classifying whether or not a spike was present in a given bin. Assuming
Poisson statistics, independence of spike counts in different bins, an average firing rate A and a
predicted firing rate of A, at time ¢, the expected information gain (in bits per bin) can be esti-
mated as

1 Iy
I, :?Zk'long%_;"Zk'

Since the different algorithms were not necessarily optimized for this model, we trans-
formed the predicted firing rate A, using a piecewise linear monotonically increasing function f
optimized to maximize the information gain across all cells [15].

We used the R package afex to compute a repeated measures ANOVA on the correlation
coefficients with within-subject factor algorithm and cells as subjects. Pairwise comparisons
between algorithms were performed using the 1 smeans package with Holm-Bonferroni cor-
rection for 66 tests.

Supporting information

S1 Text. Detailed description of all algorithms. The supplementary file contains detailed
descriptions of all algorithms submitted as part of the spikefinder challenge.
(PDF)
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