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Abstract Static and dynamic analyses of an elec-
trostatic microbeam under repulsive force actuation
are presented. The repulsive force, created through a
specific electrode configuration, generates a net elec-
trostatic force on the beam pushing it away from
the substrate. This allows large out-of-plane actuation
and eliminates the pull-in instability. For example, a
dynamic amplitude of 15µm was recorded for a 500-
µm-long cantilever at a DC voltage of 195V and an
AC voltage of 1V, while the initial gap was only 2µm.
This study includes mathematical modeling and simu-
lations for a cantilever and a clamped–clamped beam,
as well as experimental validation. The beam is mod-
eled usingEuler–Bernoulli beam theory and electrome-
chanical coupling effects. Cantilever tip displacement,
clamped–clampedmidpoint deflection, and natural fre-
quency shifts are reported. Governing equations are
solved numerically using the shooting method, which
provides a complete picture of the beam dynamics.
The numerical results are verified with experimental
data from fabricated beams using PolyMUMPs stan-
dard fabrication. Frequency response results reveal a
mixed softening and hardening behavior and secondary
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resonances originating from quadratic and cubic non-
linearities in the governing equations. The analysis pro-
vides insight for applications in optical and gas sensors
where a large signal-to-noise ratio and, sometimes, a
wide frequency bandwidth are desired.
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1 Introduction

Micro-electromechanical systems (MEMS) are now
widespread in the automotive, medical, and cell phone
industries. MEMS resonators are a class of MEMS
devices used extensively in sensing [1–7], energy har-
vesting [8–11], signal filtering [12–14], and many
other applications [15–18]. The most popular actua-
tion mechanism for MEMS resonators uses the elec-
trostatic force because it consumes little power and is
easy to fabricate. Because of this, many electrostatic
actuator designs have been investigated and applied to
electronic devices in use today [1–7,12,15–18]. The
most common configuration for electrostatic actuators
is parallel plates. The two main drawbacks associated
with parallel-plate electrodes are pull-in instability and
limited travel ranges. Pull-in occurs when the attractive
electrostatic force between electrodes becomes so large
that it overcomes the mechanical restoring forces caus-
ing the collapse of the moving electrode. This is desir-
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able in someapplications, such as switches [19], but can
be devastating in other applications such as resonators
[20]. There is a need for new actuator designs that can
overcome the severe limitations of parallel-plate actua-
tors. However, new designs cannot find proper applica-
tions without careful investigations of their highly non-
linear behavior that stems from the electrostatic force.

The nonlinear dynamic behavior of electrostatic
MEMS resonators has been studied extensively
[21–27] for various applications. Braghin et al. [21]
looked at nonlinear hardening behavior in a MEMS
comb-drive resonator to increase the sensibility of
MEMS gyroscopes. Younis et al. [23] studied the non-
linear dynamic response of an electrostatically actu-
atedMEMS arch with softening, hardening, hysteresis,
dynamic pull-in, and snap-through, for use in band-
pass filters. Towfighian et al. [24] studied microbeam
resonators with chaotic responses. Ozdogan and Tow-
fighian [25] investigated the nonlinear dynamics of a
MEMS torsional micromirror with softening effects
and secondary resonances for use in optical applica-
tions.

Someeffort has beenput into creating repulsive elec-
trostatic actuation, where the actuator is pushed away
from the electrode [28–31]. This eliminates the risk
of pull-in and allows for much higher actuation ampli-
tudes.A repulsive electrostatic actuator can be achieved
in several ways.

As originally reported by Lee and Cho [28], a net
repulsive force is created between two grounded elec-
trodes if they are placed between two charged elec-
trodes. As mentioned in [31], the force on the mov-
able electrode is not a repelling force from the fixed,
grounded electrode, but rather a net attractive force
away from the substrate because of the presence of the
charged electrodes on the sides.

A different approach was taken by Shen and Kan
[29], who created a repulsive force by charging two
beams to the same polarity through hot-electron injec-
tion. This is a true repulsive force. However, the charge
on the beams decayed quickly (even though some
charge would remain for a long time) and much of the
actuation power was lost after a fewminutes. Sugimoto
et al. [31] used this principle to create a repulsive actu-
ation force. In this design, the beam was periodically
charged through electrostatic induction rather than hot-
electron injection. Induction creates attractive electro-
static forces as well; thus, this design is susceptible to
pull-in during certain phases of operation.

He and Ben Mrad [30] designed a repulsive force
actuator for out-of-plane motion where two grounded
electrodes are placed between two charged electrodes.
Unlike in-plane actuation, by Lee and Cho [28], this
design can produce out-of-plane actuation for use in
micromirrors. A major advantage of this design is its
simplicity and ease of fabricationwith thePolyMUMPs
standard. This design could also be used in multiple
layers to create even larger actuation amplitudes [32].
Improvements, optimizations, and other applications of
this design have been reported [32–37].

To the best of our knowledge, all efforts on repul-
sive force actuators have been put into studying the
repulsive force and its influence on the static behav-
ior of the actuators. As many repulsive force actua-
tors can be used in resonant modes, more fundamen-
tal studies on the dynamic response of these actuators
are notably needed. The contribution of this paper is
to investigate the static and dynamic performance of
repulsive force actuators in cantilever and clamped–
clamped configurations. For the first time, we have
demonstrated for repulsive force actuators the effect
of nonlinear repulsive force on the shifting of natural
frequency and frequency softening and hardening. As
pull-in does not occur, thismechanism is very attractive
for MEMS resonators, such as low-pressure sensors
and optical devices such asmicromirrors and polychro-
mators, that require large out-of-plane actuation. The
numerical shooting method is used to solve governing
equations ofmotion, and the results are verified through
experiment. The shooting method is computationally
efficient and provides a fundamental understanding of
the electrostatic beam dynamics under repulsive force.

The repulsive force actuator is shown in Fig. 1 with
dimensions and properties given in Table1. The elec-
trode configuration is adapted from He and Ben Mrad
[30] to produce out-of-plane actuation. It consists of

Fig. 1 Layout of the repulsive force actuator. The blue beam is
movable and the others are fixed. (Color figure online)
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Table 1 Beam material and geometric properties

Parameter Symbol Value

Cantilever length (µm) L 503

Clamped–clamped length (µm) L 1000

Beam width (µm) b 17.5

Beam height (µm) h 2

Beam–electrode gap (µm) g 2

Electrode gap (µm) g1 20.5

Electrode width 1 (µm) b1 30

Electrode width 2 (µm) b2 28

Electrode thickness (µm) h1 0.5

Elastic modulus (GPa) E 150

Density (kg/m3) ρ 2330

Poisson’s ratio ν 0.22

Force constant p5 −8.5695 ×1014

Force constant p4 1.7347 ×1011

Force constant p3 −1.2595 ×107

Force constant p2 3.5574 ×102

Force constant p1 −3.8677 ×10−4

Force constant p0 −1.1703 ×10−7

Fig. 2 Electric field lines for the actuator. Charged electrodes are
highlighted in red and grounded electrodes (including beam) are
highlighted in green.Blue ellipse shows the approximate location
of the equilibrium point. (Color figure online)

a beam suspended above three fixed electrodes on the
substrate. The beam and center electrode are grounded,
while the side electrodes are charged. When a charge
is applied to the side electrodes an electric field is pro-
duced (Fig. 2). Under the influence of the electric field,
the beam wants to move to some equilibrium point
away from the substrate. The location of this equilib-
rium point is directly above the center electrode at a
distance that is highly dependent on the geometry of
the electrodes. For a beam with the dimensions given
in Table1, the equilibrium position is located at an

approximate height of 60microns. If the beam is placed
less than 60 microns away from the center electrode,
it will experience a net force away from the electrodes
and it will be pulled toward the substrate if the distance
is greater than 60 microns.

The outline of this paper is as follows. Section2
outlines the theoretical model derivation. Section3.1
shows the static and dynamic analyses for the cantilever
beamandSect. 3.2 for the clamped–clampedbeam.The
conclusions based on the analyses are given in Sect. 4.

2 Model derivation

The beam is modeled using Euler–Bernoulli beam the-
ory with mid-plane stretching. The beam material is
polysilicon with dimensions and material properties
given in Table1. We assume negligible axial and in-
plane transverse displacement, as well as no twisting of
the beam. Thus, we only consider out-of-plane deflec-
tion as a function of beam position and time. The gov-
erning equation of motion is given as,

ρA
∂2ŵ

∂ t̂2
+ ĉ

∂ŵ

∂ t̂
+ γ

E A

2L

∂2ŵ

∂ x̂2

∫ L

0

(
∂ŵ

∂ x̂

)2

dx

+E I
∂4ŵ

∂ x̂4
+ f̂e(ŵ)V 2 = 0 (1)

In Eq. (1), ŵ is the z-direction beam displacement, I
is the moment of inertia, V is the electrode voltage, f̂e
is the electrostatic force, and γ indicates the mid-plane
stretching effect. γ is −1 for the clamped–clamped
beam and 0 for the cantilever [38]. To find the repulsive
electrostatic force profile, a finite element simulation in
COMSOLwas conducted for the fabricated dimensions
(Fig. 3). A 5th-order polynomial is fit to the numerical
force profile to be used in Eq. (1).

Because of the small scale of the beams, a non-
dimensional form of Eq. (1) is used. The non-
dimensional substitutions and parameters are shown in
Table2 and the non-dimensional equation of motion is
given as

∂2w

∂t2
+ c

∂w

∂t
+ γ r1

∂2w

∂x2

∫ 1

0

(
∂w

∂x

)2

dx

+ ∂4w

∂x4
+ r2V

2
5∑
j=0

p j h
jw j = 0 (2)
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Fig. 3 Electrostatic force profile for the beam–electrode config-
uration shown in Fig. 1 as determined in COMSOL. Equilibrium
point at 60 microns for the geometry given in Table1

Table 2 Non-dimensionalization

Parameter Substitution

x-direction position x = x̂/L

z-direction position w = ŵ/h

Time t = t̂/T

Damping c = ĉL4/E IT

Time constant T = √
ρAL4/E I

Mid-plane stretching constant r1 = Ah2/2I L

Force constant r2 = L4/E Ih

where p j are constants from the 5th-order polyno-
mial forcing profile fit. In Table2 and Eq. (2), the non-
accented variables refer to the non-dimensional quan-
tities. Equation (2) is then discretized using Galerkin’s
method. The deflection of the beam is approximated as

w(x, t) ≈
n∑

i=1

qi (t)φi (x) (3)

where φi (x) are the linear mode shapes of the beam,
qi (t) are the time-dependent generalized coordinates,
and n is the number of degrees of freedom (DOF) to be
considered. In our case, themode shapes for a cantilever
(CL) and clamped–clamped (CC) microbeam are well
known and are of the form

φi (x) = cosh(αi x) − cos(αi x)

− σi (sinh(αi x) − sin(αi x)) (4)

Table 3 Mode shape natural frequencies and constants

Mode α2 (CL) σi (CL) α2 (CC) σi (CC)

1 3.516 0.7341 22.3733 0.9825

2 22.035 1.0185 61.6728 1.00078

3 61.697 0.9992 120.903 0.999966

4 120.904 1.0 199.859 1.0

where αi are the square roots of the non-dimensional
natural frequencies, and σi are constants determined
from the boundary conditions and mode to be consid-
ered. Values of αi and σi for the first four modes are
obtained from [39] and are shown in Table3.

Once the mode shapes are known, Eq. (2) becomes a
coupled set of ordinary differential equations (ODE) in
time for qi (t). Multiplying through by φk and integrat-
ing between 0 and 1 decouples the linear terms because
of the orthogonality of the mode shapes and results in
a set of ODEs shown in Eq. (5), coupled through the
nonlinear forcing terms.

mi q̈i+cmi q̇i+γ r1si+kiqi+r2V
2

5∑
j=0

fi jkq
j
i = 0 (5)

where
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∫ 1

0
(φi )

2dx ki = α4
i

∫ 1

0
(φi )

2dx
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0
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dx2
qi

⎛
⎝

∫ 1

0
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dx
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)2
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⎞
⎠ dx
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∫ 1

0
p j h

jφ
j
i φkdx

For a one-mode approximation, Eq. (5) reduces to,

m1q̈1 + cm1q̇1 + γ r1βq
3
1 + k1q1 +

r2V
2

5∑
j=0

(∫ 1

0
p j h

jφ
j+1
1 dx

)
q j
1 = 0 (6)

where

β =
∫ 1

0
φ1

d2φ1

dx2

(∫ 1

0

(
dφ1

dx

)2

dx

)
dx

As it can be seen in Eq. (6), the mid-plane stretch-
ing term adds cubic nonlinearity to the system and the
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repulsive force adds a polynomial of order 5. To solve
the governing equation ofmotion, we used the shooting
method. This method is computationally more efficient
than direct integration and can find unstable solutions.

3 Results and discussion

3.1 Cantilever beam

For the case of a cantilever, the effect of mid-plane
stretching is small. Therefore, γ is set to 0. The bound-
ary conditions are given as,

φ(x = 0) = 0
dφ

dx
(x = 0) = 0

d2φ

dx2
(x = 1) = 0

d3φ

dx3
(x = 1) = 0 (7)

3.1.1 Static analysis

First, the static equation is solved. The time-dependent
components from Eq. (2) are removed, which results
in,

d4w

dx4
+ r2V

2
DC

5∑
j=0

p j h
jw j = 0 (8)

Equation (8) is a boundary value problem that can
be solved in numerous ways. We reduced it to four 1st-
order ODEs and solved them numerically using bvp4c
in MATLAB. This gives the beam profile for a given
DC voltage. The tip deflection is then calculated for
increasing DC voltages to capture the static solution
shown in Fig. 4.

Figure4 shows the static tip deflection for DC volt-
ages up to 200V. A saturation in the displacement will
occur where the electrostatic force becomes attractive
at approximately 60 microns. However, to reach the
saturation point, a huge voltage is required, which is
impractical and not shown here. For our dynamic case
studies, we set the DC voltage limit to 200V. Around
this voltage, saturation is not an issue and the static
solution is approximately linear.

3.1.2 Dynamic numerical results

To gain insight into the dynamic behavior, the vari-
ations of natural frequencies by the DC voltages are

Fig. 4 Static response of the cantilever beam tip as the DC volt-
age varies

Fig. 5 First natural frequency of the cantilever beam as the DC
voltage varies

obtained. The Jacobian of Equation (5) is computed
at the static equilibrium points from Fig. 4. The cor-
responding eigenvalues of the Jacobian yield the nat-
ural frequencies as shown in Fig. 5 using a one-mode
approximation.

Unlike parallel-plate capacitors that experience a
decrease in natural frequency because of an increase
in the DC voltage [38], the natural frequency of the
repulsive force actuator increases as the DC voltage is
increased. However, the increase in natural frequency
doesn’t occur until about 70 VDC, at which point
it increases linearly. At 200V, the natural frequency
increases by about 20%. The eigenvalues of the Jaco-
bian also indicate whether the static solution is stable.
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In this case, the real part of the eigenvalues for all solu-
tions are negative, indicating stable solutions.

To find the dynamic response of the cantilever beam
to a DC voltage superimposed by an AC voltage exci-
tation, Eq. (5) is solved using shooting techniques out-
lined in [38] and then verified using long-time inte-
gration with higher modes. A one-mode approxima-
tion is used for the shooting method. First, the non-
dimensional equation of motion is rewritten in state-
space form,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẏ1 = y2
ẏ2 = −r2V

2 ∑5
j=0

(∫ 1
0 p j h

jφ
j+1
1 dx

)
y j1 − cy2

−γ r1
∫ 1
0 φ1

d2φ1
dx2 y1

(∫ 1
0

(
dφ1
dx y1

)2
dx

)
dx − ω2

n y1

where ωn is the first non-dimensional mechanical nat-
ural frequency, which can be found in Table3. It should
be noted that in the above equation, γ = 0 for the can-
tilever beam and γ = −1 for the clamped–clamped
beam. Four new variables are defined to help find the
initial conditions to capture the steady-state response.

y3 = ∂y1
∂η1

y4 = ∂y1
∂η2

y5 = ∂y2
∂η1

y6 = ∂y2
∂η2

where η1 is the initial displacement and η2 is the ini-
tial velocity. Including the newly defined variables, the
state-space equations become:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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0

(
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)
dx
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y31 − ω2
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0 j p j h jφ
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1 dx

)
y j−1
1 y3 − cy5

−3γ r1
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0 φ1
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(
dφ1
dx
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dx
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dx

)
y21 y3 − ω2

n y3

ẏ6 = −r2V 2 ∑5
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0 j p j h jφ
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1 dx
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1 y4 − cy6
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)
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They are integrated over one period (T ) using ode45
in MATLAB with the initial conditions shown below.

y(0) = [η1 η2 1 0 0 1]

Todetermine the approximate error in the initial con-
ditions, ∂ηi , the results for y at time T are used in the
following equation,

{
∂η1
∂η2

}
=

[ {
y3(T ) y4(T )

y5(T ) y6(T )

}
−

{
1 0
0 1

} ]−1
{
η1 − y1(T )

η2 − y2(T )

}

The initial conditions are then corrected with using
the approximate error.

y = [η1 + ∂η1 η2 + ∂η2 1 0 0 1]

This process is repeated until the errors are suffi-
ciently small and the results for y1 and y2 converge. To
analyze the stability of the solution, the monodromy
matrix is constructed.

[
y3(T ) y4(T )

y5(T ) y6(T )

]

The eigenvalues of the monodromy matrix (Floquet
multipliers) show whether the solution is stable. Flo-
quet multipliers outside the unity circle in the com-
plex plane indicate an unstable solution while inside
the unity circle indicate stable solutions [40].

Damping of the system is estimated using the quality
factor and the following relation:

c = λ21

Q
(9)

where λ21 is the first natural frequency of the cantilever.
The quality factor in a vacuumwas found to be approx-
imately 130 in our experiment. Figure6 demonstrates
the frequency response at various AC voltages for a DC
voltage of 195V.

Dynamic responses show softening behavior and
bandwidth expansion as the AC excitation increases.
The bandwidth increase is desired in resonators as
it contributes to a larger signal-to-noise ratio over a
broader range of frequency. It should be noted that to
stay on the large energy orbit in the multiple-solution
region, one should use the backward sweep because
of the hysteresis effect. The hysteresis and softening
effect is because of a quadratic term and a negative
cubic term of the electrostatic force from the forcing
profile polynomial fit (refer to coefficients of p2 and
p3 in Table1). These two terms are the dominant terms
in the forcing function, which explains why the soften-
ing is significant even at AC voltages under 1V. Unlike
long-time integration, the applied shooting method can
capture the unstable solutions and is computationally
much more efficient. To verify the shooting method
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Fig. 6 Frequency response at VDC = 195V for various AC
voltages. Dashed portions of the frequency curve indicate unsta-
ble solutions. Markers indicate long-time integration results for
two-mode (times) and three-mode (open circle) approximations
solved with long-time integration. The dashed red line indicates
the approximate threshold amplitude at which the beam tip will
hit the substrate

results and the accuracy of a one-mode approxima-
tion, we conducted the long-time integration on several
points for two- and three-mode models as depicted by
markers in Fig. 6.Convergence of the results is obtained
after at least three modes are considered, though a one-
mode model provides a very accurate approximation.
The first mode shape is dominant because of the type
of excitation that applies electrostatic force on the full
electrode. A recent study has shown the use of partial
electrodes can be used to excite other modes of inter-
est [41]. We verified this assumption comparing our
simulation with experimental results in Sect. 3.1.3.

It is noted that a major limiting factor for the ampli-
tude of the AC voltage is the small gap between
the beam and the center electrode. If the AC voltage
is too high, the beam will hit the bottom electrode,
which affects the response of the beam and should
be avoided. The approximate amplitude at which this
occurs (the threshold amplitude) is shown in the fre-
quency response plotswith the dashed red line. To accu-
rately draw this line, we also assured that transients at
threshold frequencies do not hit the substrate either.
As an approximate rule of thumb, the maximum total
deflection can reach roughly twice the static deflec-
tion before the beam begins to hit the electrode. For
example, if the static deflection is 10µm, the maxi-
mum deflection the beam can experience is approxi-
mately 20µm before a collision with the bottom elec-

trode will occur. To partially mitigate this issue, the DC
voltage can be increased as the maximum amplitude
at which the beam can reach before hitting the sub-
strate is determined by the DC voltage. The increase
in DC voltage moves the static equilibrium away from
the electrodes, which allows for higher AC voltage and
higher bandwidth. On the other hand, themaximumAC
voltage is highly dependent on the damping of the sys-
tem. High damping cases require significantly higher
AC voltages to provide a wider frequency bandwidth.
With the current parameters, the bandwidth is approx-
imately 300Hz with the maximum amplitude of about
30µm at VDC = 195V and VAC = 0.75V (Fig. 6).

3.1.3 Experimental results

The cantilever beamswere then fabricated usingPOLY-
MUMPs standard fabrication. A picture of a beam can
be seen in Fig. 7. Beam imaging and static experiments
were conducted using aWyko NT1100 optical profiler.
As the beams were 500µm long, there was some slight
deformation and sagging near the beam tip of about
1–2µm. While this would interfere slightly with the
static measurement, it had negligible effects on the
dynamics of the beam because of its large length. For
the static test, DC voltages up to 200V were applied.
Figure8 shows the comparison between the simulation
and experiment for static tip deflection showing rela-
tively close agreement.

The discrepancy between the static measurement
and theoretical results in Fig. 8 can bemostly explained
by fabrication imperfections. Close to the tip of the
beam, there was a dimple that was interfering with
measurements and there was a slight sagging of the
beam. The location of the measurement is approxi-
mately 50µm from the tip of the beam to avoid the
sagging and dimples as much as possible. It is impossi-
ble to avoid this entirely, so the measurement location
was chosen tominimize this effectwhile still being near
the tip of the beam. Because of these differences, the

Fig. 7 Optical profiler view of a fabricated beam
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Fig. 8 Static beamdisplacement versus appliedDCvoltage. The
location of themeasurement is approximately 50µm from the tip
of the beam for both the static experiment and for the theoretical
model

Fig. 9 Experimental setup for dynamic testing. a National
instruments USB 6366 data aquisition, b polytec MSA optical
microscope, c polytec MSA laser, d vacuum chamber, e Krohn-
Hite 7600 wideband power amplifier, f fluke RMS multimeter

actual deflection is slightly lower than the theoretical
displacement.

To find the natural frequencies, a Polytec MSA-500
laser vibrometer was used to take velocity measure-
ments. The dynamic experimental setup is shown in
Fig. 9. The beams were placed in a vacuum cham-
ber, and the pressure was reduced to approximately
900mtorr. A white noise signal was applied to the elec-
trodes, and a fast Fourier transformation was applied
to the signal to find the natural frequencies. A compar-
ison between the fundamental natural frequency from
the experiment and simulation can be seen in Fig. 10.

Fig. 10 Change in experimental and theoretical natural frequen-
cies with applied DC voltage

There is a slight discrepancy between the simulation
and experimental natural frequencies (Fig. 10). This is
most likely from the dimples, which were placed along
the bottom of the beam to prevent them from stick-
ing to the substrate. This may cause the actual electro-
static force profile to vary slightly because the dimples
are closer to the substrate than the actual beam, which
would result in a larger electrostatic force. This could
explain why the effect of the electrostatic force on the
reduction of the natural frequency is slightly greater in
the experiment. This discrepancy fades away for volt-
ages above 150V because of the large distance from
the bottom electrode that makes the effect of dimples
negligible.

Lastly, frequency sweeps were conducted to verify
the softening behavior seen in the numerical model.
The data acquisition was performed using the MAT-
LABDAQ toolbox. Several important factors needed to
be considered during the dynamic experiment. Asmen-
tioned above, the DC voltage needs to be high enough
so that the beam has room to vibrate without hitting the
substrate. Also, because of noise in the electrical signal
at low AC voltages, the pressure was adjusted so that
1 VAC could be usedwithout hitting the substrate, while
still showing nonlinearity. A pressure and DC voltage
of 900mtorr and 195V, respectively, were used in the
frequency sweep. For this measurement, beam veloc-
ity was recorded at around 50µm from the tip. Then, a
sine curve was fit to the data to eliminate signal noise
using the method of least squares. Finally, the velocity
was converted to dynamic displacement by dividing the
velocity signal by the frequency. Figure11 shows the
experimental dynamic frequency response.
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Fig. 11 Dynamic frequency response at VDC = 195V, VAC =
1V and a vacuum pressure of 900mtorr. A quality factor of 130
was used for the theoretical model. The velocity measurement
was taken from about 50µm from the tip of the beam. High-
lighted red markers show points where the beam hits the elec-
trode. (Color figure online)

There is good agreement between the theoretical
model and experimental frequencies response data.
There is a discrepancy in the resonant peak ampli-
tude, which is smaller in the experiment. This is most
likely because of squeeze film damping, which is not
accounted for in the theoretical model, but becomes
noticeable when the beam gets close to the electrode.
Figure11 shows the squeeze film damping effect starts
to occur right before the beam hits the electrode (high-
lighted points in red). The experiment also verifies the
softening behavior of the electrostatic force.

3.2 Clamped–clamped

Next, a clamped–clamped beam is considered. Unlike a
cantilever beam, mid-plane stretching has a significant
effect on the dynamics of a clamped–clamped beam.
Therefore, γ is set to −1 in Eq. (5) to include the mid-
plane stretching term. The beam length used for the
simulation is 1000µm. The boundary conditions for a
clamped–clamped beam are

φ(x = 0) = 0
d2φ

dx2
(x = 0) = 0

φ(x = 1) = 0
d2φ

dx2
(x = 1) = 0

(10)

3.2.1 Static analysis

First, the static equilibrium equation for the clamped–
clamped beam is given as

Fig. 12 Static equilibrium position of the midpoint of the
clamped–clamped beam as the DC voltage varies

d4w

dx4
+ r1

d2w

dx2

∫ 1

0

(
dw

dx

)2

dx + r2V
2
DC

5∑
j=0

p j h
jw j = 0

(11)

To solve this equation, we plug in the Galerkin
expansion [Eq. (3)] using up to a four-mode approx-
imation (excluding non-symmetric modes) and solve
with MATLAB. This yields the beam profile as a func-
tion of applied DC voltage. Then, we can calculate the
maximum deflection, shown in Fig. 12, which occurs at
the midpoint of the beam because of its symmetry. It is
worth mentioning that because of this symmetry, only
symmetric mode shapes of a clamped–clamped beam
(i.e., mode 1, 3, 5, 7) are considered [42]. We can see
that a one-mode approximation can catch the response
of the beam with good accuracy. Unlike a conventional
parallel-plate clamped–clamped beam that takes a con-
vex shape under applied voltage, the repulsive force
beam takes a concave shape, which allows for a higher
displacement range than the initial gap. The mid-plane
stretching effect and a more restricted boundary con-
dition significantly limit the maximum amplitude, and
inhibit saturation compared to the cantilever case.

3.2.2 Dynamic numerical results

Next, the time-dependent components are added back
into the governing equation to determine the dynamic
response. First, the Jacobian is constructed to deter-
mine the natural frequencies and stability of the equi-
librium points shown in Fig. 12. The negative sign of
the real part of the eigenvalue for the Jacobian reveals
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Fig. 13 First natural frequency of the clamped–clamped beam
as a function of DC voltage

Fig. 14 Frequency response at VDC = 50V and VAC = 10V
from shooting method with one-mode approximation. Markers
indicate two-mode approximations obtained from long-time inte-
gration

the equilibrium points are stable. The natural frequen-
cies (the imaginary part of the eigenvalues) are depicted
in Fig. 13.

Like with the cantilever beam, the natural frequency
does not change much at lowDC voltages but begins to
increase linearly after approximately 55V. In contrast,
the clamped–clamped beam allows formuchmore con-
trol of the natural frequency. At 200V, the natural fre-
quency is increased by over 100%, as compared to 20%
for the cantilever beam.

After the natural frequencies are computed, the
steady-state response is determined using the shoot-
ing method as described in Sect. 3.1.2 with γ = −1,
for one mode. Figures14 and 15 show the frequency

Fig. 15 Frequency response at VDC = 150V and VAC = 10V
from shooting method with one-mode approximation. Markers
indicate two-mode approximations obtained from long-time inte-
gration. Inlet shows bifurcation in the subharmonic resonance

responses at VDC = 50V and VAC = 10V, and
VDC = 150V and VAC = 10V, respectively. Blue
solid lines represent the stable solution, and the orange
dashed line indicates unstable solutions. The straight
dashed line indicates the approximate threshold ampli-
tude at which the beam will hit the electrode. The
damping is estimated using Eq. (9) with a quality fac-
tor of 130. In these cases, larger AC voltages have been
selected to investigate the nonlinear behavior of the sys-
tem knowing that the system responds linearly to small
AC excitation levels.

The system shows combined behavior because of
the presence of quadratic and cubic nonlinearities.
As shown in Fig. 14, at a lower excitation level of
VDC = 50V and VAC = 10V, the frequency bend-
ing of the system is dominated by the hardening effect
from the nonlinearity of mid-plane stretching, which is
a positive cubic nonlinearity. One can also observe sub-
harmonic and super-harmonic resonances occurring at
double and half of the resonance frequencies, which
arise from the quadratic nonlinearity in the system.

As the voltage level is increased to VDC = 150V
and VAC = 10V in Fig. 15, one can see the sys-
tem shows mixed softening and hardening behavior
in both primary and secondary resonances. Softening
is caused by the quadratic and negative cubic term
from the electrostatic force, while hardening occurs
from the positive cubic term of the mid-plane stretch-
ing effect. We observed the negative cubic term (p3)
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of the forcing coefficients in Table1 for the clamped–
clamped beam turns to a positive cubic term from
the mid-plane stretching effect, which, combined with
the quadratic term, creates the mixed behavior. The
mixedphenomenonof softening andhardening also has
been reported in other research investigating nonlin-
ear dynamics of clamped–clamped beams [43,44]. The
unstable branches that appear because of nonlinearity
in the system are effectively captured by the shoot-
ing method. However, the basin of attractions for some
branches is very small. To capture the unstable solu-
tions, we started from bifurcation points and increased
the initial conditions by avery small amount to catch the
unstable solution at the next frequency on the unstable
branch. It is noted that some part of the high branch of
the hardening response is above the threshold distance
and thus not physically achievable.

There is also a cyclic fold bifurcation, where stable
andunstable branches coalesce, in the subharmonic res-
onance at approximately 56kHz. This arises from the
mixed softening–hardening behavior of the resonator.
At high voltages and low amplitudes, the subharmonic
resonance is dominated by the softening nonlinearity
from the electrostatic force. However, as the ampli-
tude increases, mid-plane stretching becomes signifi-
cant and hardening dominates.

The results of the shooting method using one mode
are verified by checking the solution from long-time
integration with two modes (one and three) on several
points. As it can be seen in Figs. 14 and 15, there is
a good agreement between the two, which validates
the shooting method and the one-mode approximation.
Two more indications that the solution is correct are
that the static solution is close to the dynamic response
at low frequencies and the resonant frequency is like
what was predicted in Fig. 13. It should be mentioned
that the results shown by blue circles over and above the
threshold line are obtained by plugging in high initial
conditions for the system. Such a high energy might be
placed on the system by means of a mechanical shock.
But as long as there is no source for high initial con-
ditions, the system would remain below the threshold
line, thus would not hit the substrate.

4 Conclusion

In this paper, a comprehensive study of static and
dynamic responses of an electrostaticmicrobeamunder

the influence of a repulsive force is presented. A can-
tilever and a clamped–clamped beam are considered.
This repulsive force is more appropriate for many opti-
cal and sensor-based applications because of its large
out-of-plane stroke and the elimination of the pull-in
instability, which is a severe limitation for electrostatic
actuation.

As the applied force on the beam is pushing away
from the substrate, we can obtain large travel ranges
with a large DC and small AC voltages. For example,
in the case of a 500-µm-long cantilever beam, dynamic
amplitudes as high as 15µm can be achieved with DC
voltage of about 200V and less than 1V AC, while the
initial gap is only 2 microns. A major drawback to this
design is the large DC voltage required to place the
static equilibrium point far away from the substrate to
allow a large oscillation range. Even though, as seen
in the experiment, voltages as high as 200V can be
applied to the devices without failure, getting 200V in
a practical application may be difficult. The cantilever
also shows significant softening behavior. This is from
the quadratic and negative cubic nonlinearity from the
repulsive force. The experimental data verified these
findings.

The clamped–clamped beam, on the other hand, is
less likely to hit the bottom electrode because of strong
restoring force caused by mid-plane stretching. The
beam requires higher AC voltages to cause nonlineari-
ties and broader frequency bandwidths compared to the
cantilever. At very low voltages, the system behavior is
linear. Increasing the voltage, strong hardening behav-
ior appears. This is because of the positive cubic non-
linearity that stems from themid-plane stretching term.
Upon further increase of the voltage, the clamped–
clamped beam shows a mixed softening and hardening
behavior, although the hardening response dominates
at large amplitudes. The analysis of the complex behav-
ior of beams provides a framework for the application
of electrostatic microbeams actuated by the repulsive
force. This has a great potential to improve new gen-
erations of sensors and actuators that otherwise would
have a limited range of motion caused by pull-in insta-
bility.
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Appendix

Harmonic balance

In addition to the numerical shooting technique, an ana-
lytical method of harmonic balance was also used to
verify the shootingmethod results. A steady-state solu-
tion is assumed in the form of a Fourier series. This is
plugged into the governing differential equation and
coefficients of the harmonic terms are equated. This
results in a coupled set of algebraic equations that can
be solved numerically [45]. The steady-state solution
of Eq. (5) is assumed to be in the form

q(t) = a0 +
N∑
j=1

a j sin( jωt) + b j cos( jωt) (12)

where a j and b j are constants, and N is the number
of harmonics to be considered. For the cantilever, good
convergence occurs at two harmonics and above. If the
AC voltage is low enough that the frequency response
looks approximately linear, one harmonic provides a
good estimate of the solution. However, if the AC volt-
age is high enough to produce significant softening, at
least two harmonics are necessary for an accurate solu-
tion in the region of the resonant peak. It should also
be noted that only one mode is to be considered for the
harmonic balance calculation.

Equation (12) is then plugged into Eq. (5), and the
coefficients of the harmonic terms, as well as the
remaining non-harmonic terms, are equated. The non-
harmonic terms solve for the static solution of Eq. (5),
while the harmonic terms determine the dynamic solu-
tion. This procedure is performed using Mathematica.

Because the forcing function is a 5th-order polyno-
mial, the coupled algebraic equations for a j and b j are
nonlinear and are difficult to solve analytically. There-
fore, the Newton–Raphson method is employed. Once
a j and b j are known, the maximum steady-state ampli-
tude can be obtained by the relation shown in Eq. (13),

W = a0 +
n∑
j=1

√
a j

2 + b j
2 (13)

Figure16 shows the comparison between the shoot-
ing and harmonic balance methods (2 harmonics) for
the case of VDC =195V and VAC =1Vwith largest soft-
ening behavior in Fig. 6. The two results are in close

Fig. 16 Comparison between shooting method and harmonic
balance (2 harmonics) for one mode at VDC = 195V and VAC =
1V

Fig. 17 Frequency response at VDC = 50V and VAC = 10V
with shooting method (1 mode). The black solid line represents
the stable solution.Markers indicate results from harmonic bal-
ance method with one harmonic term

agreement. It is noted that the harmonic balancemethod
also yields a similar softening behavior.

Next, this process is repeated for the clamped–
clamped beam. Figure17 depicts the comparison
between the harmonic balance and shooting method
results showing close agreement. For this case, only
one harmonic is needed to show good agreement with
the shooting method results.
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