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Abstract—Gate-exhaustive and cell-aware tests are generated
based on input patterns of cells in a design. While the tests
provide thorough testing of the cells, the interconnects between
them are tested only as input and output lines of cells. This paper
defines cell-based faults that allow the interconnects to be tested
more thoroughly within a uniform framework that only targets
input patterns of cells. In contrast to a real cell that is part of
the design, a dummy cell is used for defining interconnect-aware
faults. Using a gate-level description of the circuit, a dummy
cell contains an interconnect, an output gate of the real cell
that drives it, and an input gate of the real cell that it drives.
Experimental results for benchmark circuits show that many
of the interconnect-aware faults are not detected accidentally
by gate-exhaustive tests, and that the quality of the test set is
improved by targeting interconnect-aware faults. Here, quality is
measured by the numbers of detections of single stuck-at faults
in a gate-level representation of the circuit.

I. INTRODUCTION

Fault models are defined to capture the behaviors of com-
monly occurring defects, and provide targets for fault sim-
ulation and test generation procedures that ensure a high
quality of testing. Examples of fault models include models
for bridges [1]-[5], and models for transistor and interconnect
opens [6]-[13]. New fault models are introduced to capture
new behaviors as technologies evolve [14]-[17].

In cell-aware approaches, input patterns of cells that are
effective in exhibiting the presence of defects in the cells are
used directly [18]-[21]. A test for such an input pattern assigns
the pattern to the inputs of the cell, and propagates the output
value of the cell to an observable output. An analysis of the
cell yields the input patterns that are effective for detecting
defects in the cell. In a gate-exhaustive approach, all the input
patterns of a gate or cell are used for testing it [22]-[23].
For ease of discussion, the input patterns for which tests are
generated are considered as representing faults. Single-pattern
gate-exhaustive faults are considered in this paper, but the
discussion applies to cell-aware faults and two-pattern tests
as well.

A test set that is generated by a gate-exhaustive (or cell-
aware) approach detects faults on the inputs and outputs of the
cells. Therefore, it detects faults on the interconnects between
cells. For illustration, Figure 1 shows two cells, Ci and Cj . It
is assumed that a gate-level description of the cells is available.
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Only one gate is shown within each cell, Gi in Ci and Gj in
Cj . The cells may contain additional logic that is not shown
in Figure 1, and the logic may consist of complex gates such
that Gi and Gj may not appear as stand-alone gates in the
layout. The two cells are connected by line gi,j , which is the
output of gate Gi in Ci, and an input of gate Gj in Cj . Faults
on line gi,j are detected by tests for Ci and Cj .

However, tests for Ci and Cj may not provide a compre-
hensive coverage of the defects that may occur on gi,j . Such
defects may be activated only under certain conditions that
are related to both Ci and Cj (as well as additional cells that
are adjacent to gi,j). The tests for Ci do not consider Cj , and
the tests for Cj do not consider Ci. Therefore, none of these
tests may create the conditions for detecting a defect with a
complex dependence on the logic within both cells.

This issue is addressed in this paper by complementing the
gate-exhaustive (or cell-aware) approach with an interconnect-
aware approach that provides targets for more comprehensive
testing of the interconnects. Interconnect-aware faults are
defined such that they have the same format as gate-exhaustive
faults. This is accomplished by defining a dummy cell for
every interconnect, and defining gate-exhaustive faults for the
dummy cells. To distinguish them from gate-exhaustive faults
that are related to real cells, the faults are referred to as
interconnect-aware faults.

Because of their identical format, tests for interconnect-
aware faults can be generated together with gate-exhaustive
tests by the same test generation procedure. This simplifies the
test generation process that does not need to consider multiple
fault models. It also contributes to test compaction since all
the faults can be targeted simultaneously by dynamic or static
test compaction procedures. Specifically, during dynamic test
compaction, a single test can be extended to detect both types
of faults uniformly.

Interconnect-aware faults are not intended to replace, and
are not replaced by, fault models that target interconnects, such
as bridges and opens. Interconnect-aware faults are defined
based on a dummy cell that includes the interconnect. The
dummy cell may not include the complete layout neighbor-
hood of the interconnect, which is considered for the definition
of bridges and opens. On the other hand, bridges and opens
are limited to the corresponding defect behaviors, while the
behavior of an interconnect-aware fault is not limited to a
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Fig. 1. Interconnect between cells

particular type of defect.
The use of interconnect-aware faults is expected to increase

the quality of the test set. To measure this increase, test
sets are generated for gate-exhaustive faults, and for gate-
exhaustive and interconnect-aware faults. The test sets are
compared based on their numbers of detections of single stuck-
at faults. A higher number of detections for a single stuck-at
fault implies that the test set creates more varied conditions
around the site of the fault. This contributes to the detection
of defects around the fault site [24]-[25].

The paper is organized as follows. Interconnect-aware faults
are defined in Section II. Experimental results are presented
in Section III.

II. INTERCONNECT-AWARE FAULTS

For the discussion in this section, a cell is referred to as
a real cell when it is part of the design. A dummy cell does
not exist in the design. A dummy cell is defined around an
interconnect, and it is used only for the purpose of defining
interconnect-aware faults. Gate-exhaustive faults are defined
for real cells. Interconnect-aware faults are defined for dummy
cells. Both types of faults have the same format.

Dummy cells include parts of the real cells around an inter-
connect. For simplicity it is assumed that gate-level representa-
tions of real cells are available. The gate-level representation of
a real cell is used for identifying gates within the real cell that
are important for the definition of interconnect-aware faults.
For example, gates that drive or are driven by an interconnect
are important for the definition of faults that are related to the
interconnect. The gate-level representation is assumed to be
accurate in identifying these gates, and their input and output
lines. The gates may not appear in the layout as stand-alone
gates when the cells consist of complex gates.

Referring to Figure 1, the gate-level representation of the
real cell Ci identifies Gi is an output gate that drives the
interconnect gi,j . The gate Gi has inputs hi,0, hi,1 and hi,2,
and output gi,j . The gate-level representation of the real
cell Cj identifies Gj as an input gate that is driven by the
interconnect gi,j . The gate Gj has inputs hj,0, hj,1 and gi,j ,
and output gj .

Considering Ci, suppose that it contains a complex gate
for the function gi,j = (ai,0ai,1 + ai,2ai,3 + ai,4ai,5)

′. In this
case, Gi may be a NOR gate with inputs hi,0 = ai,0ai,1,
hi,1 = ai,2ai,3 and hi,2 = ai,4ai,5. Even though hi,0, hi,1 and
hi,2 may not exist in the layout, generating tests that assign
specific values to them in the gate-level description translates

into tests that exercise gi,j in different ways, contributing to
the detection of defects.

The following considerations are important when defining
a dummy cell around an interconnect.

(1) Since interconnect-aware faults are used for comple-
menting gate-exhaustive faults, it is important to ensure that
the number of interconnect-aware faults is similar to the num-
ber of gate-exhaustive faults. If the number of interconnect-
aware faults is significantly higher than the number of gate-
exhaustive faults, they will dominate the test set, and if it is
significantly lower, they will not have an impact on the quality
of the test set.

(2) The cell Ci may have multiple outputs, and an output
of Ci may fan out to multiple cells, or drive multiple input
gates of Cj . It is possible to consider multiple interconnects
together, or each one separately. Considering each interconnect
separately results in smaller dummy cells. In this case, if the
output of Gi fans out to several gates in Cj , each fanout line
is considered separately.

(3) At a minimum, the dummy cell for a single interconnect
gi,j between real cells Ci and Cj should include the gate
Gi in Ci that drives gi,j , and the gate Gj in Cj that gi,j
drives. Without these gates, the dummy cell will not result in
new faults. For example, if the dummy cell includes only Gi,
input patterns of Gi will be used for defining interconnect-
aware faults. However, these input patterns are covered by
input patterns of Ci, and gate-exhaustive faults are already
defined for Gi as part of Ci.

(4) In addition to driving gates in Ci and driven gates in
Cj , it is possible to include in the dummy cell for gi,j other
gates that are adjacent to gi,j . These gates may be included
in Ci, Cj or other real cells. As the number of gates in the
dummy cell is increased, its number of inputs is increased as
well, and the number of interconnect-aware faults that will be
defined for it is increased.

Based on these considerations, and supported by experimen-
tal results for benchmark circuits, dummy cells are defined to
include single interconnect lines, and the minimum number of
gates that support the definition of new faults, as follows.

Let Gi be the output gate of Ci with output line gi,j . Let
Gj be the input gate of Cj with input line gi,j . The dummy
cell for gi,j includes Gi and Gj . The inputs to the cell are the
inputs of Gi, and the inputs of Gj excluding gi,j . The output
of the cell is the output line gj of Gj .

For gi,j in Figure 1, the dummy cell is shown by the dashed
box, with inputs hi,0, hi,1, hi,2, hj,0 and hj,1, and output gj .



For every pair of real cells Ci and Cj such that Ci drives
Cj through a line gi,j , the procedure described in this section
defines a dummy cell. The dummy cell is used for defining
interconnect-aware faults that are related to gi,j . All the input
patterns of the dummy cell are used for defining faults as in
the gate-exhaustive approach.

When using a cell-aware approach, if an accurate layout
representation is available for the dummy cell, it can be
analyzed similar to a real cell to identify input patterns that
are important for the detection of defects.

For a circuit with r real cells, and assuming that every
real cell has n inputs, the number of gate-exhaustive faults
is 2nr. With d interconnects, and assuming that every dummy
cell has m inputs, the number of interconnect-aware faults is
2md. Assuming that the fanout of every real cell is q, we
have that d = qr. The value of m is at least three if Gi and
Gj are two-input gates with distinct inputs. The numbers of
gate-exhaustive and interconnect-aware faults are similar if the
fanout q is low, and the numbers of inputs are such that n is
not significantly higher than m. This is the case for benchmark
circuits for a large range of values of n.

Considering all the (gate-exhaustive or interconnect-aware)
faults that can be defined for a (real or dummy) cell, many
of the faults are undetectable. Prior to test generation, unde-
tectable faults are identified in this paper as follows.

Let Ci be a cell with inputs hi,0, hi,1, ..., hi,ki−1. Suppose
that the inputs are arranged in topological order such that,
for j0 < j1, hi,j0 may have a path to hi,j1 , but hi,j1 does
not have a path to hi,j0 . Let the fault under consideration
be associated with the input pattern (hi,0, hi,1, ..., hi,ki−1) =
(vi,0, vi,1, ..., vi,ki−1).

The first check for the detectability of the fault performs im-
plications of the input values one after the other in topological
order. For 0 < j < ki, before performing the implications of
hi,j = vi,j , the procedure checks whether the implications
performed earlier result in hi,j = vi,j . If this is the case, it
is not possible to assign the input pattern to the cell, and the
fault is undetectable.

The second check for the detectability of the fault is
performed after all the input values are implied successfully. In
addition, the implications of a faulty value on the cell output
are computed. The procedure then checks whether there is
a path from the output of the cell to an observable output
through which fault effects can be propagated. This requires
a path where the values 0/0 and 1/1 do not appear. Only the
values 0/1, 0/x, 1/0, 1/x, x/0, x/1 and x/x are allowed. If no
such path exists, the fault is undetectable.

These checks can be performed efficiently for large numbers
of faults to identify large numbers of undetectable faults.

III. EXPERIMENTAL RESULTS

This section demonstrates the effects of adding interconnect-
aware faults to gate-exhaustive faults for benchmark circuits.

For a parameter denoted by n, a circuit is partitioned into
real cells with at most n inputs. Starting from the outputs of
the combinational logic as cell outputs, every cell is extended

as much as possible such that its number of inputs does not
exceed n. The inputs of the cell that are not inputs of the
combinational logic are then used as outputs of additional
cells.

To cover a broad range of cases, several values of n are
considered for every circuit, as follows. Let the maximum
number of inputs for a gate in the circuit be g. In three separate
experiments, the circuit is partitioned into cells with at most
n = g, 2g and 3g inputs. Even with n = g, a cell may contain
several gates with fewer than g inputs.

For the interconnect-aware approach, a dummy cell is
defined for every pair of real cells Ci and Cj such that Ci

drives Cj , and the gates Gi (at the output of Ci) and Gj (at
the input of Cj ) are multi-input gates.

For every input pattern of every (real or dummy) cell, a
(gate-exhaustive or interconnect-aware) fault is defined as in
a gate-exhaustive approach. Undetectable faults that can be
identified without test generation are removed. The set of gate-
exhaustive faults is denoted by Fgate. The set of interconnect-
aware faults is denoted by Fintr .

Test generation with test compaction is carried out using
a simulation-based procedure that was implemented for the
purpose of this study. The procedure modifies tests for single
stuck-at faults such that every additional test would detect as
many target faults as possible.

Test generation proceeds as follows. First, test generation is
carried out targeting only the faults in Fgate. Fault simulation
is carried out for the faults in Fintr to determine which faults
are detected accidentally. However, these faults are not targeted
directly. The resulting test set is denoted by Tgate.

Next, test generation is carried out targeting all the faults
in Fgate ∪ Fintr . The resulting test set is denoted by Tintr.

Since test generation is carried out separately for the two
sets of faults, Tgate and Tintr may not have any gate-
exhaustive tests in common.

The run time for generating Tgate is denoted by rtgate.
The run time for generating Tintr is denoted by rtintr . It is
typically the case that rtintr > rtgate because more faults
need to be targeted by the test generation procedure. The ratio
rtintr/rtgate captures the increase in the run time because of
the increased number of faults.

To demonstrate that the quality of Tintr is improved relative
to Tgate, both test sets are simulated using a ten-detection fault
simulation procedure for single stuck-at faults in the gate-level
description of the circuit. In this process, a single stuck-at fault
is dropped from further simulation after it is detected by ten
different tests.

The results are shown in Tables I and II as follows. There
are up to three pairs of rows for every circuit, corresponding
to the three values of n. All the three values are considered
for several circuits to illustrate the range of results obtained.
Additional results are shown using one or two values of n.

The first row of a pair for every circuit and value of n
shows the results obtained when test generation targets only
the faults in Fgate. The second row shows the results obtained
when test generation targets all the faults in Fgate ∪ Fintr .



TABLE I
EXPERIMENTAL RESULTS (ISCAS-89 AND ITC-99)

faults f.c. 10-det
circuit n gate intr tests gate intr rtime ave %10-det
s1423 4 1682 2650 85 98.454 80.340 1.00 8.028 63.894
s1423 4 1682 2650 142 98.454 91.057 2.64 8.812 76.766
s1423 8 2674 1953 322 83.059 87.609 1.00 9.227 85.017
s1423 8 2674 1953 321 83.059 91.551 1.32 9.324 85.677
s1423 12 3861 1849 690 80.653 90.590 1.00 9.578 90.363
s1423 12 3861 1849 700 80.653 92.104 1.14 9.631 91.089
s5378 4 7419 11275 226 79.579 40.089 1.00 8.587 75.429
s5378 4 7419 11275 293 79.579 44.133 0.72 8.804 79.187
s5378 8 17362 5696 479 54.187 43.504 1.00 9.148 84.597
s5378 8 17362 5696 506 54.187 45.681 0.67 9.168 85.097
s5378 12 41691 3436 1280 32.386 51.921 1.00 9.406 89.138
s5378 12 41691 3436 1290 32.386 54.075 0.50 9.448 90.028
s9234 4 9313 21595 296 81.456 43.936 1.00 7.588 57.067
s9234 4 9313 21595 443 81.456 48.155 0.86 8.073 63.159
s9234 8 21763 15441 953 48.794 49.414 1.00 8.808 72.138
s9234 8 21763 15441 1001 48.794 51.389 0.44 8.933 74.246
s9234 12 71967 14092 4094 23.140 52.725 1.00 9.367 82.157
s9234 12 71967 14092 4178 23.140 54.031 0.50 9.442 83.326
s13207 4 13404 34667 394 83.594 44.226 1.00 7.922 69.812
s13207 4 13404 34667 539 83.594 51.089 2.14 8.154 72.501
s13207 8 35720 21305 865 66.201 42.769 1.00 8.722 76.933
s13207 8 35720 21305 919 66.201 48.115 1.15 8.797 78.105
s13207 12 101528 18380 4203 39.978 46.306 1.00 9.104 86.775
s13207 12 101528 18380 4210 39.978 50.501 0.79 9.169 87.723
s15850 4 14101 26429 355 85.051 49.344 1.00 8.868 77.842
s15850 4 14101 26429 542 85.051 54.641 4.84 9.029 81.058
s15850 8 26566 18570 1647 65.968 54.599 1.00 9.155 83.258
s15850 8 26566 18570 1623 65.968 56.721 2.57 9.229 84.307
s15850 12 68008 17419 4727 51.537 55.790 1.00 9.419 87.633
s15850 12 68008 17419 4683 51.537 58.287 2.93 9.446 88.222
s35932 2 44859 65898 25 82.106 67.515 1.00 5.508 20.100
s35932 2 44859 65898 32 82.106 70.764 1.09 6.503 28.408
s35932 4 33465 32508 35 88.334 70.844 1.00 6.189 27.170
s35932 4 33465 32508 39 88.334 73.877 1.16 6.751 31.130
s35932 6 35193 30780 47 84.724 70.000 1.00 6.856 33.675
s35932 6 35193 30780 45 84.724 72.515 1.16 6.996 34.432
s38417 4 39325 49430 337 94.884 72.250 1.00 9.078 83.502
s38417 4 39325 49430 651 94.884 82.409 2.80 9.287 87.380
s38417 8 69523 28956 1476 84.048 73.588 1.00 9.641 92.976
s38417 8 69523 28956 1487 84.048 79.220 1.81 9.659 93.172
b04 4 2018 3882 118 89.445 61.128 1.00 8.454 70.134
b04 4 2018 3882 221 89.445 70.608 1.94 9.229 82.021
b04 8 4566 2127 359 61.980 79.972 1.00 9.577 87.593
b04 8 4566 2127 392 61.980 87.259 0.93 9.784 93.016
b04 12 18990 1742 1131 38.283 92.078 1.00 9.848 96.880
b04 12 18990 1742 1144 38.283 95.350 0.59 9.877 97.028
b07 5 1947 3886 177 90.550 62.146 1.00 8.285 69.062
b07 5 1947 3886 630 90.550 87.236 4.34 9.385 86.137
b07 10 3181 2774 583 85.822 76.820 1.00 9.337 85.799
b07 10 3181 2774 745 85.822 91.024 1.32 9.631 90.617
b07 15 3189 2750 647 87.394 77.636 1.00 9.451 88.673
b07 15 3189 2750 807 87.394 91.236 1.26 9.701 93.576
b14 5 20472 92808 1243 65.035 39.351 1.00 8.320 68.580
b14 5 20472 92808 4549 65.035 47.458 12.69 9.247 79.020
b14 10 114416 51995 6128 34.364 54.961 1.00 9.587 87.196
b14 10 114416 51995 7221 34.364 59.881 1.77 9.738 89.600
b15 5 48497 220477 944 60.868 37.073 1.00 8.707 76.928
b15 5 48497 220477 2374 60.868 39.885 5.67 9.262 85.370
b20 5 46995 186608 1683 63.047 41.220 1.00 9.022 79.016
b20 5 46995 186608 5966 63.047 48.529 11.13 9.639 87.816

Column n of Tables I and II shows the bound on the number
of cell inputs. Column faults shows the number of faults
in Fgate followed by the number of faults in Fintr . Column
tests shows the number of tests in Tgate or Tintr. Column
f.c. shows the fault coverage obtained with respect to Fgate,
followed by the fault coverage obtained with respect to Fintr.
Column rtime shows the increase in run time because of the

use of interconnect-aware faults.

Column 10 − det shows the results of ten-detection fault
simulation, where a single stuck-at fault is dropped from
consideration after it is detected ten times. Subcolumn ave
shows the average number of detections of a single stuck-at
fault. Subcolumn %10 − det shows the percentage of faults
that are detected ten times.



TABLE II
EXPERIMENTAL RESULTS (IWLS-05)

faults f.c. 10-det
circuit n gate intr tests gate intr rtime ave %10-det
aes core 4 93109 328613 253 70.208 42.195 1.00 7.427 58.382
aes core 4 93109 328613 313 70.208 43.126 3.98 7.750 62.378
aes core 8 285775 216236 287 26.231 48.362 1.00 7.639 60.939
aes core 8 285775 216236 320 26.231 49.076 2.22 7.792 63.100
des area 4 19671 93812 126 67.480 36.056 1.00 6.887 50.529
des area 4 19671 93812 210 67.480 38.454 3.37 7.939 57.948
des area 8 73556 59488 324 32.740 45.204 1.00 8.801 74.247
des area 8 73556 59488 335 32.740 46.016 1.55 8.901 74.439
des area 12 478371 54533 419 5.321 46.555 1.00 8.963 77.821
des area 12 478371 54533 441 5.321 47.371 0.98 9.141 78.697
i2c 4 3981 7182 130 81.261 60.930 1.00 8.243 68.507
i2c 4 3981 7182 330 81.261 71.568 2.63 8.973 82.542
i2c 8 7697 4582 323 55.229 72.741 1.00 9.090 84.211
i2c 8 7697 4582 399 55.229 79.376 1.08 9.193 85.837
i2c 12 41749 3498 1168 20.156 85.963 1.00 9.426 89.773
i2c 12 41749 3498 1173 20.156 87.822 0.39 9.500 90.886
pci spoci ctrl 4 2914 8090 280 80.817 53.857 1.00 7.303 59.115
pci spoci ctrl 4 2914 8090 559 80.817 64.586 3.08 8.013 67.734
pci spoci ctrl 8 6885 5400 723 51.184 62.870 1.00 8.231 70.938
pci spoci ctrl 8 6885 5400 887 51.184 71.333 1.59 8.456 73.267
pci spoci ctrl 12 23598 5118 1353 23.625 65.025 1.00 8.634 77.635
pci spoci ctrl 12 23598 5118 1457 23.625 71.551 0.74 8.796 79.499
sasc 4 2087 5243 41 84.859 56.456 1.00 7.189 48.695
sasc 4 2087 5243 77 84.859 64.658 2.46 8.354 68.505
sasc 8 6118 2687 127 44.819 86.491 1.00 9.345 83.096
sasc 8 6118 2687 133 44.819 88.537 0.99 9.426 84.875
sasc 12 24698 2647 504 24.192 86.777 1.00 9.794 96.145
sasc 12 24698 2647 504 24.192 89.120 0.52 9.846 97.212
simple spi 4 2836 7531 80 82.969 54.110 1.00 7.783 61.019
simple spi 4 2836 7531 137 82.969 60.643 1.80 8.533 71.585
simple spi 8 8835 3944 325 44.867 78.195 1.00 9.386 86.816
simple spi 8 8835 3944 333 44.867 80.502 0.81 9.435 88.244
simple spi 12 60415 3696 906 18.027 81.710 1.00 9.865 96.763
simple spi 12 60415 3696 891 18.027 82.468 0.22 9.876 97.144
spi 4 11519 34793 662 78.158 54.137 1.00 8.133 70.211
spi 4 11519 34793 979 78.158 58.765 1.92 8.626 76.812
spi 8 44932 18677 2264 37.437 71.612 1.00 9.316 84.875
spi 8 44932 18677 2266 37.437 73.433 0.75 9.356 85.752
spi 12 160586 16671 3600 17.002 74.339 1.00 9.595 90.737
spi 12 160586 16671 3595 17.002 75.520 0.41 9.618 90.814
systemcaes 4 33400 99060 147 71.051 47.131 1.00 8.324 65.341
systemcaes 4 33400 99060 256 71.051 50.729 3.68 9.390 85.366
systemcaes 8 108636 60991 460 29.919 57.438 1.00 9.513 87.398
systemcaes 8 108636 60991 479 29.919 59.315 1.24 9.629 90.075
systemcaes 12 317007 48957 421 11.642 60.843 1.00 9.469 85.735
systemcaes 12 317007 48957 462 11.642 63.204 0.90 9.683 92.540
systemcdes 4 11920 38092 94 70.973 50.037 1.00 8.090 62.860
systemcdes 4 11920 38092 143 70.973 51.961 4.10 8.806 75.386
systemcdes 8 29984 24011 124 33.575 61.139 1.00 8.600 72.175
systemcdes 8 29984 24011 151 33.575 63.142 1.35 8.909 78.188
systemcdes 12 96446 21369 509 16.927 63.026 1.00 9.832 94.880
systemcdes 12 96446 21369 505 16.927 63.676 0.58 9.834 94.911
tv80 4 28017 104618 939 74.915 47.549 1.00 8.363 71.537
tv80 4 28017 104618 2046 74.915 52.393 5.35 9.087 82.766
tv80 8 86682 73203 2270 36.657 54.629 1.00 9.201 84.819
tv80 8 86682 73203 2852 36.657 57.905 2.79 9.380 87.562
tv80 12 503580 62406 6973 12.345 58.683 1.00 9.537 91.322
tv80 12 503580 62406 7400 12.345 60.952 1.22 9.606 92.269
wb dma 4 14531 29254 140 71.151 48.691 1.00 8.688 77.201
wb dma 4 14531 29254 283 71.151 52.960 3.07 9.264 85.369
wb dma 8 45638 10736 378 36.413 75.782 1.00 9.554 90.964
wb dma 8 45638 10736 437 36.413 80.663 0.74 9.647 93.185
wb dma 12 130260 8554 2119 19.190 84.463 1.00 9.773 96.449
wb dma 12 130260 8554 2122 19.190 88.719 0.42 9.799 96.746

The following points can be seen from Tables I and II.
The number of gate-exhaustive faults typically increases when
n is increased. Although the number of real cells decreases,
the cells have more input patterns. Overall, this increases the

number of gate-exhaustive faults for n ≥ 4.

The number of interconnect-aware faults decreases with n.
This is a result of the fact that a smaller number of real cells
results in a smaller number of interconnects, but the number of



inputs of a dummy cell remains similar. A smaller number of
dummy cells with similar numbers of inputs yields a smaller
number of interconnect-aware faults.

These trends are desirable since they imply that when gate-
exhaustive faults cover more of the circuit, fewer interconnect-
aware faults are defined to complement the test set.

Even with these trends, for all the values of n, the numbers
of gate-exhaustive and interconnect-aware faults are such that
none of them dominates the test generation process. This is
the situation that motivated the use of minimum dummy cells.

Many interconnect-aware faults are not detected acciden-
tally by tests for gate-exhaustive faults. For most of the circuits
considered, the fault coverage of interconnect-aware faults
increases significantly when these faults are targeted directly.
This is true for all the values of n.

The number of tests increases with n because the number of
target faults increases. Comparing the increase in the number
of tests, |Tintr|/|Tgate|, to the increase in the number of faults,
|Fgate ∪ Fintr|/|Fgate|, the increase in the number of tests is
lower. This is because of the use of test compaction that allows
both types of faults to be targeted by the same tests. The
increase in run time is also typically lower than the increase
|Fgate∪Fintr |/|Fgate| in the number of faults. Both parameters
are sometimes reduced when Fintr is targeted.

Based on the numbers of detections of single stuck-at faults,
the quality of the test set increases in all the cases when
interconnect-aware faults are targeted directly. The increase is
typically smaller for the higher values of n. In these cases, the
quality of the gate-exhaustive test set is higher, and the number
of interconnect-aware faults is smaller relative to the number
of gate-exhaustive faults. As a result, a smaller increase in
quality is to be expected. Nevertheless, an improvement occurs
in all the cases when interconnect-aware faults are targeted.

IV. CONCLUDING REMARKS

This paper defined cell-based faults that allow the inter-
connects between cells to be tested more thoroughly as part
of a gate-exhaustive (or cell-aware) test generation process.
The definition of an interconnect-aware fault is based on
the definition of a dummy cell. Assuming that a gate-level
description of the real cells is available, the dummy cell
contains the interconnect, the output gate of the real cell that
drives it, and the input gate of the real cell that it drives. This
provides a uniform framework for targeting gate-exhaustive (or
cell-aware) and interconnect-aware faults. Experimental results
for benchmark circuits showed that many of the interconnect-
aware faults are not detected accidentally by tests for gate-
exhaustive faults. In addition, the quality of the test set is
improved by targeting interconnect-aware faults based on the
numbers of detections of single stuck-at faults.
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