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Leveraging Content Sensitiveness and User
Trustworthiness to Recommend Fine-Grained
Privacy Settings for Social Image Sharing
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Abstract— To configure successful privacy settings for social
image sharing, two issues are inseparable: 1) content sensitiveness
of the images being shared; and 2) trustworthiness of the users
being granted to see the images. This paper aims to consider these
two inseparable issues simultaneously to recommend fine-grained
privacy settings for social image sharing. For achieving more
compact representation of image content sensitiveness (privacy),
two approaches are developed: 1) a deep network is adapted to
extract 1024-D discriminative deep features; and 2) a deep multi-
ple instance learning algorithm is adopted to identify 280 privacy-
sensitive object classes and events. Second, users on the social
network are clustered into a set of representative social groups
to generate a discriminative dictionary for user trustworthiness
characterization. Finally, both the image content sensitiveness
and the user trustworthiness are integrated to train a tree
classifier to recommend fine-grained privacy settings for social
image sharing. Our experimental studies have demonstrated both
the efficiency and the effectiveness of our proposed algorithms.

Index Terms— Privacy setting recommendation, image con-
tent sensitiveness, user trustworthiness, deep multiple instance
learning, tree classifier, social image sharing.

I. INTRODUCTION

W ITH the growing popularity of smart-phones and other
mobile devices, high-quality cameras are becoming

increasingly ubiquitous and pervasive. As a result, captur-
ing high-quality images has become one part of our daily
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activities and image sharing has now become very popular
on social platforms like Facebook, Myspace, Flickr, and
Instagram [1]–[10]. Since social images can intuitively tell
when and where a special moment took place, who partic-
ipated and what were their relationships, the shared images
can reveal much of users’ personal and social environments
and their private lives [1]–[8]. In addition, social network sites
may nowadays abuse the technologies of artificial intelligence
and facial recognition on automatically tagging objects of
interest and human faces [59]–[69]. Thus, privacy protection is
a critical issue to be addressed during social image sharing [6].
To ensure privacy, most social sites for image sharing allow

users to manually specify coarse-grained privacy settings:
whether an image is public, private or visible to their family
members or friends. Due to the lack of privacy knowledge,
it is not easy for common users to correctly configure privacy
settings to achieve their desired levels of privacy protection;
also, given the large number of images being shared and
the tedious steps needed for privacy settings, some users
may not be willing to spend extra time on providing their
fine-grained privacy settings for image sharing. To reduce
users’ additional burdens on configuring the privacy settings
manually, it is very attractive to develop new techniques that
are able to recommend fine-grained privacy settings for social
image sharing.
It is worth noting that the visual properties of the images are

the most important resource that can be used to characterize
the image content sensitiveness (privacy) [34]–[38]: (a) sharing
the images with privacy-sensitive objects (persons and others
such as locations) and events may result in unwanted privacy
disclosure; (b) visually-similar images often contain similar
privacy-sensitive objects and events. Thus performing deep
image analysis may play an important role in recommending
fine-grained privacy settings for social image sharing and
privacy protection [27]–[33].
By assuming that the visual features for image content

representation have strong correlations with the image content
sensitiveness (privacy), the visual-based approach [27]–[32]
has leveraged the hand-crafted visual features (such as SIFT
(scale-invariant feature transformation) features, GIST, color
histograms) to learn the classifiers to recommend appropri-
ate privacy settings for social image sharing. Because deep
learning [39]–[44] has demonstrated its outstanding abilities
on extracting high-level features and significantly boosting

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1318 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 5, MAY 2018

Fig. 1. The flowchart for our fine-grained privacy setting recommendation algorithm by considering both image content sensitiveness and user trustworthiness
simultaneously.

the accuracy rates for many image understanding tasks, some
researchers have leveraged deep learning to train more dis-
criminative classifiers for image privacy prediction [27], [28],
[30], [32], and they have found that the deep features can
be used to recommend more appropriate privacy settings for
social image sharing. One major problem for the visual-based
approach is its low interpret-ability [33]: (a) the hand-crafted
visual features for image content representation may not
have exact correlations with the image content sensitiveness;
(b) the deep features may have better interpret-ability at certain
levels [54], but they may not be able to exactly represent
the appearances of the privacy-sensitive object classes and
events in the images. In addition, it is worth noting that the
fine-grained privacy settings for social image sharing depend
on two inseparable issues simultaneously: (1) sensitiveness of
visual content of the images being shared; (2) trustworthiness
of the users being granted to see the images. Thus, it is very
attractive to develop new algorithms that are able to consider
these two inseparable issues simultaneously to recommend
fine-grained privacy settings for social image sharing.
Motivated by this observation, a new algorithm is developed

in this paper by leveraging both the image content sensitive-
ness and the user trustworthiness to recommend fine-grained
privacy settings for social image sharing. First, as shown
in Fig. 1, two approaches are developed for image con-
tent sensitivity representation: (a) Feature-based approach:
By adapting the structure of the AlexNet [39]–[41] to our
new task for privacy setting recommendation and integrat-
ing user-provided images to fine-tune the underlying kernel
weights, 1024-D deep features are learned for image content
sensitiveness representation. (b) Object-based approach: The
privacy-sensitive object classes and events are identified auto-
matically and they are used for image content sensitiveness
representation. Second, the users on the social network are
clustered into a set of representative social groups to generate
a discriminative dictionary for user trustworthiness character-
ization. Finally, both the image content sensitiveness and the
user trustworthiness are seamlessly integrated to train a tree
classifier to recommend fine-grained privacy settings for social
image sharing.
The remaining of the paper is organized as follows.

Section 2 reviews the related work briefly; Section 3 intro-
duces our feature-based approach for image content sensitivity
representation; Section 4 presents our deep multiple instance
learning algorithm for identifying large numbers of privacy-
sensitive object classes automatically and using them for

image content sensitiveness representation; Section 5 intro-
duces our algorithm for user trustworthiness characteriza-
tion; Section 6 presents our tree classifier training algo-
rithm for privacy setting recommendation; Section 7 reports
the experimental results for algorithm and system evalua-
tion; Section 8 concludes the paper and outlines the future
work.

II. RELATED WORK

Many recent works have studied how to leverage machine
learning to automate the privacy setting process [11]–[38].
These pioneering researches can be partitioned into three cat-
egories: (a) Tag-based approach: Social tags are used to learn
a classifier for privacy setting recommendation [11]–[18];
(b) Topic-based approach: Keywords or topics from users’
profiles are used to partition the friend lists into multiple sub-
groups or circles [19]–[26], and the friends in the same circle
are assumed to share similar privacy preferences; (c) Visual-
based approach: Visual properties of the images (i.e., visual
features or object classes) are leveraged to learn a classifier
for privacy setting recommendation [27]–[38].
By assuming that the social tags for image semantics

interpretation can also be used to characterize the image
content sensitiveness effectively, the tag-based approach lever-
ages the social tags for privacy policy inference [11]–[18].
Vyas et al. [11] and Squicciarini et al. [12], [13] have
leveraged the social tags for privacy policy inference and
good performances are reported. Klemperer et al. [16] stud-
ied whether the keywords from social tags can be used to
help users create and maintain access-control policies more
intuitively. Ravichandran et al. [17] studied how to leverage
zone tags to predict a user’s privacy preferences from the
location data (i.e., share the locations or not). Yeung et al. [18]
have leveraged social tags and linked data for providing access
control to online photo albums.
When high-quality social tags are available, such tag-based

approach can recommend appropriate privacy settings for
social image sharing. Because tagging rich image semantics
could be a time-consuming process [7], most images may
be associated with low-quality social tags (i.e., noisy tags,
missing tags and spam tags). As a result, such tag-based
approach may not be able to recommend appropriate privacy
settings for social image sharing [8]–[10]. Another shortcom-
ing for the tag-based approach is that it completely ignores
the user trustworthiness for privacy setting recommendation,
however, the fine-grained privacy settings for social image
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Fig. 2. The key operations in our iPrivacy system for image privacy protection.

sharing may also change with different users according to their
trustworthiness.
To automate the privacy setting process, the topic-

based approach uses the keywords or topics from users’
profiles for privacy preference prediction [19]–[26].
Fang and LeFevre [21] proposed a privacy wizard to
help users grant privileges to their friends. The wizard asks
users to first assign privacy labels to the selected friends,
and then uses this as the input to construct a classifier
to group friends based on their profiles and automatically
assign privacy labels to the unlabeled friends. Similarly,
Danezis [19] proposed a machine-learning based approach to
automatically extract privacy settings from the social context
within which the data is produced. Parallel to the work of
Danezis [19], Adu-Oppong et al. [20] developed privacy
settings based on a concept of “social circles” which consist
of clusters of friends formed by partitioning users’ friend
lists. However, such topic-based approach considers only
the user trustworthiness but completely ignores the image
content sensitiveness, thus it may not be able to recommend
appropriate privacy settings for image sharing because the
fine-grained privacy preferences may also change according
to the image content sensitiveness.
The visual properties of the images are recognized as

the most important information source that may signifi-
cantly affect the privacy settings for image sharing [27]–[38].
Zerr et al. [27] and [28] were the first team to leverage the
visual features for supporting privacy-aware image classifica-
tion, where a large number of participants are asked to label
images into two categories: private vs. public. A classifier is
learned from user-labeled images and meta data are also inte-
grated to achieve better performance on privacy-aware image
classification. Squicciarini et al. [29] have exploited both SIFT
features and facial recognition to achieve automatic image
privacy prediction. More recently, Tonge and Caragea [30]
have first integrated the deep features for image privacy
prediction, Spyromitros-Xioufis et al. [32] have recently lever-
aged user-dependent images and privacy settings to support
personalized privacy-aware image classification. Both teams
have found that the deep features can yield remarkable
improvements on the performance as compared with other
hand-crafted visual features such as SIFT, GIST and color
histograms. One shortcoming of the visual-based approach
is that it just considers the image content sensitiveness but
completely ignores the user trustworthiness for privacy setting
recommendation, however, the fine-grained privacy settings
for social image sharing may also change with different users
according to their trustworthiness.

Fig. 3. The flowchart of our feature-based approach to extract 1024-D
features for image sensitiveness (privacy) representation.

As illustrated in Fig. 2, we have recently developed a deep-
learning-based approach called iPrivacy (image Privacy) [33]
which is capable of recognizing human objects in the images,
determining their privacy sensitiveness levels and then blur
faces of human subjects who have high levels of privacy
concerns. However, iPrivacy does not consider the effect of
users’ social behaviors (i.e., user trustworthiness) on privacy
setting recommendation, thus it cannot provide fine-grained
access control yet, e.g., an image may be fine to be directly
shared with close family members while need to be blurred
when showing to the public. In addition, face blurring used in
our iPrivacy system may protect image privacy at certain level
but it may also raise speculations.

III. FEATURE-BASED APPROACH FOR IMAGE CONTENT
SENSITIVENESS REPRESENTATION

As shown in Fig. 3, a feature-based approach is developed
to extract discriminative deep features for image content sensi-
tiveness representation. By assuming that the visual properties
of the images have hidden correlations with their visual
content sensitiveness, the deep features learned for image
content representation are further used to approximate the
sensitiveness (privacy) of image content. However, it is not a
good idea to directly apply the AlexNet (that are optimized for
recognizing 1,000 atomic object classes [39]–[41]) to extract
4096-D deep features for our new task of privacy setting
recommendation, and the reason is that the task space for
privacy setting recommendation is much smaller than that
for large-scale visual recognition. Our feature-based approach
can work for two scenarios: (a) recognizing two categories
for our binary approach, e.g., assigning the image-user pairs
(i.e., the relationships between the images and the users)
into one of two categories of fine-grained privacy set-
tings: share vs. not-share; (b) recognizing four categories
for our multi-category approach, e.g., assigning the image-
user pairs into one of four categories of fine-grained privacy
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settings: {completely-share, not-share, partially-share, share-
with-blurring}.
Based on this observation, the outputs for the 2 fully-

connected layers (i.e., FC6 and FC7) in our deep net-
work are scaled down to 1,024 rather than 4,096 in the
AlexNet [39]–[41], e.g., the number of kernel mappings for the
2 fully-connected layers (i.e., FC6 and FC7) are scaled down
into 25% of that for the AlexNet [39]–[41], and Dropout [53]
is applied to 2 fully-connected layers with a value of 0.5 to
prevent over-fitting. In addition, we use the kernel weights
for the AlexNet [39]–[41] to initialize the weights for the
mapping kernels on our deep network, so that we can use
a small number of user-provided images to fine-tune the node
weights and achieve acceptable accuracy rates [51].
Given the user-provided images, the predictions of the cat-

egories for their privacy settings are calculated and the errors
for these user-provided images are calculated. We formulate
the training error rate ξ in the form of softmax regression:

ξ(W, x, y) = −
τ∑

l=1
I{y j }log

{
ex p(W T

l x j + b)∑τ
i=1 ex p(W T

i x j + b)

}
(1)

where τ = 2 or τ = 4 is the total number of cate-
gories being recognized for privacy setting recommendation,
I{y j } is the indicator function such that I{y j } = 1 if y j = 1
(i.e., (x j , y j ) is the positive training image), otherwise
I{y j } = 0. The corresponding gradients for the objective
function are calculated as ∂ξ(W,x,y)

∂W , and they are back-
propagated [51] through our deep network to fine-tune the
kernel weights.
By adapting the structure of the AlexNet [39]–[41] to our

new task (i.e., recognizing two categories or four categories for
fine-grained privacy setting recommendation) and integrating
user-provided social images to fine-tune the node weights,
we can learn more representative deep network to extract more
discriminative deep features for image content sensitiveness
representation. For a given image I , its visual content sensi-
tiveness can be precisely represented as a histogram of 1024-D
deep features xs .

IV. OBJECT-BASED APPROACH FOR IMAGE CONTENT
SENSITIVENESS REPRESENTATION

As shown in Fig. 4, an object-based approach is devel-
oped to achieve more discriminative representations of image
content sensitiveness. Our idea is to learn a deep network
to automatically identify large numbers of privacy-sensitive
object classes and events for image content sensitiveness
representation. Our object-based approach contains the fol-
lowing key steps: (a) A category hierarchy is constructed to
organize various types of image privacy concerns and their
most relevant privacy-sensitive object classes hierarchically;
(b) A deep multiple instance learning algorithm is devel-
oped to learn the classifier to detect 268 privacy-sensitive
object classes automatically; (c) The CRF (conditional random
field [50]) models are further learned for predicting 12 privacy-
sensitive image events; (d) All these privacy-sensitive object
classes and events are used to generate a 280-D discriminative

Fig. 4. The flowchart of our object-based approach for image sensitiveness
(privacy) representation.

Fig. 5. The category hierarchy for organizing 7 types of image privacy
concerns and their most relevant privacy-sensitive object classes.

Fig. 6. The category hierarchy for organizing 7 types of image privacy
concerns and their most relevant privacy-sensitive object classes.

dictionary for image content sensitiveness (privacy) character-
ization.

A. Category Hierarchy

The critical challenge to be conquered here is to identify var-
ious types of image privacy concerns and their most relevant
privacy-sensitive object classes, so that we can use them to
achieve more effective characterization of image sensitiveness
(privacy). To tackle this challenge, as shown in Fig. 5 and
Fig. 6, a category hierarchy is constructed to organize various
types of image privacy concerns and their most relevant
privacy-sensitive object classes hierarchically. In this paper,
we focus on 7 types of privacy concerns and their most
relevant privacy-sensitive object classes: (a) adult content;
(b) locations; (c) religions; (d) age and sexual orientation;
(e) human body languages (such as facial expressions);
(f) human outlooks and dresses; (h) texts and identifiable
personal tags.
We use an example of outlook privacy to identify its

most relevant privacy-sensitive object classes. For example,
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Fig. 7. The flowchart for our deep multiple instance learning algorithm.

a person may wear heavy makeup sometimes or have face
acnes during a period. Under different facial conditions, they
may have different levels of privacy concerns. In order to cap-
ture these outlook privacy concerns, the most relevant privacy-
sensitive facial classes include: (1) skin smoothness; (2) skin
softness; (3) face shape (roundness); (4) face sizes; (5) face
acne; (6) wrinkles; (7) bags under-eyes; (8) heavy makeup;
(9) shiny; (10) skin elastic; (11) mustache; (12) facial expres-
sions, etc. In our current implementations, we have identified
268 privacy-sensitive object classes.
Our category hierarchy can allow us to identify the most

relevant keywords (text terms) to precisely describe various
types of privacy concerns and their most relevant privacy-
sensitive object classes, so that we can use these keywords
to crawl large-scale training images from multiple social sites.
It is worth noting that our category hierarchy contains suffi-
cient numbers of privacy-sensitive object classes to quantify
the image content sensitiveness in a fine-grained level, which
can allow us to recommend fine-grained privacy settings for
social image sharing.

B. Deep Multiple Instance Learning of Object Detectors

Even deep learning has demonstrated its outstanding perfor-
mances on many image understanding tasks, it requires large-
scale manually-labeled training images [39]–[44], but it is a
laborious task to label large-scale object regions manually for
learning the object detectors. In this paper, a deep multiple
instance learning algorithm is developed to directly leverage
the coarsely-labeled images (i.e., object labels are coarsely
given at the image level rather than at the region level)
for learning the object detectors. Our deep multiple instance
learning algorithm takes the following steps as illustrated
in Fig. 7: (a) Each social image is first segmented into a set of
semantic object regions (instances); (b) A noise-or model is
used to define the error function for supporting deep multiple
instance learning, e.g., learning the deep network and the
object detectors jointly in an end-to-end manner.
Deep CNNs have shown their strong ability on supporting

pixel-level image classification (i.e., semantic image segmenta-
tion by assigning one particular semantic label to every pixel
in an image) [45]–[49]. To extract semantic object regions
from the images, we have trained a deep network in an end-
to-end way to enable pixel-level prediction and classification,
and a CRF (conditional random fields) model [50] is further
learned to merge the neighboring pixels with the same labels

to generate semantic object regions [48]. As shown in Fig. 8,
by integrating deep CNNs with CRF models for semantic
image segmentation, we can identify semantic object regions
precisely.
Multiple instance learning (MIL) [55]–[58] has been used

to deal with the issue of coarse labeling by treating each image
(which may contain multiple objects) as a bag of instances.
In our deep multiple instance learning algorithm, we use the
kernel weights from the AlexNet [39]–[41] to initialize the
mapping kernels on our deep CNNs, so that we can use a small
number of user-provided training images to fine-tune the ker-
nel weights effectively and achieve acceptable accuracy rates.
As illustrated in Fig. 7, a special unit is inserted into our deep
CNNs to support multiple instance learning and handle the
issue of coarse labeling. Our special unit for multiple instance
learning contains two components: (a) Noise-or model [55]
is used to predict the image labels (bag labels) from the
instance labels (region labels); (b) The visually-similar image
regions are assumed to share the same object label. Given an
image region or object proposal, the prediction of its privacy-
sensitive object class is calculated, the error function for our
deep multiple instance learning algorithm contains two parts:

J (W )

=
N∑

k=1

⎧⎨
⎩ λ

R

R∑
j=1

�bag(Bk
j , Bk

j ) + 1

R2

R∑
h=1

R∑
l=1

δhlκ(xk
h , xk

l )

�instance(yk
h , yk

l )I {yk
l }log

{
ex p(W T

k xk
l +b)∑N

l=1 ex p(W T
l xl

j +b)

}}
(2)

where N = 268 is the total number of privacy-sensitive object
classes being recognized, R is the number of training images
for each object class, κ(xk

h , xk
l ) is used to characterize the

visual similarity between two image regions from the same
image (bag), δhl indicates that we only consider the visual
similarity among the image regions from the same image,
�bag(Bk

j , Bk
j ) is used to calculate the difference between the

predicted bag (image) label Bk
j and the given bag label Bk

j for
the kth image (bag), and �instance(yk

h , yk
l ) is used to calculate

the difference on their labels between two visually-similar
image regions (xk

h , yk
h) and (xk

l , yk
l ) from the same image

(bag) Bk
j . We use the noise-or model to predict the label Bk

j
for a given positive bag (image) Bk

j by cumulating all the
predictions for its image regions (instances).
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Fig. 8. Our results on semantic image segmentation: (a) original images;
and (b) object regions.

Fig. 9. The two-layer CRF models for image event prediction.

The gradients for the objective function are calculated
as ∂ J (W )

∂W , and they are back-propagated [51] through our
deep CNNs to fine-tune the kernel weights. After such deep
CNNs is available, it is used to detect 268 privacy-sensitive
object classes from the images being shared.

C. Predicting Privacy-Sensitive Image Events

Some object classes may not be sensitive individually, but
their co-occurrences in the same image may convey privacy-
sensitive image event. Thus it is very attractive to leverage
such object co-occurrences to infer the appearances of the
most relevant privacy-sensitive image events. First, an object
co-occurrence network is constructed and it consists of two
key components: (a) object classes; and (b) their inter-class co-
occurrences in large-scale social images. Second, as illustrated
in Fig. 9, over the object co-occurrence network, a two-layer
CRF (conditional random field [50]) model is learned for
predicting privacy-sensitive image events. In Fig. 9, the first
layer is used to interpret the appearances of the object classes
and their co-occurrences (i.e., our object co-occurrence net-
work), the second layer is used to interpret the appearances
of the most relevant privacy-sensitive image events, e.g., the
co-occurrences of some object classes in the images are suffi-
cient to indicate the appearances of the most relevant privacy-
sensitive image events. Thus our two-layer CRF models are
used to learn the conditional probabilities over the appearances
of the object classes, their co-occurrences and the appearances
of the most relevant privacy-sensitive image events.
For a given training image I , our deep multiple instance

learning algorithm can effectively extract a set of object
classes O from the training image I , and their co-occurrences
X can further be identified from our object co-occurrence
network, we can estimate the probability P(y j |O, X,	 j ) for

the appearance of the most relevant privacy-sensitive image
event y j as:

P(y j |O, X,	 j ) = 1

Z(	)
ex p

(
Fj (y j | X, O,	 j )

)
(3)

where Fj (y j | X, O,	 j ) is the classifier for the j th privacy-
sensitive image event y j given the set of object classes O and
their co-occurrences X , Z(	) is the partition function and it
is defined as:

Z(	) =
12∑

j=1
ex p

(
Fj (y j | X, O,	 j )

)
(4)

Such two-layer CRF models are learned from a set of training
images and they are then used to predict the presences of
the most relevant privacy-sensitive image events in the social
images being shared when the appearances of the object
classes and their co-occurrences are determined. In our current
work, we focus on learning the two-layer CRF models to
predict 12 privacy-sensitive image events.

D. Image Content Sensitiveness Representation

The privacy-sensitive object classes and events, which are
identified from large-scale social images and frequently occur
in the private (not-share) images, are selected to generate a
280-D discriminative dictionary DI for image content sen-
sitiveness representation. For a given image I , its privacy-
sensitive object classes and event are first detected (by our
deep multiple instance learning algorithm and our two-layer
CRF models). By projecting its privacy-sensitive object classes
and event over such 280-D discriminative dictionary, the con-
tent sensitiveness (privacy) of the given image I can precisely
be represented as a 280-D histogram (i.e., a 280-D bag of
privacy-sensitive object classes and events xs). Like object
bank [52] for image content representation, such 280-D bags
of privacy-sensitive object classes and events can characterize
the image content sensitiveness effectively. For a given image,
its 280-D bag of privacy-sensitive object classes and events xs

is very sparse.

V. USER TRUSTWORTHINESS CHARACTERIZATION

The intuition is that how the image owner interacts with
others in the social networks show the hints on whom they
would share with what types of images. For example, if a
user interacts with his/her friend Bob frequently, it is likely
that the user would share more images with his/her friend
Bob. Yet another example is that if a user usually shares the
images of family events only with his/her family members,
it is likely the user will do the same for the new images
of family events. Therefore, our goal is to characterize these
social behaviors and study their correlations with the fine-
grained privacy settings for social image sharing.
We have explored multiple factors that describe users’

social behaviors, which include: (1) types of relationships
(such as friends, family members, colleagues) with the image
owner which could help distribute images (with various visual
content) to different groups of users; (2) closeness of the
relationships with the image owner as the image owner may
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Fig. 10. The clustering results of different users (a)–(e) for multiple smart parts of a social network, where different user groups are represented in
different colors.

share sensitive images with people who are very close to
him/her; (3) matching scores between the user’s interesting
topics (from user profiles) and the semantics of the images
being shared, e.g., people may have stronger motivations to
distribute the image which is very interesting to him/her;
(4) interaction intensity between the user and the image
owner, which could be another indicator of how likely the
image would be shared; (5) user’s activity score in social
network considering that active users may have a higher
chance to distribute the images; (6) stability scores of users’
behavior history; (7) reputation scores to assess users’ self-
representation of honesty and reliability in social network.
In order to learn the effect of these multi-factors on privacy

setting configuration, we first analyze individual factor and
define the corresponding function to quantify the value of
each factor in a fine granularity. Then, we construct a high-
dimensional feature vector based on the obtained fine-grained
values of all the factors to represent the user’s social behaviors,
and a joint function is learned to characterize the similarities
among the users according to their multi-factors for social
behavior characterization. By using multi-factors for user’s
social behavior representation and treating each user on a
social network as one node on a graph, we can use spectral
clustering to partition large numbers of users into a set of
representative social groups according to their similarities
(closeness) on their multi-factors for social behavior char-
acterization. For a given social network with M users, its
M users are partitioned into B representative social groups by
minimizing inter-group similarity and maximizing intra-group
similarity:

min

{

(M, B) =

B∑
l=1

∑
ui∈Gl

∑
u j ∈Gc/Gl

κ(ui , u j )∑
ui ∈Gl

∑
u j ∈Gl

κ(ui , u j )

}
(5)

where κ(ui , u j ) is the kernel function to characterize the simi-
larity (closeness) between two users ui and u j on their multi-
factors for social behavior characterization, Gc = {Gl |l =
1, · · · , B} is used to represent B groups (clusters) of M users
on the given social network, Gc/Gl is used to represent other
B − 1 groups in Gc except Gl .
As shown in Fig. 10, the users on the social network are

clustered into B representative social groups (such as altruistic
users, cynical users, forgiving users, distrusting users, et al.)
according to the similarities (closeness) on their multi-factors
for social behavior characterization [1], [16]–[25]. Such rep-
resentative social groups can effectively characterize the rela-
tionships and trustworthiness among the users, thus they can
be used to generate a B-D discriminative dictionary Du for
user trustworthiness characterization.

By assigning each user u (characterized by their multi-
factors for social behavior characterization) onto one or multi-
ple of B representative social groups in the B-D discriminative
dictionary Du , each user and his/her trustworthiness can be
represented as a B-D histogram of representative social groups
(i.e., a B-D bag of representative social groups xu). Such
B-D bags of representative social groups can characterize the
user trustworthiness effectively (e.g., their closeness or similar-
ities on their multi-factors for social behavior characterization
can be used to characterize their trustworthiness in certain
accuracy). For each user, such B-D bag of representative social
groups xu is very sparse.

VI. TREE CLASSIFIER FOR FINE-GRAINED
PRIVACY SETTING RECOMMENDATION

Without loss of generality, we consider the privacy policies
that contain the following components: (a) Subject S: a set of
users who are socially connected to the image owner u and
are granted to access the shared images �; (b) Images �: a
set of images shared from u to S; (c) Action A: a set of actions
granted by u to S on �.
The key issue for automating the privacy setting process is

to train a classifier for assigning the relationships between the
images (represented by their visual content sensitiveness xs)
and the users (characterized by their trustworthiness xu) into
a set of pre-defined categories for fine-grained privacy set-
tings, e.g., assigning the image-user pairs (or the relationships
between the images and the users) into a set of pre-defined
categories for fine-grained privacy settings.
In this work, two approaches are developed to simultane-

ously consider both the image content sensitiveness xs and the
user trustworthiness xu in different modalities for fine-grained
privacy setting recommendation: (a) binary approach: as
shown in Fig. 11, the image-user pairs (xs ⊕ xu) are assigned
into one of two categories of fine-grained privacy settings, e.g.,
share or not-share; (b) multi-category approach: as illus-
trated in Fig. 12, the image-user pairs (xs ⊕ xu) are assigned
into one of four categories of fine-grained privacy settings,
e.g., {completely-share, not-share, partially-share, share-with-
blurring}.
It is worth noting that: (a) both the feature-based approach

and the object-based approach for image content sensitiveness
representation can be used to support our binary approach
for fine-grained privacy setting recommendation; (b) only the
object-based approach for image content sensitiveness repre-
sentation can be used to support our multi-category approach
for fine-grained privacy setting recommendation, e.g., support-
ing more options (more categories) for fine-grained privacy



1324 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 5, MAY 2018

Fig. 11. The flowchart of our binary approach for privacy setting recom-
mendation.

Fig. 12. The flowchart of our multi-category approach for privacy setting
recommendation.

settings requires deeper analysis and semantic understanding
of images.

A. Binary Approach

For a given training image I , its visual content sensitiveness
is represented as a 1024-D deep feature xs or a 280-D bag
of privacy-sensitive object classes and events xs , the privacy
setting for one particular user u (who is granted to access
the given image I and his/her trustworthiness is represented
as a B-D bag of representative social groups xu) is defined
as a binary canonical policy: (a) share: this user u with the
trustworthiness representation xu is granted to see the given
image I with the visual content sensitiveness representation xs ,
e.g., the image-user pair (the relationship between the image xs

and the user xu : xs ⊕ xu) is assigned into the category
“share”; and (b) not-share: this user u with the trustworthiness
representation xu is not granted to see the given image I
with the visual content sensitiveness representation xs , e.g.,
the image-user pair (the relationship between the image xs

and the user xu : xs ⊕ xu) is assigned into the category
“not-share”.
The goal of our binary approach for fine-grained privacy

setting recommendation is to learn a classifier f (c | xs, xu,	),
c ∈ {share, not-share}, to achieve precise assignment between
the image xs and the user xu (i.e., image-user pair xs ⊕ xu),
e.g., assigning the relationship between the image xs and the
user xu into one of two categories for fine-grained privacy
settings (i.e., share & not-share). Because the features for
image content sensitiveness representation and user trustwor-
thiness characterization are in different modalities and they
are not comparable directly, it is not a good idea to simply
concatenate xs for image content sensitiveness representation
with xu for user trustworthiness characterization as an unified
feature (xs ,xu). As illustrated in Fig. 13, a tree classifier
f (c | xs, xu,	) is trained to leverage both the image content
sensitiveness (xs) and the user trustworthiness (xu) in different
modalities for fine-grained privacy setting recommendation,
where different nodes on the tree classifier can select different
features (xu or xs) for node classifier training.
The tree classifier f (c | xs, xu,	) is learned from large-

scale training images and their privacy settings that are

Fig. 13. The flowchart of our binary approach for tree classifier training.

assigned for a large number of users: (a) large-scale social
images and their image content sensitiveness representa-
tions xs ; (b) large numbers of users on the social networks
and their trustworthiness representations xu ; (c) two categories
for fine-grained privacy settings (i.e., the pairwise relationships
between the users and the images). Each labeled training sam-
ple is defined as: (image-user pair, privacy setting) = (feature
pair xs ⊕ xu for image content sensitiveness representation and
user trustworthiness characterization, label c) = (xs ⊕ xu , c),
c ∈ {share, not-share}.
Given R training images and their visual content sensitive-

ness representations xs , their similarities are then calculated
and represented as a R × R similarity matrix S and its
component Si j is used to characterize the similarity between
the i th training image and the j th one according to their
content sensitiveness representations xi

s and x j
s :

Si j = exp

(
−d(xi

s, x j
s )

σs

)
(6)

where d(·, ·) is the Euclidean distance between two images on
their visual content sensitiveness representations xi

s and x j
s .

Given T users and their trustworthiness representations xu ,
their similarities are then calculated and represented as a
T × T similarity matrix U and its component Ukl is used
to characterize the similarity between the kth user and the
lth one according to their trustworthiness representations xk

u
and xl

u:

Ukl = exp

(
−d(xk

u , xl
u)

σu

)
(7)

where d(·, ·) is the Euclidean distance between two users on
their trustworthiness representations xk

u and xl
u .

Given two categories for fine-grained privacy settings
(i.e., share & not-share), the similarity matrix S and U can
be used as a proxy to determine the separability of training
samples (images and users) on two feature subsets in different
modalities: (a) image content sensitiveness representations xs ;
and (b) user trustworthiness characterizations xu . As illustrated
in Fig. 13, to make the first decision for tree classifier training,
the most discriminative feature subset xbest is first selected and
the associated samples (either R training images or T users)
are then partitioned into two categories for fine-grained privacy
settings (i.e., share vs. not-share). The most discriminative
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feature subset xbest is determined automatically by maximizing
the separability:

xbest = max

⎧⎨
⎩ 1

R2

R∑
j=1

R∑
i=1

Si j ,
1

T 2

T∑
k=1

T∑
l=1

Ukl ,

⎫⎬
⎭ (8)

If the most discriminative feature subset xbest is determined
as the image content sensitiveness representations xs , a binary
SVM classifier fs(c | xs, θ) is first trained over R training
images to obtain the optimal recognition of two categories (i.e.,
share & not-share) for fine-grained privacy setting recommen-
dation and a binary SVM classifier fu(c | xu, ϑ) is then trained
over the associated set of users by using the feature subset xu .
If the most discriminative feature subset xbest is determined
as the user trustworthiness characterizations xu , a binary SVM
classifier fu(c | xu, ϑ) is first trained over T users to obtain
the optimal recognition of two categories (i.e., share & not-
share) for fine-grained privacy setting recommendation and
a binary SVM classifier fs(c | xs, θ) is then trained over
the relevant training images by using the feature subset xs .
As illustrated in Fig. 13, different paths on the tree classifier
f (c | xs, xu,	) have different combinations of two binary
SVM classifiers fs(c | xs, θ) and fu(c | xu, ϑ).
After the tree classifier f (c | xs, xu,	) is learned, it is

further used to automatically configure an appropriate privacy
setting between a given image I and one particular user u.
For a given image I being shared and one particular user
u on the social network of the image owner, as illustrated
in Fig. 13, our fine-grained privacy setting recommendation
algorithm takes the following key steps to make the decision:
(a) our deep network is first used to extract 1024-D deep fea-
tures or our deep multiple instance learning algorithm is used
to detect the privacy-sensitive object classes and event, and the
visual content sensitiveness of the given image I is precisely
represented by using the 1024-D deep features xs or the
280-D bag of privacy-sensitive object classes and events xs ;
(b) the trustworthiness of the user u is characterized as a B-D
bag of representative social groups xu , e.g., the user’s multi-
factors for social behavior characterization are used to obtain
his/her representative social groups and then project onto the
B-D dictionary Du to obtain a B-D bag of representative
social groups xu for user trustworthiness characterization;
(c) our tree classifier f (c | xs, xu,	) is then used to make
the decision {share, not-share} hierarchically according to both
the image content sensitiveness (represented by xs) and the use
trustworthiness (characterized by xu), e.g., project the image-
user pair (xs ⊕ xu) onto the appropriate category for fine-
grained privacy settings (i.e., share or not-share).

B. Multi-Category Approach

In our multi-category approach for privacy setting recom-
mendation, for a given training image I , its visual content
sensitiveness is represented as a 280-D bag of privacy-sensitive
object classes and events xs , and the fine-grained privacy
setting for one particular user u (who is granted to access
the given image I and his/her trustworthiness is represented
as a B-D bag of representative social groups xu) is defined as

Fig. 14. Our multi-class tree classifier training algorithm for supporting
fine-grained privacy setting recommendation.

a multi-category policy: (a) completely-share: this user u with
the trustworthiness representation xu is granted to completely
see the given image I with the visual content sensitiveness rep-
resentation xs , e.g., the image-user pair (xs ⊕ xu) is assigned
into the category “completely-share”; (b) not-share/private:
this user u with the trustworthiness representation xu is not
granted to see the given image I with the visual content sen-
sitiveness representation xs , e.g., the image-user pair (xs ⊕ xu)
is assigned into the category “not-share/private”; (c) partially-
share: this user u with the trustworthiness representation xu

is granted to partially see the given image I with the visual
content sensitiveness representation xs , e.g., the image-user
pair (xs ⊕ xu) is assigned into the category “partially-share”;
(d) share-with-blurring: this user u with the trustworthiness
representation xu is granted to see the blurring image (for
example, the privacy-sensitive object classes are blurred), e.g.,
the image-user pair (xs ⊕ xu) is assigned into the category
“share-with-blurring”.
As illustrated in Fig. 14, the goal of our fine-grained privacy

setting recommendation algorithm is to learn a multi-class
tree classifier f (c | xs, xu,	), c ∈ {completely-share, not-
share, partially-share, share-with-blurring}, to achieve precise
assignments between the image-user pairs (xs ⊕ xu) and
multiple categories (i.e., completely-share, not-share, partially-
share, share-with-blurring) for fine-grained privacy settings.
We use similar techniques as introduced above to train our
multi-class tree classifier: (a) The most discriminative feature
subset xbest is first selected automatically; (b) The multi-class
SVM classifier is then trained to achieve optimal partitioning
of training samples (images or users) by using the most dis-
criminative feature subset xbest (xs or xu); (c) Different paths
on the multi-class tree classifier f (c | xs, xu,	) have different
combinations of the multi-class SVM classifiers fs(c | xs, θ)
and fu(c | xu, ϑ). Some experimental results for supporting
multi-category fine-grained privacy setting recommendation
are illustrated in Fig. 15, where the special category for
“not-share/private” is not demonstrated because no further
operations are required.
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Fig. 15. Examples to illustrate our multi-category approach for fine-grained privacy setting recommendation: (a) completely-share; (b) sharing with blurring
(where the sensitive objects are blurred); (c) partially-share by replacing the objects with white silhouettes.

VII. ALGORITHM AND SYSTEM EVALUATION

We have evaluated our proposed algorithms over: (a) our
large-scale social images; and (b) two public image sets,
PicAlert1 and Mirflickr.2

We have collected 800, 000 social images and their privacy
settings are labeled, where 90, 000 images are treated as
the test images and others are used as the training images.
In the following experiments, we focus on evaluating the
effectiveness of our fine-grained privacy setting recommen-
dation algorithm when different types of features are used
for image content sensitiveness representation. Specifically,
we compare the predicted privacy settings generated by our
proposed algorithms with the original privacy settings provided
by humans. For 90, 000 test images, we partition them into
900 subsets according to their scores on the correspondences
between the image content sensitiveness (privacy) and the
visual features for image content representation. We tested
our privacy setting recommendation algorithm by using three
approaches for image content sensitiveness representation,
e.g., low-level visual features, high-level deep features and
privacy-sensitive object classes and events.
For a given image set with R test images which are shared

with T users under different privacy settings f , its privacy
disclosure is defined as:

S= 1

R × T

T∑
j=1

R∑
l=1

δ(c, ĉ)‖ f (c | xl
s, x j

u ,	)− f (xl
s, x j

u )‖ (9)

where f (c | xl
s, x j

u ,	) is the predicted privacy setting for
the lth given image with the visual content sensitiveness
representation xl

s to the j th user u with the trustworthiness

x j
u , f (xl

s, x j
u ) is the human-defined privacy setting assigned

between the j th user u with the trustworthiness x j
u and

the lth given image with the visual content sensitiveness
representation xl

s , δ(c, ĉ) is used to emphasize that the privacy
disclosure is counted differently for various situations.
For our binary approach: (a) when both the predicted

privacy setting ĉ for the given image I and its human-defined
one c are not-share, δ(c, ĉ) = 0; (b) when both the predicted
privacy setting ĉ for the given image I and its human-defined

1http://l3s.de/picalert/ustudydata
2http://s16a.org/mirflickr

one c are share, δ(c, ĉ) = 0; (c) when the predicted privacy
setting ĉ for the given image I is not-share, but its human-
defined one c is share, δ(c, ĉ) = 0.5, such privacy disclosure
is the punishment to avoid cheating from the system, e.g.,
without this penalty, the system may easily achieve low privacy
disclosure by recommending the privacy setting for each image
as “not-share”; (d) when the predicted privacy setting ĉ for the
given image I is share, but its human-defined one c is not-
share, δ(c, ĉ) = 1. Thus δ(c, ĉ) is defined as:

δ(c, ĉ) =

⎧⎪⎪⎨
⎪⎪⎩
0, c = ĉ = not-share
0, c = ĉ = share
0.5, c = share, ĉ = not-share
1.0, c = not-share, ĉ = share

(10)

For our multi-category approach, δ(c, ĉ) is defined as:

δ(c, ĉ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, c = ĉ = not-share
0, c = ĉ = completely-share
0, c = ĉ = partially-share
0, c = ĉ = share-with-blurring
0.5, c = completely-share,

ĉ = partially-share
0.5, c = completely-share,

ĉ = share-with-blurring
0.5, c = completely-share,

ĉ = not-share
1.0, c = not-share, ĉ = partially-share
1.0, c = not-share, ĉ = share-with-blurring
1.0, c = not-share, ĉ = completey-share

(11)

A. Comparison on Deep Features from Different Networks

By assuming that the low-level visual features extracted
for image content representation can also be used to char-
acterize the image content sensitiveness effectively, the low-
level visual features are directly used to learn the classifier
for privacy setting recommendation, and we have compared
two approaches: (1) our feature-based approach: the structure
(FC6 and FC7) of the AlexNet [39]–[41] is scaled down
and adapted to our new task (i.e., assigning the image-user
pairs into two categories of fine-grained privacy settings:
share vs. not-share or four categories of fine-grained privacy
settings: {completely-share, not-share, partially-share, share-
with-blurring}) and only 1024-D deep features are extracted
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Fig. 16. The comparison on the effectiveness of our feature-based
approach by using 1024-D deep features and the traditional one by using
the 4096-D deep features extracted by the AlexNet, where the image sets are
sorted according to their privacy disclosure.

Fig. 17. The comparison on the effectiveness of the feature-based approach
when different types of features are extracted for image sensitiveness represen-
tation, where the image sets are sorted according to their privacy disclosure.

for image content sensitiveness representation; (2) the tra-
ditional feature-based approach: the 4096-D deep features,
which are extracted by the AlextNet [39]–[41] for recognizing
1000 atomic object classes, are arbitrarily used for image
content sensitiveness representation.
As shown in Fig. 16, one can observe that our feature-based

approach can significantly outperform the traditional feature-
based approach. The reasons are two folds: (1) our feature-
based approach can adapt the structure (FC6 and FC7) of
our deep CNNs to learn more discriminative deep features
for our new task (i.e., recognizing two categories or four
categories for fine-grained privacy setting recommendation);
and (2) our feature-based approach can incorporate the user-
provided images to fine-tune the kernel weights according
to our new task (i.e., recognizing two categories or four
categories for fine-grained privacy setting recommendation
rather than recognizing 1,000 atomic object classes for large-
scale visual recognition application).

B. Comparison on Various Visual Features

It is also very interesting to evaluate whether using different
types of visual features for classifier training may bring
significant improvement on privacy setting recommendation.
As shown in Fig. 17, we have compared the performance of

Fig. 18. The comparison on the computational cost for privacy setting
recommendation between our feature-based approach and the traditional one
by using the 4096-D deep features directly.

our feature-based approach when different types of visual fea-
tures are used for image content sensitiveness representation.
From these comparison experiments, one can observe multiple
interesting factors: (1) For most of 900 image subsets, the deep
features can achieve the best performance as compared with
other hand-crafted visual features such as SIFT, GIST and
color histograms; (2) For some difficult image subsets, which
may have low scores on the correlations between the visual
features for image representation and the image content sensi-
tiveness (privacy), all these features (including deep features)
may not be able to achieve acceptable performance, e.g., all of
them have large privacy disclosures because such visual fea-
tures for image content representation may not be able to char-
acterize the image content sensitiveness (privacy) effectively;
(3) For some easy image subsets, which have high scores on
the correlations between the visual features for image content
representation and the image content sensitiveness, all these
features (including hand-crafted visual features) can achieve
good performance (resulting in small privacy disclosures).

C. Comparison on Computational Cost

We have compared the computational cost between two
feature-based approaches: (a) our feature-based approach: the
deep network is scaled down and its structure is adapted to
our new task and only 1024-D deep features are used for
image content sensitiveness representation; (b) the traditional
feature-based approach: the 4096-D deep features, which are
usually learned for recognizing 1000 atomic object classes, are
arbitrarily used for image content sensitiveness representation.
As shown in Fig. 18, one can observe that our feature-based
approach can reduce the computational cost significantly.

D. Effectiveness of Privacy-Sensitive Object Classes

To evaluate the effectiveness of using privacy-sensitive
object classes and events on fine-grained privacy setting rec-
ommendation, we have compared two approaches: (1) our
object-based approach: 268 privacy-sensitive object classes
and 12 privacy-sensitive image events are detected and they are
used to generate a 280-D discriminative dictionary, thus 280-D
bags of privacy-sensitive object classes and events are used for
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Fig. 19. The comparison on the effectiveness of our approach by using the
privacy-sensitive object classes and events and the traditional one by using
1000 atomic object classes directly, where the image sets are sorted according
to their privacy disclosure.

image content sensitiveness representation; (2) the traditional
object-based approach: 1, 000 atomic object classes, which
are originally detected by the AlexNet [39]–[41] for large-
scale visual recognition application, are arbitrarily used for
image content sensitiveness representation and 1000-D bags of
atomic object classes are used for image content sensitiveness
representation.
As shown in Fig. 19, one can observe that our object-

based approach can significantly outperform the traditional
object-based approach. The reason is that the privacy-sensitive
object classes and events can characterize the image content
sensitiveness effectively, on the other hand, 1000 atomic
object classes [39]–[44], that are usually extracted for image
semantics interpretation, may not be able to characterize the
image content sensitiveness exactly, e.g., the appearances of
such 1000 atomic object classes in the images do not exactly
relate with the image privacy or cause privacy disclosure
directly. Even detecting such 1000 atomic object classes can
play important roles on image semantics interpretation, they
may not be effective for characterizing the image content
sensitiveness precisely.

E. Privacy-Aware Image Classification

In order to achieve more clear understanding of what
kind of visual properties makes images to be private (not-
share) or public (share), we have evaluated two approaches for
privacy-aware image classification. As illustrated in Fig. 20,
one can observe that whether the recommended privacy
settings are appropriate for image sharing largely depends
on whether the privacy-sensitive object classes are signifi-
cant on giving some insights about the image sensitiveness
(privacy). By detecting such privacy-sensitive object classes
automatically, our object-based approach is able to achieve
more effective solution for privacy setting recommendation,
however, its performance is still not comparable with human
beings and the reasons for this phenomenon are: (1) The
set of privacy-sensitive object classes is not complete (only
268 privacy-sensitive object classes are used in our current
work), which may not be able to characterize huge diversity
of image privacy (sensitiveness) effectively and efficiently;
(2) Because the training images are insufficient and deep
learning scheme usually requires huge numbers of training

images, the accuracy rates for detecting such privacy-sensitive
object classes may not be high enough for us to harvest
the advantages of leveraging them for image sensitiveness
characterization; (3) Image sensitiveness (privacy) is a very
subjective concept, it may largely depend on both the sensi-
tivities of image content and users’ personal conservativeness
(i.e., different persons may have different privacy preferences).
Based on these observations, it is very attractive to develop
new algorithms for leveraging more information sources (such
as users’ personal preferences and keeping users in the loop to
define their personalized privacy-sensitive object classes and
events) to achieve more effective solutions for fine-grained
privacy setting recommendation.

F. User Study

For the same task of privacy setting recommendation,
31 students (16 females and 15 males) are invited to assess the
interpret-ability of our object-based approach and our feature-
based approach. In our user study, we ask 31 students to
score the interpret-ability of our object-based approach and
our feature-based approach in 7 levels (6 for the best one
and 0 for the worst one). In order to help users understand
the correspondences between the image privacy (sensitive-
ness) and the appearances of privacy-sensitive object classes,
as shown in Fig. 21, the privacy-sensitive objects (human faces
in this case) are identified and illustrated. Each user is asked
to evaluate both our object-based approach and our feature-
based approach over at least 20 image sets and each image set
contains at most 100 images, and we average his/her scores
for all these image sets. As shown in Fig. 22, one can observe
that our object-based approach can significantly improve the
interpret-ability because the appearances of privacy-sensitive
object classes and events in the images have exact and explicit
correlations with the image privacy (sensitiveness).

G. Experimental Results on Two Public Image Sets

We have also evaluated our proposed algorithms over two
public image sets: PicAlert and Mirflickr [27], [28]. In these
two public image sets, we have compared three approaches
for privacy setting recommendation: (1) our feature-based
approach; (2) our object-based approach; (c) the baseline
method by Zerr et al. [27] and [28].
We first use the deep network learned from our image set

to configure the structure of the deep networks for these two
public image sets, and the images from these two public image
sets are further used to fine-tune the kernel weights effectively.
In addition, we partition the test images into 40 subsets and
evaluate each subset independently. As shown in Fig. 23 and
Fig. 24, one can observe that our object-based approach
can achieve better performance than other two methods
(i.e., it may cause lower privacy disclosure for image sharing).
The reason for this phenomenon is that: Compared with
the 1024-D or 4096-D deep features that are used in our
feature-based approach and the baseline method [27], [28],
the privacy-sensitive object classes and events (that are used
in our object-based approach) have much stronger correlations
with the image content sensitiveness (privacy), e.g., their



YU et al.: LEVERAGING CONTENT SENSITIVENESS AND USER TRUSTWORTHINESS 1329

Fig. 20. Our experimental results on privacy-aware image classification, where the images in the public (share) category are visualized according to their
visual similarities.

Fig. 21. The privacy-sensitive objects (in red boxes) that are identified from
the images.

Fig. 22. User evaluation results on the interpret-ability of two approaches
for privacy setting recommendation.

Fig. 23. The comparison between our feature-based approach and our
object-based approach for privacy setting recommendation over PicAlert
image set.

appearances in the images may cause privacy disclosure
directly.
The effectiveness of our object-based approach (on rec-

ommending appropriate privacy settings for image sharing)

Fig. 24. The comparison between three approaches for privacy setting
recommendation over Mirflickr image set: (a) our object-based approach;
(b) baseline method by Zerr et al. [27] and [28]; (c) our feature-based
approach, where 40 image subsets are sorted according to their privacy
disclosure obtained by our feature-based approach.

Fig. 25. The effectiveness of using the privacy-sensitive object classes and
events for image sensitiveness representation in PicAlert image set: (a) the
correlations curve between our 280-D bags of privacy-sensitive object classes
and the image content sensitiveness (privacy); (b) the privacy disclosure curve
induced by our object-based approach.

largely depends on the correlations between the image pri-
vacy (sensitiveness) and the privacy-sensitive object classes
and events that are extracted for image content sensitiveness
representation. As shown in Fig. 25, when such correla-
tions are low, our object-based approach may induce higher
privacy disclosures. The reasons for this phenomenon are:
(a) our small set of privacy-sensitive object classes and
events could be incomplete because many others may also
result in privacy disclosures but they are not detected in
our current work; (b) our deep multiple instance learning
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Fig. 26. The effectiveness of using various deep features for image
content sensitiveness representation in Mirflickr image set: (a) the correlations
between the traditional 4096-D deep features and the image content sensitive-
ness; (b) the correlations between our 1024-D deep features and the image
content sensitiveness; (c) the privacy disclosure induced by our feature-based
approach.

algorithm may fail to learn discriminative models to detect
these privacy-sensitive object classes accurately; and (c) The
privacy-sensitive object classes and events could be user-
dependent and users should be involved in the loop to define
their personalized privacy-sensitive object classes and events.
As shown in Fig. 26, we have also demonstrated similar obser-
vation for the feature-based approach, when the correlations
between the image privacy (sensitiveness) and the 1024-D
or 4096-D deep features for image content sensitiveness rep-
resentation are low, the feature-based approach may induce
higher privacy disclosures. The reason for this phenomenon is
that such 1024-D or 4096-D deep features for image content
representation may not have exact correlations with the image
privacy (sensitiveness).

H. Discussions

Blurring faces may protect image privacy at certain level
but it may also raise speculations. Thus one of our future
researches is to use GANs [70], [71] to generate perceptually-
similar but privacy-free image patches to replace the privacy-
sensitive objects in the images be shared while maintaining
their local smoothness among various neighboring image
components, so that we can protect image privacy effectively
while we may not raise speculations.
The privacy-sensitive object classes and events and their

definitions are user-dependent and context-dependent. Based
on this understanding, the privacy-sensitive object classes and
events can be partitioned into two categories: (a) common
ones; and (b) user-dependent ones or personalized ones. Our
current work (presented in this paper) focuses on the common
ones and thus one of our future researches is to involve users
in the loop to define their personalized privacy-sensitive object
classes and events, and we can also leverage personalized
information sources (such as users’ personal preferences and
user-dependent privacy-sensitive object classes) to recommend
fine-grained privacy settings for social image sharing.
The user trustworthiness characterization also plays an

important role in supporting fine-grained privacy setting rec-
ommendation, thus one of our future researches is to develop
new algorithms for achieving more accurate characterization of
user trustworthiness: (a) achieving multi-level characterization

of user trustworthiness to achieve more accurate assignments
of fine-grained privacy settings for social image sharing;
(b) using a large number of categories for fine-grained privacy
settings and training more discriminative classifiers to achieve
better assignments between the images and the users (image-
user pairs).

VIII. CONCLUSIONS

This paper has developed a new approach to recommend
fine-grained privacy settings for social image sharing, where
both the image content sensitiveness and the user trustwor-
thiness are simultaneously considered and integrated to train
more discriminative tree classifier. Our experimental studies
have demonstrated both efficiency and effectiveness of our
proposed algorithms.
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