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Abstract

We show variants of spectral sparsification routines can preserve the total spanning tree
counts of graphs, which by Kirchhoff’s matrix-tree theorem, is equivalent to determinant of
a graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilizes this
combinatorial connection to bridge between statistical leverage scores / effective resistances
and the analysis of random graphs by [Janson, Combinatorics, Probability and Comput-
ing ‘94]. This leads to a routine that in quadratic time, sparsifies a graph down to about
n1.5 edges in ways that preserve both the determinant and the distribution of spanning trees
(provided the sparsified graph is viewed as a random object). Extending this algorithm to
work with Schur complements and approximate Choleksy factorizations leads to algorithms
for counting and sampling spanning trees which are nearly optimal for dense graphs.

We give an algorithm that computes a (1 ± δ) approximation to the determinant of any
SDDM matrix with constant probability in about n2δ−2 time. This is the first routine for
graphs that outperforms general-purpose routines for computing determinants of arbitrary
matrices. We also give an algorithm that generates in about n2δ−2 time a spanning tree of
a weighted undirected graph from a distribution with total variation distance of δ from the
w -uniform distribution .

1 Introduction

The determinant of a matrix is a fundamental quantity in numerical algorithms due to its connec-
tion to the rank of the matrix and its interpretation as the volume of the ellipsoid corresponding
of the matrix. For graph Laplacians, which are at the core of spectral graph theory and spec-
tral algorithms, the matrix-tree theorem gives that the determinant of the minor obtained by
removing one row and the corresponding column equals to the total weight of all the spanning
trees in the graph [Kir47] . Formally on a weighted graph G with n vertices we have:

det
(
LG
1:n−1,1:n−1

)
= TG,

where LG is the graph Laplacian of G and and TG is the total weight of all the spanning
trees of G. As the all-ones vector is in the null space of LG, we need to drop its last row
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and column and work with LG
1:n−1,1:n−1, which is precisely the definition of SDDM matrices

in numerical analysis [ST14]. The study of random spanning trees builds directly upon this
connection between tree counts and determinants, and also plays an important role in graph
theory [GRV09, AGM+10, FHHP11].

While there has been much progress in the development of faster spectral algorithms, the
estimation of determinants encapsulates many shortcomings of existing techniques. Many of the
nearly linear time algorithms rely on sparsification procedures that remove edges from a graph
while provably preserving the Laplacian matrix as an operator, and in turn, crucial algorithmic
quantities such as cut sizes, Rayleigh quotients, and eigenvalues. The determinant of a matrix
on the other hand is the product of all of its eigenvalues. As a result, a worst case guarantee
of 1 ± (ǫ/n) per eigenvalue is needed to obtain a good overall approximation, and this in turn
leads to additional factors of n in the number of edges needed in the sparse approximate.

Due to this amplification of error by a factor of n, previous works on numerically approxi-
mating determinants without dense-matrix multiplications [BDKZ15a, HAB14a, HMS15] usually
focus on the log-determinant, and (under a nearly-linear running time) give errors of additive
ǫn in the log determinant estimate, or a multiplicative error of exp(ǫn) for the determinant.
The lack of a sparsification procedure also led to the running time of random spanning tree
sampling algorithms to be limited by the sizes of the dense graphs generated in intermediate
steps [KM09, MST15, DKP+16].

In this paper, we show that a slight variant of spectral sparsification preserves determinant
approximations to a much higher accuracy than applying the guarantees to individual edges.
Specifically, we show that sampling ω(n1.5) edges from a distribution given by leverage scores,
or weight times effective resistances, produces a sparser graph whose determinant approximates
that of the original graph. Furthermore, by treating the sparsifier itself as a random object,
we can show that the spanning tree distribution produced by sampling a random tree from a
random sparsifier is close to the spanning tree distribution in the original graph in total variation
distance. Combining extensions of these algorithms with sparsification based algorithms for
graph Laplacians then leads to quadratic time algorithms for counting and sampling random
spanning trees, which are nearly optimal for dense graphs with m = Θ(n2).

This determinant-preserving sparsification phenomenon is surprising in several aspects: be-
cause we can also show—both experimentally and mathematically—that on the complete graph,
about n1.5 edges are necessary to preserve the determinant, this is one of the first graph spar-
sification phenomenons that requires the number of edges to be between >> n. The proof of
correctness of this procedure also hinges upon combinatorial arguments based on the matrix-tree
theorem in ways motivated by a result for Janson for complete graphs [Jan94], instead of the
more common matrix-concentration bound based proofs [SS11, Tro12, CP15, Coh16]. Further-
more, this algorithm appears far more delicate than spectral sparsification: it requires global
control on the number of samples, high quality estimates of resistances (which is the running
time bottleneck in Theorem 4.1 below), and only holds with constant probability. Nonethe-
less, the use of this procedure into our determinant estimation and spanning tree generation
algorithms still demonstrates that it can serve as a useful algorithmic tool.
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1.1 Our Results

We will use G = (V,E,w ) to denote weighted multigraphs, and du
def
=
∑

e:e∋uw e to denote the
weighted degree of vertex u. The weight of a spanning tree in a weighed undirected multigraph
is:

w (T )
def
=
∏

e∈T

we.

We will use TG to denote the total weight of trees, TG def
=
∑

T∈T w(T ). Our key sparsification
result can be described by the following theorem:

Theorem 1.1. Given any graph G and any parameter δ, we can compute in O(n2δ−2) time a
graph H with O(n1.5δ−2) edges such that with constant probability we have

(1− δ) TG ≤ TH ≤ (1 + δ) TG.

This implies that graphs can be sparsified in a manner that preserves the determinant, albeit
to a density that is not nearly-linear in n.

We show how to make our sparsification routine to errors in estimating leverage scores, and
how our scheme can be adapted to implicitly sparsify dense objects that we do not have explicit
access to. In particular, we utilize tools such as rejection sampling and high quality effective
resistance estimation via projections to extend this routine to give determinant-preserving sparsi-
fication algorithms for Schur complements, which are intermediate states of Gaussian elimination
on graphs, using ideas from the sparsification of random walk polynomials.

We use these extensions of our routine to obtain a variety of algorithms built around our
graph sparsifiers. Our two main algorithmic applications are as follows. We achieve the first
algorithm for estimating the determinant of an SDDM matrix that is faster than general pur-
pose algorithms for the matrix determinant problem. Since the determinant of an SDDM m
corresponds to the determinant of a graph Laplacian with one row/column removed.

Theorem 1.2. Given an SDDM matrix M , there is a routine DetApprox which in Õ
(
n2δ−2

)

time outputs D such that D = (1± δ) det(M ) with high probability

A crucial thing to note which distinguishes the above guarantee from most other similar
results is that we give a multiplicative approximation of the det(M). This is much stronger than
giving a multiplicative approximation of log det(M), which is what other work typically tries to
achieve.

The sparsifiers we construct will also approximately preserve the spanning tree distribution,
which we leverage to yield a faster algorithm for sampling random spanning trees. Our new
algorithm improves upon the current fastest algorithm for general weighted graphs when one
wishes to achieve constant—or slightly sub-constant—total variation distance.

Theorem 1.3. Given an undirected, weighted graph G = (V,E,w ), there is a routine ApproxTree
which in expected time Õ

(
n2δ−2

)
outputs a random spanning tree from a distribution that has

total variation distance ≤ δ from the w -uniform distribution on G.
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1.2 Prior Work

1.2.1 Graph Sparsification

In the most general sense, a graph sparsification procedure is a method for taking a potentially
dense graph and returning a sparse graph called a sparsifier that approximately still has many of
the same properties of the original graph. It was introduced in [EGIN97] for preserving properties
related to minimum spanning trees, edge connectivity, and related problems. [BK96] defined the
notion of cut sparsification in which one produces a graph whose cut sizes approximate those
in the original graph. [ST11] defined the more general notion of spectral sparsification which
requires that the two graphs’ Laplacian matrices approximate each other as quadratic forms.1

In particular, this spectral sparsification samples Õ(n/ǫ2) edges from the original graph, yielding
a graph with Õ(n/ǫ2) whose quadratic forms—and hence, eigenvalues—approximate each other
within a factor of (1 ± ǫ). This implies that their determinants approximate each other within
(1± ǫ)n. This is not useful from the perspective of preserving the determinant: since one would
need to samples Ω(n3) edges to get a constant factor approximation, one could instead exactly
compute the determinant or sample spanning trees using exact algorithms with this runtime.

All of the above results on sparsification are for undirected graphs. Recently, [CKP+17]
has defined a useful notion of sparsification for directed graphs along with a nearly linear time
algorithm for constructing sparsifiers under this notion of sparsification.

1.2.2 Determinant Estimation

Exactly calculating the the determinant of an arbitrary matrix is known to be equivalent to
matrix multiplication [BS83]. For approximately computing the log of the determinant, [IL11]
uses the identity log(det(A)) = tr(log(B)) + tr(log(B−1A)) to do this whenever one can find a
matrix B such that the tr(log(B)) = log(det(B)) and tr(log(B−1A)) = log(det(B−1A) can both
be quickly approximated.2

For the special case of approximating the log determinant of an SDD matrix, [HAB14b]
applies this same identity recursively where the B matrices are a sequence of ultrasparsifiers
that are inspired by the recursive preconditioning framework of [ST14]. They obtain a running
time of O(m(n−1ǫ−2 + ǫ−1)polylog(nκ/ǫ)) for estimating the log determinant to additive error
ǫ.

[BDKZ15b] estimates the log determinant of arbitrary positive definite matrices, but has
runtime that depends linearly on the condition number of the matrix.

In contrast, our work is the first we know of that gives a multiplicative approximation of
the determinant itself, rather than its log. Despite achieving a much stronger approximation
guarantee, our algorithm has essentially the same runtime as that of [HAB14b] when the graph
is dense. Note also that if one wishes to conduct an “apples to apples” comparison by setting
their value of ǫ small enough in order to match our approximation guarantee, their algorithm
would only achieve a runtime bound of O(mnδ−2polylog(nκ/ǫ)), which is never better than our
runtime and can be as bad as a factor of n worse.3

1If two graphs Laplacian matrices approximate each other as quadratic forms then their cut sizes also approx-
imate each other.

2Specifically, they take B as the diagonal of A and prove sufficient conditions for when the log determinant of
B−1A can be quickly approximated with this choice of B.

3This simplification of their runtime is using the substitution ǫ = δ/n which gives roughly (1±δ) multiplicative
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1.2.3 Sampling Spanning Trees

Previous works on sampling random spanning trees are a combination of two ideas: that they
could be generated using random walks, and that they could be mapped from a random integer
via Kirchoff’s matrix tree theorem. The former leads to running times of the form O(nm)
[Bro89, Ald90], while the latter approach[Gue83, Kul90, CMN96, HX16] led to routines that
run in O(nω) time, where ω ≈ 2.373 is the matrix multiplication exponent [Wil12].

These approaches have been combined in algorithms by Kelner and Madry [KM09] and
Madry, Straszak and Tarnawski [MST15]. These algorithms are based on simulating the walk
more efficiently on parts of the graphs, and combining this with graph decompositions to handle
the more expensive portions of the walks globally. Due to the connection with random-walk
based spanning tree sampling algorithms, these routines often have inherent dependencies on
the edge weights. Furthermore, on dense graphs their running times are still worse than the
matrix-multiplication time routines.

The previous best running time for generating a random spanning tree from a weighted
graph was Õ

(
n5/3m1/3 log2 (1/δ)

)
achieved by [DKP+16]. It works by combining a recursive

procedure similar to those used in the more recent O(nω) time algorithms [HX16] with spectral
sparsification ideas, achieving a runtime of Õ(n5/3m13). When m = Θ

(
n2
)
, the algorithm in

[DKP+16] takes Õ
(
n7/3

)
time to produce a tree from a distribution that is o(1) away from the

w -uniform distribution, which is slower by nearly a n1/3 factor than the algorithm given in this
paper.

Our algorithm can be viewed as a natural extension of the sparsification0-based approach
from [DKP+16]: instead of preserving the probability of a single edge being chosen in a random
spanning tree, we instead aim to preserve the entire distribution over spanning trees, with the
sparsifier itself also considered as a random variable. This allow us to significantly reduce the
sizes of intermediate graphs, but at the cost of a higher total variation distance in the spanning
tree distributions. This characterization of a random spanning tree is not present in any of
the previous works, and we believe it is an interesting direction to combine our sparsification
procedure with the other algorithms.

1.3 Organization

Section 2 will introduce the necessary notation and some of the previously known fundamental
results regarding the mathematical objects that we work with throughout the paper. Section 3
will give a high-level sketch of our primary results and concentration bounds for total tree
weight under specific sampling schemes. Section 4 leverages these concentration bounds to give
a quadratic time sparsification procedure (down to Ω(n1.5) edges) for general graphs. Section 5
uses random walk connections to extend our sparsification procedure to the Schur complement
of a graph. Section 6 utilizes the previous routines to achieve a quadratic time algorithm for
computing the determinant of SDDM matrices. Section 7 combines our results and modifies
previously known routines to give a quadratic time algorithm for sampling random spanning
trees with low total variation distance. Section 8 extends our concentration bounds to random
samplings where an arbitrary tree is fixed, and is necessary for the error accounting of our

error in estimating the determinant for their algorithm. This simplification is also assuming δ ≤ 1, which is the
only regime we analyze our algorithm in and thus the only regime in which we can compare the two.
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random spanning tree sampling algorithm. Section 9 proves the total variation distance bounds
given for our random sampling tree algorithm.

2 Background

2.1 Graphs, Matrices, and Random Spanning Trees

The goal of generating a random spanning tree is to pick tree T with probability proportional
to its weight, which we formalize in the following definition.

Definition 2.1 (w -uniform distribution on trees). Let PrGT (·) be a probability distribution on
TG such that

PrGT (T = T0) =
Πe∈T0w e

TG
.

We refer to PrGT (·) as the w -uniform distribution on the trees of G.
When the graph G is unweighted, this corresponds to the uniform distribution on TG.
We refer to PrGT (·) as the w -uniform distribution on TG. When the graph G is unweighted,

this corresponds to the uniform distribution on TG. Furthermore, as we will manipulate the
probability of a particular tree being chosen extensively, we will denote such probabilities with
PrG(T̂ ), aka:

PrG
(
T̂
)

def
= PrGT

(
T = T̂

)
.

The Laplacian of a graph G = (V,E,w ) is an n× n matrix specified by:

Luv
def
=

{
du if u = v

−wuv if u 6= v

We will write LG when we wish to indicate which graph G that the Laplacian corresponds to
and L when the context is clear. When the graph has multi-edges, we define wuv as the sum of
weights of all the edges e that go between vertices u, v. Laplacians are natural objects to consider
when dealing with random spanning trees due to the matrix tree theorem, which states that
the determinant of L with any row/column corresponding to some vertex removed is the total
weight of spanning trees. We denote this removal of a vertex u as L−u. As the index of vertex
removed does not affect the result, we will usually work with L−n. Furthermore, we will use
det (M ) to denote the determinant of a matrix. As we will work mostly with graph Laplacians,
it is also useful for us to define the ‘positive determinant’ det+, where we remove the last row
and column. Using this notation, the matrix tree theorem can be stated as:

TG = det(LG
−n) = det+

(
LG
)
.

We measure the distance between two probability distributions by total variation distance.

Definition 2.2. Given two probability distributions p and q on the same index set Ω, the total
variation distance between p and q is given by

dTV (p, q)
def
=

1

2

∑

x∈Ω

|p(x)− q(x)| .

6



Let G = (V,E,w ) be a graph and e ∈ E an edge. We write G/e to denote the graph
obtained by contracting the edge e, i.e., identifying the two endpoints of e and deleting any self
loops formed in the resulting graph. We write G\e to denote the graph obtained by deleting the
edge e from G. We extend these definitions to G/F and G\F for F ⊆ E to refer to the graph
obtained by contracting all the edges in F and deleting all the edges in F , respectively.

Also, for a subset of vertices V1, we use G[V1] to denote the graph induced on the vertex of
V1. letting G(V1) be the edges associated with L[V1,V1] in the Schur complement.

2.2 Effective Resistances and Leverage Scores

The matrix tree theorem also gives connections to another important algebraic quantity: the

effective resistance between two vertices. This quantity is formally given as Reff (u, v)
def
=

χ
⊺

uvL
−1χuv where χuv is the indicator vector with 1 at u, −1 at v, and 0 everywhere else. Via

the adjugate matrix, it can be shown that the effective resistance of an edge is precisely the ratio
of the number of spanning trees in G/e over the number in G:

Reff (u, v) =
TG/e

TG
.

As w e · TG/e is the total weight of all trees in G that contain edge e, the fraction4 of spanning
trees that contain e = uv is given by w eReff (u, v). This quantity is called the statistical leverage
score of an edge, and we denote it by τ e. It is fundamental component of many randomized
algorithms for sampling / sparsifying graphs and matrices [SS11, Vis12, Tro12].

The fact that τ e is the fraction of trees containing e also gives one way of deriving the sum
of these quantities:

Fact 2.3. (Foster’s Theorem) On any graph G we have
∑

e

τ e = n− 1.

The resistanceReff (u, v), and in turn the statistical leverage scores τ e can be estimated using
linear system solves and random projections [SS11]. For simplicity, we follow the abstraction
utilized by Madry, Straszak, and Tarnawski [MST15], except we also allow the intermediate
linear system solves to utilize a sparsifier instead of the original graph.

Lemma 2.4. (Theorem 2.1. of [MST15])
Let G = (V,E) be a graph with m edges. For every ǫ > 0 we can find in Õ(min{mǫ−2,m+

nǫ−4}) time an embedding of the effective resistance metric into ℜO(ǫ−2 logm) such that with high
probability allows one to compute an estimate R̃eff (u, v) of any effective resistance satisfying

∀u, v ∈ V (1− ǫ) R̃eff (u, v) ≤ Reff (u, v) ≤ (1 + ǫ) R̃eff (u, v) .

Specifically, each vertex u in this embedding is associated with an (explicitly stored) z u ∈
ℜO(ǫ−2 logm), and for any pair of vertices, the estimate R̃eff (u, v) is given by:

R̃eff (u, v) = ‖z u − z v‖22 ,
which takes O(ǫ−2 logm) time to compute once we have the embedding.

4provided one thinks of an edge with weight w as representing w parallel edges, or equivalently, counts spanning
trees with multiplicity according to their weight
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2.3 Schur Complements

For our applications, we will utilize our determinant-preserving sparsification algorithms in
recursions based on Schur complements. A partition of the vertices, which we will denote
using

V = V1 ⊔ V2,

partitions the corresponding graph Laplacian into blocks which we will denote using indices in
the subscripts:

L =

[
L[V1,V1] L[V1,V2]

L[V2,V1] L[V2,V2]

]
.

The Schur complement of G, or L, onto V1 is then:

Sc (G,V1) = Sc
(
LG, V1

) def
= LG

[V1,V1]
− LG

[V1,V2]

(
LG
[V2,V2]

)−1
LG
[V2,V1]

,

and we will use Sc (G,V1) and Sc
(
LG, V1

)
interchangeably. We further note that we will

always consider V1 to be the vertex set we Schur complement onto, and V2 to be the vertex set
we eliminate, except for instances in which we need to consider both Sc (G,V1) and Sc (G,V2).

Schur complements behave nicely with respect to determinants determinants, which suggests
the general structure of the recursion we will use for estimating the determinant.

Fact 2.5. For any matrix M where M [V2,V2] is invertible,

det (M −n) = det
(
M [V2,V2]

)
· det+(Sc (M , V1)).

This relationship also suggests that there should exist a bijection between spanning tree
distribution in G and the product distribution given by sampling spanning trees independently
from Sc (L, V1) and the graph Laplacian formed by adding one row/column to L[V2,V2].

Finally, our algorithms for approximating Schur complements rely on the fact that they
preserve certain marginal probabilities. The algorithms of [CDN89, CMN96, HX16, DKP+16]
also use variants of some of these facts, which are closely related to the preservation of the
spanning tree distribution on Sc (L, V1). (See Section 7 for details.)

Fact 2.6. Let V1 be a subset of vertices of a graph G, then for any vertices u, v ∈ V1, we have:

RG
eff (u, v) = R

Sc(G,V1)
eff (u, v) .

Theorem 2.7 (Burton and Premantle [BP93]). For any set of edges F ⊆ E in a graph G =
(V,E,w ), the probability F is contained in a w -uniform random spanning tree is

PrGT (F ⊆ T ) = det(M (L,F )),

where M (L,F ) is a |F |×|F | matrix whose (e, f)’th entry, for e, f ∈ F, is given by
√

w(e)w (f)χT
e L

†χf .

By a standard property of Schur complements (see [HJ12]), we have
(
L−1

)
[V1, V1] = Sc (G,V1)

† .

Here (L†)[V1, V1] is the minor of L† with row and column indices in V1. This immediately implies
that when F is incident only on vertices in V1, we have M (L,F ) = M (Sc(G,V1),F ). Putting these
together, we have

8



Fact 2.8. Given a partition of the vertices V = V1 ⊔ V2. For any set of edges F contained in
G[V1], we have

PrGT (F ⊆ T ) = Pr
Sc(G,V1)
T (F ⊆ T ).

3 Sketch of the Results

The starting point for us is the paper by Janson [Jan94] which gives (among other things) the
limiting distribution of the number of spanning trees in the Gn,m model of random graphs. Our
concentration result for the number of spanning trees in the sparsified graph is inspired by this
paper, and our algorithmic use of this sparsification routine is motivated by sparsification based
algorithms for matrices related to graphs [PS14, CCL+15, KLP+16]. The key result we will
prove is a concentration bound on the number of spanning trees when the graph is sparsified by
sampling edges with probability approximately proportional to effective resistance.

3.1 Concentration Bound

Let G be a weighted graph with n vertices and m edges, and H be a random subgraph obtained
by choosing a subset of edges of size s uniformly randomly. The probability of a subset of edges,
which could either be a single tree, or the union of several trees, being kept in H can be bounded
precisely. Since we will eventually choose s > n1.5, we will treat the quantity n3/s2 as negligible.
The probability of H containing a fixed tree was shown by Janson to be:

Lemma 3.1. If m ≥ s2

n , then for any tree T , the probability of it being included in H is

PrH [T ∈ H] =
(s)n−1

(m)n−1
= pn−1 · exp

(
−n2

2s
−O

(
n3

s2

))
.

where (a)b denotes the product a · (a− 1) · · · (a− (b− 1)).

By linearity of expectation, the expected total weight of spanning trees in H is:

EH [TH ] = TG · pn−1 · exp
(
−n2

2s
−O

(
n3

s2

))
. (1)

As in [Jan94], the second moment, EH

[
T 2
H

]
= EH

[∑
(T1,T2)

w(T1)w (T2)Pr (T1, T2 ∈ H)
]
, can

be written as a sum over all pairs of trees (T1, T2) . Due to symmetry, the probability of a
particular pair of trees T1, T2 both being subgraphs of H depends only on the size of their
intersection. The following bound is shown in Appendix A.

Lemma 3.2. Let G be a graph with n vertices and m edges, and H be a uniformly random
subset of s > 10n edges chosen from G, where m ≥ s2

n . Then for any two spanning trees T1 and
T2 of G with |T1 ∩ T2| = k, we have:

PrH [T1, T2 ∈ H] ≤ p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

,

where p = s/m.

9



The crux of the bound on the second moment in Janson’s proof is getting a handle on the
number of tree pairs (T1, T2) with |T1 ∩ T2| = k in the complete graph where all edges are
symmetric. An alternate way to obtain a bound on the number of spanning trees can also be
obtained using leverage scores, which describe the fraction of spanning trees that utilize a single
edge. A well known fact about random spanning tree distributions [BP93] is that the edges are
negatively correlated:

Fact 3.3 (Negative Correlation). Suppose F is subset of edges in a graph G, then

PrGT (F ⊆ T ) ≤ Πe∈FPrGT (e ∈ T ) .

An easy consequence of Fact 3.3 is

Lemma 3.4. For any subset of edges F we have that the total weight of all spanning trees
containing F is given by

∑

T is a spanning tree of G
F⊆T

w (T ) ≤ TG
∏

e∈F

τ e.

The combinatorial view of all edges being interchangable in the complete graph can there-
fore be replaced with an algebraic view in terms of the leverage scores. Specifically, invoking
Lemma 3.4 in the case where all edges have leverage score at most n

m gives the following lemma
which is proven in Appendix A.

Lemma 3.5. In a graph G where all edges have leverage scores at most n
m , we have

∑

T1,T2
|T1∩T2|=k

w (T1) ·w (T2) ≤ T 2
G ·

1

k!

(
n2

m

)k

With Lemma 3.5, we can finally prove the following bound on the second moment which
gives our concentration result.

Lemma 3.6. Let G be a graph on n vertices and m edges such that all edges have statistical
leverage scores ≤ n

m . For a random subset of s > 10n edges, H, where m ≥ s2

n we have:

EH

[
T 2
H

]
≤ T 2

Gp
2n−2 exp

(
−n2

s
+O

(
n3

s2

))
= EH [TH ]2 exp

(
O

(
n3

s2

))
.

Proof. By definition of the second moment, we have:

EH

[
T 2
H

]
=
∑

T1,T2

w (T1) ·w (T2) · PrH [T1 ∪ T2 ⊆ H] .

Re-writing the above sum in terms of the size of the intersection k, and invoking Lemma 3.2
gives:

EH

[
T 2
H

]
≤

n−1∑

k=0

∑

T1,T2

|T1∩T2|=k

w (T1) ·w (T2) · p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

.
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Note that the trailing term only depends on k and can be pulled outside the summation of
T1, T2, so we then use Lemma 3.5 to bound this by:

EH

[
T 2
H

]
≤

n−1∑

k=0

T 2
G ·

1

k!

(
n2

m

)k

· p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

.

Which upon pulling out the terms that are independent of k, and substituting in p = s/m gives:

EH

[
T 2
H

]
≤ T 2

G · p2n−2 · exp
(
−2n2

s

)
·
n−1∑

k=0

1

k!
·
(
n2

s

(
1 +

2n

s

))k

.

From the Taylor expansion of exp(·), we have:

EH

[
T 2
H

]
≤ T 2

G · p2n−2 · exp
(
−2n2

s

)
· exp

(
n2

s

(
1 +

2n

s

))

= T 2
G · p2n−2 · exp

(
−n2

s

)
· exp

(
O

(
n3

s2

))
.

This bound implies that once we set s2 > n3, the variance becomes less than the square of the
expectation. It forms the basis of our key concentration results, which we show in Section 4, and
also leads to Theorem 1.1. In particular, we demonstrate that this sampling scheme extends to
importance sampling, where edges are picked with probabilities proportional to (approximations
of) of their leverage scores.

A somewhat surprising aspect of this concentration result is that there is a difference between
models Gn,m and the Erdos-Renyi model Gn,p when the quantity of interest is the number of
spanning trees. In particular, the number of spanning trees of a graph G ∼ Gn,m is approximately
normally distributed when m = ω

(
n1.5

)
, whereas it has approximate log-normal distribution

when G ∼ Gn,p and p < 1.
An immediate consequence of this is that we can now approximate det+(L

G) by computing
det+(L

H). It also becomes natural to consider speedups of random spanning tree sampling
algorithms that generate a spanning tree from a sparsifier. Note however that we cannot hope
to preserve the distribution over all spanning trees via a single sparsifier, as some of the edges
are no longer present.

To account for this change in support, we instead consider the randomness used in generating
the sparsifier as also part of the randomness needed to produce spanning trees. In Section 9.1,
we show that just bounds on the variance of TH suffices for a bound on the TV distances of the
trees.

Lemma 3.7. Suppose H is a distribution over rescaled subgraphs of G such that for some
parameter some 0 < δ < 1 we have

EH∼H

[
T 2
H

]

EH∼H [TH ]2
≤ 1 + δ,

11



and for any tree T̂ and any graph from the distribution that contain it, H we have:

wH
(
T̂
)
= wG

(
T̂
)
· PrH′∼H

[
T̂ ⊆ H ′

]−1
· EH′∼H [TH′ ]

TG
,

then the distribution given by PrG(T ), p, and the distribution induced by EH∼H

[
PrH(T )

]
, p̃

satisfies
dTV (p, p̃) ≤

√
δ.

Note that uniform sampling meets the property about wH(T ) because of linearity of expecta-
tion. We can also check that the importance sampling based routine that we will discuss in Sec-
tion 4.2 also meets this criteria. Combining this with the running time bounds from Theorem 1.1,
as well as the Õ(m1/3n5/3) time random spanning tree sampling algorithm from [DKP+16] then
leads to a faster algorithm.

Corollary 3.8. For any graph G on n vertices and any δ > 0, there is an algorithm that
generates a tree from a distribution whose total variation is at most δ from the random tree
distribution of G in time Õ(n

13
6
=2.1666...δ−2/3 + n2δ−2).

3.2 Integration Into Recursive Algorithms

As a one-step invocation of our concentration bound leads to speedups over previous routines,
we investigate tighter integrations of the sparsification routine into algorithms. In particular, the
sparsified Schur complement algorithms [KLP+16] provide a natural place to substitute spectral
sparsifiers with determinant-preserving ones. In particular, the identity of

det+(L) = det (L[V2,V2]) · det+(Sc (L, V1)).

where det+ is the determinant of the matrix minor, suggests that we can approximate det (L−n)
by approximating det (L[V2,V2]) and det+(Sc (L, V1)) instead. Both of these subproblems are
smaller by a constant factor, and we also have |V1| + |V2| = n. So this leads to a recursive
scheme where the total number of vertices involved at all layers is O(n log n). This type of
recursion underlies both our determinant estimation and spanning tree sampling algorithms.

The main difficulty remaining for the determinant estimation algorithm is then sparsifying
Sc (G,V1) while preserving its determinant. For this, we note that some V1 are significantly
easier than others: in particular, when V2 = V \V1 is an independent set, the Schur complement
of each of the vertices in V2 can be computed independently. Furthermore, it is well understood
how to sample these complements, which are weighted cliques, by a distribution that exceeds
their true leverage scores.

Lemma 3.9. There is a procedure that takes a graph G with n vertices, a parameter δ, and
produces in Õ(n2δ−1) time a subset of vertices V1 with |V1| = Θ(n), along with a graph HV1 such
that

TSc(G,V1) exp (−δ) ≤ EHV1 [THV1 ] ≤ TSc(G,V1) exp (δ) ,

and
EHV1

[
T 2
HV1

]

EHV1 [THV1 ]
2 ≤ exp (δ) .

12



Lemma 2.4 holds w.h.p., and we condition on this event. In our algorithmic applications we
will be able to add the polynomially small failure probability of Lemma 2.4 to the error bounds.

The bound on variance implies that the number of spanning trees is concentrated close to its
expectation, TSc(G,V1), and that a random spanning tree drawn from the generated graph HV1

is —over the randomness of the sparsification procedure—close in total variation distance to a
random spanning tree of the true Schur complement.

As a result, we can design schemes that:

1. Finds an O(1)-DD subset V2, and set V1 ← V \ V2.

2. Produce a determinant-preserving sparsifier HV1 for Sc (G,V1).

3. Recurse on both L[V2,V2] and HV1 .

However, in this case, the accumulation of error is too rapid for yielding a good approximation
of determinants. Instead, it becomes necesary to track the accumulation of variance during all
recursive calls. Formally, the cost of sparsifying so that the variance is at most δ is about n2δ−1,
where δ is the size of the problem. This means that for a problem on Gi of size βin for 0 ≤ βi ≤ 1,
we can afford an error of βiδ when working with it, since:

1. The sum of βi on any layer is at most 2, 5 so the sum of variance per layer is O(δ).

2. The cost of each sparsification step is now βin
2δ−1, which sums to about n2δ−1 per layer.

Our random spanning tree sampling algorithm in Section 7 is similarly based on this careful
accounting of variance. We first modify the recursive Schur complement algorithm introduced
by Coulburn et al. [CDN89] to give a simpler algorithm that only braches two ways at each
step in Section 7.1, leading to a high level scheme fairly similar to the recursive determinant
algorithm. Despite these similarities, the accumulation of errors becomes far more involved
here due to the choice of trees in earlier recursive calls affecting the graph in later steps. More
specifically, the recursive structure of our determinant algorithm can be considered analogous to
a breadth-first-search, which allows us to consider all subgraphs at each layer to be independent.
In contrast, the recursive structure of our random spanning tree algorithm, which we show in
Section 7.2 is more analogous to a depth-first traversal of the tree, where the output solution of
one subproblem will affect the input of all subsequent subproblems.

These dependency issues will be the key difficulty in considering variance across levels. The
total variation distance tracks the discrepancy over all trees of G between their probability
of being returned by the overall recursive algorithm, and their probability in the w -uniform
distribution. Accounting for this over all trees leads us to bounding variances in the probabilities
of individual trees being picked. As this is, in turn, is equivalent to the weight of the tree divided
by the determinant of the graph, the inverse of the probability of a tree being picked can play
a simliar role to the determinant in the determinant sparsification algorithm described above.
However, tracking this value requires analyzing extending our concentration bounds to the case
where an arbitrary tree is fixed in the graph and we sample from the remaining edges. We
study this Section 8, prove bounds analogous to the concentration bounds from Section 4, and
incorporate the guarantees back into the recursive algorithm in Section 7.2.

5each recursive call may introduce one new vertex
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4 Determinant Preserving Sparsification

In this section we will ultimately prove Theorem 1.1, our primary result regarding determinant-
preserving sparsification. However, most of this section will be devoted to proving the following
general determinant-preserving sparsification routine that also forms the core of subsequent
algorithms:

Theorem 4.1. Given an undirected, weighted graph G = (V,E,w ), an error threshold ǫ > 0,
parameter ρ along with routines:

1. SampleEdgeG() that samples an edge e from a probability distribution p (
∑

e pe = 1),
as well as returning the corresponding value of pe. Here pe must satisfy:

τ e

n− 1
≤ ρ · pe

where τ e is the true leverage score of e in G.

2. ApproxLeverageG(u, v, ǫ) that returns the leverage score of an edge u, v in G to an error
of ǫ. Specifically, given an edge e, it returns a value τ̃ e such that:

(1− ǫ) τ e ≤ τ̃ e ≤ (1 + ǫ) τ e.

There is a routine DetSparsify(G, s, ǫ) that computes a graph H with s edges such that its tree
count, TH , satisfies:

EH [TH ] = TG
(
1±O

(
n3

s2

))
,

and:
EH

[
T 2
H

]

EH [TH ]2
≤ exp

(
ǫ2n2

s
+O

(
n3

s2

))

Furthermore, the expected running time is bounded by:

1. O(s · ρ) calls to SampleEdgeG(e) and ApproxLeverage(e) with constant error,

2. O(s) calls to ApproxLeverage(e) with ǫ error.

We establish guarantees for this algorithm using the following steps:

1. Showing that the concentration bounds as sketched in Section 3 holds for approximate
leverage scores in Section 4.1.

2. Show via taking the limit of probabilistic processes that the analog of this process works
for sampling a general graph where edges can have varying leverage scores. This proof is
in Section 4.2.

3. Show via rejection sampling that (high error) one sided bounds on statistical leverage
scores, such as those that suffice for spectral sparsification, can also be to do the initial
round of sampling instead of two-sided approximations of leverage scores. This, as well as
pseudocode and guarantees of the overall algorithm are given in Section 4.3.
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4.1 Concentration Bound with Approximately Uniform Leverage Scores

Similar to the simplified proof as outlined in Section 3, our proofs relied on uniformly sampling
s edges from a multi-graph with m ≥ s2

n edges, such that all edges have leverage score within
multiplicative 1± ǫ of n−1

s , aka. approximately uniform. The bound that we prove is an analog
of Lemma 3.6

Lemma 4.2. Given a weighted multi-graph G such that m ≥ s2

n , s ≥ n, and all edges e ∈ E

have (1−ǫ)(n−1)
m ≤ τ e ≤ (1+ǫ)(n−1)

m , with 0 ≤ ǫ < 1, then

EH

[
T 2
H

]

EH [TH ]2
≤ exp

(
n2ǫ2

s
+O

(
n3

s2

))

Similar to the proof of Lemma 3.6 in Section 3, we can utilize the bounds on the probability
of k edges being chosen using Lemma 3.2. The only assumption that changed was the bounds
on τ e, which does not affect EH [TH ]2. The only term that changes is our upper bound the total
weight of trees that contain some subset of k edges that was the produce of k leverage scores. At
a glance, this product can change by a factor of up to (1 + ǫ)k, which when substituted naively
into the proof of Lemma 3.2 directly would yield an additional term of

exp

(
n2ǫ

s

)
,

and in turn necessitating ǫ < n−1/2 for a sample count of s ≈ n1.5.
However, note that this is the worst case distortion over a subset F . The upper bound that

we use, Lemma 3.5 sums over these bounds over all subsets, and over all edges we still have
∑

e ∈ Gτ e = n− 1.

Incorporating this allows us to show a tighter bound that depends on ǫ2.
Similar to the proof of Lemma 3.5, we can regroup the summation over all

(
m
k

)
subsets of

E(G), and bound the fraction of trees containing each subset F via
∑

T :F⊆T w(T ) ≤ TG
∏

e∈F τ e

via Lemma 3.4. ∑

T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤
∑

F⊆E
|F |=k

T 2
G

∏

e∈F

τ 2
e

The proof will heavily utilize the fact that
∑

e∈E τ e = n − 1. We bound this in first two
steps: first treat it as a symmetric product over τ 2

e, and bound the total as a function of
∑

e

τ 2
e,

then we bound this sum using the fact that
∑

e τ e = n− 1.
The first step utilizes the concavity of the product function, and bound the total by the sum:

Lemma 4.3. For any set of non-negative values x 1 . . . xm with
∑

i x i ≤ z, we have

∑

F⊆[1...m]
|F |=k

∏

i∈F

x i ≤
(
m

k

)( z

m

)k
.
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Proof. We claim that this sum is maximized when x i =
(
z
m

)
for all e.

Consider fixing all variables other than some x i and x j , which we assume to be x 1 ≤ x 2

without loss of generality as the function is symmetric on all variables:

∑

F⊆[1...m]
|F |=k

∏

i∈F

x i = x 1x 2




∑

F⊆[3...m]
|F |=k−2

∏

i∈F

x i


+ (x 1 + x 2) ·




∑

F⊆[3...m]
|F |=k−1

∏

i∈F

x i


+

∑

F⊆[3...m]
|F |=k

∏

i∈F

x i.

Then if x 1 < x 2, locally changing their values to x 1 + ǫ and x 2 − ǫ keeps the second term
the same. While the first term becomes

(x 1 + ǫ) (x 2 − ǫ) = x 1x 2 + ǫ (x 2 − x 1)− ǫ2,

which is greater than x 1x 2 when 0 < ǫ < (x 2 − x 1).
This shows that the overall summation is maximized when all x i are equal, aka

x i =
z

m
,

which upon substitution gives the result.

The second step is in fact the k = 1 case of Lemma 3.5.

Lemma 4.4. For any set of values y e such that

∑

e

y = n− 1,

and
(1− ǫ)n

m
≤ ye ≤

(1 + ǫ)n

m
,

we have ∑

e

y2
e ≤

(1 + ǫ2)(n − 1)2

m
.

Proof. Note that for any a ≤ b, and any ǫ, we have

(a− ǫ)2 + (b+ ǫ)2 = a2 + b2 + 2ǫ2 + 2ǫ (b− a) ,

and this transformation must increase the sum for ǫ > 0. This means the sum is maximized
when half of the leverage scores are (1−ǫ)(n−1)

m and the other half are (1+ǫ)(n−1)
m . This then gives

∑

e∈E

y2
e ≤

m

2

(
(1 + ǫ)(n − 1)

m

)2

+
m

2

(
(1− ǫ)(n − 1)

m

)2

=
(1 + ǫ2)(n − 1)2

m
.
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Proof. (of Lemma 4.2)
We first derive an analog of Lemma 3.5 for bounding the total weights of pairs of trees

containing subsets of size k, where we again start with the bounds

∑

T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤
∑

F⊆E
|F |=k

∑

T1,T2
F⊆T1∩T2

w (T1) ·w (T2) =
∑

F⊆E
|F |=k



∑

T :F⊆T

w (T )




2

Applying Lemma 3.4 to the inner term of the summation then gives

∑

T1,T2
|T1∩T2|=k

w (T1) ·w (T2) ≤
∑

F⊆E
|F |=k

T 2
G ·
∏

e∈F

τ 2
e

The bounds on τ e and
∑

e τ e = n− 1 gives, via Lemma 4.4

∑

e

τ 2
e ≤

(1 + ǫ2)(n− 1)2

m
.

Substituting this into Lemma 4.3 with x i = τ 2
e then gives

∑

F⊆E
|F |=k

∏

e∈F

τ 2
e ≤

(
m

k

)(
(1 + ǫ2)n2

m2

)k

≤ mk

k!

(
(1 + ǫ2)n2

m2

)k

=
1

k!

(
(1 + ǫ2)n2

m

)k

.

which implies our analog of Lemma 3.5

∑

T1,T2

|T1∩T2|=k

w (T1) ·w (T2) ≤ T 2
G ·

1

k!

(
(1 + ǫ2)n2

m

)k

.

We can then duplicate the proof of Lemma 3.6. Similar to that proof, we can regroup the
summation by k = |T1 ∩ T2| and invoking Lemma 3.2 to get:

EH

[
T 2
H

]
≤

n−1∑

k=0

∑

T1,T2

|T1∩T2|=k

w (T1) ·w (T2) · p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

.

where p = s/m. When incorporated with our analog of Lemma 3.5 gives:

EH

[
T 2
H

]
≤

n−1∑

k=0

p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k

· T 2
G

1

k!

(
(1 + ǫ2)n2

m

)k

= T 2
Gp

2n−2 · exp
(
−2n2

s

)
·
n−1∑

k=0

1

k!
·
(
(1 + ǫ2)n2

s

(
1 +

2n

s

))k

.
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Substituting in the Taylor expansion of
∑

k
zk

k! ≤ exp(z) then leaves us with:

EH

[
T 2
H

]
≤ T 2

G · p2n−2 · exp
(
−n2

s
+

n2ǫ2

s
+O

(
n3

s2

))

and finishes the proof.

4.2 Generalization to Graphs with Arbitrary Leverage Score Distributions

The first condition of m ≥ s2

n will be easily achieved by splitting each edge a sufficient number
of times, which does not need to be done explicitly in the sparsification algorithm. Furthermore,
from the definition of statistical leverage score splitting an edge into k copies will give each
copy a kth fraction of the edge’s leverage score. Careful splitting can then ensure the second
condition, but will require ǫ-approximate leverage score estimates on the edges. The simple
approach would compute this for all edges, then split each edge according to this estimate and
draw from the resulting edge set. Instead, we only utilize this algorithm as a proof technique,
and give a sampling scheme that’s equivalent to this algorithm’s limiting behavior as m → ∞.
Pseudocode of this routine is in Algorithm 1.

Algorithm 1: IdealSparsify(G, τ̃ , s): Sample s (multi) edges of G to produce H such
that TG ≈ TH .

Input: Graph G, approximate leverage scores τ̃ , sample count s
1 Initialize H as the empty graph, H ← ∅;
2 for i = 1 . . . s do

3 Pick edge e with probability proportional to τ̃ e;
4 Add e to H with new weight:

we (n− 1)

τ̃ es
exp

(
n2

2 (n− 1) s

)
.

5 Output H

Note that this sampling scheme is with replacement: the probability of a ‘collision’ as the
number of copies tend to ∞ is sufficiently small that it can be covered by the proof as well.

The guarantee that we will show for Algorithm 1 is:

Lemma 4.5. For any graph G and any set of approximate leverage scores τ̃ such that

(1− ǫ) τ e ≤ τ̃ e ≤ (1 + ǫ) τ e

for all edges e. The graph H = IdealSparsify(G, τ̃ , s) satisfies:
(
1−O

(
n3

s2

))
TG ≤ EH [TH ] ≤ TG,

and
EH

[
T 2
H

]

EH [TH ]2
≤ exp

(
O

(
ǫ2n2

s
+

n3

s2

))
.
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Our proof strategy is simple: claim that this algorithm is statistically close to simulating
splitting each edge into a very large number of copies. Note that these proofs are purely for
showing the convergence of statistical processes, so all that’s needed is for the numbers that
arise in this proof (in particular, m) to be finite.

We first show that G and τ̃ can be perturbed to become rational numbers.

Lemma 4.6. For any graph G and any set of τ̃ such that (1 − ǫ)τ
(G)
e ≤ τ̃ e ≤ (1 + ǫ)τ

(G)
e for

all edges e for some constant ǫ > 0, and any perturbation threshold δ, we can find graph G′ with
all edge weights rationals, and τ̃ ′ with all entries rational numbers such that:

1. TG ≤ TG′ ≤ (1 + δ)TG, and

2. (1− 2ǫ)τ
(G′)
e ≤ τ̃

′
e ≤ (1 + 2ǫ)τ

(G′)
e for all edges e.

Proof. This is a direct consequence of the rational numbers being everywhere dense, and that
perturbing edge weights by a factor of 1±α perturbs leverage scores by a factor of up to 1±O(α),
and total weights of trees by a factor of (1± α)n−1.

Having all leverage scores as integers means that we can do an exact splitting by setting m,
the total number of split edges, to a multiple of the common denominator of all the τ̃

′
e values

times n− 1. Specifically, an edge with approximate leverage score τ̃
′
e becomes

τ̃ ′
e ·

m

n− 1

copies, each with weight
w e (n− 1)

τ̃ ′
em

,

and ‘true’ leverage score
τ e (n− 1)

τ̃ ′
em

.

In particular, since

(1− 2ǫ) ≤ τ e

τ̃ e
≤ (1 + 2ǫ) ,

this splitted graph satisfies the condition of Lemma 4.2. This then enables us to obtain the
guarantees of Lemma 4.5 by once again letting m tend to ∞.

Proof. (of Lemma 4.5) We first show that Algorithm 1 works for the graph with rational weights
and approximate leverage scores as generated by Lemma 4.6.

The condition established above means that we can apply Lemma 4.2 to the output of picking
s random edges among these m split copies. This graph H ′ satisfies

EH′ [TH′ ] = TG′

( s

m

)n−1
exp

(
−n2

2s
−O

(
n3

s2

))
,

and
EH′

[
T 2
H′

]

EH′ [TH′ ]2
≤ exp

(
n2ǫ2

s
+O

(
n3

s2

))
.
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The ratio of the second moment is not affected by rescaling, so the graph

H ′′ ← m

s
exp

(
n2

2s (n− 1)

)

meets the requirements on both the expectation and variances. Furthermore, the rescaled weight
of an single edge being picked is:

w e (n− 1)

τ̃ ′
em

· m
s
exp

(
n2

2s (n− 1)

)
=

w e (n− 1)

τ̃ ′
es

exp

(
n2

2s (n− 1)

)
,

which is exactly what Algorithm 1 assigns.
It remains to resolve the discrepancy between sampling with and without replacement: the

probability of the same edge being picked twice in two different steps is at most 1/m, so the
total probability of a duplicate sample is bounded by s2/m. We then give a finite bound on the
size of m for which this probability becomes negligible in our routine. The rescaling factor of a
single edge is (very crudely) bounded by

(n− 1)

τ̃ ′
es

exp

(
n2

2s (n− 1)

)
≤ exp

(
n3
) 1

mine τ̃
′
e

,

which means that any of the H ′′ returned must satisfy

TH′′ ≤ exp
(
n4
)( 1

mine τ̃
′
e

)n

TG′ ,

which is finite. As a result, as m → ∞, the difference that this causes to both the first and
second moments become negligible.

The result for H ← IdealSparsify(G, τ̃ , s) then follows from the infinitesimal perturbation
made to G, as the rational numbers are dense everywhere.

4.3 Incorporating Crude Edge Sampler Using Rejection Sampling

Under Lemma 4.5 we assumed access to ǫ-approximate leverage scores, which could be computed
with m calls to our assumed subroutine ApproxLeverageG, where m here is the number of
edges of G. However, we roughly associate ApproxLeverageG with Lemma 2.4 that requires
Õ(ǫ−2) time per call (and we deal with the w.h.p. aspect in the proof of Theorem 1.1), and
to achieve our desired sparsification of O(n1.5) edges, we will need ǫ = n−1/4 for the necessary
concentration bounds. Instead, we will show that we can use rejection sampling to take s edges
drawn from approximate leverage scores using a cruder distribution pe, which will only require
application of ApproxLeverageG with error ǫ for an expected O(s) number of edges.

Rejection sampling is a known technique that allows us to sample from some distribution f
by instead sampling from a distribution g that approximates f and accept the sample with a
specific probability based on the probability of drawing that sample from f and g.

More specifically, suppose we are given two probability distributions f and g over the same
state space X, such that for all x ∈ X we have Cg(x) ≥ f(x) for some constant C. Then we

can draw from f by instead drawing x ∼ g, and accepting the draw with probability f(x)
Cg(x) .
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This procedure only requires a lower bound on g with respect to f , but in order to accept a
draw with constant probability, there need to be weaker upper bound guarantees. Our guarantees
on τ̃ e will fulfill these requirements, and the rejection sampling will accept a constant fraction
of the draws. By splitting into a sufficient number of edges, we ensure that drawing the same
multi-edge from any split edge will occur with at most constant probability.

Specifically, each sample is drawn via. the following steps:

1. Draw a sample according the distribution g, e.

2. Evaluate the values of f(e) and g(e).

3. Keep the sample with probability f(e)/g(e).

As the running time of ApproxLeverageG(e, ǫ) will ultimately depend on the value of ǫ ap-
ply this algorithmic framework, we also need to perform rejection sampling twice, once with
constant error, and once with leverage scores extracted from the true approximate distribution.
Pseudocode of this routine is shown in Algorithm 2.

Algorithm 2: DetSparsify(G, s,SampleEdgeG()), ρ,ApproxLeverageG(u, v, ǫ)):
Sample s (multi) edges of G to produce H such that TG ≈ TH .

Input: Graph G.
Sample count s, leverage score approximation error 0 < ǫ < 1/2,
SampleEdgeG() that samples an edge e from a probability distribution p (

∑
e pe = 1),

and returning the corresponding value of pe.
ρ that bounds the under-sampling rate of SampleEdgeG().
ApproxLeverageG(u, v, ǫ) that returns the approximate leverage score of an edge u, v
in G to an error of ǫ.

1 Initialize H as the empty graph, H ← ∅;
2 while H has fewer than s edges do

3 e,pe ← SampleEdgeG().
4 Let p ′

e ← 2
n−1ApproxLeverageG(u, v, 0.1)

5 Reject e with probability 1− p ′
e/(4ρ · pe).

6 Let p ′′
e ← 1

n−1ApproxLeverageG(u, v, ǫ)

7 Reject e with probability 1− p ′′
e/p

′
e.

8 Add e to H with new weight

w e

p ′′
es

exp

(
n2

2(n− 1)s

)
.

9 Output H

We first show that this routine will in fact sample edges according to ǫ-approximate leverage
scores, as was assumed in IdealSparsify

Lemma 4.7. The edges are being sampled with probability proportional to τ̃ (G,ǫ), the leverage
score estimates given by ApproxLeverageG(·, ǫ).
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Note that this algorithm does not, at any time, have access to the full distribution τ̃
(G,ǫ).

Proof. Our proof will assume the known guarantees of rejection sampling, which is to say that
the following are true:

1. Given distributions p and p ′, sampling an edge e from p and accepting with probability
p ′
e/(4ρ · pe) is equivalent to drawing an edge from p ′ as long as p ′

e/(4ρ · pe) ∈ [0, 1] for all
e.

2. Given distributions p ′ and p ′′, sampling an edge e from p ′ and accepting with probability
p ′′
e/p

′
e is equivalent to drawing an edge from p ′′ as long as p ′′

e/p
′
e ∈ [0, 1] for all e.

As a result, we only need to check that p ′
e/(4ρpe) and p ′′

e/p
′
e are at most 1.

The guarantees of SampleEdgeG() gives

τ e

n− 1
≤ ρpe.

As p ′
e was generated with error 1.1, we have

p ′
e ≤

2.2τ e

(n− 1)
≤ 2.2ρpe,

so p ′
e/(4ρpe) ≤ 1. To show p ′′

e/p
′
e ≤ 1, once again the guarantees of SampleEdgeG() gives:

p ′′
e ≤ (1 + ǫ)

τ e

n− 1
≤ 2 · 0.9 τ e

n − 1
≤ p ′

e.

It remains to show that this rejection sampling process still makes sufficiently progress, yet
also does not call ApproxLeverageG(e, ǫ) (the more accurate leverage score estimator) too
many times.

Lemma 4.8. At each step, the probability of DetSparsify calling ApproxLeverageG(e, ǫ)
is at most 1

ρ , while the probability of it adding an edge to H is at least 1
8ρ .

Proof. The proof utilizes the fact
∑

e τ e = n− 1 (Fact 2.3) extensively.
If the edge e is picked, ApproxLeverageG(e, ǫ) is called with probability

p ′
e

4ρ · pe

≤ 2.2τ e

4ρ · pe · (n− 1)

Summing over this over all edge e by the probability of picking them gives:

∑

e

pe
2.2τ e

4ρ · pe · (n− 1)
=

2.2
∑

e τ e

4ρ · (n− 1)
≤ 1

ρ
.

On the other hand, the probability of picking edge e, and not rejecting it is:

pe ·
p ′
e

4ρ · pe

· p
′′
e

p ′
e

=
τ̃ (G,ǫ)

4ρ(n− 1)
.
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where this follows by cancellation and how we set p ′′
e in our algorithm. Summing over all edges

then gives the probability of not rejecting an edge to be

∑

e

τ̃
(G,ǫ)

4ρ(n− 1)
≥
∑

e

(1− ǫ)τ e

4ρ(n− 1)
=

(1− ǫ)
∑

e τ e

4ρ(n − 1)
≥ 1

8ρ

Proof. (of Theorem 4.1) Lemma 4.7 implies that edges are sampled in DetSparsify with prob-
ability proportional to ǫ-approximate leverage scores guaranteed by ApproxLeverageG(·, ǫ).
Therefore, we can apply Lemma 4.5 to achieve the desired expectation and concentration bounds.
Finally, Lemma 4.8 implies that we expect to sample at most O(s · ρ) edges, each of which re-
quire a call to SampleEdgeG(e) and ApproxLeverageG with constant error. It additionally
implies that we expect to make O(s) calls to ApproxLeverageG with ǫ error.

Directly invoking this theorem leads to the sparsification algorithm.

Proof. (of Theorem 1.1) Consider invoking Theorem 4.1 with parameters

s← O
(
n1.5δ−2

)
,

ǫ← n−1/4.

This gives:
ǫ2n2

s
,
n3

s2
≤ δ,

which then implies (
1−O

(
δ2
))
TG ≤ EH [TH ] ≤

(
1 +O

(
δ2
))
TG,

and
EH

[
T 2
H

]
≤
(
1 +O

(
δ2
))

EH [TH ]2 .

The second condition is equivalent to VarH [TH ] ≤ δ2EH [TH ], which by Chebyshev inequality
gives that with constant probability we have

(1−O (δ))TG ≤ TH ≤ (1 +O (δ)) TG.

Combining this with the bounds on EH [TH ], and adjusting constants gives the overall bound.
Constructing the probability distribution p for sampling edges only requires computing con-

stant approximate leverage scores for all edges, and then sampling proportionally for each edge,
giving a constant value for ρ. By Lemma 2.4, this requires Õ(m) time. The running time then
is dominated by the O(s) calls made to the effective resistance oracle with error ǫ = n−1/4.
Invoking Lemma 2.4 gives that this cost is bounded by

O
(
nǫ−4 + sǫ−2

)
= O

(
n2δ−2

)
.

Furthermore, because Lemma 2.4 holds w.h.p. we can absorb the probability of failure into
our constant probability bound
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Another immediate consequence of our sparsification routine in Theorem 4.1, along with
bounds on total variation distance that we prove in Section 9, is that we can give a faster
spanning tree sampling algorithm for dense graphs by plugging the sparsified graph into previous
algorithms for generating random spanning trees.

Proof. (of Corollary 3.8) As in the proof of Theorem 1.1, we invoke Theorem 4.1 with parameters

s← O
(
n1.5δ−2

)
,

ǫ← n−1/4.

giving
EH

[
T 2
H

]

EH [TH ]2
≤ 1 + δ2.

Applying Lemma 3.7, which is proven in Section 9.1, we then have that drawing a tree from H
according to the w -uniform distribution gives a total variation distance of δ from drawing a tree
according to the w -uniform distribution of G. The running time of drawing H is dominated by
the O(s) calls made to the effective resistance oracle with error ǫ = n−1/4. Invoking Lemma 2.4
gives that this cost is bounded by

O
(
nǫ−4 + sǫ−2

)
= O

(
n2δ−2

)
.

Furthermore, because Lemma 2.4 holds w.h.p. we can absorb the probability of failure into
our total variation distance bound (where we implicitly assume that δ is at most polynomially
small).

We then use the Õ(m1/3n5/3) time algorithm in [DKP+16] with m = O(n1.5δ−2) to draw a
tree from H. This then achieves our desired running time and total variation distance bound.

5 Implicit Sparsification of the Schur Complement

Note that the determinant sparsification routine in Theorem 4.1 only requires an oracle that
samples edges by an approximate distribution to resistance, as well as access to approximate
leverage scores on the graph. This suggests that a variety of naturally dense objects, such as
random walk matrices [CCL+15, JKPS17] and Schur complements [KLP+16, DKP+16] can also
be sparsified in ways that preserve the determinant (of the minor with one vertex removed)
or the spanning tree distributions. The latter objects, Schur complements, have already been
shown to lead to speedups in random spanning tree generation algorithms recently [DKP+16].

Furthermore the fact that Schur complements preserve effective resistances exactly (2.6)
means that we can directly invoke the effective resistances data structure as constructed in
Lemma 2.4 to produce effective resistance estimates on any of its Schur complements. As a result,
the main focus of this section is an efficient way of producing samples from a distribution that
approximates drawing a multi-edge from the Schur complement with probabilities proportional
to its leverage score. Here we follow the template introduced in [KLP+16] of only eliminating
(1 + α)-diagonally-dominant subsets of vertices, as it in turn allows the use of walk sampling
based implicit sparsification similar to those in [CCL+15, JKPS17].
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(1 + α)-diagonally-dominant subsets have been used in Schur complement based linear sys-
tem solvers to facilitate the convergence of iterative methods in the L[V2,V2] block [KLP+16].
Formally, the condition that we require is:

Definition 5.1. In a weighted graph G = (V,E,w ), a subset of vertices V2 ⊆ V is (1 + α)-
diagonally-dominant, or (1 + α)-DD if for every u ∈ V2 with weighted degree du we have:

∑

v∼u,v/∈V2

wuv ≥
1

1 + α
du =

1

1 + α

∑

v∼u

wuv.

It was shown in [KLP+16] that large sets of such vertices can be found by trimming a
uniformly random sample.

Lemma 5.2. (Lemma 3.5. of [KLP+16] instantiated on graphs)
There is a routine AlmostIndependent(G,α) that for a graph G with n vertices, and a pa-
rameter α ≥ 0, returns in O(m) expected time a subset V2 with |V2| ≥ n/(8(1 + α)) such that
LG,[V2,V2] is (1 + α)-DD.

Given such a subset V2, we then proceed to sample edges in Sc (G,V1) via the following
simple random walk sampling algorithm:

1. Pick a random edge in G.

2. Extend both of its endpoints in random walks until they first reach somewhere in V1.

Incorporating this scheme into the determinant preserving sparsification schemes then leads
these guarantees:

Theorem 5.3. Conditioned on Lemma 2.4 holding, there is a procedure SchurSparse that
takes a graph G, and an 1.1-DD subset of vertices V2, returns a graph HV1 in Õ(n2δ−1) expected
time such that the distribution over HV1 satisfies:

TSc(G,V1) exp (−δ) ≤ EHV1 [THV1 ] ≤ TSc(G,V1) exp (δ) ,

and
EHV1

[
T 2
HV1

]

EHV1 [THV1 ]
2 ≤ exp (δ) .

Furthermore, the number of edges of HV1 can be set to anywhere between O(n1.5δ−1) and
O(n2δ−1) without affecting the final bound.

We let this subset of vertices produced to be V2, and let its complement be V1. Our key idea
is to view Sc (G,V1) as a multi-graph where each multi-edge corresponds to a walk in G that
starts and ends in V1, but has all intermediate vertices in V2. Specifically a length k walk

u0, u1, . . . uk,

with u0, uk ∈ V1 and ui ∈ V2 for all 0 < i < k, corresponds to a multi-edge between u0 and uk
in Sc (G,V1) with weight given by

wSc(G,V1)
u0,u1,...uk

def
=

∏
0≤i<k w

G
uiui+1∏

0<i<k d
G
ui

. (2)
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We check formally that this multi-graph defined on V1 is exactly the same as Sc (G,V1) via the
Taylor expansion of L−1

[V2,V2]
based Jacobi iteration.

Lemma 5.4. Given a graph G and a partition of its vertices into V1 and V2, the graph GV1

formed by all the multi-edges corresponding to walks starting and ending at V1, but stays entirely
within V2 with weights given by Equation 2 is exactly Sc (G,V1).

Proof. Consider the Schur complement:

Sc (G,V1) = L[V1,V1] − L[V2,V1]L
†
[V2,V2]

L[V1,V2].

If there are no edges leaving V2, then the result holds trivially. Otherwise, L[V2,V2] is a strictly
diagonally dominant matrix, and is therefore full rank. We can write it as

L[V2,V2] = D −A

where D is the diagonal of L[V2,V2] and A is the negation of the off-diagonal entries, and then

expand L−1
[V2,V2]

via the Jacobi series:

L−1
[V2,V2]

= (D −A)−1 = D−1/2
(
I −D−1/2AD−1/2

)−1
D−1/2

= D−1/2

[
∞∑

k=0

(
D−1/2AD−1/2

)k
]
D−1/2 =

∞∑

k=0

(
D−1A

)k
D−1. (3)

Note that this series converges because the strict diagonal dominance of L[V2,V2] implies (AD−1)k

tends to zero as k →∞. Substituting this in place of L−1
[V2,V2]

gives:

Sc (G,V1) = L[V1,V1] −
∞∑

k=0

L[V1,V2]

(
D−1A

)k
D−1L[V2,V1].

As all the off-diagonal entries in L are non-positive, we can replace L[V1,V2] with −L[V1,V2] to
make all the terms in the trailing summation positive. As these are the only ways to form new
off-diagonal entries, the identity based on matrix multiplication of

[(
−L[V1,V2]

) (
D−1A

)k
D−1

(
−L[V2,V1]

)]
u0,uk

=
∑

u1...uk−1

∏
0≤i<k w

G
uiui+1∏

0<i<k d
G
ui

gives the required identity.

This characterization of Sc (G,V1), coupled with the (1 + α)-diagonal-dominance of V2,
allows us to sample the multi-edges in Sc (G,V1) in the same way as the (short) random walk
sparsification algorithms from [CCL+15, JKPS17].

Lemma 5.5. Given any graph G = (V,E,w ), an (1 + α)-DD subset V2, and access to 2-
approximations of statistical leverage scores on G, τ̃G, SampleEdgeSchur returns edges in G
according to the distribution pe in O(α) expected time per sample. Furthermore, the distribution
that it samples edges in Sc (G,V1) from, p, satisfies

O (1) · pu0,...uk
≥ τ

Sc(G,V1)
u0,...uk

n− 1
.

for every edge in Sc (G,V1) corresponding to the walk u0, . . . uk.
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Algorithm 3: SampleEdgeSchur(G = (V,E,w ), V1): samples an edge from Sc (G,V1)

Input: Graph G, vertices V1 to complement onto, and (implicit) access to a
2-approximation of the leverage scores of G, τ̃G.

Output: A multi-edge e in Sc (G,V1) corresponding to a walk u0, u1, . . . uk, and the
probability of it being picked in this distribution pu0,u1,...uk

1 Sample an edge e from G randomly with probability drawn from τ̃
G
e ;

2 Perform two independent random walks from the endpoints of e until they both reach
some vertex in V1, let the walk be u0 . . . uk;

3 Output edge u0uk (corresponding to the path u0, u1, . . . uk) with

wu0...uk
←
∏

0≤i<k w
G
uiui+1∏

0<i<k d
G
ui

, (same as Equation 2)

pu0...uk
← 1
∑

e′ τ̃
G
e′

∑

0≤i<k

τ̃
G
uiui+1

·


 ∏

0≤j<i

wG
ujuj+1

duj+1

·
∏

i+1≤j<k

wG
ujuj+1

duj


 .

The guarantees of this procedure are analogous to the random walk sampling sparsification
scheme from [CCL+15, JKPS17], with the main difference being the terminating condition for
the walks leads to the removal of an overhead related to the number of steps in the walk. The
modification of the initial step to picking the initial edge from G by resistance is necessary to
get ρ to a constant, as the about n1.5 samples limits the amount of overhead that we can have
per sample.

Proof. We first verify that p is indeed a probability on the multi-edges of Sc (G,V1), partitioned
by the walks that they correspond to in G, or formally

∑

u0,u1,...uk:
u0,uk∈V1,

ui∈V2 ∀1≤i<k

pu0,u1...uk
= 1.

To obtain this equality, note that for any random walk starting at vertex i, the total probabilities
of walks starting at i and ending in V1 is upper bounded by 1. Algebraically this becomes:

∑

u1,u2,...uk

∏

0≤i<k

wuiui+1

dui

= 1,

so applying this to both terms of each edge e gives that the total probability mass over any

starting edge is τ̃
G
e∑

e′ τ̃
G
e′
, and in turn the total.

For the running time, since V2 is (1 + α)-almost independent, each step of the walk takes
expected time O(α). Also, the value of pu0,u1,...uk

can be computed in O(k) time by computing
prefix/suffix products of the transition probabilities along the path (instead of evaluating each
summand in O(k) time for a total of O(k2)).

Finally, we need to bound the approximation of p compared to the true leverage scores τ .
As τ̃G

e is a 2-approximation of the true leverage scores,
∑

e τ̃
G
e is within a constant factor of n.
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So it suffices to show

O (1) ·
∑

0≤i<k

τ̃
G
uiui+1


 ∏

0≤j<i

wG
ujuj+1

duj+1

·
∏

i+1≤j<k

wG
ujuj+1

duj


 ≥ RSc(G,V1)

eff (u0, uk) ·wu0,u1,...uk
.

Here we invoke the equivalence of effective resistances in G and Sc (G,V1) given by Fact 2.6 in
the reverse direction. Then by Rayleigh’s monotonicity principle, we have

RSc(G,V1)
eff (u0, uk) = RG

eff (u0, uk) ≤
∑

0≤i<k

2τ̃G
uiui+1

wuiui+1

,

which when substituted into the expression for wu0,u1,...uk
from Equation 2 gives


 ∑

0≤i<k

2τ̃G
uiui+1

wuiui+1


wu0,u1,...uk

=
∑

0≤i<k

2τ̃G
uiui+1


 ∏

0≤j<i

wG
ujuj+1

duj+1

·
∏

i+1≤j<k

wG
ujuj+1

duj


 .

This sampling procedure can be immediately combined with Theorem 4.1 to give algorithms
for generating approximate Schur complements. Pseudocode of this routine is in Algorithm 4.

Algorithm 4: SchurSparse(G,V1, δ)

Input: Graph G, 1.1-DD subset of vertices V2 and error parameter δ
Output: Sparse Schur complement of Sc (G,V1)

1 Set ǫ← 0.1;
2 Set s← n2δ−1;
3 Build leverage score data structure on G with errors 0.1 (via Lemma 2.4);
4 Let HV1 ←

DetSparsify(Sc (G,V1) , s,SampleEdgeSchur(G,V1),LeverageApproxG, ǫ);
5 Output HV1 ;

Proof. (Of Theorem 5.3) Note that the choices of ǫ and s must ensure that

n2ǫ2

s
= δ

n3

s2
≤ δ

This is then equivalent to s ≥ n1.5δ−1 and s
ǫ2 = n2δ−1. This further implies that ǫ ≥ n1/4.

Our ǫ and s in SchurSparse meet these conditions (and the ones specifically chosen in the
algorithm will also be necessary for one of our applications). The guarantees then follow from
putting the quality of the sampler from Lemma 5.5 into the requirements of the determinant
preserving sampling procedure from Theorem 4.1. Additionally, Lemma 5.5 only requires access
to 2-approximate leverage scores, which can be computed by Lemma 2.4 in Õ(m) time. Further-
more, Lemma 5.5 gives that our ρ value is constant, and our assumption in Theorem 5.3 that we
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are given an 1.1-DD subset V2 implies that our expected O(s · ρ) calls to SampleEdgeSchur
will require O(1) time. The only other overheads are the computation and invocations of the
various copies of approximate resistance data structures. Since m ≤ n2 and ǫ ≥ n1/4, Lemma 2.4
gives that this cost is bounded by Õ(m+ n2 + s

ǫ2
) = Õ(n2δ−1).

6 Approximate Determinant of SDDM Matrices

In this section, we provide an algorithm for computing an approximate determinant of SDDM
matrices, which are minors of graph Laplacians formed by removing one row/column.

Theorem 1.1 allows us to sparsify a dense graph while still approximately preserving the
determinant of the graph minor. If there were some existing algorithm for computing the deter-
minant that had good dependence on sparsity, we could achieve an improved runtime for deter-
minant computation by simply invoking such an algorithm on a minor of the sparsified graph.6

Unfortunately, current determinant computation algorithms (that achieve high-accuracy) are
only dependent on n, so simply reducing the edge count does not directly improve the runtime
for determinant computation. Instead the algorithm we give will utilize Fact 2.5

det+(L) = det
(
L[V2,V2]

)
· det+(Sc (L, V1)).

(where we recall that det+ is the determinant of the matrix minor) to recursively split the matrix.
Specifically, we partition the vertex set based upon the routine AlmostIndependent from
Lemma 5.2, then compute Schur complements according to SchurSparse in Theorem 5.3. Our
algorithm will take as input a Laplacian matrix. However, this recursion naturally produces two
matrices, the second of which is a Laplacian and the first of which is a submatrix of a Laplacian.
Therefore, we need to convert L[V2,V2] into a Laplacian. We do this by adding one vertex with
appropriate edge weights such that each row and column sums to 0. Pseudocode of this routine
is in Algorithm 5, and we call it with the parameters LV2 ← AddRowColumn(L[V2,V2]).

Algorithm 5: AddRowColumn(M ) : complete M into a graph Laplacian by adding
one more row/column

Input: SDDM Matrix M

Output: Laplacian matrix L with one extra row / column than M

1 Let n be the dimension of M ;
2 for i = 1 to n do

3 Sum non-zero entries of row i, call si;
4 Set L(n+ 1, i),L(i, n + 1)← −s i;
5 Let L(n + 1, n + 1)←∑n

i=1 si;
6 Output L;

The procedureAddRowColumn outputs a Laplacian LV2 such that L[V2,V2] can be obtained

if one removes this added row/column. This immediately gives det+(L
V2) = det(L[V2,V2]) by

definition, and we can now give our determinant computation algorithm of the minor of a graph
Laplacian.

6To get with high probability one could use standard boosting tricks involving taking the median of several
estimates of the determinant obtained in this fashion.
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Algorithm 6: DetApprox(L, δ, n) : Compute det+(L) with error parameter δ

Input: Laplacian matrix L, top level error threshold δ, and top level graph size n
Output: Approximate det+(L)

1 if this is the top-level invocation of this function in the recursion tree then

2 δ′ ← Θ(δ2/ log3 n)
3 else

4 δ′ ← δ

5 if L is 2× 2 then

6 return the weight on the (unique) edge in the graph

7 V2 ← AlmostIndependent(L, 1
10 ) {Via Lemma 5.2}

8 V1 ← V \ V2 ;

9 LV1 ← SchurSparse(L, V1, δ
′); {|V1| /n is the value of β in Lemma 6.1.}

10 LV2 ← AddRowColumn(L[V2,V2]);

11 Output DetApprox(LV1 , δ′ |V1| /n, n) ·DetApprox(LV2 , δ′ |V2| /n, n);

Our analysis of this recursive routine consists of bounding the distortions incurred at each
level of the recursion tree. This in turn uses the fact that the number of vertices across all calls
within a level and the total “amount” of δ across all calls within a level both remain unchanged
from one level to the next. This can be summarized by the following Lemma which bounds the
error accumulated within one level of recursion in our algorithm.

Lemma 6.1. Suppose we are given some small δ ≥ 0 and non-negative β1, ..., βk such that∑k
i=1 βi = O(1), along with Laplacian matrices L(1), . . . ,L(k) and each having a corresponding

vertex partition V1(i), V2(i), where

L(i) =

[
L (i)[V1(i),V1(i)]

L (i)[V1(i),V2(i)]

L (i)[V2(i),V1(i)]
L (i)[V2(i),V2(i)]

]
.

Let LV1(i) denote the result of running SchurSparse to remove the V2(i) block in each of these
matrices:7

LV1(i) def
= SchurSparse (L(i), V1(i), βiδ) .

Then conditioning upon a with high probability event8 in each of these calls to SchurSparse,
for any p we have with probability at least 1− p:

k∏

i=1

det+ (L (i)) =
(
1±O

(√
δ/p
)) k∏

i=1

det
(
L[V2(i),V2(i)](i)

)
· det+

(
LV1(i)

)
.

7This Lemma only applies when the matrices are fixed with respect to the randomness used in the invocations of
SchurSparse mentioned in the Lemma. In other words, it only applies when the result of running SchurSparse
on each of these L(i) matrices is independent of the result of running it on the other matrices. This is why the
Lemma only immediately bounds error within a level of the recursion—where this independence holds—rather
than for the entire algorithm.

8namely, the event that all the leverage score estimation calls to Lemma 2.4 from SchurSparse succeed
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Here the βi corresponds to the |V1| /n and |V2| /n values that δ is multiplied against in each
call parameter to SchurSparse. An example of the main steps in this determinant approxima-
tion algorithm, as well as the graphs corresponding to applying Lemma 6.1 to one of the layers
is in Figure 1.

G on n vertices with Laplacian L

L(1)

SchurSparse(LG, V1, βδ)

L(2)

AddRowColumn(LG
[V2,V2]

)

LV1(1), |V1(1)| = β1n

SchurSparse(L(1), V1(1), β1δ)

LV2(1) LV1(2), |V1(2)| = β2n

SchurSparse(L(2), V1(2), β2δ)

LV2(2)

Figure 1: Two layers of the call Structure of the determinant approximation algorithm De-
tApprox (algorithm 6), with the transition from the first to the second layer labeled as in
Lemma 6.1.

Applying Lemma 6.1 to all the layers of the recursion tree gives the overall guarantees.

Proof of Theorem 1.2.
Running Time: Let the number of vertices and edges in the current graph corresponding

to L be n and m respectively. Calling AlmostIndependent takes expected time O(m) and
guarantees

n

16
≤ |V2| ≤

n

8
,

which means the total recursion terminates in O(log n) steps.
For the running time, note that as there are at most O(n) recursive calls, the total number

of vertices per level of the recursion is O(n). The running time on each level are also dominated
by the calls to SchurSparse, which comes out to

Õ

(
|V1 (i)|2

n

δ′ |V1 (i)|

)
= Õ

(
|V1 (i)|nδ−2

)
,

and once again sums to Õ(n2δ−2). We note that this running time can also be obtained from more
standard analyses of recursive algorithms, specifically applying guess-and-check to a running
time recurrence of the form of:

T (n, δ) = T (θn, θδ) + T ((1− θ)n+ 1, (1− θ) δ) + Õ(n2δ−1).
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Correctness. As shown in the running time analysis, our recursion tree has depth at most
O(log n), and there are at most O(n) total vertices at any given level. We associate each level
of the recursion in our algorithm with the list of matrices which are given as input to the calls
making up that level of recursion. For any level in our recursion, consider the product of det+
applied to each of these matrices. We refer to this quantity for level j as qj. Notice that q0 is
the determinant we wish to compute and q# levels−1 is what our algorithm actually outputs. As
such, it suffices to prove that for any j, qj = (1± δ

# levels)qj−1 with probability of failure at most
1

10·# levels . However, by the fact that we set δ′ = Θ(δ2/ log3 n) in the top level of recursion with
sufficiently small constants, this immediately follows from Lemma 6.1.

A minor technical issue is that Lemma 6.1 only gives guarantees conditioned on a WHP
event. However, we only need to invoke this Lemma a logarithmic number of times, so we can
absorb this polynomially small failure probability into the our total failure probability without
issue.

Standard boosting techniques—such as running O(log n) independent instances and taking
the medians of the estimates— give our desired with high probability statement.

It remains to bound the variances per level of the recursion.

Proof. (Of Lemma 6.1) As a result of Fact 2.5

k∏

i=1

det+ (L(i)) =
k∏

i=1

det
(
L (i)[V2(i),V2(i)]

)
det+ (Sc (L (i) , V1 (i))) .

Consequently, it suffices to show that with probability at least 1− p

k∏

i=1

det+ (Sc (L (i) , V1 (i))) =
(
1±O

(√
δ/p
)) k∏

i=1

det+

(
LV1(i)

)
.

Recall that LV1(i) denotes the random variable that is the approximate Schur complement gen-
erated through the call to SchurSparse(L(i), V1(i), βiδ).

Using the fact that our calls to SchurSparse are independent along with the assumption
of
∑k

i=1 βi = O(1), we can apply the guarantees of Theorem 5.3 to obtain

E
LV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(1)

)]
=

k∏

i=1

E
LV1(i)

[
det+L

V1(i)
]

= (1±O (δ))
k∏

i=1

det+ (Sc (L(i), V1(i))) ,

and

E
LV1(1)...LV1(k)

[∏k
i=1 det+

(
LV1(i)

)2]

E
LV1(1)...LV1(k)

[∏k
i=1 det+

(
LV1(i)

)2] =

k∏

i=1

E
LV1(i)

[
det+

(
LV1(i)

)2]

E
LV1(i)

[
det+

(
LV1(i)

)]2

≤
k∏

i=1

exp (O (βiδ)) ≤ exp (O (δ)).
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By assumption δ is small, so we can approximate exp (O(δ)) with 1+O(δ), which with bound
above gives

Var
LV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(i)

)]
≤ O (δ)E

LV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(i)

)]2
,

Then applying the approximation on E

[∏k
i=1 det+ (SchurSparse(L(i), V1(i), βiδ))

]
gives

Var
LV1(1)...LV1(k)

[
k∏

i=1

det+

(
LV1(i)

)]
≤ O (δ)

(
k∏

i=1

det+ (Sc (L(i), V1(i)))

)2

.

At which point we can apply Chebyshev’s inequality to obtain our desired result.

7 Random Spanning Tree Sampling

In this section we will give an algorithm for generating a random spanning tree from a weighted
graph, that uses SchurSparse as a subroutine, and ultimately prove Theorem 1.3.

In order to do so, we will first give an O(nω) time recursive algorithm using Schur complement
that exactly generates a random tree from the w -uniform distribution. The given algorithm is
inspired by the one introduced in [CDN89], and its variants utilized in [CMN96, HX16, DKP+16].
However, we will (out of necessity for our further extensions) reduce the number of branches in
the recursion to two, by giving an efficient algorithmic implementation of a bijective mapping
between spanning trees in G and spanning trees in Sc (G,V2) when V1, the set of vertices
removed, is an independent set. We note that this also yields an alternative algorithm for
generating random spanning trees from the w -uniform distribution in O(nω) time.

The runtime of this recursion will then be achieved similar to our determinant algorithm.
We reduce δ proportional to the decrease in the number of vertices for every successive recursive
call in exactly the same was as the determinant approximation algorithm from Section 6. As has
been previously stated and which is proven in Section 9.1, drawing a random spanning tree from
a graph after running our sparsification routine which takes Õ(n2δ−1), will have total variation
distance

√
δ from the w -uniform distribution.

Similar to our analysis of the determinant algorithm, we cannot directly apply this bound
to each tree because the lower levels of the recursion will contribute far too much error when
δ is not decreasing at a proportional rate to the total variation distance. Thus we will again
need to give better bounds on the variance across each level, allowing stronger bounds on the
contribution to total variation distance of the entire level.

This accounting for total variance is more difficult here due to the stronger dependence
between the recursive calls. Specifically, the input to the graph on V2 depends on the set of
edges chosen in the first recursive call on V1, specifically Sc (G,V1), or a sparsified version of it.

Accounting for this dependency will require proving additional concentration bounds shown
in Section 8, which we specifically achieve by sampling s = O(n2δ−1) edges in each call to
SchurSparse. While this might seem contradictory to the notion of “sampling”, we instead
consider this to be sampling from the graph in which all the edges generated from the Schur
complement are kept separate and could be far more than n2 edges.
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7.1 Exact O(nω) Time Recursive Algorithm

We start by showing an algorithm that samples trees from the exact w -uniform distribution
via the computation of Schur complements. Its pseudocode is in Algorithm 7, and it forms the
basis of our approximate algorithm: the faster routine in Section 7.2 is essentially the same as
inserting sparsification steps between recursive calls.

Algorithm 7: ExactTree(G) : Take a graph and output a tree randomly from the
w -uniform distribution
Input: Graph G
Output: A tree randomly generated from the w -uniform distribution of G

1 If there is only one edge e in G, return G ;
2 Partition V evenly into V1 and V2;
3 T1 = ExactTree(Sc(G,V1));
4 for each e ∈ T1 do

5 with probability we(G)
we(Sc(G,V1))

, G← G/e, T ← T ∪ e ;

6 Delete the remaining edges, i.e., G← G \ E(V1);
7 T2 = ExactTree(Sc(G,V2));
8 T ← T ∪ ProlongateTree(G,V1 ⊔ V2, T2);
9 Output T ;

The procedure ProlongateTree is invoked when V1 = V \ V2 maps a tree T2 from the
Schur complement Sc (G,V2) to a tree back in G. It crucially uses the property that V1 is an
independent set, and its pseudocode is given in Algorithm 8.

Lemma 7.1. The procedure ExactTree(G) will generate a random tree of G from the w-
uniform distribution in O(nω) time.

The algorithm we give is similar to the divide and conquer approaches of [CDN89, CMN96,
HX16, DKP+16]. The two main facts used by these approaches can be summarized as follows:

1. Schur complements preserves the leverage score of original edges, and

2. The operation of taking Schur complements, and the operation of deleting or contracting
an edge are associative.

We too will make use of these two facts. But unlike all previous approaches, at every stage
we need to recurse on only two sub-problems. All previous approaches have a branching factor
of at least four.

We can do this by exploiting the structure of the Schur complement when one eliminates an
independent set of vertices. We formalize this in Lemma 7.5.

Before we can prove the lemma, we need to state an important property of Schur comple-
ments that follows from Fact 2.8. Recall the notation from Section 2 that for a weighted graph
G = (V,E,w ), PrGT (·) denotes the probability of · over trees T picked from the w -uniform
distribution on spanning trees of G.
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Algorithm 8: ProlongateTree(G,V1 ⊔ V2, T2): prolongating a tree on Sc (G,V2) to a
tree on G.
Input: A graph G, a splitting of vertices V1 ⊔ V2 such that V1 is an independent set, tree

T2 of Sc (G,V2).
Output: A tree in G

1 T ← ∅;
2 for each e = xy ∈ T2 do

3 Create distribution λe, set λe(∅) = w e(G);
4 for each v ∈ V1 such that (v, x), (v, y) ∈ E(G) do
5 Set λe(v) = w (v,x)(G)w (v,y)(G)d v(G)−1;

6 Randomly assign f(e) to {∅ ∪ V1} with probability proportional to λ;

7 for each v ∈ V1 do

8 for each e = (x, y) ∈ T2 such that (v, x), (v, y) ∈ E(G) do
9 if f(e) 6= v then

10 Contract x and y ;

11 for each contracted vertex X in the neighborhood of v do

12 Connect X to v with edge (v, u) ∈ G with probability proportional to wG((v, u)) ;
13 T ← T ∪ (v, u);

14 Output T ;

Lemma 7.2. Let G be a graph with a partition of vertices V = V1 ⊔ V2. Then for any set of
edges F contained in G[V1], the induced subgraph on V1, we have:

PrGT (T ∩ E (G [V1]) = F ) = Pr
Sc(G,V1)
T (T ∩ E (G [V1]) = F ) ,

where the edges in Sc (G,V1) are treated as the sum of G[V1] and Gsc[V1], the new edges added
to the Schur complement.

Proof. If F contains a cycle, then PrGT (T ∩ E (G [V1]) = F ) = 0 = Pr
Sc(G,V1)
T (T ∩E (G [V1]) =

F ). Therefore, we will assume F does not contain any cycle, and we will prove by induction on
the size of F . If |F | > |V1|− 1, then F will have to contain a cycle. When |F | = |V1|− 1, then F
will have to be the edge set of a tree in Sc(G,V1). Then by Fact 2.8, the corollary holds. Now
suppose that the corollary holds for all F with |F | = |V1| − 1 − k. Now consider some F with
|F | = |V1| − 1− (k + 1). We know

PrGT (F ⊆ T ) = PrGT (F = (T ∩ E (G [V1]))) +
∑

F ′⊃F

PrGT
(
F ′ = (T ∩ E (G [V1]))

)
.

Since |F ′| > |F |, by assumption
∑

F ′⊃F

PrGT
(
F ′ = (T ∩E (G [V1]))

)
=
∑

F ′⊃F

Pr
Sc(G,V1)
T

(
F ′ = (T ∩ E (G [V1]))

)
,

then by Fact 2.8 we have PrGT (F ⊆ T ) = Pr
Sc(G,V1)
T (F ⊆ T ), which implies

PrGT (F = (T ∩ E (G [V1]))) = Pr
Sc(G,V1)
T (F = (T ∩ E (G [V1]))) .
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The tracking of edges from various layers of the Schur complement leads to another layer of
overhead in recursive algorithms. They can be circumvented by merging the edges, generating a
random spanning tree, and the ‘unsplit’ the edge by random spanning. The following is a direct
consequence of the definition of w(T ):

Lemma 7.3. Let Ĝ be a multi-graph, and G be the simple graph formed by summing the weights
of overlapping edges. Then the procedure of:

1. Sampling a random spanning tree from G, T .

2. For each edge e ∈ T , assign it to an original edge from Ĝ, ê with probability

w ê

(
Ĝ
)

w e (G)
.

Produces a w -uniform spanning tree from Ĝ, the original multi-graph.

This then leads to the following proto-algorithm:

1. Partition the vertices (roughly evenly) into

V = V1 ⊔ V2.

2. Generate a w -uniform tree of Sc (G,V1), and create F1 = T ∩ E(G[V1]) by re-sampling
edges in G[V1] using Lemma 7.3. By Lemma 7.2, this subset is precisely the intersection
of a random spanning tree with G[V1].

3. This means we have ‘decided’ on all edges in G[V1]. So we can proceed by contracting all
the edges of F1, and deleting all the edges corresponding to E(G[V1])\F . Let the resulting
graph be G′ and let V ′

1 be the remaining vertices in V1 after this contraction.

4. Observe that V ′
1 is an independent set, and its complement is V2. We can use another

recursive call to generate a w -uniform tree in Sc(G′, V2). Then we utilize the fact that V ′
1

is an independent set to lift this to a tree in G′ efficiently via Lemma 7.5.

Our key idea for reducing the number of recursive calls of the algorithm, that when V1 (from
the partition of vertices V = V1 ⊔ V2) is an independent set, we can directly lift a tree from
Sc(G,V2) to a tree in G. This will require viewing GSc[V2] as a sum of cliques, one per vertex
of V1, plus the original edges in G[V2].

Fact 7.4. Given a graph G and a vertex v, the graph Sc(G,V \v) is the induced graph G[V \{v}]
plus a weighted complete graph K(v) on the neighbors of v. This graph K(v) is formed by adding
one edge xy for every pair of x and y incident to v with weight

w (v,x)w (v,y)

degv
,

where dv
def
=
∑

xw (v,x) is the weighted degree of v in G.

36



Lemma 7.5. Let G be a graph on n vertices and V1 an independent set. If T is drawn from
the w -uniform distribution of Sc(G,V2), then in O(n2) time ProlongateTree(G,V1 ⊔V2, T2)
returns a tree from the w -uniform distribution of G.

Proof. The running time of ProlongateTree is O(n2) as T2 has ≤ n− 1 edges and |V1| ≤ n.
Now we will show the correctness. Let V1 = {v1, ..., vk}. We will represent Sc(G,V2) as a

multi-graph arising by Schur complementing out the vertices in V1 one by one and keeping the
new edges created in the process separate from each other as a multi-graph. We represent this
multi-graph as

Sc(G,V2) = G [V2] +K (v1) + ...+K (vk) ,

where G[V2] is the induced subgraph on V2 and K(vi) is the weighted complete graph on the
neighbors of vi. Then

• By the unsplitting procedure from Lemma 7.3, the function f maps T2 to a tree in the
multi-graph G[V2] +K(v1) + ...+K(vk), and

• the rest of the sampling steps maps this tree to one in G.

We will now prove correctness by induction on the size of the independent set V1. The case
of |V1| = 0 follows from Sc (G,V2) = G. If |V1| = 1, i.e, V1 = {v} for some vertex v, then
Sc(G,V2) is G[V2] +K(v). Given a tree T2 of Sc(G,V2), the creation of f will first map T2 to
a tree in the multigraph G[V2] +K(v) by randomly deciding for each edge e ∈ T to be in G(V1)
or K(v) depending on it’s weight. If we let T ′(V2) = T ′ ∩G[V2], then by Lemma 7.2,

PrGT
(
T ∩E(G [V2]) = T ′ (V2)

)
= Pr

G[V2]+K(v)
T

(
T ∩ E(G [V2]) = T ′ (V2)

)
.

Therefore, we can contract all the edges of T ′(V2) ∩ G [V2] and delete all other edges of G [V2].
This results in a multi-graph star with v at the center. Now, ProlongateTree does the
following to decide on the remaining edges. For every multi-edge of the star graph obtained by
contracting or deleting edges in G[V2], we choose exactly one edge, randomly according to its
weight. This process generates a random tree of multi-graph star.

Now we assume that the lemma holds for all V ′
1 with |V ′

1 | < k. Let V1 = {v1, ..., vk}. The
key thing to note is that when V1 is an independent set, we can write

Sc (G,V2) = G [V2] +K (v1) + . . .+K (vk) ,

and
Sc (G,V2 ∪ vk) = G [V2 ∪ vk] +K (v1) + . . .+K (vk−1) .

Therefore, by the same reasoning as above, we can take a random tree T ′ of the multi-graph
G[V2] + K(v1) + ... + K(vk) and map it to a tree on G[V2 ∪ vk] + K(v1) + ... + K(vk−1) =
Sc (G,V2 ∪ vk) by our procedure ProlongateTree. We then apply our inductive hypothesis
on the set V1 \ {vk} to map Sc(G,V2 ∪ vk) to a tree of G by ProlongateTree, which implies
the lemma.

We also remark that the running time of ProlongateTree can be reduced to O(m log n)
using dynamic trees, which can be abstracted as a data structure supporting operations on rooted
forests [ST85, AHLT05]. We omit the details here as this does not bottleneck the running time.

With this procedure fixed, we can now show the overall guarantees of the exact algorithm.
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Proof. of Lemma 7.1 Correctness follows immediately from Lemmas 7.2 and 7.5. The running
time of ProlongateTree is O(n2) and contracting or deleting all edges contained in G[V1]
takes O(m) time. Note that in this new contracted graph, the vertex set containing V1 is an
independent set. Furthermore, computing the Schur complement takes O(nω) time, giving the
running time recurrence

T (n) = 2T (n/2) +O (nω) = O (nω) .

7.2 Fast Random Spanning Tree Sampling using Determinant Sparsification

of Schur complement

Next, we note that the most expensive operation from the exact sampling algorithm from Sec-
tion 7.1 was the Schur complement procedure. Accordingly, we will substitute in our sparse
Schur complement procedure to speed up the running time.

However, this will add some complication in applying Line 5 of ExactTree. To address
this, we need the observation that the SchurSparse procedure can be extended to distinguish
edges from the original graph, and the Schur complement in the multi-graph that it produces.

Lemma 7.6. The procedure SchurSparse(G,V1, δ) given in Algorithm 4 can be modified to
record whether an edge in its output, HV1 is a rescaled copy of an edge from the original induced
subgraph on V1, G[V1], or one of the new edges generated from the Schur complement, GSC(V1).

Proof. The edges for HV1 are generated by the random walks via SampleEdgeSchur(G,V1),
whose pseudocode is given in Algorithm 3. Each of these produces a walk between two vertices
in V1, and such a walk belongs to G[V1] if it is length 1, and GSC(V1) otherwise.

We can now give our algorithm for generating random spanning trees and prove the guaran-
tees that lead to the main result from Theorem 1.3.

Note that the splitting on Line 7 is mapping T1 first back to a tree on a the sparsified multi-
graph of Sc (G,V1): where the rescaled edges that originated from G[V1] are tracked separately
from the edges that arise from new edges involving random walks that go through vertices in
V2.

The desired runtime will follow equivalently to the analysis of the determinant algorithm in
Section 6 as we are decreasing δ proportionally to the number of vertices. It remains to bound
the distortion to the spanning tree distribution caused by the calls to SchurSparse.

Bounds on this distortion will not follow equivalently to that of the determinant algorithm,
which also substitutes SchurSparse for exact Schur complements, due to the dependencies in
our recursive structure. In particular, while the calls to SchurSparse are independent, the
graphs that they are called upon depend on the randomness in Line 6 and ProlongateTree,
which more specifically, are simply the resulting edge contractions/deletions in previously vis-
ited vertex partitions within the recursion. Each subgraph SchurSparse is called upon is
additionally dependent on the vertex partitioning from AlmostIndependent.

The key idea to our proof will then be a layer-by-layer analysis of distortion incurred by
SchurSparse at each layer to the probability of sampling a fixed tree. By considering an
alternate procedure where we consider exactly sampling a random spanning tree after some
layer, along with the fact that our consideration is restricted to a fixed tree, this will allow
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Algorithm 9: ApproxTree(G, δ, n) Take a graph and output a tree randomly from a
distribution δ-close to the w -uniform distribution
Input: Graph G, error parameter δ, and initial number of vertices n
Output: A tree randomly generated from a distribution δ-close to the w -uniform

distribution of G
1 V2 ← AlmostIndependent(G, 1

10 ); {Via Lemma 5.2}
2 H1 ← SchurSparse(G,V1, δ · |V1|/n)), while tracking whether the edge is from G[V1] via

the modifications from Lemma 7.6 ;
3 T1 = ApproxTree(H1, δ, n);
4 G′ ← G ;
5 for each e ∈ T1 do

6 if RAND[0, 1] ≤ w ori
e (G1)/w e(G1) then

{w ori
e (G1) is calculated using the weights tracked from Line 2);

7 G′ ← G′/{e} ;
8 T ← T ∪ {e};

9 Delete all edges between (remaining) vertices in V1 in G′, G′ ← G′ \E(G′[V1]) ;
10 H2 ← SchurSparse(G′, V2, δ · |V2|/n) ;
11 T2 = ApproxTree(H2, δ, n);
12 T ← T ∪ ProlongateTree(G,V1 ⊔ V2, T2) ;
13 Output T ;

us to separate the randomness incurred by calls to SchurSparse from the other sources of
randomness mentioned above. Accordingly, we will provide the following definition.

Definition 7.7. For any L ≥ 0, the level-L truncated algorithm is the algorithm given by
modifying ApproxTree(G, δ, n) so that all computations of sparsified Schur complements are
replaced by exact calls to Schur complements (aka. Sc (G,V1) or Sc (G

′, V2))) after level l.
The tree distribution T (L) is defined as the output of the level-L truncated algorithm.

Note that in particular, T (0) is the tree distribution produced by ExactTree(G), or the
w -uniform distribution; while T (O(log n)) is the distribution outputted by ApproxTree(G, δ).

The primary motivation of this definition is that we can separate the randomness between
T (l) and T (l+1) by only the calls to SchurSparse at level l + 1, which will ultimately give the
following lemma that we prove at the end of this section

Lemma 7.8. For an invocation of ApproxTree on a graph G with variance bound δ, for any
layer L > 0, we have

dTV

(
T (L−1),T (L)

)
≤ O(

√
δ).

To begin, we consider the differences between T (0) and T (1) and the probability of sampling
a fixed tree T̂ on a recursive call on G. The most crucial observation is that the two recursive
calls to ApproxTree(G1, δ, n) and ApproxTree(G2, δ, n) can be viewed as independent:

Claim 7.9. For a call to ApproxTree(G, δ, n) (Algorithm 9) to return T̂ , there is only one
possible choice of G′ as generated via Lines 4 to 9.
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Proof. Note that the edges removed from Line 7 are precisely the edges in T with both endpoints
contained in V1, E(T [V1]). For a fixed T̂ , this set is unique, so G′ is unique as well.

This allows us to analyze a truncated algorithm by splitting the probabilities into those that
occur at level l or above. Specifically, at the first level, this can be viewed as pairs of graphs
Sc (G,V1) and Sc (G,V2) along with the ‘intended’ trees from them:

Definition 7.10. We define the level-one probabilities of returning a pair of trees T1 and T2

that belong a pair of graphs G1, G2,

p(≤1)
(
(G,G1, G2) , (T1, T2) , T̂

)
.

as the product of:

1. The probability (from running AlmostIndependent) that G is partitioned into V1 ⊔ V2

so that Sc (G,V1) = G1 and Sc (G′, V2) = G2, where G′ is G with the edges T ∩ G[V1]
contracted and all other edges in G[V1] are deleted.

2. The probability that T1 is mapped to T̂ [V1] in Line 6.

3. The probability that T2 is mapped to T̂ /T̂ [V1] by the call to ProlongateTree on Line 12.

This definition then allows us to formalize the splitting of probabilities above and below level
1. More importantly, we note that if we instead call SchurSparse to generate G1 and G2, this
will not affect the level-one probability because (1) both the calls to AlmostIndependent and
ProlongateTree do not depend on G1 and G2, and (2) we can consider T1 to be drawn from
the multi-graph of G1 where we track which edges are from the original graph and which were
generated by the Schur complement.

Consequently, the only difference between the distributions T (0) and T (1) will be the distor-
tion of drawing T1 and T2 from G1 and G2 vs the sparsified version of G1 and G2. This handling
of sparsifiers of the Schur complements is further simplified with by the following observation:

Claim 7.11. The output of SchurSparse(G,V ′, δ) is identical to the output of

IdealSparsify
(
Sc
(
G,V ′

)
, τ̃ , n2δ−1

)
,

for some set of 1.1-approximate statistical leverage scores of Sc (G,V ′), τ̃ .

This can be seen by revisiting the Schur complement sparsification and rejection sampling al-
gorithms from Section 5 and 4.3 which show that this statement also extends to the approximate
Schur complements produced on lines 2 and 10 of Algorithm 9.

This means we can let H1 and H2 denote the distribution produced by IdealSparsify on
G1 and G2 respectively.

Lemma 7.12. There exists a collection of graphs and tree pairs (~G, ~T )≤1 such that for any tree
T̂ , with the probabilities given above in Definition 7.10 we have:

PrT
(0)
(
T̂
)
=

∑

((G,G1,G2),(T1,T2))∈(G,T )(≤1)

p(≤1)
(
(G,G1, G2) , (T1, T2) , T̂

)
·PrG1 (T1) ·PrG2 (T2) .
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and

PrT
(1)
(
T̂
)
=

∑

((G,G1,G2),(T1,T2))∈(G,T )(≤1)

p(≤1)
(
(G,G1, G2) , (T1, T2) , T̂

)

· EH1∈H1

[
PrH1 (T1)

]
· EH2∈H2

[
PrG2 (T2)

]
.

We can then in turn extend this via induction to multiple levels. It is important to note that
in comparing the distributions T (L−1) and T (L) for L ≥ 1 both will make calls to IdealSparsify
through level L. We will then need to additionally consider the possible graphs generated by
sparsification through level L, then restrict to the corresponding exact graphs at level L+ 1.

Definition 7.13. We will use ~G(≤L), ~T (L) to denote a sequence of graphs on levels up to L− 1,
plus the peripheral exact Schur complements on level L, along with the spanning trees generated
on these peripheral graphs.

As these graphs and trees can exist on different vertex sets, we will use (~G, ~T )(≤L) to denote
the set of graph/tree pairs that are on the same set of vertices. For a sequence of graphs ~G≤L

and a sequence of trees on their peripherals, ~TL, we will use

p(≤L)
(
~G(≤L), ~T (L), T̂

)

to denote the product of the probabilities of the level-by-level vertex split and resulting trees
mapping back correctly as defined in Definition 7.10, times the probabilities that the subsequent
graphs are generated as sparsifiers of the ones above

Furthermore, we will use ~G(L) to denote just the peripheral graphs, and ~H( ~G(L)) to denote
the product distribution over sparsifiers of these graphs, and ~H(L) to denote one particular
sequence of such sparsifiers on this level. We can also define the probabilities of trees being
picked in a vector-wise sense:

Pr
~G(L)

(
~T (L)

)
def
=
∏

j

Pr
~G
(L)
j

(
~T
(L)
j

)
, Pr

~H(L)
(
~T (L)

)
def
=
∏

j

Pr
~H

(L)
j

(
~T
(L)
j

)
.

Applying Lemma 7.12 inductively then allows us to extend this to multiple levels.

Corollary 7.14. There exists a collection of graphs and tree pairs (~G, ~T )(≤L) such that for any
tree T̂ we have:

PrT
(L−1)

(
T̂
)
=

∑

( ~G(≤L), ~T (L))∈(G,T )(≤L)

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr

~G(L)
(
~T (L)

)
,

and

PrT
(L)
(
T̂
)
=

∑

( ~G(≤L), ~T (L))∈(G,T )(≤L)

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· E ~H(L)∼ ~H(G(L))

[
Pr

~H(L)
(
~T (L)

)]
.

This reduces our necessary proof of bounding the total variation distance between T (L−1)

and T (L) to examining the difference between

Pr
~G(L)

(
~T (L)

)
and E ~H(L)∼ ~H(G(L))

[
Pr

~H(L)
(
~T (L)

)]
.
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Recalling the definition of Pr
~H(L)

(~T (L)): we have that the inverse of each probability in the
expectation is

Pr
~H

(L)
j

(
~T
(L)
j

)−1
=

T ~H(L)
j

w
~H

(L)
j

(
~T
(L)
j

) ,

and we have concentration bounds for the total trees in ~H
(L)
j . However, it is critical to note that

this probability is 0 (and cannot be inverted) when ~T
(L)
j is not contained in ~H

(L)
j for some j.

This necessitates extending our concentration bounds to random graphs where we condition
upon a certain tree remaining in the graph. This will be done in the following Lemma, proven
in Section 8, and we recall that we set s such that δ = O(n

2

s ) in SchurSparse.

Lemma 7.15. Let G be a graph on n vertices and m edges, τ̃ be an 1.1-approximate estimates of
leverage scores, s be a sample count such that s ≥ 4n2 and m ≥ s2

n . Let H denote the distribution

over the outputs of IdealSparsify(G, τ̃ , s), and for a any fixed spanning T̂ , let H|T denote the
distribution formed by conditioning on the graph containing T̂ . Then we have:

PrH∼H

[
T̂ ⊆ H

]−1
· EH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
=

(
1±O

(
n2

s

))
PrG

(
T̂
)−1

,

and

PrH∼H

[
T̂ ⊆ H

]−2
·VarH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
≤ O

(
n2

s

)
PrG

(
T̂
)−2

.

Due to the independence of each call to IdealSparsify, we can apply these concentration
bounds across the product

Pr
~H(L)

(
~T (L)

)
=
∏

j

Pr
~H

(L)
j

(
~T
(L)
j

)

and use the fact that δ decreases proportionally to vertex size in our algorithm:

Corollary 7.16. For any sequence of peripheral graphs ~G(l), with associated sparsifier distribu-

tion HS, and any sequence of trees ~T (L) as defined in Definition 7.13 such that Pr
~G(L)

(~T (L)) > 0,
we have

Pr ~H(L)∼ ~H(G(L))

[
Pr

~H(L)
(
~T (L)

)
> 0
]−1
· E ~H(L)∼ ~H(G(L))

∣∣∣Pr
~H(L)

(~T (L))>0

[
Pr

~H(L)
(
~T (L)

)−1
]

= (1± δ)Pr
~G(L)

(
~T (L)

)−1
,

and

Pr ~H(L)∼ ~H(G(L))

[
Pr

~H(L)
(
~T (L)

)
> 0
]−2
· E ~H(L)∼ ~H(G(L))

∣∣∣Pr
~H(L)

(~T (L))>0

[
Pr

~H(L)
(
~T (L)

)−2
]

≤ (1 + δ)Pr
~G(L)

(
~T (L)

)−2
.
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Proof. The independence of the calls to IdealSparsify, and the definition of

Pr
~G(L)

(
~T (L)

)
def
=
∏

j

Pr
~G
(L)
j

(
~T
(L)
j

)
, Pr

~H(L)
(
~T (L)

)
def
=
∏

j

Pr
~H

(L)
j

(
~T
(L)
j

)
.

Applying Lemma 7.15 to each call of IdealSparsify, where s was set such that δ/n = n2

s gives
gives that the total error bounded by

exp



∑

j

∣∣V
(
G(L)

)∣∣
n


 ,

and the bound then follows form the total size of each level of the recursion being O(n̄).

It then remains to use concentration bounds on the inverse of the desired probability to
bound the total variation distance, which can be done by the following lemma which can be
viewed as an extension of Lemma 3.7, and is also proven in Section 9.

Lemma 7.17. Let U be a distribution over a universe of elements, u, each associated with
random variable Pu such that

Eu∼U [E [Pu]] = 1,

and for each Pu we have

1. Pu ≥ 0, and

2. Pr [Pu > 0]−1 · Ep∼Pu|p>0

[
p−1
]
= 1± δ, and

3. Pr [Pu > 0]−2
Ep∼Pu|p>0

[
p−2
]
≤ 1 + δ,

then
Eu∼U [|1− E [Pu]|] ≤ O

(√
δ
)
.

To utilize this lemma, we observe that the values

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr

~G(L)
(
~T (L)

)

forms a probability distribution over tuples ~G(≤L), ~T (L), T̂ , while the distribution H( ~G(L)), once
rescaled, can play the role of Pu. Decoupling the total variation distance per tree into the
corresponding terms on pairs of ~G(≤L), ~T (L) then allows us to bound the overall total variation
distance between T (L−1) and T (L).

Proof of Lemma 7.8. By the definition of total variation distance

dTV

(
T (L−1),T (L)

)
=
∑

T̂

∣∣∣PrT
(L−1)

(
T̂
)
− PrT

(L)
(
T̂
)∣∣∣ .
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By Corollary 7.14 and triangle inequality we can then upper bound this probability by

dTV

(
T (L−1),T (L)

)
≤
∑

T̂

∑

( ~G(≤L), ~T (L))∈(G,T )(≤L)

p(≤L)
(
~G(≤L), ~T (L), T̂

)

·
∣∣∣Pr

~G(L)
(
~T (L)

)
− E ~H(L)∼ ~H(G(L))

[
Pr

~H(L)
(
~T (L)

)]∣∣∣ .

The scalar p(≤L)( ~G(≤L), ~T (L), T̂ ) is crucially the same for each, and the inner term in the
summation is equivalent to

∣∣∣p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr

~G(L)
(
~T (L)

)
− p(≤L)

(
~G(≤L), ~T (L), T̂

)
· E ~H(L)∼ ~H(G(L))

[
Pr

~H(L)
(
~T (L)

)]∣∣∣

Our goal is to use Lemma 7.17 where U here is the distribution over tuples ( ~G(L), ~T (L), T̂ )
with density equaling:

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr

~G(L)
(
~T (L)

)
,

and Pu is the distribution over the corresponding value of H( ~G(L)), with the same density, and
values equaling to:

Pr
~G(L)

(
~T (L)

)−1
Pr

~H(L)
(
~T (L)

)
.

Note that the fact that each ~TL maps back to some tree T̂ imply that U is a distribution, as well
as Eu∼U [E [Pu]] = 1. A rescaled version of Corollary 7.16 then gives the required conditions for
Lemma 7.17, which in turn gives the overall bound.

Proof of Theorem 1.3. The running time follows the same way as the analysis of the determinant
estimation algorithm in the Proof of Theorem 1.2 at the end of Section 6.

For correctness, the total variation distance bound is implied by appropriately setting δ, and
then invoking the per-layer bound from Lemma 7.8. Note that factors of log n are absorbed by
the Õ notation.

Finally, note that for simplicity our analysis of total variation distance does not account for
the failure probability of Lemma 2.4. To account for these, we can simply use the fact that
only O(n log n) calls to SchurSparse are made. Hence, the probability of any call failing is
polynomially small, which can be absorbed into the total variation distance.

8 Conditional Concentration Bounds

In this section, we extend our concentration bounds to conditioning on a certain tree being in the
sampled graph, specifically with the goal of proving Lemma 7.15. By edge splitting arguments
similar to those in Section 4.2, it suffices to analyze the case where all edges have about the
same leverage score.

Lemma 8.1. Let G be a graph on n vertices and m edges such that all edges have statistical
leverage scores τ e ≤ 2n

m , and s be a sample count such that s ≥ 4n2 and m ≥ s2

n . Let H
be a subgraph containing s edges picked at random without replacement, and let H denote this
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distribution over subgraphs on s edges. Furthermore for any fixed spanning tree, T̂ , let H|T
denote the distribution induced by those in H that contain T̂ , and use H|

T̂
to denote such a

graph, then

PrH∼H

[
T̂ ⊆ H

]−1
· EH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
=

(
1±O

(
n2

s

))
PrG

(
T̂
)−1

,

and

PrH∼H

[
T̂ ⊆ H

]−2
·VarH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
≤ O

(
n2

s

)
PrG

(
T̂
)−2

.

Note that the ‘uniform leverage score’ requirement here is not as strict as the analysis from
Lemma 4.2. This is because we’re eventually aiming for a bound of s ≈ n2 samples. This also
means that constant factor leverage score approximations suffices for this routine.

The starting point of this proof is the observation that because we’re doing uniform sampling,
the only term in

PrH|
T̂

(
T̂
)
=

wH|
T̂

(
T̂
)

TH|
T̂

=
wG

(
T̂
)

TH|
T̂

that is dependent on H|T̂ is TH|
T̂
. The proof will then follow by showing concentration of this

variable which will be done similarly to the concentration of TH that was done in Section 3
and 4.

The primary difficulty of extending the proof will come from the fact that trees will have
different probabilities of being in the sampled graph depending on how many edges they share
with T̂ . Much of this will be dealt with by the assumption that s ≥ 4n2, which makes the
exponential terms in the probabilities associated with a tree being in a sampled graph negligible.
Additionally, this assumption implies that for any fixed tree T̂ the expected number of edges
it shares with a random tree is close to 0. As a result, trees that intersect with T̂ will have
negligible contributions, and our analysis can follow similarly to that in Section 3 and 4.

We further note that due to the larger sample count of s ≥ 4n2, the concentration bounds
in this section will also hold, and would in fact be slightly simpler to prove, if the edges were
sampled independently with probability s/m. We keep our assumption of sampling s edges
globally without replacement though in order to avoid changing our algorithm, and the analysis
will not require much additional work.

The section will be organized as follows: In Section 8.1 we give upper and lower bounds on
the expectation of TH|

T̂
. In Section 8.2 we give an upper bound on the variance of TH|

T̂
. In

Section 8.3 we combine the bounds from the previous two sections to prove Lemma 8.1.

8.1 Upper and Lower Bounds on Conditional Expectation

In order to prove upper and lower bounds on EH|
T̂

[
TH|

T̂

]
, we will first give several helpful

definitions, corollaries, and lemmas to assist in the proof. Our examination of EH|
T̂

[
TH|

T̂

]
will

require approximations of PrH|
T̂

[
T ⊆ H|T̂

]
, and, as we are now fixing n− 1 edges and drawing

s−n+1 edges from the remaining m−n+1 edges, each edge will now have probability s−n+1
m−n+1

of being in the sampled graph. We will denote this probability with

p̂
def
=

s− n+ 1

m− n+ 1
.
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It will often be easier to exchange p̂ for

p
def
=

s

m
,

the probability of a single edge being picked without the conditioning on T̂ . The errors of doing
so is governed by: (

1− n

s

)
p =

s− n

m
≤ s− n+ 1

m− n+ 1
= p̂ ≤ s

m
= p. (4)

We remark that these errors turn out to be acceptable even when p̂ is raised to the O(n) power.
Furthermore, our assumption of s ≥ 4n2 implies that we expect a randomly chosen tree not

to intersect with T̂ . This will often implicitly show up in the form of the geometric series below,
for which a bound is immediately implied by our assumption.

Lemma 8.2. If s ≥ 4n2, then
∞∑

k=1

(
2n2

s

)k

= O

(
n2

s

)
.

The change in our sampling procedure will alter the formulation of PrH|
T̂

[
T ⊆ H|T̂

]
, so we

first want to write EH|
T̂

[
TH|

T̂

]
in terms of values that we are familiar with while only losing small

errors. Additionally, many of the exponential terms in the previous analysis will immediately
be absorbed into approximation error by our assumption that s ≥ 4n2.

Lemma 8.3. Let G be a graph on n vertices and m edges and s a value such that m ≥ s2

n , Fix

some tree T̂ ∈ G. For a random subset of s ≥ 4n2 edges containing T̂ , H|
T̂
⊇ T̂ , we have

EH|
T̂

[
TH|

T̂

]
=

(
1−O

(
n2

s

)) n−1∑

k=0

pn−1−k
∑

T : |T∩T̂ |=k

w(T ),

where p = s/m is the probability of each edge being picked in the sample.

Proof. Given that all edges of T̂ are in H|T̂ , the remaining s − n + 1 edges are chosen uni-

formly from all m − n + 1 edges not in T̂ . Accordingly, for any tree T ∈ G, the probability
PrH|

T̂

[
T ⊆ H|

T̂

]
is obtained by dividing the number of subsets of s− n+ 1 edges that contain

all edges in T \ T̂ , against the number of subsets of s− n+ 1 edges from m− n+ 1:

PrH|
T̂

[
T ⊆ H|

T̂

]
=

(m− n+ 1−
∣∣∣T \ T̂

∣∣∣

s− n+ 1−
∣∣∣T \ T̂

∣∣∣

)
/

(
m− n+ 1

s− n+ 1

)
=

(s− n+ 1)|T\T̂ |
(m− n+ 1)|T\T̂ |

.

Following the proof Lemma 3.1, this reduces to

PrH|
T̂

[
T ⊆ H|

T̂

]
= p̂|T\T̂ | exp


−

∣∣∣T \ T̂
∣∣∣
2

2s
−O

(
n3

s2

)

 ,
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which we can further reduce using the assumption of s ≥ 4n2 to:

PrH|
T̂

[
T ⊆ H|

T̂

]
=

(
1−O

(
n2

s

))
p̂|T\T̂ |,

and in turn obtain via linearity of expectation:

EH|
T̂

[
TH|

T̂

]
=

(
1−O

(
n2

s

))∑

T

w(T )p̂|T\T̂ |.

We then subdivide the summation based on the amount of edges in the intersection of T and
T̂ and move our p̂ term inside the summation

EH|
T̂

[
TH|

T̂

]
=

(
1−O

(
n2

s

)) n−1∑

k=0

p̂n−1−k
∑

T :T∩T̂=k

w(T ).

Finally, we can use Equation 4 to replace p̂ by p because

1 ≥
(
1− n

s

)n
≥
(
1− 2n2

s

)

where n2s < 0.1.

We will also require a strong lower bound of the expectation. The following lemma shows
that most of the trees do not intersect with T̂ . Restricting our consideration to such trees will

be much easier to work in obtaining the lower bound on EH|
T̂

[
TH|

T̂

]
.

Lemma 8.4. Let G be a graph on n vertices and m edges such that m ≥ 4n2 and all edges have
statistical leverage scores ≤ 2n

m . For any tree T̂ ∈ G.

∑

T : |T∩T̂ |=0

w(T ) ≥
(
1−O

(
n2

s

))
TG.

Proof. By definition, we can classify the trees by their intersection with T̂ :

TG =

n−1∑

k=0

∑

T : |T∩T̂ |=k

w(T ).

Consider each inner summation and further separating into each possible forest of T̂ with k
edges gives: ∑

T : |T∩T̂ |=k

w(T ) =
∑

F⊆T̂
|F |=k

∑

T
F=T∩T̂

w(T ) ≤
∑

F⊆T̂
|F |=k

∑

T :F⊆T

w(T ).
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Invoking Lemma 3.4 on the inner summation and the fact that there are
(n−1

k

)
forests of T̂

with k edges, gives an upper bound of

∑

T : |T∩T̂ |=k

w(T ) ≤
(
n− 1

k

)
TG
(
2n

m

)k

≤ TG
(
2n2

m

)k

.

We will utilize this upper bound for all k > 0 and achieve a lower bound from rearranging
our initial summation

∑

T : |T∩T̂ |=0

w(T ) = TG −
n−1∑

k=1

∑

T : |T∩T̂ |=k

w(T ) ≥ TG
(
1−

n−1∑

k=1

(
2n2

m

)k
)
.

Applying the assumption of m ≥ 4n2 and Lemma 8.2 gives our desired result.

With the necessary tools in place, we will now give upper and lower bounds on the expectation
in terms of TGpn−1, which we note is also a close approximation of EH [TH ] by our assumption
that s ≥ 4n2.

Lemma 8.5. Let G be a graph on n vertices and m edges such that all edges have statistical
leverage scores ≤ 2n

m , and let s be such that m ≥ s2

n . Fix some tree T̂ ∈ G. For a random subset

of s ≥ 4n2 edges that contain T̂ , H|
T̂
⊆ T̂ we have:

EH|
T̂

[
TH|

T̂

]
=

(
1±O

(
n2

s

))
TGpn−1.

Proof. We will first prove the upper bound. From Lemma 8.3 we have

EH|
T̂

[
TH|

T̂

]
≤

n−1∑

k=0

pn−1−k
∑

T : |T∩T̂ |=k

w (T ) ,

while a proof similar to Lemma 8.4 gives

∑

T : |T∩T̂ |=k

w(T ) ≤ TG
(
2n2

m

)k

.

Moving pn−1 outside the summation and substituting s
m for p gives

EH|
T̂

[
TH|

T̂

]
≤ TGpn−1

n−1∑

k=0

(
2n2

s

)k

,

and applying Corollary 8.2 to upper bound the summation gives

EH|
T̂

[
TH|

T̂

]
≤
(
1 +O

(
n2

s

))
TGpn−1.
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For the lower bound, we again first using Lemma 8.3 and then restrict to trees that do not
intersect T̂ using Lemma 8.4. Formally we have:

EH|
T̂

[
TH|

T̂

]
=

(
1−O

(
n2

s

)) n−1∑

k=0

pn−1−k
∑

T : |T∩T̂ |=k

w (T )

≥
(
1−O

(
n2

s

))
pn−1

∑

T : |T∩T̂ |=0

w (T ) ≥
(
1−O

(
n2

s

))
pn−1TG.

8.2 Upper Bound on Conditional Variance

The bound on variance is by upper bounding EH|
T̂

[
T 2
H|

T̂

]
in a way similar to Lemma 3.6. Once

again, the assumption of s > 4n2 means the situation is simpler because the exponential term
is negligible.

As with the proof of Lemma 3.6, we will often separate summations of pairs of trees based
upon the number of edges in their intersection, then frequently invoke Lemma 3.4. However
there will be more moving pieces in each summation due to intersections with T̂ , so Lemma 8.7
proven later in this section, which is analogous to Lemma 3.5, will be much more involved.

Lemma 8.6. Let G be a graph on n vertices and m edges such that all edges have statistical
leverage scores ≤ 2n

m , and s a sample count such that m ≥ s2

n . For some tree T̂ ∈ G, let H|T̂
denote a random subset of s edges such that T̂ ⊆ H|

T̂
, then:

EH|
T̂

[
T 2
H|

T̂

]

EH|
T̂

[
TH|

T̂

]2 ≤
(
1 +O

(
n2

s

))
.

Proof. By analogous reasoning to the proof in Lemma 8.3, for any pair of trees T1, T2 ∈ G we
have

PrH|
T̂

[
T1, T2 ⊆ H|T̂

]
=

(m− n+ 1−
∣∣∣(T1 ∪ T2) \ T̂

∣∣∣

s− n+ 1−
∣∣∣(T1 ∪ T2) \ T̂

∣∣∣

)
/

(
m− n+ 1

s− n+ 1

)
=

(s− n+ 1)|(T1∪T2)\T̂ |
(m− n+ 1)|(T1∪T2)\T̂ |

.

As a consequence of Equation 4, specifically the bound s−k
m−k ≤ s

m when k ≥ 0, we can obtain
the upper bound

PrH|
T̂

[
T1, T2 ⊆ H|T̂

]
≤ p|(T1∪T2)\T̂ |,

and in turn summing over all pairs of trees:

EH|
T̂

[
T 2
H|

T̂

]
≤
∑

T1,T2

w (T1)w (T2) p
|(T1∪T2)\T̂ |.
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We note that |(T1 ∪ T2) \ T̂ | = |T1 \ T̂ | + |T2 \ T̂ | − |(T1 ∩ T2) \ T̂ |. Furthermore, |T1 \ T̂ | =
n− 1− |T1 ∩ T̂ , so we separate the summation as per usual by each possible size of |T1 ∩ T̂ | and
|T2 ∩ T̂ |, and bring the terms outside of the summation that only depend on these values.

EH|
T̂

[
T 2
H|

T̂

]
≤ p2n−2

∑

k1,k2

p−k1−k2
∑

T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

w (T1)w (T2) p
−(T1∩T2)\T̂ .

In order to deal with the inner most summation we will need to again separate based on the size
of |(T1 ∪ T2) \ T̂ |, and we further note that |(T1 ∩ T2) \ T̂ | = |(T1 \ T̂ ) ∩ (T2 \ T̂ )|:

EH|
T̂

[
T 2
H|

T̂

]
≤ p2n−2

∑

k1,k2

p−k1−k2

n−1∑

k=0

p−k
∑

T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

|(T1\T̂ )∩(T2\T̂ )|=k

w (T1)w (T2) .

The last term is bounded in Lemma 8.7, which is stated and proven immediately after this.
Incorporating the resulting bound, and grouping the terms by the summations over k1, k2, and
k respectively gives:

EH|
T̂

[
T 2
H|

T̂

]
≤ p2n−2

∑

k1,k2

p−k1−k2

n−1∑

k=0

p−k

(
m

k

)(
n

k1

)(
n

k2

)(
2n

m

)2k+k1+k2

T 2
G

= T 2
Gp

2n−2




n−1∑

k1=0

p−k1

(
n

k1

)(
2n

m

)k1






n−1∑

k2=0

p−k2

(
n

k2

)(
2n

m

)k2



(

n−1∑

k=0

p−k

(
m

k

)(
2n

m

)2k
)
.

We then plug in s
m for p in each summation and use the very crude upper bound

(a
b

)
≤ ab:

EH|
T̂

[
T 2
H|

T̂

]
≤ T 2

Gp
2n−2




n−1∑

k1=0

(
2n2

s

)k1





n−1∑

k2=0

(
2n2

s

)k2


(

n−1∑

k=0

(
2n2

s

)k
)
.

Lemma 8.2 then upper bounds each summation by 1 +O(n2/s), giving

EH|
T̂

[
T 2
H|

T̂

]
≤
(
1 +O

(
n2

s

))
T 2
Gp

2n−2.

It remains to prove the following bound on the number of of pairs of trees with a certain
intersection size with T̂ , and each other. The following Lemma is a generalization to Lemma 3.5,
and is proven analogously using the negative correlation of edges in spanning trees from Fact 3.3
and Lemma 3.4.
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Lemma 8.7. Let G be graph with m edges and n vertices such that every edges has leverage
score ≤ 2n

m . For any tree T̂ ∈ G and any integers k, k1, k2 ∈ [0, n − 1],

∑

T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

|(T1\T̂ )∩(T2\T̂ )|=k

w (T1)w (T2) ≤
(
m

k

)(
n

k1

)(
n

k2

)(
2n

m

)2k+k1+k2

T 2
G.

Proof. We will first separate the summation over all possible forests F of size k that could be
the intersection of T1 \ T̂ and T2 \ T̂ :

∑

T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

|(T1\T̂ )∩(T2\T̂ )|=k

w (T1)w (T2) =
∑

F⊆E
|F |=k

∑

T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

F=(T1\T̂ )∩(T2\T̂ )

w (T1)w (T2) .

We first consider the inner summation, and will relax the requirement to only needing

F ⊆ (T1 \ T̂ ) ∩ (T2 \ T̂ ),

which we note is equivalent to F ⊆ (T1 \ T̂ ) and F ⊆ (T2 \ T̂ ). This then allows us to separate
the summation again for a particular F into terms involving just T1 and T2:

∑

T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

F=(T1\T̂)∩(T2\T̂ )

w (T1)w (T2) ≤




∑

T1: |T1∩T̂ |=k1

F⊆(T1\T̂)

w (T1)







∑

T2: |T2∩T̂ |=k2

F⊆(T2\T̂)

w (T2)




.

We further examine the first term in the product, and the second will follow equivalently.
Once again, we will split the summation by all possible forests F̂ of T̂ with size k1 that T1 \ T̂
could intersect in, and further relax to them only having to contain F̂ .

∑

T1: |T1∩T̂ |=k1

F⊆(T1\T̂)

w (T1) ≤
∑

F̂⊆T̂

|F̂ |=k1

∑

T1

F̂⊆(T1∩T̂ )

F⊆(T1\T̂ )

w (T1) .

Since T1 ∩ T̂ and T1 \ T̂ are disjoint, we can restrict to F̂ that are disjoint from F , as well as
relaxing to requiring (F̂ ∪ F ) ⊆ T1 (instead of F̂ ⊆ (T1 ∩ T̂ ) and F ⊆ (T1 \ T̂ )):

∑

T1: |T1∩T̂ |=k1

F⊆(T1\T̂ )

w (T1) ≤
∑

F̂⊆T̂

|F̂ |=k1

(F̂∩F)=∅

∑

(F̂∪F)⊆T

w (T ) .
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The assumption of F̂ and F being disjoint means their union must have exactly k + k1 edges.
We can then apply Lemma 3.4 to the inner summation and use the fact that there are at most(n−1

k1

)
sets F̂ to achieve the upper bound

∑

T1: |T1∩T̂ |=k1

F⊆(T1\T̂ )

w (T1) ≤
(
n

k1

)(
2n

m

)k+k1

TG.

Similarly, we can also obtain

∑

T2: |T2∩T̂ |=k2

F⊆(T2\T̂ )

w (T2) ≤
(
n

k2

)(
2n

m

)k+k2

TG,

which, along with the fact that there are
(m
k

)
edge sets F of size k, gives our desired bound.

8.3 Concentration of Inverse Probabilities

We now complete a proof of Lemma 8.1 using the concentration results on the number of trees
in a sampled graph, conditioned upon a certain tree being contained in the graph.

Proof of Lemma 8.1. The definition of

PrH|
T̂

(
T̂
)−1

=
TH|

T̂

w(T̂ )

and Lemma 3.1 give

PrH∼H

[
T̂ ⊆ H

]−1
·EH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
=

(
1

p

)n−1

exp

(
n2

2s
+O

(
n3

s2

)) EH|
T̂
∼H|

T̂

[
TH|

T̂

]

w
(
T̂
) .

Our condition of s ≥ 4n2 allows us to bound the term exp(n2/(2s) + O(n3/s2)) by (1 +

O(n2/s)), and incorporating our approximation of EH|
T̂
∼H|

T̂

[
TH|

T̂

]
from Lemma 8.5 gives

PrH∼H

[
T̂ ⊆ H

]−1
· EH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
=

(
1±O

(
n2

s

))
· TG
w
(
T̂
) ,

and the definition of PrG
(
T̂
)−1

implies the bounds on expectation.

For the variance bound, we use the identity

VarH|
T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
= EH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−2

]
− EH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]2
,

which by the definition

PrH|
T̂

(
T̂
)−1

=
TH|

T̂

w(T̂ )
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reduces to

VarH|
T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
=

EH|
T̂
∼H|

T̂

[
T 2
H|

T̂

]
− EH|

T̂
∼H|

T̂

[
TH|

T̂

]2

w
(
T̂
)2 ≤ O

(
n2

s

)
· T

2
Gp

2n−2

w(T̂ )2
,

where the last inequality is from incorporating Lemmas 8.5 and 8.6. Applying Lemma 3.1, and
once again using the condition of s ≥ 4n2 to bound

exp

(
n2

2s
+O(

n3

s2

)
≤
(
1 +O

(
n2

s

))
≤ O (1)

gives:

PrH∼H

[
T̂ ⊆ H

]−2
·VarH|

T̂
∼H|

T̂

[
PrH|

T̂

(
T̂
)−1

]
≤ O

(
n2

s

)
· T

2
G

w(T̂ )2
,

and the variance bound follows from the definition of PrG
(
T̂
)−1

.

9 Bounding Total Variation Distance

In this section we will first bound the total variation distance between drawing a tree from the
w -uniform distribution of G, and uniformly sampling s edges, H, from G, then drawing a tree
from the w -uniform distribution of H. The first bound will only be based on a concentration
for the number of trees in H, and will give the Õ(n13/6) time algorithm for sampling spanning
trees from Corollary 3.8.

Next we will give a more general bound on the total variation distance between two dis-
tributions based on concentration of inverse probabilities. The resulting Lemma 7.17 is used
for proving the bound on total variation distance in the recursive algorithm given in Section 7.
However, as this bound requires a higher sample count of about n2, the direct derivation of TV
distances from concentration bounds is still necessary for uses of the Õ(n1.5) edge sparsifier in
Corollary 3.8.

9.1 Simple Total Variation Distance Bound from Concentration Bounds

We give here a proof of total variation distance being bounded based on the concentration of
spanning trees in the sampled graph.

Proof. (of Lemma 3.7) Substituting the definition of p and p̃ into the definition of total variation
distance gives:

dTV (p, p̃) =
∑

T̂

∣∣∣PrG
(
T̂
)
− EH∼H

[
PrH

(
T̂
)]∣∣∣ .

Substituting in the conditions of:

PrH
(
T̂
)
=

wH (T )

TH
, (by definition of PrH(T̂ ))

wH
(
T̂
)
= wG

(
T̂
)
· PrH′∼H

[
T̂ ⊆ H ′

]−1
· EH′∼H [TH′ ]

TG
, (by given condition)
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Using the fact that

EH∼H

[
1
(
T̂ ⊆ H

)]
= PrH′∼H

[
T̂ ⊆ H ′

]
,

we can distribute the first term into:

dTV (p, p̃) =
∑

T̂

∣∣∣∣EH∼H

[
1
(
T̂ ⊆ H

)
· PrH′∼H

[
T̂ ⊆ H ′

]−1
· PrG

(
T̂
)
− PrH

(
T̂
)]∣∣∣∣ ,

which by the condition on wH(T̂ ) simplifies to:

dTV (p, p̃) =
∑

T̂

∣∣∣∣∣∣
EH∼H


1
(
T̂ ⊆ H

)
·

wH
(
T̂
)

EH′∼H [TH′ ]
−PrH

(
T̂
)


∣∣∣∣∣∣
.

As 1(T̂ ⊆ H) = 1 iff PrH(T̂ ) > 0, this further simplifies into

dTV (p, p̃) =
∑

T̂

PrH′∼H′

[
T̂ ⊆ H ′

]
∣∣∣∣∣∣
EH∼H|T




wH
(
T̂
)

EH′∼H [TH′ ]
− PrH

(
T̂
)


∣∣∣∣∣∣
,

which by triangle inequality gives:

dTV (p, p̃) =
∑

T̂

PrH′∼H′

[
T̂ ⊆ H ′

]
· EH∼H|T



∣∣∣∣∣∣

wH
(
T̂
)

EH′∼H [TH′ ]
− PrH

(
T̂
)
∣∣∣∣∣∣


 ,

at which point we can rearrange the summation to obtain:

dTV (p, p̃) ≤ EH


∑

T̂⊆H

∣∣∣∣∣∣
PrH

(
T̂
)
−

wH
(
T̂
)

EH′ [TH′ ]

∣∣∣∣∣∣


 = EH


∑

T̂⊆H

wH
(
T̂
)
·
∣∣∣∣
1

TH
− 1

EH′ [TH′ ]

∣∣∣∣


 .

which by definition of TH simplifies to:

dTV (p, p̃) ≤ EH

[∣∣∣∣1−
TH

EH′ [TH′ ]

∣∣∣∣
]
.

By the Cauchy-Schwarz inequality, which for distributions can be instantiated as EX [f(X)] ≤√
EX [f(X)2] for any random variable X and function f(X), we then get:

dTV (p, p̃) ≤

√√√√EH

[(
1− TH

EH′ [TH′ ]

)2
]
=

√√√√EH

[( TH
EH′ [TH′ ]

)2
]
− 1 =

√
δ.

54



9.2 Total Variation Distance Bound from Inverse Probability Concentration

We give here our proof of Lemma 7.17, that is a more general bound on total variation distance
based upon concentration results of the inverse probabilities.

Lemma 9.1. Let X be a random variable such that X > 0 over its entire support, and given
some δ ≥ 0, such that E [X] = (1± δ)µ and Var [X] ≤ δµ2, then

Pr
[
|X−1 − µ−1| > 4k

√
δµ−1

]
≤ 1

k2

if 1 < k < δ−1/2/4

Proof. Chebyshev’s inequality gives

Pr
[
|X − (1± δ)µ| > k

√
δµ
]
≤ 1

k2
.

Furthermore, if we assume X such that

|X − (1± δ)µ| ≤ k
√
δµ

which reduces to (
1− 2k

√
δ
)
µ ≤ X ≤

(
1 + 2k

√
δ
)
µ.

Inverting and reversing the inequalities gives

µ−1

1 + 2k
√
δ
≤ X−1 ≤ µ−1

1− 2k
√
δ
.

Using the fact that 1
1+ǫ = 1− ǫ

1+ǫ ≤ 1− ǫ for ǫ > 0, and 1
1+ǫ = 1+ ǫ

1−ǫ ≤ 1 + 2ǫ for ǫ ≤ 1/2,
we can then conclude,

(
1− 4k

√
δ
)
µ−1 ≤ X−1 ≤

(
1 + 4k

√
δ
)
µ−1,

which implies

Pr
[∣∣X−1 − µ−1

∣∣ > 4k
√
δµ−1

]
≤ Pr

[
|X − (1± δ) µ| > k

√
δµ
]

and proves the lemma.

This bound does not allow us to bound EX [|X − µ] because when X close to 0, the value
of X−1 can be arbitrarily large, while this bound only bounds the probability of such events
by O(δ−1). We handle this by treating the case of X small separately, and account for the
total probability of such cases via summations over I and x̂ . First we show that once these
distributions are truncated to avoid the small X case, its variance is bounded.

Lemma 9.2. Let Y be a random variable such that for parameters δ, µY > 0 we have 0 < Y ≤
2µY over its entire support, and that E

[
Y −1

]
= (1± δ)µ−1

Y , Var
[
Y −1

]
≤ δµ−2

Y , then

E [|Y − µY |] ≤ O
(√

δ
)
µY .
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Proof. Since |Y − µY | ≤ µY , we can decompose this expected value into buckets of 2 via:

E [|Y − µY |] ≤
log(δ−1/2/4)∑

i=0

PrY

[
|Y − µY | ≥ 2i

√
δµY

]
·
(
2i
√
δµY

)
,

where the last term is from the guarantee of Y ≤ 1. Lemma 9.1 gives that each of the interme-
diate probability terms is bounded by O(2−2i), while the last one is bounded by 1

δ , so this gives
a total of

E [|Y − µ|] ≤
log(δ−1/2)∑

i=0

(
2i
√
δµY

)
O
(
2−2i

)
≤
√
δµY

We can now complete the proof via an argument similar to the proof of Lemma 3.7 in
Section 9.1. The only additional step is the definition of BADu, which represents the portion of
the random variable Pu with high deviation.

Proof of Lemma 7.17. For each u, we define a scaling factor corresponding to the probability
that Pu is non-zero:

pu+
def
= Prp∼Pu [p > 0] .

By triangle inequality, we have for each Pu

|1− E [Pu]| ≤ pu+ · Ep∼Pu|p>0

[∣∣p−1
u+ − p

∣∣] .

We will handle the case where p is close and far from p−1
u+ separately. This requires defining

the portion of Pu with non-zero values, but large variance as

BADu
def
=

{
p ∈ supp (Pu) :

∣∣p−1
u+ − p

∣∣ > 1

2
p−1
u+

}
.

Lemma 9.1 gives that for each u,

Prp∼Pu|p>0 [p ∈ BADu] ≤ O
(√

δ
)
,

which with the outer distribution and factoring the value of p−1
u+ gives gives:

Eu∼U

[
pu+ · Ep∼Pu|p>0

[
1 (p ∈ BADu) · p−1

u+

]]
≤ O

(√
δ
)
, (5)

Eu∼U

[
pu+ · Ep∼Pu|p>0

[
1 (p /∈ BADu) · p−1

u+

]]
≥ 1−O

(√
δ
)
. (6)

We then define the ‘fixed’ distributions P̃u with the same distribution over p as Pu, but
whose values are set to p−1

u+ whenever p ∈ BADu. Lemma 9.2 then gives:

E
p∼P̃u|p>0

[∣∣p−1
u+ − p

∣∣] ≤ O
(√

δp−1
u+

)
,
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or taken over the support of U , and written with indicator variables:

Eu∼U

[
pu+ · Ep∼Pu|p>0

[
1 (p /∈ BADu) ·

∣∣p−1
u+ − p

∣∣]] ≤ O
(√

δ
)
.

Combining this with the lower bound on the mass of p−1
u+ on the complements of the bad sets

from Equation 6 via the triangle inequality p ≥ p−1
u+ − |p−1

u+ − p| gives:

Eu∼U

[
pu+ · Ep∼Pu|p>0 [1 (p /∈ BADu) · p]

]
≥ 1−O

(√
δ
)
,

or upon taking complement again:

Eu∼U

[
pu+ · Ep∼Pu|p>0 [1 (p ∈ BADu) · p]

]
≤ O

(√
δ
)
,

which together with Equation 5 and the non-negativity of p−1
u+ and p gives

Eu∼U

[
pu+ · Ep∼Pu|p>0

[
1 (p ∈ BADu) ·

∣∣p−1
u+ − p

∣∣]] ≤ O
(√

δ
)
.

Combining these two summations, and invoking the triangle inequality at the start then gives
the bound.
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A Deferred Proofs

We now provide detailed proofs of the combinatorial facts about random subsets of edges that
are discussed briefly in Section 3.

Proof. (of Lemma 3.1)
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This probability is obtained by dividing the number of subsets of s edges that contain the
n−1 edges in T , against the number of subsets of s edges from m, which using

(a
b

)
= (a)b

(b)b
, gives:

(
m− n+ 1

s− n+ 1

)
/

(
m

s

)
=

(m− n+ 1)s−n+1 (s)s
(m)s (s− n+ 1)s−n+1

, (7)

and the two terms can be simplified by the rule (a)b/(a− k)b−k = (a)k.
Furthermore,

(a)b = ab
(
1− 1

a

)
· · ·
(
1− b− 1

a

)
= ab exp

(
b−1∑

i=1

ln

(
1− i

a

))

We then use the Taylor expansion of ln(1− x) = −∑∞
i=1

xi

i to obtain

= ab exp

(
−
∑b−1

i=1 i

a
−
∑b−1

i=1 i
2

2a2
−
∑b−1

i=1 i
3

3a3
− ....

)
= ab exp

(
− b2

2a
−O

(
b3

a2

))

Substituting into (s)n−1

(m)n−1
gives

pn−1 exp

(
−n2

2s
+

n2

2m
−O

(
n3

s2

)
+O

(
n3

m2

))
= pn−1 exp

(
−n2

2s
−O

(
n3

s2

))

where n2

2m is absorbed by O
(
n3

s2

)
because m ≥ s2

n was assumed.

Proof. (Of Lemma 3.2)
As before, we have

PrH [T1, T2 ∈ H] = p|T1∪T2| exp

(
−|T1 ∪ T2|2

2s
−O

(
n3

s2

))

Invoking the identity:
|T1 ∪ T2| = 2n− 2− |T1 ∩ T2|

gives

PrH [T1, T2 ∈ H] = p2n−2p−k exp

(
−(2n − 2− k)2

2s
−O

(
n3

s2

))
.

Using the algebraic identity
(2n − 2− k)2 ≥ 4n2 + 4nk

and dropping the trailing (negative) lower order term gives:

PrH [T1, T2 ∈ H] ≤ p2n−2 · p−k exp

(
−4n2

2s
+

4nk

2s

)
,

upon which we can pull out the 4n2

2s term in the exponential to get a term that only depends k.
Grouping the p−k term together with the exp(2ns )

k term, and using the fact that exp(t) ≤ 1+2t
when t ≤ 0.1 then gives the result.
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Proof. (of Lemma 3.5) We first separate the summation in terms of all possible forests F of size
k that any pair of trees could intersect in

∑

T1,T2
|T1∩T2|=k

w (T1) ·w (T2) =
∑

F⊆E
|F |=k

∑

T1,T2
F=T1∩T2

w (T1) ·w (T2)

We then consider the inner summation, the number of pairs of trees T1, T2 with T1 ∩T2 = F
for some particular set F of size k. This is upper bounded by the square of the number of trees
containing F :

∑

T1,T2
F=T1∩T2

w (T1) ·w (T2) ≤
∑

T1,T2
F⊆T1∩T2

w (T1) ·w (T2) =


 ∑

T :F⊆T

w (T )




2

This allow us to directly incorporate the bounds from Lemma 3.4, and in turn the assumption
of τ e ≤ n

m to obtain the bound:

∑

T1,T2
F=T1∩T2

w (T1) ·w (T2) ≤
(
TG
( n

m

)k)2

.

Furthermore, the number of possible subsets of F is bounded by
(m
k

)
, which can be bounded

even more crudely by mk

k! . Incorporating this then gives:

∑

T1,T2
|T1∩T2|=k

w (T1) ·w (T2) ≤
mk

k!
·
(
TG
( n

m

)k)2

= T 2
G ·

1

k!

(
n2

m

)k

.
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