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ABSTRACT
Parametric resonances in a repulsive-force MEMS res-

onator are investigated. The repulsive force is generated through
electrostatic fringe fields that arise from a specific electrode con-
figuration. Because of the nature of the electrostatic force, para-
metric resonance occurs in this system and is predicted using
Mathieu’s Equation. Governing equations of motion are solved
using numerical shooting techniques and show both paramet-
ric and subharmonic resonance at twice the natural frequency.
The primary instability tongue for parametric resonance is also
mapped. This is of particular interest for MEMS sensors that
require high signal-to-noise ratios due to the large oscillation
amplitudes associated with parametric resonance.

INTRODUCTION
Microelectromechanical systems (MEMS) are highly inte-

grated in many high-tech electrical devices such a smartphones,
transducers, digital displays, stability control systems, hearing
aids, and many more. Many resonators that require actuation uti-
lize electrostatic forces due to the fast response time, low power
consumption, and ease of fabrication/implementation [1]. This
comes with the trade off of being highly nonlinear and suscepti-
ble to the pull-in phenomena, where electrostatic forces between
two electrodes become so large that they collapse together. Be-
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cause these drawbacks limit the performance of MEMS devices
(and therefore the performance of the devices that use them), im-
provements to electrostatic MEMS that address these issues are
very valuable.

Traditional electrostatic actuation involves attractive forces
between two electrodes with a voltage potential between them.
Some effort has been put into developing electrostatic actuation
where two electrodes are pushed away from each other as a way
of eliminating pull-in and increasing stroke [2–11]. In 2001, Lee
and Cho [2] studied an electrode configuration that results in two
grounded electrodes being repelled from each other. If a charged
electrode is placed along the side of two grounded electrodes
(one fixed, one movable), the movable electrode moves in the
opposite direction of the fixed electrode. He and Ben-Mrad used
this same principle to create out-of-plane actuation [5] by flip-
ping Lee’s design on its side. In this configuration, the actuator
is suspended above three electrodes (shown in Fig.1). The two
side electrodes are charged while the beam and center electrode
are grounded. This was shown to achieve large out-of-plane ac-
tuation, however it requires a high voltage potential due to the
weak forcing associated with fringe electrostatic fields. How-
ever, the scope of their study was limited to static applications.

The authors have recently extended the study from He and
Ben-Mrad to include dynamic applications [12]. We conducted
dynamic experiments, superimposing an AC component to the
DC voltage on the side electrodes, finding softening nonlinear-
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ities associated with the repulsive force. Because of the nature
of the repulsive force (from the electrode configuration shown in
Fig.1), the system should also show parametric resonance, which
can be used for improving sensitivity of many sensors.

Parametric excitation (PE) has been applied to MEMS de-
vices since 1990 [13] and since then has been used in many
resonator designs [14–18]. PE involves exciting a system using
time-varying parameters of the system, rather than direct forc-
ing. This can be achieved by placing two electrodes along the
length of the resonator [19] where the beam is simultaneously
pulled towards both electrodes. These designs are still suscep-
tible to pull-in, which limits the response amplitude. In 2013,
Linzon et al [20] designed a fringe field parametric resonator that
eliminates the pull-in instability and can theoretically attain large
oscillation amplitudes. However, this design requires an initial
displacement or a curved micro-beam to operate because there is
no net force on the resonator when the beam is at its rest position.

In this paper, parametric resonance of the actuator proposed
in [5] is studied. The layout of the beam/electrodes is shown in
Fig.1 and the beam is assumed to have cantilever boundary con-
ditions. Unlike other parametric resonators, this design pushes
the beam away from the electrodes, which eliminates pull-in and
allows large oscillation amplitudes. It also generates a net force
on the beam in its rest position so no initial displacement is nec-
essary for its operation, which can be utilize both normal and
parametric resonances. When a voltage is applied to the side
electrodes, the electrostatic forces generate a positive stiffening
effect on the cantilever, as confirmed in our previous experi-
ment [12]. By changing the voltage on the side electrodes, the
effective stiffness of the micro-structure can be changed. By
modulating this at twice the natural frequency (with electrostatic
stiffening effects), the system should show parametric resonance.
The motivation of this work is to study parametric resonance of
this electrode configuration for sensors where a large signal-to-
noise ratio is required.

The organization of this paper is as follows: In the next
section, the formulation of the governing equation of motion is
outlined. Next, the relation to Mathieu’s Equation is defined and
the location of primary parametric resonance is estimated. Then
the theoretical results from the model are presented. Lastly, our
conclusions based on the simulation results are given.

THEORETICAL MODEL
Formulation

The beam is assumed to be linear-elastic polysilicon with di-
mensions given in Tab. 1. Axial displacement and beam stretch-
ing are ignored. The governing equation is obtained using Euler-
Bernoulli beam theory and is given as,

ρA
∂ 2ŵ
∂ t̂2 + ĉ

∂ ŵ
∂ t̂

+EI
∂ 4ŵ
∂ x̂4 + f̂e(ŵ)V 2 = 0 (1)

FIGURE 1. ELECTRODE CONFIGURATION OF THE RES-
ONATOR AS DESIGNED IN [5]. CANTILEVER IS SHOWN IN
BLUE AND THE ELECTRODES ARE BLACK.

FIGURE 2. ELECTROSTATIC FORCE DATA FROM COMSOL

where ŵ is the z-direction beam displacement, I is the moment of
inertia, V is the side electrode voltage, and f̂e is the electrostatic
force at 1V. The electrostatic force profile is determined with a
2D COMSOL simulation. A 5th order polynomial is needed ad-
equately fit the COMSOL data to be used with Equation (1). The
electrostatic force profile can be seen in Fig. 2.

Equation (1) is non-dimensionalized using the substitutions
shown in Tab. 2, which gives the non-dimensional equation of
motion as,

∂ 2w
∂ t2 + c∗

∂w
∂ t

+
∂ 4w
∂x4 + r1V 2

5

∑
j=0

p jh jw j = 0 (2)

where p j are constants from the 5th order polynomial forcing
fit. Equation (2) is then reduced into a set of coupled ordinary
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TABLE 1. BEAM GEOMETRY AND MATERIAL PROPERTIES

Parameter Symbol Value

Cantilever Length (µm) L 500

Beam Width (µm) b 17.5

Beam Height (µm) h 2

Beam-Electrode Gap (µm) g 2

Electrode Gap (µm) g1 20.5

Electrode Width 1 (µm) b1 30

Electrode Width 2 (µm) b2 28

Electrode Thickness (µm) h1 0.5

Elastic Modulus (GPa) E 158

Density (kg/m3) ρ 2330

Poisson’s Ratio ν 0.22

Force Constant p5 -8.5695 ×1014

Force Constant p4 1.7347 ×1011

Force Constant p3 -1.2595 ×107

Force Constant p2 3.5574 ×102

Force Constant p1 -3.8677 ×10−4

Force Constant p0 -1.1703 ×10−7

TABLE 2. NONDIMENSIONAL SUBSTITUTIONS

Parameter Substitution

x-direction position x = x̂/L

z-direction position w = ŵ/h

Time t = t̂/T

Damping c∗ = ĉL4/EIT

Time Constant T =
√

ρAL4/EI

Force Constant r1 = L4/EIh

differential equations (ODE) through Galerkin’s method. First,
separation of variables is performed on Equation (2), with the

beam response approximated as,

w(x, t)≈
n

∑
i=1

qi(t)φi(x) (3)

where φi(x) are the mode shapes of the beam, qi(t) are the time
dependent generalized coordinates, and n is the number of de-
grees of freedom (DOF). The effect of the electrostatic force on
the mode shapes of the beam is neglected and thus the mode
shapes for a cantilever micro-beam are given in Equation (4).

φi(x) = cosh(αix)− cos(αix)−σi(sinh(αix)− sin(αix)) (4)

where αi are the square root of the non-dimensional natural fre-
quencies, and σi are constants determined from the boundary
conditions and mode to be considered. αi and σi for the first
three modes are obtained from [21].

Once the mode shapes are known, Equation (3) is plugged
into the non-dimensional equation of motion (Equation (2)),
which yields a coupled set of n ODE’s for qi.

n

∑
i=1

(
φi

∂ 2qi

∂ t2 + c∗φi
∂qi

∂ t
+

∂ 4φi

∂x4 qi + r1V 2
5

∑
j=0

p jh j (qiφi)
j

)
= 0

(5)
To decouple the linear terms, Equation (5) is multiplied by φk
and integrated over the length of the beam, resulting in,

miq̈i + ciq̇i + kiqi + r1V 2
5

∑
j=0

fi jkq j
i = 0 (6)

where nonlinear terms remain coupled and,

mi =
∫ 1

0
φ

2
i dx ki =

∫ 1

0

d4φi

dx4 φidx ci = c∗mi

fi jk = p jh j
∫ 1

0
φkφ

j
i dx

(7)

For a one mode approximation, Equation (6) becomes,

m1q̈1 + c1q̇1 + k1q1 + r1V 2
5

∑
j=0

f jq
j
1 = 0 (8)

where

f j = p jh j
∫ 1

0
φ

j+1
1 dx (9)
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A one mode model is used because one DOF is a very good ap-
proximation of the system, as verified in our previous experi-
ment [12].

The last two terms that need to be defined are the damping
constant, c, and the driving voltage V . The damping is estimated
using the quality factor, Q and the relation shown below.

c =
α2

1
Q

(10)

The quality factor is assumed to be 100 to simulate a low damp-
ing environment. The driving voltage, V , is a sinusoidal AC volt-
age super imposed on a much larger DC voltage. The DC voltage
will move the beam to some static position above the substrate,
and the AC will cause the beam to vibrate about its static equi-
librium point. A large DC voltage is required to give the beam
enough room to vibrate without hitting the electrode. Once all
terms are defined, Equation (8) can be solved.

Mathieu’s Equation
To predict where parametric resonance (PR) will occur,

Equation (8) can be related to the damped Mathieu’s Equation,
shown below.

d2x
dτ2 + c

dx
dτ

+(δ + ε cos(τ))x = 0 (11)

Mathieu’s Equation shows unbounded parametric resonance
when δ = 1/4,1, 9/4,...etc, and ε is large enough to overcome the
beam damping c [22]. Equation (8) can be put in the form of
Equation (11) to find at what driving frequency PR will occur.

First, the electrostatic force is linearized about the static
equilibrium point, w = s (resulting from the DC component of
the applied voltage), using a Taylor Series.

fe ≈ β1q1 +β0 =
5

∑
j=0

(
p jh j

∫ 1

0
φ1dx

)
s j+

5

∑
j=1

(
jp jh j

∫ 1

0
φ1dx

)
s j−1 (φ1q1 − s)

(12)

Plugging the linearized force back into Equation (8) yields,

m1q̈1 + c1q̇1 + k1q1+

r1 (VDC +VAC cos(ωt))2 (β1q1 +β0) = 0
(13)

Using trigonometric identities, with τ = ωt, and combining lin-
ear terms yields the forced Mathieu’s Equation with two time

scales.

dq2
1

dτ2 +2ζ
ωn

ω

dq1

dτ
+[δ1 + ε11 cos(τ)+ ε21 cos(2τ)]q1 =

−
(

r1β0Ṽ 2
DC

mω2 + ε10 cos(τ)+ ε20 cos(2τ)

) (14)

where

2ζ ωn =
c1

m1
ωn =

√
k1

m1

δ1 =
1

ω2

(
ω

2
n +

r1β1Ṽ 2
DC

m

)
ε1i =

2r1βiVDCVAC

mω2

ε2i =
r1βiV 2

AC
2mω2 Ṽ 2

DC =V 2
DC +

V 2
AC
2

(15)

Equation (14) has both parametric resonance arising from the
linear term, and normal resonance associated with the forcing
terms. As mentioned above, there are also two time scales, τ and
2τ , for the ε1i and ε2i terms. Since the DC voltage is typically
much larger than the AC voltage, the second term, ε2i, will be
much smaller than ε1i. Because of this, our efforts are mainly
focused on studying the resonance of the first time, though the
effects of both are included in the analysis.

To find the frequency at which parametric resonance occurs,
the δ1 term is set equal to 1

4 [22], and rearranged to find ω , the
AC voltage frequency.

ω = 2

√(
ω2

n +
r1β1Ṽ 2

DC
m

)
(16)

where the square root term is the natural frequency with the stiff-
ening effect of the applied voltage. Since β1 is almost always
positive, increasing DC voltage increases the natural frequency,
which was verified in our previous experiment [12]. From Equa-
tion (16), one can see primary parametric resonance occurs at
twice the natural frequency, as expected.

It is also important to note that since the original equation of
motion (Equation (8)) has a quadratic non-linearity, the system
will also show superharmonic and subharmonic resonances of
order 2. This means that at twice the natural frequency, there
will be both parametric and subharmonic resonance. These can
be differentiated from each other by observing the time signal
and phase portrait.

SIMULATION RESULTS
First, Equation (13) is solved using long time integration at

approximately twice the natural frequency, which should show
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FIGURE 3. TIME RESPONSE AT 24.6 kHz WITH VDC=187 V AND
VAC=7.5 V

parametric resonance (Equation (16)) if the excitation level is
high enough. Fig. 3 shows a time response in this region. As can
be seen in Fig. 3, the beam experiences parametric resonance at
twice the natural frequency.

An indicator of parametric resonance can be seen in the
steady state time response, which is shown in the inlet of Fig.
3. For parametric resonance, the time response period should be
the same as the excitation period, while for subharmonic reso-
nance the response period is twice the excitation period (period-
2). Since both parametric and subharmonic resonance should
occur, the period of the beam response can be an indicator as to
which is dominant. This can be more clearly seen in the phase
portrait of the steady state time response shown in Fig. 4.

The phase portrait shows the steady state response is para-
metric. Since the threshold for parametric resonance is usually
higher than with subharmonic resonance, decreasing the AC volt-
age should show that the period doubles once the system has left
the instability tongue for parametric resonance. Figure 5 shows
the phase portrait when the AC voltage is decreased to 6.75 V.
At 6.75 VAC, the system shows subharmonic resonance. The os-
cillation amplitude is also much smaller than that of parametric
resonance (Fig. 4), which shows the subharmonic contribution
to the overall response is relatively small.

After the type of resonance was determined, a frequency
sweep was conducted using the shooting method to capture both
the stable and unstable steady-state trajectories. The shooting
method is a computationally efficient numerical ODE solution
method where initial conditions are guessed and continually up-
dated to try and catch the steady-state response. A frequency
response for several AC voltages can be seen in Fig. 6.

The system can achieve very large dynamic amplitudes

FIGURE 4. PHASE PORTRAIT OF THE STEADY STATE RE-
SPONSE AT 24.6 kHz WITH VDC=187 V AND VAC=7.5 V

FIGURE 5. PHASE PORTRAIT OF THE STEADY STATE RE-
SPONSE AT 24.6 kHz WITH VDC=187 V AND VAC=6.75 V

from parametric resonance (over 15µm), however, an AC volt-
age of at least 30V is necessary to overcome the threshold volt-
age for parametric resonance when the DC voltage is 120V. This
is high because the electrostatic force is generated through fring-
ing electric fields, which are fairly weak. It is also important to
note that on the backsweep branch the amplitude becomes large
enough to collide with the electrode. Since the beam is only 2µm
above the substrate, it can only reach approximately 2x the static
deflection (for a total of 20µm in Fig. 6) before this becomes
an issue. As seen in our previous experiment, as the beam gets
close to the electrode squeeze film damping starts to occur, how-
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FIGURE 6. FREQUENCY RESPONSE AT 120VDC AND 35, 45, and
55 VAC. SOLID LINES INDICATE STABLE SOLUTIONS WHILE
THE DASHED LINE INDICATES UNSTABLE SOLUTIONS.

ever this is not accounted for in our model.
Also shown in Figure 6, if the AC voltage is large enough,

the unstable branch intersects with the stable branch. This creates
a small bulge at the peak of the frequency curve that gets larger as
the AC voltage is increased. This intersection disappears if the
AC voltage is near the threshold for parametric resonance. At
120 VDC the threshold for parametric resonance is 30 VAC, which
is large.

The threshold voltage is dependent on the coefficient of the
cosine term in Equation (14), ε11. As can be seen in Equation
(15), ε11 depends on both the AC and DC voltage. Because of
this, increasing the DC voltage can lower the threshold AC volt-
age. Figure 7 shows a frequency sweep at 187 VDC. When the DC
voltage is increased up to 187 V, the threshold AC voltage drops
significantly. As can be seen in Figure 7, 10 VAC is enough to
create a large parametric resonance with a larger amplitude and
bandwidth than with 55 VAC and 120 VDC. The nonlinear behav-
ior is also reduced because of the lower excitation level. In this
case, the threshold AC voltage is reduced to about 7 V.

Since the shooting method is computationally fast and can
predict unstable trajectories, it can also be used to map the para-
metric instability tongue. This is shown in Fig. 8 for the case
of VDC=187 V. In Fig. 8, the unstable region is where paramet-
ric resonance occurs. The instability tongue shows a minimum
threshold voltage of about 7 VAC when the quality factor is 100
(as mentioned above). This minimum threshold drops to 0 V
when the damping from the system is removed. Figure 8 is also
consistent with Fig. 4 and 5, showing the change from 7.5VAC to
6.75VAC crosses the instability threshold for 24.58kHz and results
in only subharmonic resonance.

FIGURE 7. FREQUENCY RESPONSE AT 187VDC AND 10VAC.
SOLID BLUE LINES INDICATE STABLE SOLUTIONS WHILE
THE DASHED ORANGE LINE INDICATES UNSTABLE SOLU-
TIONS.

FIGURE 8. INSTABILITY TONGUE FOR PRIMARY PARAMET-
RIC RESONANCE AT 187VDC

CONCLUSION
In this paper, primary parametric resonance of a repulsive

force fringe field resonator is reported. This results from the
fringe field associated with the electrostatic force and occurs at
twice the natural frequency of the system. Dynamic amplitudes
as high as 20µm can be theoretically achieved at 187VDC and
10VAC, however in application the beam would hit the middle
electrode before this would occur.

Using Mathieu’s Equation, the system was also shown to
have both parametric and subharmonic resonance or order 2 at
the same frequency. This is due to the nonlinearity of the elec-
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trostatic force, however the effects of the subharmonic resonance
is small as compared to the parametric component.

There was also found to be two time-scales associated with
the parametric resonance, which arise from the superimposed AC
and DC voltages. Since the DC voltage is much higher than
the AC voltage, the faster term (ε11) is much larger than the
slower term (ε21). This means the primary parametric resonance
is mainly dependent on the faster term.
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