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In this paper, parametric excitation of a repulsive force electrostatic resonator is studied. A theoretical
model is developed and validated by experimental data. A correspondence of the model to Mathieu’s
Equation is made to prove the existence and location of parametric resonance. The repulsive force creates
a combined response that shows parametric and subharmonic resonance when driven at twice its natural
frequency. The resonator can achieve large amplitudes of almost 24 wm and can remain dynamically
stable while tapping on the electrode. Because the pull-in instability is eliminated, the beam bounces off
after impact instead of sticking to the electrode. This creates larger, stable trajectories that would not be
possible with traditional electrostatic actuation. A large dynamic range is attractive for MEMS resonators
that require a large signal-to-noise ratio.
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1. Introduction

Vibrating micro-structures have played an important role in
the development of micro-sensors because of their fast response
time, low power consumption, and low bulk fabrication costs.
MEMS (Microelectromechanical Systems) resonators are a class
of MEMS devices that use the vibration of these structures for
microphones|[1,2], energy harvesters [3-7], accelerometers 8], sig-
nal filters [9-12], and many more applications [13]. Micro-sensors
that require actuation, as opposed to those that rely on ambient
vibration sources, typically use electrostatic forces for the ease of
fabrication and power efficiency [13]. This usually comes at the
cost of highly nonlinear behavior and the pull-in instability, which
occurs when the attractive force between electrodes causes them
to collapse. Nearly all electrostatic MEMS resonators have been
designed around this usually undesirable phenomenon. Pull-in sig-
nificantly limits the travel ranges of electrostatic MEMS sensors,
which hinders performance. Because the sensitivity of capacitive
sensors depend on the electrode voltage and travel range of the
device, which are limited by pull-in, an electrostatic device that is
not susceptible to pull-in would be very valuable [13].

In 2001, Lee and Cho [14] reported that two grounded elec-
trodes would push away from each other if they were placed near
a charged electrode on one side. This is not a pure repulsive force,
but an attractive force that pulls the grounded electrodes apart. He
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and Ben Mrad used the same principle as Lee and Cho to create
out-of-plane actuation [15-18] by flipping the design on its side. In
this configuration the actuator is suspended above three electrodes
(shown in Fig. 1). The actuator and center electrode are grounded
while the side electrodes are charged. The resulting electrostatic
field (visualized in Fig. 1b) pulls on the top of the beam more than
the bottom because of the presence of the center electrode, which
results in a net force away from the substrate. This is technically
an attractive force; however it acts in the opposite direction of the
electrodes and is referred to as repulsive to differentiate it from
traditional electrostatic actuation. This design achieved large out-
of-plane actuation; however it requires a high voltage potential
because of the weak forcing associated with fringe electrostatic
fields. The primary focus of their study was for static actuation;
however a large range of motion is very attractive for sensors.

The authors have recently extended the work by He and Ben
Mrad to include dynamic applications [19-21]. It was shown that if
the beam moves far enough from the electrodes, the force becomes
attractive again. While the beam-electrode gap distance at which
this occurs highly depends on the geometry, it can be as large as
60 wm, which provides a large repulsive regime. A large DC bias is
required to push the static position of the beam far enough from
the substrate to allow the beam to move without hitting the elec-
trode. Because the beam and middle electrode are grounded, even if
the beam strikes the electrode, it will not stick, but bounces off. This
allows the device to operate when a collision occurs. We found soft-
ening nonlinearities associated with the repulsive force. Because
the repulsive force uses the electrostatic fringe field, the system
should also show parametric resonance, which can generate a large
vibration amplitude.
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Substrate

Fig. 1. (a) Electrode configuration of the resonator with cantilever boundary condi-
tions. The actuator is shown in blue and the electrodes are black. A superimposed
AC/DC voltage is applied to the side electrodes while the actuator and center elec-
trode are grounded. (b) Electric field lines from an FEA simulation in COMSOL. The
electric field generated from the side electrodes (red) pull on the top of the actuator
(blue) more than bottom because of the presence of the center grounded electrode
(green), resulting in a net force upwards. (For interpretation of the references to color
in text/this figure legend, the reader is referred to the web version of the article.)

Parametric excitation (PE) involves exciting a system by chang-
ing the parameters of the system instead of applying a direct force
in the direction of desired motion. Faraday discovered this phe-
nomenon in the late 1800s and it has been applied to MEMS devices
since the early 1990s [13,22-24]. PE can achieve very large oscil-
lation amplitudes with relatively low levels of excitation. Because
of this, many resonators have been designed to use PE rather than
direct forcing [3,22,24-32]. In electrostatic MEMS, the electric field
creates a distributed force on the surface of the beam, which is non-
linearly related to the gap distance. This can be seen as an electrical
stiffness that acts in conjunction with the mechanical stiffness. By
modulating the applied voltage, the overall stiffness of the beam can
be controlled. This can drive the system into parametric resonance
if the AC voltage is large enough to overcome non-conservative
forces, such as viscous damping, and the driving frequency is inside
an instability tongue (usually at twice the natural frequency) [13].

Parametric resonance (PR) can be practically achieved in MEMS
by placing two electrodes along the length of a beam, which creates
a negative stiffness that depends on the voltage level [31]. Because
the beam is simultaneously pulled towards both electrodes, this
design is susceptible to pull-in. Linzon et al. [24] designed a fringe
field parametric resonator that eliminates the pull-in instability
by placing the electrodes along the sides of the beam, instead of
directly above and below. Instead of pulling towards the electrodes,
the electrostatic force pulls the beam between the electrodes thus
eliminating pull-in. However, this design requires an initial dis-
placement or a curved micro-beam to operate because there is no
net force on the resonator when the beam is at its rest position.

In this paper, parametric resonance of a repulsive force res-
onator with cantilever boundary conditions is studied (Fig. 1). The
repulsive force allows for a large oscillation amplitude associated
with PR without the risk of pull-in. Unlike [24], this electrode con-
figuration generates a nonzero force on the actuator when it is at
rest, so no initial displacement is necessary for its operation. This
creates normal and parametric resonances. The nonlinearity of the
electric field also creates subharmonic resonances of order two,
which should occur at the primary parametric resonance. When
a voltage is applied to the side electrodes, the electrostatic forces

Table 1

Beam geometry and material properties.
Parameter Symbol Value
Cantilever length (pm) L 500
Beam width (um) b 17.5
Beam height (jum) h 2
Beam-electrode gap (jpm) g 2
Electrode gap (pm) g1 20.5
Electrode width 1 (pm) b1 30
Electrode width 2 (pm) b2 28
Electrode thickness (um) h1 0.5
Elastic modulus (GPa) E 165
Density (kg/m3) o 2330
Poisson’s ratio v 0.22
Force constant (N/m®) Ps —8.5695 x 104
Force constant (N/m?) Pa 1.7347 x10'
Force constant (N/m#*) D3 —1.2595 x107
Force constant (N/m?) P2 3.5574 x10?
Force constant (N/m?) P1 —3.8677 x10~*
Force constant (N/m) Do —1.1703 x10~7

generate a positive stiffening effect on the cantilever, as confirmed
in our previous experiment [19]. By changing the voltage on the
side electrodes, the effective stiffness of the micro-structure can
be changed. By modulating this at twice the natural frequency, the
system should show parametric resonance. The motivation of this
work is to study parametric resonance of this electrode configu-
ration for sensors and filters where a large signal-to-noise ratio is
required. For example, the proposed resonator can be used for a
MEMS filter with a large dynamic range in signal processing appli-
cations [33].

The organization of this paper is as follows: In the next section,
the formulation of the governing equation of motion is outlined.
In Section 3, the relation to Mathieu’s Equation is defined and the
location of primary parametric resonance is estimated. Section 4
outlines the experimental methods. The model and experimental
results are given in Section 5. Lastly, our conclusions based on the
results are given in Section 6.

2. Model derivation

The actuator is modeled using Euler-Bernoulli beam theory. It is
assumed to be linear-elastic polysilicon with dimensions given in
Table 1. Axial displacement and other geometric nonlinearities are
ignored. Despite the large oscillation, beam curvature is negligible
because the length of the cantilever is more than an order of mag-
nitude larger than the maximum deflection. The governing partial
differential equation is given as,

LW ow W e )
P. ¥+C§+ w‘l’fe(w) = ( )

where W is the z-direction beam displacement, I is the moment
of inertia, V is the side electrode voltage, and f; is the electrostatic
force at a side electrode voltage of 1 V. The electrostatic force profile
is determined with a 2D COMSOL simulation and has been veri-
fied with our previous experiment [19]. Field effects at the tip are
ignored because a 3D COMSOL simulation showed they made a neg-
ligible contribution to the electrostatic force. The force is assumed
to be constant in the longitudinal direction. A 5th order polynomial
is fit to the COMSOL data to be used with Eq. (1). The electrostatic
force profile from COMSOL is shown in Fig. 2.
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Fig. 2. Electrostatic force profile as determined through COMSOL.

Table 2
Nondimensional substitutions.

Parameter Substitution
x-Direction position x=X/L
z-Direction position w=w/h

Time t=t/T
Damping c* =¢L*/EIT
Time constant (s) T = +/ pAL*/EI
Force constant (m/N) r1=L*|Elh

Eq. (1) is nondimensionalized using the substitutions shown in
Table 2, which yields the nondimensional equation of motion,

fe
*w ow 3w 5 SN
ﬁ+C*E+W+T‘1V ZPjh’V\r":O (2)
=0

where p; are constants from the 5th order polynomial forcing fit. Eq.
(2) is reduced into a set of coupled ordinary differential equations
(ODE) through Galerkin’s method. First, separation of variables is
performed on Eq. (2), with the beam response approximated as,

wix, )~ Y gi(e)i(x) (3)

i=1

where ¢;(x) are the mode shapes of the beam, g;(t) are the time
dependent generalized coordinates, and n is the number of degrees
of freedom (DOF). The mode shapes for the cantilever are given as,

¢i(x) = cosh(ax) — cos(a;x)
(4)

— oj(sinh(;x) — sin(a;x))

where «; are the square root of the nondimensional natural fre-
quencies, and o; are constants determined from the boundary
conditions and mode to be considered. ¢«; and o; are obtained from
[34].

Once the mode shapes are known, Eq. (3) is plugged into the
nondimensional equation of motion (Eq. (2)), which yields a cou-
pled set of n ODE’s for g;.

i(b 82(1:' +C*i¢‘%
— ' ot2 — "ot

n 84¢ 5 n J
8x4l qi+1 VZZPJW (ZQi¢i> =0
=0 i1

+
i=1

Table 3

Air constants at 3.9 Torr.
Parameter Value
Quality factor 130
k11 0.005
]{12 4

Because the mode shapes are orthogonal, the linear terms in
Eq. (5) can be decoupled by multiplying through by ¢, and inte-
grating over the length of the beam. This yields a set of n ordinary
differential equations,

5 1 n J
m;gi + ¢iqi + kiqi + 11 VZZ/ fix <Z¢iQi> dx=0 (6)
j=0 /0 i=1

where nonlinear terms remain coupled and,

1 1
d4¢‘
. 2 . 14 o kam.
ml_/0 ¢idx k,_/o e ¢idx ¢ =c'my 7)
fix = Pl

For a one mode approximation, Eq. (6) becomes,

5

miq1 + c1qq1 + k1qq +rlvzzj§qﬁ =0 (8)
j=0
where
. 1 .
fi=pjh / ¢l dx 9)
0

Alinear damping model is used with Eq. (8). The damping coeffi-
cient is estimated using the relationship in Eq. (10) with the quality
factor (Q) and the first natural frequency (af).

o (10

c= ) )

The quality factoris givenin Table 3 based on our previous study.
Our study also verified the accuracy of the one mode model [19].
The driving voltage, V, is a sinusoidal AC voltage superimposed on
a much larger DC voltage. A large DC voltage is required to give the
beam enough room to vibrate without hitting the middle electrode.

Before Eq. (8) can be solved, air effects should be considered.
In our experiment we found that the air spring effect dominates
the nonlinear damping forces at low pressures. Therefore, linear
damping and a nonlinear air spring term are used in Eq. (8). The
linear damping coefficient is shown above in Eq. (10), and the air
spring stiffness is given in Eq. (11).

ki1 2 1
¢5 +1) 1.0025 + kip(w?/q] +1)

(11)

kair = (

The air spring term is necessary because of the large dynamic
range of the device. As the beam gets close to the electrode, the air
between the beam and substrate compresses causing the amplitude
to saturate. This was seen in our previous experimentin [19] where
the model, which did not account for air effects, overestimates the
experimental results near the natural frequency. For the PE exper-
iments in this study, the effect of air is even more pronounced
because of the higher AC frequency and air pressure. Therefore,
the air spring must be included in the model. The form of the air
spring term is taken from [13], which is derived from the Reynolds
equation. The constants are grouped into ki1 and ki3, which are
determined through experiment. Values of ki1 and kq, are given
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in Table 3. Eq. (11) is then added to Eq. (8), which yields the final
equation of motion.

5
miqy + c1qy + (kg + Kqir) g1 + 11V g fid, =0 (12)
j=0

Once all terms are defined, Eq. (12) can be solved. The high
nonlinearity associated with the electrostatic force and air spring
create difficulties for more efficient computational methods such
as shooting and harmonic balance. Therefore, Eq. (12) is solved with
using long-time integration with MATLAB’s ode45 solver.

3. Mathieu’s Equation

To prove parametric resonance (PR) occurs in this system, Eq.
(12) can be related to the damped Mathieu’s Equation, shown
below.

2
g%+c%+(8+ecos(r))x:0 (13)

The linear Mathieu’s Equation shows unbounded PR when
§=1/4, 1, 9/4, etc., and € is large enough to overcome the beam
damping c [35]. When there are certain nonlinearities in the sys-
tem, such as the nonlinear stiffness from the electrostatic force,
the response becomes bounded and does not grow indefinitely. Eq.
(12) can be put in the form of Eq. (13) to find the driving frequency
where PR will occur.

First, the electrostatic force is linearized about the static equi-
librium point, w = s, using a Taylor Series because nonlinear terms
have little influence on the location of PR.

1 5
fe~ Bia +,30=/ 1 ijftisi+
0 -
=0 (14)

5
Zipjhjsjfl (¢1q1 —s) | dx
i1

For a linearized force, the range of motion of the beam is small.
Therefore, the air spring effect is negligible and will not have a
major effect on the location of parametric resonance. Dropping kg;
and plugging the linearized force back into Eq. (12) yields,

miGi + c1q1 + kiqy
+11(Vpe + Vac cos (@t))* (B1d1 + fo) =0

Substituting wt=1 and combining linear terms yields a non-
homogeneous form of Mathieu’s Equation (more generally known
as Hill’s Equation) with two time scales.

(15)

dq? wn dq;
2t 2;“;E + [81 + €11 €0S(T) + €21 COS(ZT)] Q1
) (16)
r1BoV,
=_ (1/3035 + €10 €0S(T) + €39 COS(ZT)>
maw
where
c k
28wn = L = m711
r1/31\72 2r ﬂV V,
_ 2 DC . 2N PiVDCYAC
8] = ((Un-‘rnh €1i = m1a)2 (17)
T1ﬂiVAc 772 2 V/%c
€= 52 Ve = Ve + 5~

Eq. (16) has parametric resonance arising from the linear term, and
normal resonance associated with the forcing terms. As mentioned

above, there are also two time scales for the €;; and €,; terms, T
and 2t. Because the DC voltage is typically much larger than the AC
voltage, €5; will be much smaller than €4;. Therefore, we focused
our efforts on studying PR associated with the first term, though
the effects of both are included in the analysis.

To find the primary parametric resonant frequency, the §; term
is set equal to 1/4 [35] and rearranged to find the AC voltage fre-
quency, o,

(18)

where the square root term is the natural frequency with the stiff-
ening effect of the applied voltage. Because 1 is almost always
positive, increasing DC voltage increases the natural frequency,
which has been verified in our previous experiment [19]. From Eq.
(18), one can see primary parametric resonance occurs at twice
the natural frequency, as expected. The authors have previously
mapped the primary instability tongue for a quality factor of 100
and Vpc=187V [20]. The threshold AC voltage for parametric res-
onance was found to be approximately 7 V4. At 3.35Torr and
Vpc=178V, the threshold voltage was measured at approximately
11.4 Vg

Itis alsoimportant to note that as the original equation of motion
(Eq. (8)) has a quadratic non-linearity, the system will also show
superharmonic and subharmonic resonances of order 2 and 1/2
respectively. This means that at twice the natural frequency, there
will be parametric and subharmonic resonance of order 1/2. These
can be differentiated from each other by observing the time signal
and phase portrait.

4. Experimental methods

The resonators are fabricated in silicon using PolyMUMPs stan-
dard fabrication by MEMSCAP. A detailed outline of the process
can be found in [36]. The beams have dimensions given in Table 1.
A picture of a fabricated device is shown in Fig. 3. Dynamic tests
are conducted using a Polytec MSA-500 laser vibrometer, which
measures the beam velocity. The velocity signal is numerically inte-
grated in the frequency domain to find dynamic displacement. Low
frequency bins are set to zero to remove drift during integration.

Fig. 3. PolyMUMPs fabricated resonator with anchor (right), beam (center), and side
electrodes (top and bottom).

MSA Laser
Vibrometer

National Instruments
Data Acquisition

Krohn-Hite
Wideband Amplifier i

Baaa "8 1
. A ‘:.:,—:-...» :féwu.i‘f::fe

Vacuum Chamber
_____________ i

Fig. 4. Experimental setup with an NI Data Acquisition (interfaced with MATLAB),
a Krohn-Hite Amplifier, a Vacuum Chamber, and a Micro Systems Analyzer.
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Fig. 5. Velocity time response for the model (left) and the experiment (right) at 16
Vac, 178 Ve, 24,483 Hz, and a pressure of 3.9 Torr. Inlet shows zoomed in portion of

steady state signal.

A schematic of the experimental setup is shown in Fig. 4. The
beams are placed in a vacuum chamber and the pressure is reduced
to approximately 3.5 Torr. The MATLAB Data Acquisition toolbox
and a National Instruments USB 6366 Data Acquisition are used
to apply voltages to the electrodes and to acquire data from the
vibrometer. The AC output voltage is amplified, and a large DC offset
is superimposed using a Krohn-Hite 7600 Wideband Power Ampli-
fier. A Micro Systems Analyzer (MSA) Laser Vibrometer is used to
measure the beam velocity. The natural frequency was previously
measured to be approximately 12 kHz at 178 Vp¢ [19]. Frequency
sweeps around twice the natural frequency are performed. Beam
velocity is measured at approximately 40 p.m from the tip.

5. Results

A comparison between the velocity time response of the model
and the experiment at 16 Vuc, 178 Vpc, and 3.9 Torr is shown in
Fig. 5. The beam motion is dominated by the first mode and agrees
closely with the model. The experimental data is shifted upwards
slightly, which is most likely a result of nonlinear damping. The
model only accounts for the air spring effect with linear damping
and thus the energy transferred to the squeezed air when the beam
is close to the substrate is conserved. In the experiment however,
there are nonlinear damping forces that increase significantly when
the beam is close to the substrate. This takes energy out of the
system and causes the beam to return to its nominal position with
a slightly lower velocity than it left with.

To identify the frequency components, fast Fourier transforma-
tions (FFT) are performed on the time data from Fig. 5 and are shown
in Fig. 6. The model predicts a multi-frequency response dominated
by the driving frequency and its half, which is because of para-
metric resonance. The experimental results shows the two major
frequency spikes as predicted by the model. The electrical noise
is very small and does not contribute much to the overall signal.
Therefore it is filtered out of the experimental data.

When the amplitude is small the beam shows subharmonic res-
onance. Fig. 7 shows the experimental time response when the
frequency is set to 24,680 Hz. Subharmonic resonance can be seen
when a second peak appears in each oscillation cycle. This only
occurs when the amplitude from parametric resonance is small.
As the frequency is swept downward the parametric amplitude

increases, such as in Fig. 5, and the subharmonic peak decreases
until the response becomes sinusoidal.

The data in Fig. 5 correlate to a dynamic displacement that
reaches upwards of 15 pm peak to peak with a 2 wm initial gap. At
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Fig. 7. Velocity time response at 24,680 Hz showing the appearance of subharmonic

resonance.

other frequencies dynamic amplitudes as large as 24 pm peak-to-
peak can be attained. This is possible because the DC voltage pushes
the beam to a static position of over 10 pwm, so the beam can oscil-
late a peak-to-peak of more than double that (20 wm). This creates a
very strong interaction with the surrounding air resulting from the
large range of motion very close to the substrate. The authors have
attempted to quantify this effect through a modified stiffness term
that includes the air spring effect (Eq. (11)). This limits the ampli-
tude as the beam approaches the substrate, which is observed in
the experiment. Previous experiments from [19] show an overes-
timation of the model response at large amplitudes without taking
the air spring effect into account. The effect of the air spring is more
easily seen in the frequency response.

Next, frequency sweeps were conducted. First, a voltage just
below the parametric threshold was tested to observe the pure
subharmonic resonance, shown in Fig. 8. The window to see sub-
harmonic resonance without parametric resonance is extremely
small. At a pressure of approximately 3.4 Torr and 178 Vpc, it is on
the order of 10-15 mV, outside of which either shows no resonance
peak or a high amplitude parametric response.

Fig. 8 shows the maximum peak amplitude while the driving
frequency is swept around twice the natural frequency. The subhar-
monic resonance maintains a signal similar to Fig. 7, without ever
becoming parametric. This can be seen more clearly in the phase
portrait (Fig. 9), which shows the subharmonic phase portrait with

a fold.
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Fig. 10. Velocity frequency response at 16 V¢, 178 Vpc, and a pressure of 3.9 Torr
(orange). The model (black) uses a quality factor of 130 with k;; =0.005 and ki =4.
(For interpretation of the references to color in text/this figure legend, the reader is
referred to the web version of the article.)

Next, the voltage level was increased to excite parametric res-
onance. Velocity frequency responses for two voltage cases, along
with the corresponding model results, are shownin Figs. 10and 11.
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Fig. 11. Velocity frequency response at 20 V¢, 178 Vpc, and a pressure of 3.9 Torr
(orange). The model (black) uses a quality factor of 130 with k;; =0.005 and ki =4.
Points A, B, C, D, E, F, G, and H indicated where the beam experiences hysteresis.
Black arrows indicate a downward frequency sweep while green arrows show an
upward frequency sweep. (For interpretation of the references to color in text/this
figure legend, the reader is referred to the web version of the article.)

The model shows very good agreement with the experiment.
The system shows strong softening nonlinearities, which can be
seen in the coefficients of the electrostatic force. There also exists
a high amplitude hardening branch, which results from the air
spring effect. This creates a frequency response that is highly non-
linear with up to three stable trajectories at a single frequency, all
of which can be captured in the experiment if the AC voltage is
large enough. The hardening branch is limited in the experiment
because of the collision with the center electrode, which drops the
response to the softening branch when enough energy is lost during
the impact.

The resonator experiences hysteresis at multiple points on the
frequency curve. Starting at I in Fig. 11, if the frequency is swept
downward (black arrows) the response travels up the softening
branch toward D. At D the beam experiences hysteresis and jumps
up to B. If the frequency is swept downward from B, it will go
through hysteresis again at A, jumping down to the lowest branch
at G. If the frequency is swept upward (green arrows) from B, it
will experience hysteresis at C, jumping back down to F. For a for-
ward sweep starting at G, the beam shows hysteresis at H and
jumps up to E, and then travels back down the softening branch
towards L

Simulations show that for both voltage cases a very flat, high
amplitude hardening branch exists. However, if the voltage is too
small, such as for the case of 16 V, the hardening amplitude branch
will not be captured in the experiment. On the hardening branch,
the beam is lightly tapping on the middle electrode, which also
limits its response in addition to the squeezed air. The impacts can
be seen in the velocity time response when higher order harmonics
start to appear. A comparison between two time response curves,
one with impacts, can be seen in Fig. 12.

The velocity data can be integrated in the frequency domain
by taking a fast Fourier transform of the time data and dividing
by the frequency. Figs. 13 and 14 , show the dynamic displace-
ment plots for the velocity data in Figs. 9 and 10 respectively. The
beam is traveling 24 pm peak-to-peak at 20 V4¢ on the harden-
ing branch despite being anchored just 2 wm from the substrate,
which is made possible by the large DC voltage. The ability to travel
almost 24 wm and contact the middle electrode without pull-inisa
unique characteristic that can be applied to create highly sensitive
Sensors.
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Fig. 12. Velocity time response of the data in Fig. 11 at 20 V¢, 178 Vpc, 24,305 Hz
(left), and 24,245 Hz (right). At 24,305 Hz on the lower branch no impact with the
substrate occurs and the velocity signal is relatively sinusoidal. At 24,245 Hz on the
higher branch, the beam is tapping on the electrode and exciting higher harmonics.
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Fig. 13. Experimental dynamic displacement frequency response at 16 V¢, 178 Vpc,
and a pressure of 3.9 Torr.
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Fig. 14. Experimental dynamic displacement frequency response at 20 V¢, 178 Vpc,
and a pressure of 3.9 Torr.

6. Conclusions

In this paper, parametric resonance of a repulsive force elec-
trostatic actuator is examined. The repulsive force eliminates the
pull-in instability and allows a large range of motion. A theoret-
ical model of the resonator is developed and Mathieu’s Equation

is used to predict the location of the primary parametric reso-
nance. Because of the nature of the repulsive force, parametric
resonance and subharmonic resonance occur at twice the natural
frequency. Large travel ranges of almost 24 um are observed and
verified through experimental data. The repulsive force allows the
beam to move in stable trajectories that tap on the center elec-
trode without experiencing pull-in. Our results show the existence
of three stable branches with one lightly tapping on the substrate,
leading to high amplitudes as large as 24 p.m peak-to-peak that are
physically attainable, unlike conventional electrostatic actuators.
This repulsive force can be useful for sensors that require a large
signal-to-noise ratio.
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