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ARTICLE INFO ABSTRACT

Article history: Due to the ease of use, face authentication could be a promising way to replace hard-to-

Available online remember passwords to access web services. However, to make face authentication suitable
for web services, there are still several critical security and privacy challenges unad-
dressed. First, the existing authentication servers typically collect the plaintext of users’ facial

images in order to conduct authentication. If the servers are compromised, the attackers
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would obtain the users’ facial images and can easily impersonate the users in any other
applications that use face authentication. Second, it is also hard to prevent attackers from
using facial images published in social network sites to impersonate the true user. In this
paper, we conquered these two issues by proposing a novel secure face authentication system,
called UFace. UFace uses special close-up facial images (which cannot be found online) for
authentication. To further ensure the confidentiality of these close-up images, UFace guar-
antees that these images are only stored at user side and the servers have not any plaintext
of these images. The face authentication is conducted securely with two collaborative au-
thentication servers. UFace was implemented through both an Android application and
multiple server side programs which were then evaluated in a real setting. The experimen-
tal results demonstrate that the UFace system can accurately authenticate users within a
few seconds.

© 2017 Elsevier Ltd. All rights reserved.

their accounts (Tagat, 2012). Using the same password across
multiple accounts has opened the door to attackers and is be-
coming the main cause of the dramatic rise in online fraud.

1. Introduction

With around 1 billion websites online today (Internet Live Stats,
2016), statistics (Tagat, 2012) show that each Internet user has
an average of 26 different online accounts, with 25-to-34 year
olds having an average of 40 accounts each. With so many dif-
ferent accounts that typically need passwords to access, some
passwords are bound to be reused due to the challenge of
memorizing many different passwords. The surprising fact is
that a person usually uses just 5 unique passwords for all
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A common approach to reduce the user’s burden on memo-
rizing different passwords is password manager software.
The password manager software can help generate, store and
synchronize passwords among computers and personal
devices of a single user. However, researchers (Li et al., 2014)
have recently identified critical vulnerabilities in certain
popular password manager softwares, e.g., LastPass, Pass-
word Box, etc., and revealed how an attacker could steal
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(a) Close-up Photo

(b) Zoom-In Photo

Fig. 1 - Close-up Photos vs. Zoom-In Photos.

arbitrary credentials from a user’s account via these pass-
word manager software.

A question arises: Is there a way that does not require in-
dividuals to memorize many different passwords while still
preventing attackers from accessing confidential informa-
tion? Biometric authentication is one potential solution to this.
Biometric authentication allows users to use fingerprints, iris,
facial photos, etc. to authenticate themselves. In this work, we
will focus on the face authentication. Being a newly emerg-
ing technique, face authentication needs to overcome several
critical challenges, including: maintaining high accuracy of face
authentication, and preventing impersonation attacks. With the
advances in face recognition techniques that achieve over 90%
of accuracy (Tan and Triggs, 2010), the accuracy is no longer a
major hurdle. However, impersonation attacks have still not
yet been fully conquered. Specifically, since many personal
photos can be found online in social networks, attackers may
directly use these online facial images to impersonate the true

5. Collaborative

users. Although there have been liveness detection tech-
niques (Li et al., 2015) by analyzing head movement, new way
of attacks also emerge which could construct videos of head
movement based on online images. Moreover, in existing face
authentication systems, the users always need to disclose their
facial images to the authentication server so that the server
can verify the user’s identity. If the server is compromised, an
attacker or an insider can easily obtain the facial image of each
person who is accessing the system, and then impersonate the
user in other applications that use face authentication. These
impersonation attacks could totally compromise the face au-
thentication system.

In order to prevent the aforementioned attacks, we propose
a novel face authentication system called UFace where “U”
stands for “Your” as well as “Universal” to reflect our goal of
creating a universal password based on each individual’s facial
images. UFace uses special close-up facial images for authen-
tication. Specifically, when users needs to gain access to a
web service, the user would take a close-up photo of his/her
face using the UFace mobile application. Fig. 1 (a) is an example
of a close-up photo. Such close-up images carry the personal
device features, such as the camera’s resolution and optical
distortion caused by the short distance. More importantly,
these close-up images are rarely shared online due to the
lack of beauty (i.e., being distorted). Our experiments also
show that these close-up images cannot be duplicated by
attackers who try to use the same type of device to zoom in
to take the victim'’s photo in a distance (such as the photo in
Fig. 1 (b).

To further ensure the confidentiality of these close-up
images, UFace guarantees that these images are only stored
at user side and the servers have not any plaintext of these
images. The face authentication is conducted securely with two
collaborative authentication servers as shown in Fig. 2. In
summary, our proposed UFace system has the following main
technical contributions:

1. Encryption
Key

Authentication

2. Request Access

3. Index 6. Authentication
ID Result

User

7. Provide/Deny Access

Fig. 2 - UFace System — Authentication Overview.
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e The UFace authentication mechanism is unique in that the
authentication servers do not have any plaintext of images
while all the existing works require the servers to have a
database of images. Specifically, the most related works in
privacy-preserving face recognition (Erkin et al., 2009) do
not need to see the user’s plain text image but the authen-
tication server still has a database of plaintext images for
secure comparison. The existing work is not suitable in our
case where all facial images need to be kept only at the user
side so that users do not worry about their bioinformation
being misused by others as passwords.

e We designed a novel homomorphic-based authentication
protocol between the two UFace servers so that they are able
to collaboratively conduct face image matching without ac-
tually looking at the plain text of the face images. Due to
the complexity of the photo matching algorithms, the design
of the collaborative homomorphic computation was very
challenging. It required mapping and integration of various
types of encrypted computations to work alongside garble
circuit operations. The overall process also needed to be
highly efficient so would provide negligible response time
to end users.
We developed an Android application that is capable of ef-
ficient photo feature extraction and encryption that keeps
each users’ computing burden to minimum. The develop-
ment of the Android application involved multiple challenges
that deal with the limited memory/computing power of
mobile devices along with the need to design a new library
for facial feature generation tailored to work on mobile
device.

e We have evaluated UFace both theoretically and experi-
mentally. The security analysis shows that UFace is robust
against various types of attacks. The experimental results
demonstrate that the UFace system can accurately authen-
ticate users within a few seconds.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related works on face authentication and face
recognition. Section 3 introduces the background knowledge
of several based techniques that form our proposed system.
Section 4 gives an overview of the UFace system and the threat
model. Then, Section 5 presents the UFace Android applica-
tion at the user side and Section 6 presents the protocols at
server side. Section 7 provides a security analysis of the system
and Section 8 reports the performance study. Finally, Section
9 concludes the paper.

2. Related works

In this section, we discuss related works on privacy-preserving
biometric authentication. Biometric authentication is very con-
venient for end users since it reduces the number of passwords
to remember to zero. However, it also raises important privacy
concerns since users’ biometric data may be known by service
providers or authentication servers (Bringer et al., 2013). One
of the earliest attempts towards privacy preservation during
biometric authentication is by Erkin et al. (2009). In their setup,
the server has a set of photos that it does not want the user

to see while the user has his/her own photo that needs to
remain hidden from the server. They proposed a secure two-
party comparison protocol that allows each user to check if
his/her photo matches a photo in the server’s database using
Eigenfaces while keeping both the user’s and the server’s photos
private to themselves. Later, Sadeghi et al. (2010) improved the
efficiency of the above protocol. Following the similar set-
tings, Osadchy et al. (2010) also proposed a privacy-preserving
face detection algorithm - SCiFI - that allows a user to check
if his/her photo is in the server’s database without knowing
the server’s database. Evans et al. (2011) proposed a secure pro-
tocol for fingerprint matching while Blanton and Gasti (2011)
proposed security protocols for both fingerprints and iris. Re-
cently, Sedenka et al. (2015) employed a similar idea and
implemented the privacy-preserving face authentication on
smart phones. However, their system needs more than 10
minutes for a single authentication which is not suitable for
real-time applications.

Compared with the aforementioned works, UFace has a
totally different setting. The above works all assume that the
authentication server has non-encrypted information, i.e.,
knows the unencrypted content of each user’s biometric data.
Unlike their works, the authentication servers in UFace only
have access to encrypted feature vectors representing facial
images. This setting significantly enhances privacy preserva-
tion and also introduces bigger challenges into the system
design even though some of the same techniques are being
utilized: garbled circuits and Paillier encryption.

Recently, there are several works which have similar secu-
rity goals by having only encrypted data at the server side. One
is by Blanton and Aliasgari (2012) who proposed both a single-
server and a multi-server secure protocol to outsource
computations of matching iris biometric data records. However,
their single-server protocol uses predicate encryption scheme
(Katz et al., 2008; Shen et al., 2009) which is not as secure as
the additive homomorphic encryption scheme adopted into
UFace. Their multi-server protocol leverages a secret sharing
scheme (Shamir, 1979) and requires at least three indepen-
dent servers, whereas our UFace system only needs two
independent servers and is much more efficient. In Pal et al.
(2015), authors proposed to watermark each user’s facial image
with fingerprints and then encrypt the watermarked biomet-
ric data to protect its privacy from adversaries. Their security
protocol is conducted directly by the user and a single server,
and hence the user bears a heavy computation workload. In
UFace, the computation at the user side is lightweight, which
helps conserve smart phone batteries. Another recent related
work is by Chun et al. (2014) who developed a secure proto-
col that allows an organization to outsource encrypted users’
biometric datasets to the cloud and let the cloud conduct au-
thentication process on fully encrypted data. However, they
mainly focus on fingerprint matching, the computation of which
is much simpler than that for the face recognition on en-
crypted data in our system. Also, their algorithm takes over
an hour to authenticate a user, which is not practical in a real
world application.

In summary, there have been very limited efforts on privacy
preserving face authentication and none of these existing work
achieves the same security goal and efficiency as our pro-
posed UFace system.
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3. Background

In this section, we give a brief review of the fundamental tech-
niques underlying our proposed system, including face
recognition, Paillier cryptosystem, and garbled circuits.

3.1. Face recognition

Research on facial representation and recognition has been
ongoing for numerous years. Two of the earlier methods for
representing a person’s face were Eigenfaces (Turk and Pentland,
1991) and Fisherfaces (Belhumeur et al., 1997). Later, a more
advanced approach was proposed using so-called Local Binary
Patterns (LBP) (Ahonen et al., 2004) to generate a feature vector
for a photo. The most recent face recognition technique lever-
ages deep convolutional neural networks (DCNN) (Luo, 2012;
Sun et al., 2013) which typically use multiple layers of network
for feature learning. However, DCNN based approaches are not
applicable in our settings since our system does not allow the
service provider to view the plain text of users’ face images
and hence the service provider would not be able to conduct
the feature learning process. Therefore, we adopt the LBP based
face recognition algorithm which already achieves a high ac-
curacy rate under different environments (e.g., different
lightings). In what follows, we briefly review the LBP-based face
recognition approach.

The original LBP method follows a straightforward algo-
rithm of picking an individual pixel and comparing its intensity
against the 8 surrounding pixels’ intensity (intensity is used
since every image is first converted to gray-scale). If the sur-
rounding pixels’ intensity was greater than or equal to the
intensity of the center pixel then it would be represented by
a 1, otherwise it was given a 0. From this point, the 8 sur-
rounding pixels are given a bit of information so the collection
of these pixels is a byte of information which is called a label
in LBP terms. This label is generated from starting at the pixel
above and to the left of the center pixel and then reading each
bit in a clockwise pattern.

An example of the basic LBP operation is shown in Fig. 3
where a pixel with an intensity value of 92 was given a label
of 01010000. This process is repeated for every pixel in the image
to generate a histogram.

The value for each bin of the histogram is the number oc-
currences of the specific encoding in the facial image. Since
there are 8 bits used to encode a single pixel, there are 28 = 256
possible labels. This means the histogram will be a vector of

74 97 89 0Oj1|0
0 1
36 46 55 00| O
Code: 01010000

Fig. 3 - An example of computing the LBP for a pixel.

length 256; however, this can be reduced by using something
called uniform labels. A label is considered uniform if there
are at most two bitwise transitions in the encoding (ie. a change
from 0 to 1 or vice versa). The label 01010000 would not be
uniform since there are 4 transitions, while 00111000 would
be uniform since there are only 2 transitions. All non-uniform
labels can be placed into a single seperate bin. Thus, since there
are 58 uniform values between 0 and 2% and 1 bin for all non-
uniform values, the histogram is reduced to only needing n = 59
bins.

This current LBP scheme does not maintain spatial rela-
tion, however. This can be fixed by dividing the image into
separate regions and calculating the histogram for each region.
This allows for more efficient label comparison since pixels’
labels have a smaller domain of other pixels to match with.

For example, if an image is 256 by 256 pixels and is sepa-
rated into k = 16 equal sized sections, then each section of the
image will contain 64 x 64 = 4096 pixels. LBP is then done in
each of the 16 sections to obtain 16 different histograms. These
histograms are then concatenated together in the form
{H:H,...H,} to form the feature vector of the face which would
be 16 x 59 = 944 bins. It should also be noted that the max value
in any bin is equal to the number of pixels in a section. Since
there are 4096 pixels in each section, the max value in any bin
is 4096 which can be respresented with 13 bits (ie. 22 + 1 = 4096).

To compare two feature vectors of faces, standard histo-
gram comparison techniques can be used such as Histogram
Intersection. Given two histograms A and B with n bins, the
intersection is defined as:

i min (Ai, Bl)
i=1

This formula can be normalized to:

::l min(A,‘, Bl)

H(A,B)= .
i=1Bi

where H(A, B) is a percentage showing the closeness of to his-
tograms. This is easily converted to be used with LBP with the
following modification:

Y. X, min(A;, B;)
k n
2 j:121’:1B ji

where j is the region index. It should be noted that if histo-
grams are concatenated together, they behave like a single giant
histogram for the purposes of histogram intersection.

3.2.  Paillier cryptosystem

This type of cryptosystem is known as an additive homomor-
phic public-key encryption scheme. In public-key cryptosystems,
a public key is used to encrypt a piece of information and a
separate private key is used for decryption. In this setting, an
authenticator generates both keys and distributes the public
key while keeping the private key secure. Then, when a message
needs to be sent to the authenticator, it is first encrypted using

security (2017), doi: 10.1016/j.cose.2017.09.016
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the public key and then decrypted once it reaches the
destination.

There are 2 unique properties of Paillier’s encryption scheme.
The first is that it is an additive homomorphic scheme. This
means that it is possible to compute the encrypted sum of en-
crypted messages (E(m,)-E(m,) = E(m; + m,)) and the encrypted
multiplication of encrypted messages (E(m)" = E(kxm)). This
property allows for operations to be computed securely on an
already encrypted message without needing to decrypt the
message first. The second property is that it is semantically
secure which guarantees that a ciphertext will reveal no in-
formation about the plaintext. The reason this is ensured, is
that for every encryption, a random value is introduced into
the encryption. This means that the same message encrypted
multiple times will output different ciphertexts. For more thor-
ough details on Paillier’s encryption scheme, see Paillier (1999).

3.3. Garbled circuits

The goal of garbled circuits is to provide a secure computa-
tion for multiple parties to compute a function in which no
party learns the inputs of any other party. A circuit can be con-
sidered to be a sequence of boolean gates which are able to
compute a specific function. Once the circuit is generated, the
inputs are obfuscated with random keys for each input wire
of the circuit. The garbled circuit is then sent to the second
party where they obtain their inputs to the circuit through
oblivious transfer and can evaluate the circuit securely. Since
each wire is obfuscated, no party can learn anything about the
inputs of any other party. For more thorough details on garbled
circuits, see Yao (1986).

4, System overview

In this section, we first present an overview of the UFace system.
Then, we introduce the threat model and security goals.

4.1. System overview

The UFace system is targeting smart phone users with the aim
to assist them in accessing online services easily, safely and
privately.

We design a privacy preserving face authentication frame-
work called UFace that prevents the web service providers and
authentication servers from seeing the actual facial images used
by the users for authentication. The UFace system serves as
a middle man between multiple web service providers and
users. The framework of UFace is shown in Fig. 2 which in-
volves three types of entities: users, web service providers and
UFace authentication servers. The UFace authentication servers
can be further classified into two types: (i) UFace data server;
and (ii) UFace key server. The data server is in charge of storing
encrypted user data while the key server manages keys. The
two servers need to execute secure collaborative protocols
during the authentication process. This design follows the spirit
of “separation of duty” to achieve privacy preservation. It is
worth noting that our UFace framework can be extended to
support multiple data servers and multiple key servers to

further enhance the efficiency. In the following discussion, we

focus on two servers for easy illustration of the main ideas.
The UFace authentication process consists of two main

phases: (i) registration phase; and (ii) authentication phase.

¢ Registration phase: When a user registers with a web service
provider that uses UFace for authentication, the user will
be directed to the client-side UFace application and asked
to take a few selfies in short distance. The UFace applica-
tion will extract feature vectors of these close-up photos,
encrypt the feature vectors, and send them to the UFace data
server. The UFace data server will register the user’s device
and evaluate the quality of the received selfies by
collaboratively examining their feature vectors with the
UFace key server. Note that none of the UFace servers will
see the actual photos. All operations are conducted di-
rectly on encrypted photos. Once the selfies pass the
evaluation, the UFace data server will store them for the sub-
sequent authentication.

e Authentication phase: When a registered user wants to
access the web service, he first takes a photo of himself using
the camera on his mobile phone. The UFace app will send
the user’s web ID to the web service provider and his en-
crypted photo feature vector to the UFace data server. In
order to keep users’ close-up images confidential, the UFace
data server does not have the key to decrypt the photo fea-
tures. The data server will conduct a secure multi-party
computation protocol with the UFace key server to
collaboratively figure out whether the newly submitted photo
matches the stored photo. The secure multi-party compu-
tation protocol ensures that information at each server
remains confidential to each server. Therefore, even though
the key server possesses the decryption key, the key server
will not see the actual photo during the entire authentica-
tion protocol. The final authentication result will be
forwarded to the web service provider who will then grant
access to the user accordingly.

4.2.  Threat model and security goals

In UFace system, we adopt the commonly used semi-honest
security model which assumes that each participating party
will follow the protocols but they may be curious and try to
explore the information available to them (Goldreich, 2004).
In general, secure protocols under the semi-honest model
are more efficient than those under the malicious adversary
model, and almost all practical SMC protocols proposed in
the literature (Ben-David et al., 2008; Canetti, 2000; Goldreich,
2004; Katz and Lindell, 2007) are secure under the semi-
honest model. Under the semi-honest model, the participating
parties would not collude. In our case, it means that the two
authentication servers, i.e., the data server and the key server,
do not collude. This can be guaranteed by deploying the two
servers in two different clouds such as Amazon and Microsoft
whereby the two big cloud service providers have no incen-
tive to collude.

The security goal of our UFace system is to keep users’ au-
thentication information fully private, which includes the
following aspects:

security (2017), doi: 10.1016/j.cose.2017.09.016
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e Users do not need to reveal the actual content of their facial
images (used for authentication) to any party during the au-
thentication process.

e Web service providers can safely outsource the authenti-

cation process to the UFace authentication servers without

violating users’ privacy concerns regarding their facial images
that have been used for authentication.

UFace authentication servers do not have any plaintext of

users’ facial images. That means UFace servers do not

possess users’ bioinformation.

e UFace authentication servers can not connect any en-
crypted information back to any specific user.

In the following sections, we will present the UFace appli-
cation at the client side and the privacy preserving protocols
at the server side respectively.

5. UFace Android application

The UFace Android application consists of two modules: Web
Service Access and UFace Pass Generation. Users will directly in-
teract with the web service access module to log in to the web
services. The UFace Pass generation module is executed au-
tomatically in the background to generate encrypted feature
vectors based on the user’s selfies during the authentication
process. Each module is elaborated in the following.

5.1. Web service access

After users installed the UFace app, the first thing that they
need to do is to add web services to their apps. Specifically,
when the UFace app is launched, a blank screen will be
shown with a “+” icon. By clicking on the “+” icon, a new
window will open to show a list of web services which use
the UFace system for authentication (obtained from UFace
data server automatically). Once the user selects a web service,
a registration page will appear. On the registration page, the
user will see a regular log-in page to create a unique user ID
and “UFace Pass” for the web service. The user ID will be sent
to the web service provider to verify the uniqueness (as shown
in Fig. 4(a)). If the user ID is good to use, the web service
provider will return a so-called “Index ID” to the user. This
“Index ID” indicates the location where the user’s UFace Pass
will be stored at the data server and also prevents the data
server from knowing the user’s actual user ID. By creating
different Index IDs, it would be easy to extend current system
to accommodate multiple user devices registered for the same
web service.

The “UFace Pass” is actually the encrypted feature vector
of the user’s selfie and additional system parameters, which
will be used as the password for the user to access this web
service later on. To create a UFace Pass, the app will ask the
user to take a couple of close-up selfies and then the app will
automatically generate the UFace Pass for the user (the gen-
eration algorithm is presented in Section 5.2). To preserve
confidentiality, the app will discard the selfies immediately after
the generation of the UFace Pass, and then discard the UFace

- e i 3 © W4 1005 19:32 =] i3 © W4 1005 19:32
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(a) Registration (b) Authentication

Fig. 4 - Snapshots of UFace App.

Pass after it has been transferred to UFace authentication
servers.

Later, when a user needs to access a web service via UFace,
he will see a list of web services that he has added on the
launch screen of the app. By clicking on the desired web service,
the user will be directed to a log in page where he will be asked
to input the user ID for that service and to take a close-up selfie
(Fig. 4(b)). The UFace app will send the user ID to the web service
provider while the Index ID and the UFace Pass to the UFace
data server. If access is granted, the user will be directed to
his account in the web service’s website.

5.2. UFace Pass generation

The overall authentication process is shown in Fig. 5. The most
important feature of the UFace app is the UFace Pass genera-
tion which is responsible for converting the user’s selfie into
the encrypted feature vector and send it to the authentica-
tion server. There are two main steps: (i) feature vector
generation and (ii) feature vector encryption.

5.2.1. Feature vector generation

When the user is asked to take a selfie, the selfie needs to be
a close-up image that fills the whole screen of the smart phone
as shown in Fig. 1(a). This close-up image is stored as a bitmap
which allows for easy bit manipulation and thus easy execu-
tion of the LBP algorithm. As introduced in Section 3.1, an LBP
photo feature vector can be represented in the form given by
Definition 1.

Definition 1. (Feature Vector). Let p be a photo. Its feature vector
F, is represented as F,=(U;,...,U,), where u;=(b,...,bs)
(1<i<sm, m=2"),

Since a photo has pixels equal to a power of 2, partition-
ing the grid into 22" sections will yield equal-sized squares for

security (2017), doi: 10.1016/j.cose.2017.09.016
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Enter User ID

Take Close-up Selfie

Generate Feature Vector

Vector Compaction

|

Contact Server

Fig. 5 — Authentication Process at Client Side.
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Fig. 6 — Feature vector generation.

easy comparison in the subsequent steps. As shown in Fig. 6,
photo features in each square are represented using a vector
that contains 59 bins based on the LBP algorithm.

5.2.2.  Feature vector encryption

After obtaining the feature vector, the next step is to encrypt
it using the public key of the UFace key server (which is ob-
tained each time the application is started). Encryption is done
using the Paillier’s encryption scheme (Paillier, 1999). Paillier
is an additive homomorphic and probabilistic asymmetric en-
cryption scheme. The additive homomorphic property is
described as follows: Let [a] and [b] be the encrypted form of
a and b respectively. Without decrypting [a] and [b], [a + b] can
be computed by [a] x [b]. In other words, the multiplication of
two encrypted values yields the encryption of the sum of the

Original Feature Vector

Buffer 15t Value 2" Value 78t Value
| | |
[aobis [ 1sbits | [ 13bits | [ 13 bits |
0000 0000 00 00 0000 1001 0100 0000 10110111 ......... 01100 0101 0001
[ swits || swis || swits || swits || || sbits |
[ I I I I

[00000000], [00000000], [10010100], [00001011], [0111 ......... 01100], [01010001]
1stByte  2"Byte 3" Byte 4t Byte 128t Byte

Fig. 7 — Feature vector compaction.

two original values. The encryption scheme is also semanti-
cally secure (Goldwasser and Micali, 1984), i.e., given a set of
ciphertexts, an adversary cannot deduce any information about
the plaintext.

The encryption of the feature vector needs to be very ef-
ficient as the user is trying to accomplish the encryption on
a smart phone and in real-time. Thus, encrypting every value
of each bin of each square of the photo would be too expen-
sive and take too long. For example, for a photo divided into
16 sections, there would be 16 x 59 = 944 different bins and
hence 944 individual encryptions with the feature vector of size
944 x 2048 = 1,933,312 bits (i.e., 236KB). To make the encryp-
tion more efficient, we propose the following approach.

The main idea is to concatenate the bits in consecutive bins
into single numbers which have the bit size equivalent to the
encryption key size as shown in Fig. 7. Specifically, we first
compute the maximum value that a bin can have, which is
equivalent to the total number of pixels in each square section
of the grid. Given a photo with total 2* pixels, the number of
pixels in each square section of the grid will be 22", If all pixels
in the section have feature values falling into a single bin, the
bin will need to be represented by x — 2n + 1 bits. A simple
example is that if n=2 and x = 16, then 2*2" =2 or 4096 pixels
per section (0 to 4095). If all those values are placed into a single
bin, the count will become 4096 which needs to be repre-
sented using 13 = 12 + 1 bits. This is why there is the “+1” in
the above calculation.

Using the previous example and having the 1024-bit en-
cryption key, we can represent | 1024/13 |=78 bins in a single
value. There would be 10 bits left over. We set the first 10 bits
of the 1024-bit value to “0” to avoid having negative values that
could impact the subsequent photo matching computation.
Given total 944 bins for a photo, only [944/78]=13 encryp-
tions are needed. This is a great increase to computation speed
because instead of encrypting 944 numbers and transmitting
236KB data, our approach only encrypt 13 numbers and trans-
mitting 3KB data.

After the encryption of the feature vector is completed, the
encrypted feature vector along with the Index ID will be sent
to the data server for either registration or authentication. From
this point on, the client is no longer involved in any
computation.

6. UFace servers

UFace system utilizes two servers: the data server and the key
server, which are located in two different clouds to avoid
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Table 1 — Notations.

F1 Registered feature vector

F, Feature vector submitted for authentication
Ry Value used to randomize F;

Ry Value used to randomize F,

Fir Randomized F;

For Randomized F,

potential collusion. The data server is used for storing the en-
crypted UFace Pass for each user, i.e., the encrypted feature
vector. The key server is used for maintaining keys that can
decrypt users’ encrypted feature vectors. Table 1 summarizes
the notations used in the discussion. In what follows, we present
the protocols during the registration and authentication phases,
respectively.

6.1.  Registration

The registration phase is very fast without much computa-
tion. Fig. 8 illustrates the main communication among users
and servers during the registration protocol. Note that all com-
munications are through secure channels which are not shown
in the figure. At the beginning of the registration, the user (i.e.,
the UFace app) sends a new user ID to the web service pro-
vider. Once the web service provider verifies the uniqueness

Android Client Web Service

of the user ID, it will inform the UFace key server to send its
public key (PK) to the user for encrypting the UFace Pass, and
inform the UFace data server to prepare an Index ID for a new
user. Then, the UFace data server will send the Index ID back
to the web service provider which will forward it to the user.
Upon receiving the public key PK and the Index ID, the user
will encrypt the feature vector using the key PK to generate a
UFace Pass, and then send the Index ID, UFace Pass to the data
server. The data server will store the received user informa-
tion under the corresponding web service folder and inform
both the user and the web service provider the completion of
the registration. Here, the data server does not see the user’s
real user ID.

6.2.  Privacy-preserving authentication

6.2.1. Authentication protocol overview

After registration, a user can log onto the web service by simply
providing his user ID and taking a close-up selfie which offers
similar user experience as regular website login. Again, all com-
munication is conducted through secure channels. The
authentication protocol is outlined in Fig. 9.

First, the user (i.e., UFace app) sends the user ID to the web
service provider. The web service provider will locate the Index
ID of this user and forward the Index ID to the UFace data server
to establish an authentication request. Then, the user will send
his index ID and UFace Pass to the data server. Note that, since

UPass Data Server UPass Key Server

Transfer PK

Verify new User ID

Registration Request for U;

Index ID for U;

Index ID for U;

Index ID, UFace Pass

Registration Confirmation

Registration Confirmation

Fig. 8 — Registration Protocol.

Android Client Web Service

UPass Data Server UPass Key Server

Transfer Public Key

User ID

Authentication Request,
Index ID for U;

Index ID, UFace Pass

Authentication Result

Privacy Preserving
Authentication Protocol

Authentication Result

Fig. 9 - Authentication Protocol.
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the UFace Pass is encrypted using the key server’s public key,
the data server will not be able to decrypt the UFace Pass. Upon
receiving the user’s authentication information, the data server
will initiate a privacy-preserving authentication protocol with
the UFace key server to jointly compare the registered user face
feature vector and the received UFace Pass. Our proposed
privacy preserving authentication protocol is built upon Garbled
Circuit, and ensures that neither the data server nor the key
server will see the plaintext of the user’s feature vector. The
details of the privacy-preserving authentication protocol is pre-
sented in the next subsection.

At the end of the privacy-preserving authentication proto-
col, the data server will return either “matched” or “unmatched”
to the web service provider. “Matched” means the user’s UFace
Pass matches the registered information and hence the user
is the legitimate user. Based on the data server’s final message,
the web service provider will grant the access to the user
accordingly.

6.2.2.  Garbled circuit design for the face feature vector
comparison

We now proceed to describe the privacy-preserving authen-
tication protocol between the data server and the key server.
Our protocol leverages the garbled circuit techniques (Huang
et al.,, 2011) because garbled circuit has been proven to be ef-
ficient for small functionality represented by a Boolean circuit
and efficiency is a key requirement to achieve real-time au-
thentication. In the following discussion, we will use F; to denote
the feature vector that has been stored with the data server
at the registration phase and F, to denote the feature vector
received with the authentication request.

The design challenge is that garbled circuits can only handle
plain text efficiently, but our feature vectors are all encrypted.
In order to preserve efficiency, we need to feed decrypted data
to the garbled circuits. If we send the encrypted feature vector
directly to the key server for decryption, the key server will then
know the user’s photo information and hence violate the
privacy preservation goal. To prevent this, our approach is to
let the data server add random values R; and R, to feature
vectors F; and F, using the Paillier encryption’s additive prop-
erty, and then send the randomized feature vectors to the key
server. Now the key server can decrypt the randomized feature
vectors but would not know the original photo information.
These decrypted randomized feature vectors are the main input
to the garbled circuit. Based on the homomorphic additive prop-
erty of Paillier encryption (Paillier, 1999), the comparison results
of the pair of randomized feature vectors would be the same
as the original pair. In other words, we will still be able to know
whether F; matches F,.

Specifically, the data server sends the following informa-
tion to the key server: Ry, Ry, Ry and Th, whereby Ry is a single
bit used to hide the circuits outcome from the key server, and
Th is an adjustable threshold value for face recognition accu-
racy. Then, the key server feeds the decrypted randomized
feature vectors Fir and Far to the garbled circuits. It is worth
noting that at a high level view there are only these five inputs
total, but in practice, there are multiple. Since each input is
limited to the same bit size as the encryption key, multiple
inputs are needed to represent each feature vector. For ease

of understanding, each feature vector will be considered as one
input in our discussion.

Algorithm 1 GCParser Circuit Code
Require: Data_Server: Ry, Ry, Ry, and Th; Key_Server:
FlR and FQR
Subtract R; from Figr
Subtract R, from Fyp
Now F; and F5 are in the circuit
Each bin by; of F} is isolated
Each bin by; of F5 is isolated
fori <+ 1ton*59do
mmT = min(bli, bg,)
end for
intersection = " min,,
pass = intersection > Th
result = pass @ Ryt

The main steps of using garbled circuit to compare two en-
crypted feature vectors are outlined in Algorithm 1. At steps
1 and 2, the random values are subtracted from the random-
ized feature vectors. To speed up the process, the random values
are inverted when provided to the garbled circuit, instead of
being subtracted. The result will overflow the value to have the
effect of modular division since the overflow bit is lost. This
functions identically to subtraction, but faster. For clarity
however, the random values are stated as being subtracted.

As a result of the first two steps, the circuit will have the
original non-randomized feature vectors F; and F,. Conceptu-
ally each feature vector is a matrix. Internally for the garbled
circuit, each feature vector is the individual bins bj (where j € {1,
2}and ie{1,2,...,59xn}) from each U concatenated end to end.
Thus, each feature vector has the internal appearance of
bj1bjsbjs...bss., Where n is the total number of U. To further
process these individual bins, the bins have to be separated,
which is the main purpose of this step. Since each bin has a
known bit size, the bins can be separated by linearly travers-
ing the feature vector and isolating every block of the bit size.
Once each bin is isolated, the intersection calculations begin.
As shown in step 3 of the algorithm, by linearly walking through
all the bins, the minimum between the corresponding bins of
each feature vector is calculated.

In the next step, the sum of the minimums from each v
are calculated. Inside the garbled circuit, this can be done in
parallel to improve the efficiency. Then these partial sums are
added together to find the final sum. Based on the final sum
of the two feature vectors F; and F,, we can now determine
whether the feature vector submitted for authentication is
similar enough to the one stored at the authentication servers
to be considered as a match. For this, a similarity threshold
needs to be defined according to the adopted face recogni-
tion algorithm. In our case, the threshold value is set to 0.9
based on the LBP algorithm, whereby 0.9 means that if two
feature vectors have more than 90% of match, they are con-
sidered “match”.

Finally, to prevent the key server from knowing the authen-
tication result, the result is XOR’ed with Ry What the key server
will see is a single bit that has a 50% chance of indicating
“match” or “unmatch”. On the other hand, the data server can

security (2017), doi: 10.1016/j.cose.2017.09.016

Please cite this article in press as: Dan Lin, Nicholas Hilbert, Christian Storer, Wei Jiang, Jianping Fan, UFace: Your universal password that no one can see, computers &




10 COMPUTERS & SECURITY HE (2017) HE-HE

perform the XOR operation on the result and receive the final
decision.

An overview of the protocol is given in Algorithm 2. When
the protocol begins execution on the server side, it is assumed
that both servers have a copy of the garbled circuit. The op-
erations of the circuit do not change with each execution, so
the circuit only needs to be constructed at the initial server
setup. When GCParser is run the circuit file, the circuit will be
garbled, so with each execution of the protocol, a different
garbled circuit unique to that run is produced. Should either
server attempts to change the circuit file, GCParser will abort
operations due to these differences.

7. Security analysis

Our UFace system does not leak any user’s biometric infor-
mation to the data server, the key server or the web service
provider. This is because our approach follows the security defi-
nitions in the literature of Secure Multi-party Computation
(SMC) (Ben-David et al., 2008; Canetti, 2000; Goldreich, 2004;
Goldreich et al., 1987; Katz and Lindell, 2007; Yao, 1982, 1986).
As a result, our proposed protocol can be proved to be secure
under the semi-honest model of SMC by using the simula-
tion argument (Goldreich, 2004) as follows.

Algorithm 2 Overall Protocol Between Authentication
Servers
Require: Data_Server: [F}], [F5] and Th

1: Data_Server:

(a) Randomly generate R, and Ry, and encrypt them to
produce [R;] and [Ry]

(b) Calculate [FIR] = [F1+R1} = [Fl]*[Rl] and [FQR] =
[F> + Ro| = [Fy] % [R2]

(c) Generate a random bit Ryp;; and produce a garbled
circuit input file using Ry, Ry, Th, and Ry

(d) Send [Fig| and [F,R] to Key_Server

2: Key_Server:

(a) Decrypt [Figr] and [Fig] and write the values to a
garbled circuit input file

(b) Start GCParser as server using its input file and the
circuit

3: Data_Server:

(a) Use GCParser to connect to the circuit running on

Key_Server as a client using its input file
4: Data_Server and Key_Server:

(a) Using GCParser, collaboratively evaluate the gar-
bled circuit, and the evaluation result returns to both
parties

5. Data_Server:
(a) Perform XOR operation with the result and Ry,
(b) Inform the authentication result to the web service:

If the XOR result is a 1, authentication passed, else
it failed

Definition 2. Let T; be the input of party i, [1i(7) be i’s execu-
tion image of the protocol 7 and s be the result computed
from 7. r is secure if Il;i(7) can be simulated from (T;, s) and

distribution of the simulated image is computationally indis-
tinguishable from Ili(7).

In our case, the execution image for the data server mainly
includes the two encrypted feature vectors. As mentioned
earlier, since the data server does not have the private/
decryption key and the encryption scheme is semantically
secure, the image is computationally indistinguishable from
a random sequence. Therefore, no information regarding the
user’s private data is leaked to the data server before execut-
ing the garbled circuit. Similar argument applies to the key
server because the information that it received is random-
ized. In addition, all the intermediate results are either
encrypted or randomized, and the garbled circuit approach is
secure under the semi-honest model. As a result, based on the
composition theorem (Goldreich, 2004), the overall protocol (Al-
gorithm 2) is secure under the semi-honest model, i.e., any
information regarding any users’ private data is never leaked
during the execution of our proposed protocol.

In the above definition, an execution image generally in-
cludes the input, the output and the messages communicated
during an execution of the protocol. To prove the protocol is
secure, we just need to show that the execution image of a pro-
tocol does not leak any information regarding the private inputs
of participating parties (Goldreich, 2004). In our case, the ex-
ecution image for the data server mainly includes the two
encrypted feature vectors. As mentioned earlier, since the data
server does not have the private/decryption key and the en-
cryption scheme is semantically secure, the image is
computationally indistinguishable from a random sequence.
Therefore, no information regarding the user’s private data is
leaked to the data server before executing the garbled circuit.
Similar argument applies to the key server because the infor-
mation that it received is randomized. In addition, all the
intermediate results are either encrypted or randomized, and
the garbled circuit approach is secure under the semi-honest
model. As a result, based on the composition theorem
(Goldreich, 2004), the overall protocol (Algorithm 2) is secure
under the semi-honest model, i.e., any information regarding
any users’ private data is never leaked during the execution
of our proposed protocol.

Next, we discuss how our UFace system will react to
common types of attacks including impersonation attack, man-
in-the-middle attack, malleability attack, replay attack and
denial-of-service attack.

7.1. Impersonation attack

Impersonation atttack is the most concerning attack in face
authentication whereby the attacker tries to use the user’s photo
to gain access to the user’s web accounts (Duc and Minh, 2009).
To perform such attacks on our UFace system, the attacker
needs to have the targeted user’s UserID and the user’s selfie.
The user and the web service are the only 2 parties that know
the user’s UserID. We assume that the web service provider is
responsible for its own security since if the attacker compro-
mises the web service provider, the attacker directly gains all
control of the user’s account and no authentication is needed.
Even so, it is worth noting that the attacker still would not have
the users’ selfies to masquerade as the user in other web

security (2017), doi: 10.1016/j.cose.2017.09.016

Please cite this article in press as: Dan Lin, Nicholas Hilbert, Christian Storer, Wei Jiang, Jianping Fan, UFace: Your universal password that no one can see, computers &




COMPUTERS & SECURITY MM (2017) HE-EN 11

services. We also assume that the user’s phone has an up-to-
date operating system and anti-virus software. Moreover, to
further prevent the attacker from collecting authentication in-
formation on the user’s phone, all the user-end authentication
can be performed in the secure zone on the phone. Also, the
Android app deletes the photo used to generate the UFacePass
after each authentication attempt.

We now discuss the scenarios when the attacker breaks into
the data server or the key server since these two servers are
located in a cloud and may be less protected. The data server
possesses only an IndexID corresponding to the user’s UFacePass
and the key server has nothing with respect to the UserID. By
compromising these two authentication servers, the attacker
still would not be able to guess the user’s UserID from the
IndexID since the IndexID is basically a memory address in the
data server.

Considering a more advanced attack whereby the attacker
obtains the UserID via other means such as looking over the
user’s shoulders during use, our UFace system still prevents
the attacker from obtaining the user’s selfies for authentica-
tion. First, no party stores photos of the user or unencrypted
feature vectors of the photos. Second, if the attacker tries to
crop the user’s face photo from photos published in social web-
sites or takes the user’s photo in a distance without being
noticed by the user, these photos would not match the user’s
close-up image. The reason for this is that the close-up photos
taken for authentication not only carry properties of the user’s
camera, but also use a focal point closer to the user. This means
close-up images are seen as longer while zoomed-in images
are seen as rounded (see Fig. 1). Our experiments with 20 users
have proved that the LBP algorithm is capable of distinguish-
ing these 2 types of images.

7.2. Man-in-the-middle attack

This is an attack where the attacker acts in-between the user
and the authentication servers trying to fool each party into
thinking they are directly communicating with each other. Many
existing techniques, such as Public Key Infrastructures, can be
adopted to help users verify the genuine authentication servers
when establishing the secure communication channel. For
example, the user encrypts the session key using the server’s
public key. Then, only the genuine server would be able to
decrypt it and obtain the session key which will be used for
the subsequent communication between the user and the
server. Thus, the man-in-the-middle attack can be prevented.

7.3.  Malleability attack

An encryption algorithm is malleable if it is possible for an ad-
versary to transform a ciphertext into another ciphertext. Our
protocol is robust against this because we adopt the secure com-
munication channel established using AES encryption which
has been proven to not be malleable.

7.4.  Replay attack

If an attacker is able to obtain the user’s Index ID and en-
crypted UFace pass, the attacker can launch the replay attack

to gain access to the user’s account. By communicating through
the secure channel, outsiders cannot intercept the user’s Index
ID or UFace pass. The only person other than the user who can
see the index ID and UFace pass is the data server. If the data
server is compromised by an attacker, the attacker still needs
to know the user ID from other means (such as social engi-
neering) to be able to launch the replay attack. Even so, since
the attacker does not obtain the plaintext of the user’s bio-
metric data, such replay attack once detected can be easily
blocked by changing the key server’s keys and re-register users.
Our approach incurs much less damage compared to exist-
ing approaches whereby the attacker gains the plain-texts of
users’ biometric data and hence the users would not be able
to re-use their biometric data as passwords any more.

7.5.  Denial-of-service attack

Denial-of-Service (DoS) attack may occur when one of the au-
thentication servers is compromised. Specifically, if only the
data server is compromised by an attacker, the attacker can
purposely fail all authentication requests by sending over in-
correct feature vector pairs to the key server. Similar to the
replay attack, DoS attack once detected can be remedied by re-
configuring the system. If only the key server is compromised
by an attacker, the attacker can temper the authentication result
such as flipping the final bit of the authentication decision
which may result in incorrect authentication. Such attack does
not cause permeant damage either once it is detected. If both
servers are compromised by the same attacker, the attacker
would gain the plaintexts of the users’ feature vectors but still
does not have the full knowledge of the users’ face photos. Once
such attack is detected, the whole system can be reconfig-
ured by changing keys and feature vector sizes to function
normally again.

8. Experimental study

In this section, we first introduce our experimental settings and
evaluation metrics, and then report our experimental results.

8.1.  Experimental settings

Our UFace system consists of an Android app for the client side
and the security protocols at the server side. The UFace app
was tested on an Android One Plus Three device. This device
has a 16 MP rear camera and 8 MP front camera, uses the Snap-
dragon 820 processor (4 cores: 2 x 2.15 GHz and 2 x 1.6 GHz),
and contains 6 GB RAM. The web service provider, the key server
and the data server were simulated as three virtual ma-
chines that are running OpenSUSE 13.2 with access to 2
processor cores and 2 GB of RAM each. The virtual machines
are hosted by a server with Intel Xeon processor (6 cores at
3.5 GHz) and 8.5 GB of RAM.

The performance of the UFace system is evaluated using
two metrics: (i) face recognition accuracy, and (ii) authentica-
tion response time. Table 2 summarizes the parameters used,
where the encryption key size is 1024 bits, the default grid size
used for face recognition is 4 x 4, and the default photo size
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Table 2 - Experimental settings.

Parameters Values

Number of users 20

Number of photos 800

Encryption key size 1024 bits

Grid size 2x2,4%x4,8x8

Photo Size 128 x 128, 256 x 256, 512 x 512, 1024 x 1024

The default values are highlighted in bold.

Table 3 - Face recognition accuracy.

Authentication Oown Oown Others’  Others’

result close-up zoom-in close-up zoom-in
photo photo photo photo

Pass 20/20 0 0 0

Fail 0 20/20 19/19 19/19

is 256 x 256. In what follows, we report the detailed experi-
mental results.

8.2.  Accuracy analysis

In the first round of experiments, we aim to examine if the
UFace system is able to distinguish the user’s close-up image
(used for authentication) from the user’s zoom-in image and
other users’ photos. For this, we collected close-up photos and
zoom-in photos from 20 people. Specifically, each person was
first asked to take two close-up selfies (such as the one shown
in Fig. 1(a), one for registration and one for authentication. Then,
we took another two photos for each person in a distance (such
as the one shown in Fig. 1(b) using the zoom-in function of
the phone, and these photos are called “zoom-in” photos. As
a result, we collected a total of 800 photos from different brands
of phones.

Then, for each user u;, we use u;'s own close-up photo, u;’s
zoom-in photo, and the other 19 users’ close-up and zoom-in
photos to try to log onto ui’s account. Table 3 summarizes the
authentication results of the 20 users. Here, “Pass” refers to that
the photo passed the authentication, i.e., the matching score
is above the threshold which is 0.9 based on LBP; “Fail” refers
to authentication failure, i.e., the access to the user account
would be denied. As shown in the table, the UFace system is
able to authenticate all the 20 users’ close-up photos (denoted
as 20/20), and denies the same user’s zoom-in photo and other
users’ close-up and zoom-in photos (denoted as 19/19 as there
are 19 other users). This means the UFace system is able to au-
thenticate only the user’s close-up photo but not any other
photos including the same user’s zoom-in photo and other
users’ photos. The reasons are two-fold. First, the UFace system
adopts the LBP algorithm which has been proven to have very
high recognition accuracy (over 95%) already. Second, the close-
up photo does have the difference from the zoom-in photos
caused by the optical distortion and pixel insertion in the zoom-
in function. Therefore, the LBP algorithm can distinguish them.

8.3. Effect of the total number of users

In this set of experiments, we measure the response time of
a single authentication request by varying the total number
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Fig. 10 - Effect of the total number of users.

of registered users from 10 to 10,000. Fig. 10 shows the total
response time which is the sum of client-side and server-
side execution time. As we can see in Fig. 10, the total response
time starting from a user taking a photo to receive the au-
thentication decision is less than 5 seconds, which is
comparable to common approaches that require users to type
in usernames and passwords. This is probably the fastest
privacy-preserving face authentication in the literature.

Moreover, the total response time remains constant as the
number of users stored on the system increases. It is straight-
forward that the client side execution is not affected by the
number of users stored at the server. At the server side, the
constant performance is achieved attributed to the fact that
a user’s encrypted feature vector created at registration is stored
along with the user’s pseudo ID in a hash table. Thus, when
a user attempts to authenticate, the user’s pseudo ID pro-
vides the data server with a direct access to the user’s entry
in the hash table. As long as the hash table resides in the serv-
er’s main memory, the authentication time would be constant
regardless the total number of users. It is worth noting that
when multiple users send authentication requests at the same
time, each request will be handled by a separate thread. As long
as the load does not exceed the server’s computing capabili-
ties, the response time will also be constant. The experimental
results indicate that our system can be easily scaled up to thou-
sands of millions of users by simply adding more data servers
to handle different portions of the hash table.

8.4. Effect of the encryption key size

In the second round of experiments, we evaluate the effect of
the different encryption key sizes. The commonly adopted key
size is 1024 bits, and we also test 512 bits and 2048 bits. In the
experiments, each user has 10 encrypted facial images stored
at the data server for the face comparison. Each image is of
256 x 256 pixels and divided into a 4 x 4 grid prepared by the
Android application. For each key size, we repeat 100 runs of
tests and record the average response time. The results are
shown in Fig. 11(a). As expected, the response time increases
when the key size becomes bigger. This is because both the
client-side application and the server-side security protocols
need to compute larger encryption and hence takes more time.

The server-side execution time can be further divided into
two categories: circuit processing time (denoted as “circuit” in
the figure) and others (denoted as “non-circuit”). The circuit
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Fig. 11 - Effect of the encryption key size.

processing time refers to the time needed exclusively by the
garbled circuit to execute. As we can see from Fig. 11(b), the
increase in key size does not significantly impact the circuit
execution time. When going from a key size of 512-bits to 2048-
bits (i.e., 4 times of increase on size) only resulted in a 8.7%
increase in average runtime. The reason is that even though
the key size increases a lot, the amount of data processed by
the garbled circuit does not change much. Given the same image
and same grid partition, the number of bins generated by the
local binary pattern algorithm is the same. The only differ-
ence is that each bin is stored in either 512, 1024, or 2048 bit
numbers depending on the key size. Unlike the constant circuit
time, the non-circuit time increases more with the increase
of the key size, which is likely due to the encryptions and
decryptions performed along with homomorphic addition. At
2048-bit key sizes, when the encrypted feature vectors are ran-
domized, the multiplication between two 2048 bit numbers is
performed. This creates a significant overhead when com-
pared to the multiplication of 512-bit numbers.

8.5. Effect of grid size

We now proceed to evaluate the impact of the grid size on the
response time. According to the face detection algorithm
(Ahonen et al., 2004), too few or too more grids could both affect
the face recognition accuracy and efficiency. Given a photo of
256 x 256 pixels, we tested the following partitions: 1 parti-
tion, 4 partitions (2 x 2), 16 partitions (4 x 4) and 64 partitions
(8 x 8). The reason for choosing these grid sizes is that one
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requirement of local binary patterns is to divide an image into
an n-by-n grid. Since the images being processed are 256 x 256
pixels, the n values of 3, 5, 6 and 7 do not evenly divided 256.
Thus, to avoid fractional pixels, the values of 1, 2,4 and 8 were
chosen. Fig. 12(a) reports the total response time. As we can
see that, the client-side processing time first decreases and then
increases when the number of partitions increases. This is
mainly due to the design of the original face recognition al-
gorithm, whereby the grid size is directly tied to the total
number of bins and the size of bins inside the feature vector.
Given that each partition has the same number of bins, the
more partitions, the more total number of bins and hence more
computation. However, the more partitions, the smaller the bit-
size of the bins which helps reduces the computation. For
example, given a single partition, there are 59 bins; given 16
partitions, there are 3776, whereby the total number of bins
is 59 x grid_size. When there is only one partition, in the worst
case, all the pixels through local binary patterns could fall into
one bin, such that the bin needs to be 17-bits to store the value
of 65536. On the other hand with 64 bins, each grid at worst
case will have 1024 pixels falling into a single bin and re-
quires 11-bit bins. Combining these two effects, we see the
concave up curve for the total response time.

Fig. 12(b) provides a deeper look at the server side, from
which we can see that the execution of the garbled circuite
dominates the processing time and keeps increasing with the
number of partitions. This is probably because that the number
of bins has bigger impact versus grid size. Specifically, a single
partition has 59 bins which requires 59 minimum comparisons

)

w
£

IS

N

SERVER SIDE TIME (S)
w

[

st | Circuit
Non-circuit " : . jt Circuit
Circuit Circuit

1 4 16 64
# OF PHOTO PARTIONS

(b) Server-side processing time

Fig. 12 - Effect of the number of partitions.
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Fig. 13 - Effect of photo size.

and 59 values summed. In the case of 16 partitions, there are
3776 bins which equate to 3776 minimum comparisons and
3776 values summed. With this direct correlation between the
number of bins and the number of operations internally in the
garbled circuit, it is not surprising to see that the time in-
creases in a nearly linear fashion.

8.6.  Effect of photo size

In the last round of experiments, we evaluate the effect of the
photo size. The original photos obtained from various phones
are resized for testing. Fig. 13(a) shows the total response time
when the resized photo size varies from 128 x 128 to 1024 x 1024.
As expected, the more pixels in the photo, the more compu-
tations are needed, leading to increase of the processing time
at both the client and the server-side. However, the increase
at the server side is not that significant as shown in Fig. 13(b).
The reason is similar to that discussed in the previous experi-
ments. The performance of the garbled circuit is mainly
dominated by the number of partitions and the total number
of bins.

9. Conclusion

In this paper, we present a privacy-preserving face authenti-
cation system, called UFace, for authenticating web services.
UFace is unique in that it helps users authenticate with web
service providers without disclosing the actual content of their
facial images to any party including web servers and authen-
tication servers. Along with the use of special close-up images,
UFace successfully prevents the common threat from the im-
personation attack using online images. The UFace system has
been implemented at Android phones for performance evalu-
ation. The experimental results has demonstrated that the
UFace system is capable of fulfilling the authentication task
accurately and efficiently within seconds.
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