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a b s t r a c t 

The convex clustering formulation of Chi and Lange (2015) is revisited. While this formulation can be 

precisely and efficiently solved, it uses the standard Euclidean metric to measure the distance between 

the data points and their corresponding cluster centers and hence its performance deteriorates signifi- 

cantly in the presence of outlier features. To address this issue, this paper considers a formulation that 

combines convex clustering with metric learning. It is shown that: (1) for any given positive definite Ma- 

halanobis distance metric, the problem of convex clustering can be precisely and efficiently solved using 

the Alternating Direction Method of Multipliers; (2) the problem of learning a positive definite Maha- 

lanobis distance metric admits a closed-form solution; (3) an algorithm that alternates between convex 

clustering and metric learning can provide a significant performance boost over not only the original con- 

vex clustering formulation but also the recently proposed robust convex clustering formulation of Wang 

et al. (2017). 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Clustering refers to a procedure that groups similar objects to- 

gether while separating dissimilar ones apart. This simple idea has 

a wide range of applications in different areas of scientific research. 

For example, in bioinformatics, clustering can identify co-expressed 

genes that work together for the same metabolic pathway [1] ; in 

neuroscience,clustering can identify regions of neurons in the brain 

that are physically or functionally connected [2] ; and in document 

and image analysis, clustering can identify handwritten words or 

characters in different languages [3,4] . Due to its fundamental im- 

portance, clustering has been an extensively studied topic in the 

literature, and many algorithms have been developed based on var- 

ious problem formulations [5–10] . 

A common challenge for developing clustering algorithms is 

that many clustering formulations are inherently difficult to solve 

and in practice can only be approximately solved based on various 

heuristics. The famous k -means [6] and normalized-cut [5] algo- 

rithms are two prime examples. One interesting exception is the 

recently proposed Convex Clustering (CC) formulation by Chi and 

Lange [11] . 1 In their formulation, each data point is associated with 

∗ Corresponding author. 

E-mail address: xlsui@tamu.edu (X.L. Sui). 
1 Using convex optimization techniques to solve clustering problems has also 

been previously explored in [7,12] . 

a cluster center, and the goal is to minimize the aggregate dis- 

tance between the data points and their corresponding cluster cen- 

ters. A regularization term is then added to the objective function 

to leverage group sparsity to the clustering solution. Varying the 

weight of the regularization term creates a clustering path that 

may contain multiple meaningful solutions. More importantly, as 

demonstrated in [11] , this formulation leads to a convex optimiza- 

tion problem, which can be precisely and efficiently solved using the 

well-known Alternating Direction Method of Multipliers (ADMM) 

[13–15] . 

One potential drawback about the CC formulation of Chi and 

Lange [11] is that it uses the standard Euclidean metric to mea- 

sure the distance between the data points and their corresponding 

cluster centers. As is well known, the Euclidean metric treats each 

feature of the data equally , and as a result, the performance of the 

CC algorithm of Chi and Lange [11] deteriorates significantly in the 

presence of outlier features. 

To address this issue, Wang et al. [16] proposed the so-called 

Robust Convex Clustering (RCC) formulation, in which they intro- 

duced the so-called robust component to explicitly identify the out- 

lier features of the data. By assuming that the outlier features 

are sparse , it was shown [16] that the robust component can 

be learned from the unlabeled data. However, even though RCC 

[16] can provide a performance boost over the CC algorithm of Chi 

and Lange [11] , the underlying modeling assumption that the out- 

lier features are sparse can be questionable. For example, for many 

https://doi.org/10.1016/j.patcog.2018.04.019 
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real-world data sets, it is the highly relevant features, rather than 

the outlier features, that are sparse. 

In this paper, we revisit the problem of CC by incorporating 

Metric Learning (ML) into the problem formulation. The fact that 

the accuracy of clustering can be significantly improved with a dis- 

tance metric that is tailored to the specific data set is well docu- 

mented [17] , and the problem of learning an appropriate distance 

metric from a given labeled or partially labeled training data set 

has received a significant amount of attention in the literature 

lately [18–27] . The main challenge here is that for clustering there 

are usually no labeled or partially labeled training data available, 

so ML has to be done in an unsupervised fashion. Note that this 

situation is rather similar to that for learning the robust compo- 

nent in the RCC formulation [16] . Similar to [16] , we shall consider 

an alternating procedure that alternates between CC and ML. 

More specifically, in this paper we show that: (1) for any given 

positive definite Mahalanobis distance metric [19,28] , the problem 

of CC can be precisely and efficiently solved within the ADMM 

framework [13–15] . In particular, at each iteration of the ADMM, 

the cluster centers can be efficiently updated via solving a Sylvester 

equation [29] ; and (2) when considering the family of positive def- 

inite Mahalanobis distances for CC, the problem of ML admits a 

closed-form solution. This is in sharp contrast to many other ML 

problems considered in the literature [18–24] . Through simulated 

and real-world data sets, we show that the proposed algorithm 

that combines CC with ML can provide significant performance 

boosts over both CC and RCC. 

The rest of the paper is organized as follows. Next in Section 2 , 

we review the formulations of CC [11] and RCC [16] and the pro- 

posed algorithms for solving them. In Section 3 , we discuss in de- 

tail the problem of CC under a positive definite Mahalanobis dis- 

tance metric, and present our main results on an efficient cluster- 

ing algorithm based on the ADMM framework and the closed-form 

solution for the corresponding ML problem. In Section 4 , we use 

one set of synthetic data and three sets of real-world data collected 

from the UCI Machine Learning Repository [30] to benchmark the 

performance of CC, RCC, and the proposed Convex Clustering with 

Metric Learning (CCML) . Finally in Section 5 , we conclude the paper 

with some remarks. 

2. Convex clustering and robust convex clustering 

2.1. Convex clustering 

Let { x 1 , x 2 , . . . , x N } be a collection of N data points to be clus- 

tered, and let X be the data matrix for which the j th column is 

given by x j (so each row of X represents a feature of the data). In 

[11] , the CC problem was formulated as the following optimization 

problem: 

Minimize 
U 

1 

2 

N 
∑ 

j=1 

‖ x j − u j ‖ 
2 
2 + γ

∑ 

1 ≤ j 1 < j 2 ≤N 

w { j 1 , j 2 } ‖ u j 1 − u j 2 ‖ 1 (1) 

where γ is a positive tuning constant, w { j 1 , j 2 } 
is a nonnegative 

weight, and the j th column u j of the matrix U is the center of the 

cluster that the data point x j belongs to. Multiple data points that 

belong to the same cluster will have the same cluster center vector, 

thus the columns of U are not unique: If there are k clusters, there 

will be k unique cluster centers, i.e. k unique columns of U . Clearly, 

the goal of this convex optimization problem is to cluster the set 

of data points { x 1 , x 2 , . . . , x N } such that the aggregate distance be- 

tween the data points and their corresponding cluster centers is 

minimized. The second term in the objective function is a regu- 

larizer that leverages group sparsity to control the complexity (the 

number of clusters) of the clustering solution. 

To solve the optimization problem using the aforementioned 

ADMM framework, let E be the set of edges in a complete 

graph with nodes 1 , 2 , . . . , N, i.e., E = {{ j 1 , j 2 } : 1 ≤ j 1 < j 2 ≤ N} . 

We define a one-to-one edge-labeling mapping φ : { 1 , 2 , . . . , ε} −→ 

E with ε = N(N − 1) / 2 , and let φ1 (� ) = j 1 and φ2 (� ) = j 2 if 

{ j 1 , j 2 } = φ(� ) and j 1 < j 2 . For notational simplicity, let w � := w φ( � ) 

for 1 ≤ � ≤ ε. For each 1 ≤ � ≤ ε, let v � := u φ1 (� ) 
− u φ2 (� ) 

be the dif- 

ference between the centroids u φ1 (� ) 
and u φ2 (� ) 

. The matrix V is 

given by the collection of v � , 1 ≤ � ≤ ε as its columns. With this 

notion of the matrix V , the convex clustering problem (1) can be 

recast as the following constrained optimization problem: 

Minimize 
U , V 

1 

2 

N 
∑ 

j=1 

‖ x j − u j ‖ 
2 
2 + γ

ε 
∑ 

� =1 

w � ‖ v � ‖ 1 

Subject to u φ1 (� ) − u φ2 (� ) − v � = 0 , 1 ≤ � ≤ ε. (2) 

Considering a vectorization of U and V , the optimization prob- 

lem (2) is a special case of the following general optimization 

problem: 

Minimize 
u , v 

f ( u ) + g ( v ) 

Subject to A 1 u + A 2 v = c . (3) 

The augmented Lagrangian of this general optimization problem is 

given by: 

L ν

(

u , v , λ
)

: = f ( u ) + g ( v ) + 〈 λ, c − A 1 u − A 2 v 〉 

+ 
ν

2 
‖ c − A 1 u − A 2 v ‖ 

2 
2 , (4) 

where λ is a vector of Lagrangian multipliers, and ν is a nonneg- 

ative tuning parameter. The ADMM minimizes the augmented La- 

grangian L ν ( u , v , λ) over its variables u, v and λ separately and 

one block of variables at a time. This leads to the following se- 

quential updates for u, v , and λ: 

u 
m +1 : = arg min 

u 
L ν

(

u , v m , λ
m )

;

v m +1 : = arg min 
v 

L ν

(

u 
m +1 , v , λ

m )
;

λ
m +1 

: = λ
m 

+ ν
(

c − A 1 u 
m +1 − A 2 v 

m +1 
)

. (5) 

The CC algorithm proposed in [11] is based on calculating the 

updates of u m +1 and v m +1 efficiently until convergence. We shall 

describe these updates as a special case of our more general CC 

algorithm under a positive definite Mahalanobis distance metric in 

the next section. 

2.2. Robust convex clustering 

To improve the performance of CC in the presence of the outlier 

features, Wang et al. [16] proposed the following RCC problem: 

Minimize 
U , Q 

1 

2 

N 
∑ 

j=1 

‖ x j −
(

u j + q j 
)

‖ 
2 
2 + γ

∑ 

1 ≤ j 1 < j 2 ≤N 

w { j 1 , j 2 } ‖ u j 1 

−u j 2 ‖ 1 + β‖ Q ‖ 2 , 1 (6) 

where the matrix Q is the so-called robust component for which 

the j th column is given by q j , and β is a second tuning parameter 

in addition to γ . The penalization term β‖ Q ‖ 2, 1 is introduced to 

achieve row-wise sparsity: If a feature is relevant, the correspond- 

ing row in Q will be zero for all elements; if a feature is an outlier, 

this row will be non-zero. 

To solve the optimization problem (6) , Wang et al. [16] pro- 

posed an alternating procedure that alternates between CC (mini- 

mizing over U ) and learning the robust component Q . More specif- 

ically, for a fixed Q , the optimization problem (6) reduces to the 

original CC problem (1) with the data set X replaced by X − Q . For 

a fixed U , the optimization problem (6) admits a closed-form solu- 

tion for Q whose i th row is given by [16] : 
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max 

(

0 , 1 −
β

‖ ( X − U ) i ‖ 2 

)

( X − U ) i , (7) 

where ( X − U ) i denotes the i th row of the matrix X − U . Thus, to 

solve the optimization problem (6) , we may begin by setting the 

robust component Q as zero and perform CC. For the next itera- 

tions, one may alternate between learning the robust component 

according to (7) and CC, where learning the robust component is 

based on the optimal U obtained from the previous iteration, and 

CC is then based on the just-updated robust component Q . We may 

continue such iterations till the solutions converge. 

3. Convex clustering with metric learning 

To incorporate ML into the formulation of CC, let B be a positive 

definite matrix and consider the following optimization problem: 

Minimize 
U , B 

1 

2 

N 
∑ 

j=1 

(

x j − u j 

)T 
B 
(

x j − u j 

)

+ γ
∑ 

1 ≤ j 1 < j 2 ≤N 

w { j 1 , j 2 } ‖ u j 1 − u j 2 ‖ 1 

Subject to log det ( B ) ≥ 0 , (8) 

where the choice of the constraint log det ( B ) ≥ 0 was motivated by 

Hoi et al. [31] and ensures that the matrix B has a full rank. (As we 

shall see, maintaining the full rank of the matrix B is also crucial 

for developing the proper convex clustering algorithm.) The struc- 

ture of the matrix B shows which features of the data are more 

congruent with the cluster assignment. In particular, when B is di- 

agonal, the larger diagonal values of B correspond to the features 

that are of higher relevance or of lower noise corruptions. Note 

that for the original CC formulation [11] where B is an identity ma- 

trix, all features are uniformly weighted for clustering, which can 

be very suboptimal in the presence of outlier features. For a gen- 

eral positive definite B , its operational meaning can be understood 

through the standard singular value decomposition. 

To solve the optimization problem (8) , we shall consider an al- 

ternating procedure that alternates between CC (minimizing over 

U ) and ML (minimizing over B ). 

3.1. Solving U for a fixed B 

Fix B to be positive definite matrix and consider the artificial 

variables v � := u φ1 (� ) 
− u φ2 (� ) 

for 1 ≤ � ≤ ε. The optimization prob- 

lem (8) can be equivalently written as: 

Minimize 
U , V 

1 

2 

N 
∑ 

j=1 

(

x j − u j 

)T 
B 
(

x j − u j 

)

+ γ
ε 

∑ 

� =1 

w � ‖ v � ‖ 1 

Subject to u φ1 (� ) − u φ2 (� ) − v � = 0 , 1 ≤ � ≤ ε. (9) 

Note that when B is an identity matrix, the optimization problem 

(9) reduces to the original CC formulation (2) , which can be solved 

efficiently and precisely using the ADMM framework. 

To apply the ADMM framework to solve the optimization prob- 

lem (9) , note that its augmented Lagrangian is given by: 

L ν ( U , V , �) : = 
1 

2 

N 
∑ 

j=1 

(

x j − u j 

)T 
B 
(

x j − u j 

)

+ γ
ε 

∑ 

� =1 

w � ‖ v � ‖ 1 

+ 

ε 
∑ 

� =1 

λ
T 
� 

(

v � − u φ1 (� ) + u φ2 (� ) 

)

+ 
ν

2 

ε 
∑ 

� =1 

‖ v � − u φ1 (� ) + u φ2 (� ) ‖ 
2 
2 , (10) 

where � := ( λ1 , λ1 , . . . , λε ) . We shall update U and V in each iter- 

ation of the ADMM according to the procedure described in (5) . 

Updating U . To update U , we need to minimize the function 

f ( U ) : = 
1 

2 

N 
∑ 

j=1 

(

x j − u j 

)T 
B 
(

x j − u j 

)

+ 
ν

2 

ε 
∑ 

� =1 

‖ ̃  v � 

− u φ1 (� ) + u φ2 (� ) ‖ 
2 
2 , (11) 

where ˜ v l := v � + ν−1 λ� . Let u := � ( U ) and x := � ( X ) . Then, the func- 

tion f ( U ) can be equivalently written as: 

f ( u ) = 
1 

2 
( x − u ) 

T 
B ( x − u ) + 

ν

2 

ε 
∑ 

� =1 

‖ E � u − ˜ v � ‖ 
2 
2 , (12) 

where B := I � B and E � := ( e φ1 (� ) 
− e φ2 (� ) 

) T � I . We can further 

simplify f ( u ) as follows. Let 

E := 

⎛ 

⎝ 

E 1 
. . . 
E ε 

⎞ 

⎠ and ˜ v := 

⎛ 

⎝ 

˜ v 1 
. . . 
˜ v ε 

⎞ 

⎠ . (13) 

Then 

f ( u ) = 
1 

2 
( x − u ) T B ( x − u ) + 

ν

2 
( E u − ˜ v ) T ( E u − ˜ v ) . (14) 

We calculate the optimality condition for minimizing the quadratic 

function (14) as: 
(

B + νE T E 
)

u = B x + νE T ˜ v . (15) 

Note that 

E T E = 

[ 
ε 

∑ 

� =1 

(

e φ1 (� ) − e φ2 (� ) 

)(

e φ1 (� ) − e φ2 (� ) 

)T 

] 

� I (16) 

= 
(

N I − 1 1 T 
)

� I (17) 

and 

E T ˜ v = 

ε 
∑ 

� =1 

[(

e φ1 (� ) − e φ2 (� ) 

)

� I 
]

˜ v � . (18) 

Then, the optimality condition (15) can be written as: 

[

I � B + ν
(

N I −1 1 T 
)

� I 
]

u = B x + ν
ε 

∑ 

� =1 

[(

e φ1 (� ) −e φ2 (� ) 

)

� I 
]

˜ v � , (19) 

yielding the following equivalent linear system: 

B U + U D = B X + R , (20) 

where D := ν
(

N I − 1 1 T 
)

and R := ν
∑ ε 

� =1 [ ̃ v l ( e φ1 (� ) 
− e φ2 (� ) 

) T ] . Note 

that the system Eq. (20) is in fact a Sylvester Eq. [32] . 

By assumption B is positive definite so all eigenvalues of B are 

positive, while the eigenvalues of −D are 0 , −N, . . . , −N. By the 

unique solution criterion [32] , the Sylvester equation (20) must 

have a unique solution. To solve (20) , note that when B = I , we 

simply have U = ( X + R ) ( I + D ) −1 . This is the update procedure 

proposed in [11] . For a general positive definite B , we can first 

transform B into a lower real Schur form [29] and D into an upper 

real Schur form as follows: 

˜ B := P 
T B P = 

⎡ 

⎢ 
⎢ 
⎣ 

˜ B 1 , 1 ( 0 , 0) 0 
˜ B 2 , 1 ˜ B 2 , 2 

. . . 
. . . 

. . . 
˜ B d, 1 

˜ B d, 2 · · · ˜ B d,d 

⎤ 

⎥ 
⎥ 
⎦ 

(21) 

and 
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˜ D := Q 
T D Q = 

⎡ 

⎢ 
⎢ 
⎣ 

˜ D 1 , 1 ˜ D 2 , 1 · · · ˜ D r, 1 

˜ D 2 , 2 · · · ˜ D r, 2 

( 0 , 0) 0 
. . . 

. . . 
˜ D r,r 

⎤ 

⎥ 
⎥ 
⎦ 

, (22) 

where ˜ B is lower quasi-triangular, ˜ D is upper quasi-triangular, the 

diagonal blocks ˜ B i,i and ˜ D i,i are order of at most two, and P and Q 

are both orthogonal. Then, we can solve the transformed equation 

˜ B ̃  U + ˜ U ̃  D = P 
T ( B X + R ) Q = ˜ B P 

T X Q + P 
T R Q (23) 

by backward substitutions [33] . The solution of the original 

Eq. (20) is thus given by U = P ̃  U Q 
T . 

Updating V . To update V , observe that the augmented La- 

grangian L ν ( U , V , �) is separable in the vectors v � . Thus, for any 

1 ≤ � ≤ ε, v � can be updated as [11] : 

v � = arg min 
v 

[ 
1 

2 
‖ v −

(

u φ1 (� ) − u φ2 (� ) − ν−1 λ� 

)

‖ 
2 
2 + 

γw � 

ν
‖ v ‖ 1 

] 

= S 

(

u φ1 (� ) − u φ2 (� ) − ν−1 λ� , 
γw � 

ν
1 

)

, (24) 

where S is the element-wise soft-thresholding function given by 

S( x , a ) := ( x − a ) + − (−x − a ) + . 

Algorithm, convergence, and complexity. Algorithm 1 summarizes 

Algorithm 1 Solving U for a fixed B via the ADMM. 

Input: X , B , γ , ν and { w l } 
ε 
� =1 . 

Output: U , V , and �. 

1: Set the maximum number of iterations ω. 

2: Initialize �(0) and V 
(0) . 

3: D := ν
(

N I − 1 1 T 
)

. 

4: Find the Schur forms ˜ B = P T B P and ˜ D = Q 
T D Q of B and D by 

(22), respectively. 

5: ˜ X := ˜ B P T X Q . 

6: for m = 1 , 2 , 3 , . . . , ω do 

7: R 
(m ) := ν

∑ ε 
� =1 

[ 

( v (m −1) 
� + ν−1 λ

(m −1) 
� )( e φ1 (� ) 

− e φ2 (� ) 
) T 

] 

. 

8: Find the solution ˜ U 
(m ) 

of ˜ B ̃  U + ˜ U ̃  D = ˜ X + P T R 
(m ) Q by back- 

ward substitution. 

9: U 
(m ) := P ̃  U 

(m ) 
Q 
T . 

10: for � = 1 , 2 , . . . , ε do 

11: v (m ) 
� := S 

(

u (m ) 
φ1 (� ) 

− u (m ) 
φ2 (� ) 

− ν−1 λ
(m −1) 
� , 

γw � 
ν 1 

)

12: λ
(m ) 
� := λ

(m −1) 
� + ν

(

v (m ) 
� − u (m ) 

φ1 (� ) 
+ u (m ) 

φ2 (� ) 

)

. 

13: end for 

14: end for 

15: return U := U 
(ω) , V := V 

(ω) , and � := �
(ω) . 

the updates of U, V , and � in the ADMM. It is straightforward to 

verify that the optimization problem (9) satisfies Slater’s condition 

[34] and hence that the strong duality holds. It then follows from 

the saddle-point property [35] that there exists a ( U ∗, V ∗, �∗) such 

that the un-augmented Lagrangian L 0 satisfies: 

L 0 ( U 
∗
, V 

∗
, �) ≤ L 0 

(

U 
∗
, V 

∗
, �

∗
)

≤ L 0 

(

U , V , �
∗
)

(25) 

for any U, V , and �. We may thus conclude by the convergence 

criterion of ADMM [13,15] that Algorithm 1 converges to the opti- 

mal value of the optimization problem (9) . Finally, we note that the 

computational complexity for solving the Sylvester equation (20) is 

O (d 3 + d 2 N + dN 2 + N 3 ) [33] , where d is the number of features of 

the data and N is the number of data points. Considering that N is 

usually much larger than d , this is rather comparable to the O ( N 3 ) 

complexity for inverting the matrix I + D needed for solving the 

original CC formulation of Chi and Lange [11] . 

3.2. Solving B for a fixed U 

Fixing U , the optimization problem (8) can be equivalently writ- 

ten as: 

Minimize 
B 

N 
∑ 

j=1 

(

x j − u j 

)T 
B 
(

x j − u j 

)

Subject to log det ( B ) ≥ 0 . (26) 

To find an optimal solution for B , let 

A := 

N 
∑ 

j=1 

( x j − u j )( x j − u j ) 
T = ( X − U )( X − U ) T . (27) 

The Lagrangian of (26) is given by: 

L ( B , μ) = 

N 
∑ 

j=1 

( x j − u j ) 
T B ( x j − u j ) − μ log det ( B ) (28) 

= tr ( A B ) − μ log det ( B ) . (29) 

Its Karush–Kuhn–Tucker conditions yield: 

0 = 
∂L 

∂ B 
= A 

T 
− μ

(

B 
−1 

)T 
(30) 

log det ( B ) ≥ 0 (31) 

μ ≥ 0 (32) 

μ log det ( B ) = 0 . (33) 

Assuming that A has a full rank, i.e., no features are completely 

redundant, a closed-form solution of (26) is given by: 

B = det ( A ) A 
−1 

. (34) 

3.3. Iteration between convex clustering and metric learning 

To solve the optimization problem (8) , we shall begin by setting 

the matrix B as an identity matrix and perform Algorithm 1 . This 

is equivalent to the ADMM algorithm for CC proposed in [11] . For 

the next iterations, we alternate between ML according to (34) and 

CC according to Algorithm 1 , where ML is based on the optimal U 

obtained from the previous iteration, and CC is then based on the 

just-updated matrix B from the ML. We may continue such itera- 

tions till the solutions converge to a local minimum. 

4. Numerical experiments 

In this section, we use one set of synthetic data and three sets 

of real-world data to benchmark the performance of the proposed 

CCML with those of CC [11] and RCC [16] . Next, we shall first dis- 

cuss some implementation details and then present the numerical 

results. 

4.1. Implementation details 

( 1) Choosing the weighting coefficients w { j 1 , j 2 } 
. As demonstrated 

in [11] , the results of CC depend critically on the choice of the 

weighting coefficients w { j 1 , j 2 } 
, and empirically, the best choice was 

based on the k -nearest neighbor method. In our implementations, 

we also followed the k -nearest neighbor method to determine 

the weighting coefficients w { j 1 , j 2 } 
. More specifically, we chose the 
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weighting coefficient w { j 1 , j 2 } 
between the data points x j 1 and x j 2 

as: 

w { j 1 , j 2 } = ιk { j 1 , j 2 } exp 
[

−α‖ x j 1 − x j 2 ‖ 
2 
2 

]

, 

where ιk 
{ j 1 , j 2 } 

is 1 if both x j 1 and x j 2 are among the k th nearest 

neighbors (under the Euclidean distance metric) of each other and 

0 otherwise, α is a nonnegative real constant, and k is a natural 

number. Note that setting α = 0 gives uniform weights between 

the data points among the k -nearest neighbors of each other. In 

our implementations, however, we tuned α as a small positive 

number to improve the clustering accuracy. Following [11] , we 

chose the value of k in our numerical experiments as the expected 

average cluster size. 

( 2) Choosing the tuning parameters γ , β , and ν . Note from 

(8) that if we set the tuning parameter γ = 0 , this will lead to 

the trivial solution u j = x j for each j = 1 , 2 , . . . , N, i.e., the parti- 

tion of the data points into singletons. On the other hand, if we 

set γ to be sufficiently large, this will lump all the data points 

into a single cluster. Varying γ in between gives rise to the entire 

clustering path. In our numerical experiments, we chose γ (and 

the second tuning parameter β in case of RCC) so that the results 

match the expected number of clusters. Even though mathemati- 

cally there seems to be no guarantee that this is always possible, 

we were able to achieve the exact matches in all of our numerical 

experiments. The convergence of the proposed ADMM algorithm 

does not appear to be sensitive to the choice of the tuning param- 

eter ν . 
( 3) Measuring the clustering accuracy. We measure the accuracy 

of the clustering results based on the accuracy of the adjacency 

matrix. For each set of testing data, the ground truth is known 

and from that we can construct an N -by- N binary ground truth 

adjacency matrix A with entries A i, j = 1 if x i and x j are in the 

same cluster and 0 otherwise. For a given output of Algorithm 1 , 

we looked at the columns of the matrix V , i.e., the difference vari- 

ables v � . If v � = 0 (or close to 0 within the numerical accuracy), we 

set ˜ A φ1 (� ) ,φ2 (� ) 
= ˜ A φ2 (� ) ,φ1 (� ) 

= 1 ; otherwise, we set ˜ A φ1 (� ) ,φ2 (� ) 
= 

˜ A φ2 (� ) ,φ1 (� ) 
= 0 . The clustering accuracy was then calculated by 

counting the number of matching values in the upper triangles 

(excluding the diagonal entries) of A and ˜ A , normalized by the total 

number of adjacency pairs N(N − 1) / 2 . This is known as the Rand 

index in the literature [36] . 

4.2. Synthetic data 

The synthetic data that we considered were generated based on 

the standard Gaussian mixture model (GMM). We first generated 

three classes of data in R 3 , with 100 data points in each class. All 

data points were generated using the same variance but different 

mean for each class. Fig. 1 illustrates an example of the simulated 

GMM data. Then, outlier feature values were added to each of the 

data points, making each data point x i a high-dimensional vector. 

Each outlier feature value was generated independently using an 

identical distribution across all 300 data points. We used different 

distributions of high variance for different outlier features. 

Fig. 2 compares the clustering accuracies of CC, RCC, and CCML 

under different numbers of outlier features (from 0 to 7). (The 

standard deviations between CC, RCC, and CCML appear to be 

rather comparable for each set of experiments.) Each data point 

is calculated based on the average of 50 experiments, and for each 

experiment the tuning parameters are tuned such that the num- 

ber of clusters matches that of the ground truth and the achieved 

clustering accuracy is highest possible. As illustrated, for CC the 

clustering accuracy decreases rapidly with the number of outlier 

features. For RCC, the clustering accuracy also decreases with the 

number of outlier features but much less rapidly than CC, and the 

Table 1 

The clustering accuracies of the k -means, normalized-cut, CC, RCC, 

and CCML algorithms for three real-world data sets “seed”, “wine”, 

and “image”. 

Clustering accuracy (%) 

k -means Normalized-cut CC RCC CCML 

“Seed” 72.5 73.3 72.0 75.4 75.6 

“Wine” 70.0 70.1 65.4 67.2 71.5 

“Image” 73.4 72.0 80.5 83.0 82.2 

decrease stops when the number of outlier features reaches 5. By 

comparison, CCML appears to be very robust to outlier features and 

provides significantly higher clustering accuracies over CC and RCC 

under all configurations. 

Fig. 3 illustrates the clustering accuracy and the minimum value 

of the optimization problem (again averaged over 50 experiments) 

as a function of the number of iterations for both CCML and RCC. 

For both plots, the number of outlier features is set as 7 (so the 

total dimension of the data is 10). As illustrated, both algorithms 

exhibit very similar convergence behaviors and both appear to con- 

verge within in a few iterations. Fig. 4 illustrates the intensity 

map and the singular values of the Mahalanobis distance metric B 

learned from the final iteration for a particular experiment. As il- 

lustrated, the Mahalanobis distance metric B learned from the final 

iteration can successfully identify the three highly relevant features 

(the first three features) of the data. 

4.3. Real-world data 

We also tested the performance of the proposed CCML algo- 

rithm against the CC [11] , RCC [16] , and more traditional k -means 

[6] and normalized-cut [5] algorithms using the real-world data 

sets “seeds”, “wine”, and “image” from the UCI machine learning 

repository [30] : 

• The “seeds” data set contains the measurements of geometrical 

properties of seeds belonging to three different types of wheat. 

There are 70 samples for each of the three classes. The three 

classes of wheat are Kama, Rosa, and Canadian. A soft X-ray 

technique was used to image the seed samples, and seven real- 

valued features were extracted from the X-ray images. 
• The “wine” data set contains the results of a chemical analysis 

of wines grown in the same region of Italy, but derived from 

three different cultivars. There are 59, 71, and 48 samples in 

each of the three cultivars, respectively. Wines grown in the 

same cultivar are considered to be similar to each other. There 

are 13 features in this data. 
• The “image” data set contains images of seven different classes 

of images, each with a different subject. The subjects are brick- 

face, sky, foliage, cement, window, path, and grass. There are 

330 data points in each of the seven classes. Each image was 

hand-segmented into 3-by-3 regions, from which 19 features 

were extracted. 

The exact choices of the features of the above data sets can be 

found in [30] . 

Table 1 lists the clustering accuracies of the k -means, 

normalized-cut, CC, RCC, and CCML algorithms for the three real- 

world data sets mentioned above. As illustrated, the proposed 

CCML performs consistently among the best, if not the best, among 

the algorithms considered. In particular, we notice that while CCML 

and RCC perform rather similarly for the “Seed” and “Image” data 

sets, CCML outperforms significantly over RCC for the “Wine” data 

set. We postulate that this is mainly due to the fact that the num- 

ber of outlier features is particularly large relative to the total 

number of features for the “Wine” data set. 
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Fig. 1. An example of the simulated GMM data. 

Fig. 5 illustrates the intensity map and the singular values of 

the Mahalanobis distance metric B learned from the final itera- 

tion for each of the data sets. From these plots, we can identify 

that: (1) or the “seeds” data, the third feature “Compactness” is 

clearly the most relevant one to this clustering; (2) for the “wine”

data, the eighth feature “Nonflavnoids phenols” is the most rele- 

vant one to this clustering, and the third and the eleventh fea- 

tures “Ash” and “Hue” are also highly relevant to this clustering; 

(3) for the “image” data, the third, tenth, eleventh, twelfth, and 

thirteenth features “Region-pixel-count”, “Intensity-mean”, “Raw- 

red-mean”, “Raw-blue-mean”, and “Raw-green-mean” are the most 

relevant ones to this clustering. 

5. Concluding remarks 

CC [11] is a recently proposed clustering formulation that aims 

at minimizing the aggregate Euclidean distance between the data 

points and their corresponding cluster centers while leveraging 

group sparsity to the clustering solution through � 1 penalizations. 

Compared with the traditional approach such as the k -means and 

the normalized-cut algorithms, the CC formulation can be effi- 

ciently and precisely solved using the ADMM [13–15] . However, 

the Euclidean metric treats each feature of the data equally. As 

a result, the performance of the CC algorithm deteriorates signif- 

icantly in the presence of outlier features. 

To address this issue, this paper considered a new formulation 

that combines CC and ML. It was shown that: (1) for any given 

positive definite Mahalanobis distance metric, the problem of CC 

Fig. 2. Gaussian GMM data: clustering accuracy as a function of the number of outlier features. The narrow line on top of each bar indicates the standard deviation for each 

set of experiments. 
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Fig. 3. Gaussian GMM data: convergence of the clustering accuracy and the minimum value of the optimization problem. 

Fig. 4. Gaussian GMM data: intensity map and the singular values of the Mahalanobis distance metric B learned from the final iteration. 



582 X.L. Sui et al. / Pattern Recognition 81 (2018) 575–584 

Fig. 5. Real-world data sets: Intensity map and the singular values of the Mahalanobis distance metric B learned from the final iteration. 

can be precisely and efficiently solved within the ADMM frame- 

work; (2) when considering the family of positive definite Maha- 

lanobis distances for convex clustering, the problem of ML admits 

a closed-form solution; (3) an algorithm that alternates between 

CC and ML can provide a significant performance boost over not 

only the original CC formulation of Chi and Lange [11] but also the 

recently proposed RCC formulation of Wang et al. [16] . 

Note that in our algorithm, ML is performed based on the noisy 

labels produced by the CC from the previous iteration. Our nu- 

merical experiments show that there is indeed a performance gap 

between learning from noisy labels and learning from the ground 

truth. We are currently working to bridge this gap by imposing ad- 

ditional structural constraints on the Mahalanobis distance metric 

as well as considering additional “cleanup” procedures for the in- 

termediate clustering results. 
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