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Abstract—Big-data storage has substantial challenges due to
accumulative noise in storage media. To ensure its long-term
reliability, new techniques for error correction are being explored.
This paper studies how to discover natural redundancy in data
and use it for error correction. It explores the combination
of natural redundancy decoding with low-density parity-check
(LDPC) codes for enhanced error-correction performance. It
derives analytical equations for the density evolution of LDPC
decoding given information from natural-redundancy decoders.
It proposes a theoretical model for compressed languages, and
studies the performance of iterative decoding between the LDPC
decoder and the natural-redundancy decoder. It also presents an
upper bound to the code sizes of error-correcting codes given the
assistance from natural-redundancy decoders.

I. INTRODUCTION

Big-data storage is having increasingly wide applications.

However, it faces a substantial challenge – how to recover

data from errors as effectively as possible for reliable long-

term storage – due to accumulative noise in storage media.

For example, flash memories and other NVMs have noise

mechanisms such as charge leakage, read/write disturbs, and

cell-quality degradation due to P/E cycling. They make data

more and more noisy over time. So there is a strong motivation

in exploring new techniques for error correction.

In this paper, we study how to correct errors using natural

redundancy (NR) in compressed data, and how to combine

it with error-correcting codes (ECCs). By natural redundancy,

we refer to the redundancy in data that is not artificially added

for error correction, such as features in languages/images and

structures in databases. In comparison, the redundancy in an

ECC (which we shall call artificial redundancy) is added in

a disciplined way with the specific goal of effective error

correction. NR is often a rich resource for error correction for

data that are uncompressed or compressed imperfectly. There

are various reasons for imperfect compression in practical sys-

tems, including high complexity of optimal compression, our

limited understanding on the data models (e.g., for languages

and images), etc. For data that are encoded as ECCs and later

corrupted by errors, as our understanding on the data model

improves, we can design better and better NR-decoders to

correct the errors.

With NR, a decoding system can be considered as consisting

of two decoders: an ECC-Decoder, and an NR-Decoder. They

work collaboratively to correct errors or erasures in the ECC

codeword. We illustrate it by an example.

Example 1.. Consider texts compressed by an LZW algorithm

that uses a fixed dictionary of size 2�. The dictionary has

2� text strings (called patterns) of variable lengths, where

every pattern is encoded as an �-bit codeword. Given a text

to compress, the LZW algorithm scans it and partitions it

into patterns, and maps them to codewords. For instance, if

� = 20 and the text is “Flash memory is an electronic · · · ”,

the partitioning and LZW-codewords can be as illustrated in

Fig. 1 (a).

Now suppose some bits in the LZW-codewords are erased.

An NR-Decoder can check all the possible solutions, map each

solution back to patterns, and use a dictionary of words to

eliminate those solutions that contain invalid words. (Such

a dictionary of words has been commonly used in spell

checkers.) If all the remaining solutions agree on the value

of an erased bit, then that erasure is decoded by the NR-

Decoder. For instance, suppose each LZW-codeword in Fig. 1

(a) suffers from two erasures, which lead to four possible

solutions/patterns (see Fig. 1 (b)). By combining the patterns

for each codeword, we can rule out many solutions. For

instance, the combination “should becnomially ars an ele”

can be eliminated due to the invalid word “becnomially”.

In fact, the only combination without invalid words (without

considering words on the boundary of the string, which might

be part of a longer word) is “Flash memory is an ele”, so

the NR-Decoder can recover all six erasures in the three

codewords. (In practice, it is also possible that we get more

than one combination that contain only valid words. In that

case, an erased bit can be corrected if all such combinations

set the same value for that erasure.)

Suppose that the LZW-codewords, seen as information bits,

are protected by a systematic ECC. Then the ECC-Decoder

can correct erasures by parity-check constraints, and the NR-

Decoder can correct erasures by NR. They can work collabo-

ratively to maximize the number of correctable erasures. �

As this paper is largely motivated by language-based NR, it

is worthwhile to note that an LZW algorithm with a dictionary

of 220 patterns (as in the above example) can compress

the English language to 2.94 bits per character. The UNIX

Compress command uses LZW with a smaller dictionary and

so achieves a lower compression ratio. There are compres-

sion algorithms for languages with higher compression ratios

(e.g., syllable-based Burrows-Wheeler Transform achieving

2 bits/character [6]). However, there is still a gap toward

Shannon’s estimation of 1.34 bits/character for the entropy of

English [16], which gives motivation for NR-Decoders. And

one may reasonably conjecture that a similar scenario exists

for images and videos.

In this work, we study the utilization of NR for erasure

correction, including for languages and images. The paper is

organized as follows. In Section II, we survey related works.

In Section III, we introduce the discovery and utilization of

NR in data for erasure correction, including for languages and
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(a) Patterns:

Codewords:

(emory i) (s an ele)

11011110100001000010 11101101001100100110 11001100100000100011

(Flash m) ...

...

(b) 1?011110100001000?10 11101101001?0010011? 110?1100100?00100011... ...Noisy

codewords:

Possible

solutions

10011110100001000010 11101101001000100110 11001100100000100011... ...

10011110100001000110 11101101001000100111 11001100100100100011... ...

11011110100001000010 11101101001100100110 11011100100000100011... ...

11011110100001000110 11101101001100100111 11011100100100100011... ...

1)

for

each

codeword:

2)

3)

4)

Possible

patterns

(should bec) (nominally ar) (s an ele) ...

(es of the c) (government, n) (epy,) ...

(Flash m) (emory i) (style and ) ...

( rast) (in France an) (the Palac) ...

1)

for

each

codeword:

2)

3)

4)

Fig. 1. (a) Compress a text by LZW. (b) NR-decoding for erasures.

images. In Section IV, we study a scheme that combines NR-

decoding with low-density parity-check (LDPC) codes, and

derive analytical formulas for the density evolution of LDPC

decoding given information from the NR-decoder, which are

useful for measuring the overall decoding performance. In

Section V, we propose a theoretical model for compressed

languages, and study the performance of iterative decoding

between the LDPC decoder and the NR-decoder. In Section

VI, we present further analysis on the performance of NR

decoding for general ECCs. In Section VII, we present the

conclusions.

II. RELATED WORKS

Error-correction with NR is related to joint source-channel

coding and denoising. The idea of using the inherent redun-

dancy in a source – or the leftover redundancy at the output of

a source encoder – to enhance the performance of the ECC has

been studied within the field of joint source-channel coding.

In [3], source-controlled channel coding using a soft-output

Viterbi algorithm is considered. In [1], a trellis based decoder

is used as a source decoder in an iterative decoding scheme.

Joint decoding of Huffman and Turbo codes is proposed in [2].

In [4], joint decoding of variable length codes (VLCs) and

convolutional/Turbo codes is analyzed. Joint decoding using

LDPC codes for VLCs and images are illustrated in [13]

and [14], respectively. However, not many works have con-

sidered JSCC specifically for language-based sources, and

exploiting the redundancy in the language structure via an

efficient decoding algorithm remains as a significant challenge.

Related to joint source-channel coding, denoising is also an

interesting and well studied technique [8], [11], [12], [15],

[20]. A denoiser can use the statistics and features of input

data to reduce its noise level for further processing. For

discrete memoryless channels with stationary input sequences,

a universal algorithm that performs asymptotically as well as

optimal denoisers are given in [19]. The algorithm is also

universal for a semi-stochastic setting, where the channel input

is an individual sequence and the randomness in the channel

output is solely due to the channel’s noise.

Spell-checking softwares are a typical example of using

NR to correct errors in languages. They are widely used in

text editors. A spell-checking software usually works at the

character level (namely, it does not consider how characters

or text strings are encoded by bits), is for uncompressed texts,

and uses the validity of words and the correctness of grammar

to correct errors that appear in the typing of texts.

Using NR to correct errors at the bit level in compressed

texts has been studied in a number of works. In [7], texts

compressed by Huffman coding is considered, and a dynamic

programming algorithm is used to partition the noisy bit

sequence into subsequences that represents words, and to

select likely solutions based on the frequencies of words and

phrases. In [5], texts that are compressed by Huffman coding

and then protected by LDPC codes are studied. An efficient

greedy algorithm is used to decompress the noisy bit string,

and partition it into stable and unstable regions based on

whether each region contains recognizable words and phrases.

The stable and unstable regions have polarized RBERs, which

are provided as soft information to the LDPC code for better

decoding performance. The algorithm is enhanced in [9] by

a machine learning method for content recognition, and an

iterative decoding algorithm between the NR-Decoder and

the ECC-Decoder is used to further improve performance.

In [18], texts compressed by Huffman coding and protected

by Polar codes are studied. The validity of words is used to

prune branches in a list sequential decoding algorithm, and

a trie data structure for words is used to make the algorithm

more efficient. A concatenated-code model that views the text

with NR as the outer code and the Polar code as the inner

code is considered, and the rate improvement for the Polar

code due to NR is analyzed. That model is further studied

in [17], where an optimal algorithm that maximizes the code

rate improvement by unfreezing some frozen bits to store

information is presented. A model that views NR as the output

of a side information channel at the channel decoder is also

studied, where NR is shown to improve the random error

exponent.

III. NR-DECODING FOR LANGUAGES AND IMAGES

In this section, we present techniques for using NR in com-

pressed data, including languages and images, for correcting

erasures.

A. NR-Decoding for Language

Consider English texts that are compressed by an LZW

algorithm that uses a fixed dictionary of size 2�. We have

introduced a technique that corrects bit erasures based on the

validity of words in Example 1. For long compressed texts

with erasures, to make the NR-decoding efficient, we use

a decoding algorithm based on sliding-windows of variable

lengths as follows. Let nmin and nmax be two integers,

where nmin < nmax. We first use a sliding-window of nmin�
bits to scan the compressed text (where every such window
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contains exactly nmin LZW-codewords), and obtain candidate

solutions for each window based on the validity of words

(as in Example 1). We then increase the size of the window

to (nmin + 1)�, (nmin + 2)�, · · · , nmax�, and do decoding

for each size in the following way: consider a window of

k� bits that contains k LZW-codewords C1, C2, · · · , Ck. Let

S1 ⊆ {0, 1}(k−1)� be the set of candidate solutions for the sub-

window that contains the LZW-codewords C1, C2, · · · , Ck−1;

and let S2 ⊆ {0, 1}(k−1)� be the set of candidate solutions for

the sub-window that contains the LZW-codewords C2, C3, · · · ,

Ck. (Both S1 and S2 have been obtained in the previous round

of decoding.) We now obtain the set of candidate solutions

for the current window, which contains C1, C2, · · · , Ck,

this way. A bit sequence (b1, b2, · · · , bk�) is in S only if it

satisfies two conditions: (1) its first (k−1)� bits are a solution

in S1, and its last (k − 1)� bits are a solution in S2; (2)

the decompressed text corresponding to it contains no invalid

words (except on the boundaries). This way, potential solutions

filtered by smaller windows will not enter solutions for larger

windows, making decoding more efficient. As a final step, an

erased bit is decoded this way: if any of the windows of size

nmax� containing it (note that there are up to 2nmax−1 such

windows) can recover its value (as we did in Example 1),

decode it to that value; otherwise it remains as an erasure.

To make the above decoding algorithm more efficient,

we also use phrases (such as “information theory”, “flash

memory”) and features such as word/phrase lengths. If a

solution for a window contains a valid word or phrase that

is particularly long, we may remove other candidate solutions

that contain only short words. That is because long words

and phrases are very rare: their density among bit sequences

of the same length decreases exponentially fast as the length

increases. So if they appear, the chance that they are the correct

solution is high based on Bayes’ rule. The thresholds for such

word/phrase lengths can be set sufficiently high such that the

probability of making a decoding error is sufficiently small.

We also enhance the decoding performance by using the

co-location relationship. Co-location means that certain pairs

of words/phrases appear unusually frequently in the same

context (because they are closely associated), such as “dog”

and “bark”, or “information theory” and “channel capacity”.

If two words/phrases with the co-location relationship are

detected among candidate solutions for two windows close

to each other, we may keep them as candidate solutions

and remove other less likely solutions. The reason for this

approach is similar to that for long words/phrases. The co-

location relationship can appear in multiple places in a text,

and therefore help decoding in non-trivial ways. For example,

for the text in Fig. 2 (a), the words/phrases that have the

co-location relationship with the phrase “flash memory” are

shown in Fig. 2 (b). (All of them appear in this text.) How

to find words/phrases with the co-location relationship from a

corpus of training texts is a well-known technique in Natural

Language Processing (NLP) [10]. So we skip its details here.

flash memory

volatile

Toshiba

EEPROMelectrically erasable

NAND

rewritten

byte

USB flashNOR flash

configurationdigital batterystatic RAM

(b)

(a) Flash memory is an electronic (solid-state) non-volatile computer storage medium that can be electrically 

erased and reprogrammed. Toshiba developed flash memory from EEPROM (electrically erasable 

programmable read-only memory) in the early 1980s and introduced it to the market in 1984. The two main 

types of flash memory are named after the NAND and NOR logic gates. The individual flash memory cells 

exhibit internal characteristics similar to those of the corresponding gates...... NAND or NOR flash memory 

is also often used to store configuration data in numerous digital products, a task previously made possible 

by EEPROM or battery-powered static RAM.

Fig. 2. (a) A sample paragraph from Wikipedia (part of which was omitted
to save space). (b) Phrases in it that have the co-location relationship with
“flash memory”.

B. NR-Decoding for Images

Consider the discovery of NR for images. General images

can have global features, and using such redundancy for error

correction can be difficult. To gain more insight into the

nature of NR in images, we focus in particular on images of

handwritten digits, as in Fig. 3 (a). They are from the National

Institute of Standards and Technology (NIST) database, which

have 70, 000 images as training or test data. We compress

the bi-level images (of size 28×28 pixels) using run-length

coding, where the run-lengths of 0s and 1s are compressed by

two optimized Huffman codes, respectively. The rate is 0.27

bit/pixel.

We now present an NR-decoder for images. It is illustrated

in Fig. 3 (b). Assume that a compressed image has λ erasures.

Out of the 2λ possible candidate solutions, usually only a

few decompress successfully. (For example, to decompress

successfully, the bit sequence needs to end with a valid

Huffman codeword. And errors may make it impossible.) To

decode noisy images among the successfully decompressed

images, we have trained a convolutional neural network for

recognizing noisy images, and designed a specialized filter

based on features of connected components in decompressed

images, as follows:

1) Convolutional Neural Network: The training and test

data consist of noisy as well as clean images of handwritten

digits. It consists of one input layer, two hidden layers and

a output layer. The input layer consists of a 28 × 28 bilevel

image, and the 2 × 1 output layer classifies the input images

as “clean” or “noisy”. The size of the convolution window is

5×5. The number of feature maps used in the first and second

hidden layers are 5 and 15 respectively.

2) Filter Based on Connected Components: We count the

number of components in an image, but without counting

those components that have at most two pixels or components

that are vertical lines (which may be caused by human or

scanning errors). The images that have the fewest components

are accepted as candidate images by this filter.

3) Joint Decoder: The final step of decoding is: if all

candidate solutions agree on the value an erased bit, set the

bit to that value; otherwise, keep it as an erasure.

Example 2. Suppose that the compressed image with erasures
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convolutional
neural
network

candidate
solutions to
compressed
image

decompress decompress
successfully?

yes

no
remove such solutions

candidate
solutions to
decompressed
image

keep such solutions

likely correct image

likely noisy imageremove such 
solutions

set A of candidate solutions
to compressed image filter based on

number
and sizes/shapes
of components
in image

solutions
passing filterset B of candidate solutions

to compressed image

joint
decoder

solution
to
compressed
image

(b)

(c)

NR-Decoder LDPC Decoder(d)

LDPC Decoder NR-Decoder

(e)

(a)

Fig. 3. (a) Examples of handwritten digits. (b) NR-decoder for images. (c)
Performance of NR-decoder. (d) A concatenated decoding scheme. (e) An
iterative decoding scheme.

is 1??0?1· · · , where “?” is an erasure. Suppose that the NR-

decoder finds 3 candidate solutions: 110001· · · , 110011· · · ,

100011· · · . Then it returns the solution 1?00?1· · · because

the candidate solutions agree on the second erasure, but not

the first or the third erasure. �

C. Decoding Performance of NR decoders

The decoding performance for NR decoders can be mea-

sured as follows. Let ε ∈ [0, 1] be the erasure probability

before decoding. After the decoding by natural redundancy,

let δ ∈ [0, 1] be the probability that an originally erased

bit remains as an erasure, and let ρ ∈ [0, 1 − δ] be the

probability that an originally erased bit is decoded to 0 or

1 incorrectly. The amount of noise after NR-decoding can be

measured by the entropy of the noise (erasures and errors)

per bit: ENR � ε(δ + (1 − δ)H( ρ
1−δ

)), where H(p) =
−p log p− (1− p) log(1− p) is the entropy function.

We show ENR for the NR-decoder for images in Fig. 3 (c).

The NR-decoder reduces noise substantially: it removes noise

effectively by over 75% for the compressed images (without

any help from ECC), for raw bit-erasure rate (RBER) from

0.5% to 6.5%.

The performance of the NR-decoder introduced above for

LZW-compressed English texts, experimented on a large cor-

pus of Wikipedia articles, is shown in the table below. It also

reduces noise effectively (between 88.0% and 91.6%) for raw

bit-erasure rate from 5% to 30%.

ε 0.05 0.10 0.15

δ 8.22× 10−2 8.67× 10−2 9.19× 10−2

ρ 9.18× 10−5 1.83× 10−4 1.82× 10−4

ENR 4.18× 10−3 8.92× 10−3 1.42× 10−2

Noise 91.6% 91.1% 90.6%

reduction

ε 0.20 0.25 0.30

δ 9.76× 10−2 1.05× 10−1 1.12× 10−1

ρ 3.61× 10−4 4.48× 10−4 7.11× 10−4

ENR 2.04× 10−2 2.76× 10−2 3.60× 10−2

Noise 89.8% 89.0% 88.0%

reduction

IV. COMBINE NR-DECODING WITH LDPC CODES

This section discusses the combination of NR-decoders

described in the previous section with LDPC codes. We protect

compressed data (languages or images) as information bits by

a systematic LDPC code of rate R. The decoding process

is a concatenation of two decoders: first, the NR-decoder

decodes the codeword (possibly only its information bits),

and outputs a partially corrected codeword with updated soft

information; then, the LDPC decoder takes that as input, and

uses belief propagation (BP) for decoding. (See Fig. 3 (d)

for an illustration.) We present a theoretical analysis for the

decoding performance, and show that the NR-decoder can

substantially improve the performance of LDPC codes.

Consider a binary-erasure channel (BEC) with erasure prob-

ability ε0. Let us call the non-erased bits fixed bits. Assume

that after NR-decoding, a non-fixed bit (i.e., erasure) remains

as an erasure with probability p0(ε0) ∈ [0, 1], becomes an

error (0 or 1) with probability (1 − p0(ε0))γ0(ε0) ∈ [0, 1 −
p0(ε0)], and is decoded correctly (as 0 or 1) with probability

(1− p0(ε0))(1− γ0(ε0)). (In general, p0(ε0) and γ0(ε0) may

be functions of ε0. Note that if the NR-decoder decodes

only information bits, and an erasure in the information bits

remains as an erasure with probability p0(ε0)
′, then p0(ε0) =

Rp0(ε0)
′ + (1−R). Also note that the LDPC decoder needs

to decode all bits with both errors and erasures.)

A. Decoding Algorithm

We design the following iterative LDPC decoding algo-

rithm, which generalizes both the peeling decoder for BEC

and the Gallager B decoder for BSC:

Algorithm 3. Generalized LDPC decoding algorithm.

(1) Let π ∈ [1, dv − 1] and τ ∈ [1, dv − 1] be two integer

parameters;

(2) In each iteration, for a variable node v that is an

erasure, if π or more non-erased message bits come from dv−1
check nodes and they all have the same value, set v to that

bit value;

(3) If v is not a fixed bit and not an erasure (but possibly

an error) in this iteration, change v to the opposite bit value

if τ or more non-erased message bits come from dv − 1 check
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nodes and they all have that opposite value. (The updated

value of v will be sent to the remaining check node in the next

iteration.)

B. Density Evolution Analysis

We now analyze the density evolution for the decoding

algorithm, for an infinitely long and randomly constructed

LDPC code of regular degrees.

For t = 0, 1, 2 · · · , let αt and βt be the fraction of codeword

bits that are errors or erasures, respectively, after t iterations

of LDPC decoding. We have α0 = ε0(1 − p0(ε0))γ0(ε0) and

β0 = ε0p0(ε0). Let κ0 = ε0(1− p0(ε0))(1− γ0(ε0)).

Theorem 4. For a regular (dv, dc) LDPC code with

variable-node degree dv and check-node degree dc,

we have αt+1 = α0Ct + κ0Dt + β0μt, where

Ct = 1−(1−At)
dv−1+

∑τ−1
i=0

(

dv−1
i

)

Bi
t(1−At−Bt)

dv−i−1,

Dt =
∑dv−1

j=τ

(

dv−1
j

)

Aj
t (1 − At − Bt)

dv−1−j ,

μt =
∑dv−1

m=π

(

dv−1
m

)

Am
t (1 − At − Bt)

dv−1−m

with At = (1−βt)
dc−1−(1−βt−2αt)

dc−1

2 and Bt =
(1−βt)

dc−1+(1−βt−2αt)
dc−1

2 . And βt+1 = β0(1 − μt − νt),

where νt =
∑dv−1

m=π

(

dv−1
m

)

Bm
t (1−At −Bt)

dv−1−m.

Proof: Consider the root variable node of a computation

tree. After t iterations, let At denote the probability that an

incoming message to the root node from a neighboring check

node is an error, and let Bt denote the probability that the

message is correct. Then 1 − At − Bt is the probability that

the message is an erasure. Let μt (respectively, νt) be the

probability that among the dv − 1 incoming messages from

neighboring check nodes to the root node, π or more messages

are errors (respectively, correct) and the remaining messages

are all erasures.

In the (t+ 1)-th iteration, we can have an error in the root

node in one of the following cases:

1) The root node was initially (namely, before decoding

begins) an error (which has probability α0), and either

of the two disjoint events happens: 1) fewer than τ
check-node messages are correct and the remaining

messages are all erasures, which happens with proba-

bility
τ−1
∑

i=0

(

dv−1
i

)

Bi
t(1−At−Bt)

dv−i−1; 2) at least one

check-node message is an error, which happens with

probability 1− (1−At)
dv−1. The probability that either

of the two events occurs is Ct = 1 − (1 − At)
dv−1 +

τ−1
∑

i=0

(

dv−1
i

)

Bi
t(1−At −Bt)

dv−i−1.

2) The root node was initially correct (which has prob-

ability κ0), but τ or more check-node messages are

errors and the rest are all erasures (which happens with

probability Dt =
dv−1
∑

j=τ

(

dv−1
j

)

Aj
t (1−At −Bt)

dv−1−j).

3) The root node was initially an erasure (which has

probability β0), and π or more check-node messages

are errors and the rest are all erasures (which happens

with probability μt).

Therefore the error rate after t+1 iterations will be αt+1 =
α0Ct + κ0Dt + β0μt.

In the (t+1)-th iteration, we can correct an erasure at a root

node correctly if the root node was initially an erasure, and π
or more check-node messages are correct and the rest are all

erasures. This happens with probability β0νt. The root node

will remain as an erasure if it is neither corrected mistakenly

nor corrected correctly. So the erasure rate after t+1 iterations

will be βt+1 = β0(1− μt − νt).
Now we need to find the values of At, Bt, μt and νt.

The incoming message from a check node to the root node is

correct if out of the dc − 1 non-root variable nodes connected

to the check node, an even number of nodes are errors and

the rest are all correct (i.e., neither errors nor erasures). That

probability is Bt =
� dc−1

2
�

∑

k=0

(

dc−1
2k

)

α2k
t (1− αt − βt)

dc−1−2k =

(1−βt)
dc−1+(1−βt−2αt)

dc−1

2 . The incoming message from a

check node to the root node is an error if out of the dc − 1
non-root variable nodes connected to the check node, an odd

number of nodes are errors and the rest are all correct. That

probability is At =
� dc

2
�

∑

k=1

(

dc−1
2k−1

)

α2k−1
t (1 − αt − βt)

dc−2k =

(1−βt)
dc−1−(1−βt−2αt)

dc−1

2 . The probability that π or more

neighboring check-node messages are errors and the rest are

all erasures can be simplified as μt =
∑dv−1

m=π

(

dv−1
m

)

Am
t (1−

At−Bt)
dv−1−m. The probability that π or more neighboring

check-node messages are correct and the rest are all erasures

can be simplified as νt =
∑dv−1

m=π

(

dv−1
m

)

Bm
t (1 − At −

Bt)
dv−1−m. This completes the proof.

C. Erasure Threshold

Define erasure threshold ε∗ as the maximum erasure prob-

ability (for ε0) for which the LDPC code can decode success-

fully (which means the error/erasure probabilities αt and βt

both approach 0 as t → ∞). Let us show how the NR decoder

can substantially improve ε∗. Consider a regular LDPC code

with dv = 5 and dc = 100, which has rate 0.95 (a typical code

rate for storage systems). Without NR-decoding, the erasure

threshold is ε̃∗ = 0.036. Now let π = 1 and τ = 4. For

compressed images, when ε0 = 0.065, the NR-decoder gives

p0 = 0.247 and γ0 = 0.0008, for which the LDPC decoder has

limt→∞ αt = 0 and limt→∞ βt = 0. (The same happens for

ε0 < 0.065.) So with NR-decoding, ε∗ ≥ 0.065, which means

the improvement in erasure threshold is more than 80.5%.

For LZW-compressed texts, when ε0 = 0.3, the NR-decoder

gives p0 = 0.156 and γ0 = 0.0008, for which the LDPC

decoder has limt→∞ αt = 0 and limt→∞ βt = 0. (The same

happens for ε0 < 0.3.) So with NR-decoding, ε∗ ≥ 0.3,

which means the improvement in erasure threshold is more

than 733.3%.

V. ITERATIVE LDPC DECODING WITH NR

In this section, we study the decoding performance when

we use iterative decoding between the LDPC decoder and

NR-decoder, as shown in Fig. 3 (e). (In last section’s study,
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the NR-decoder is followed by the LDPC decoder, without

iterations between them.) We focus on languages, and present

a theoretical model for compressed languages as follows.

A. NR Decoder For Compressed Languages

Let T = (b0, b1, b2, · · · ) be a compressed text. Parti-

tion T into segments S0, S1, S2 · · · , where each segment

Si = (bil, bil+1, · · · , bil+l−1) has l bits. Consider erasures.

Let θ ∈ [0, 1], lθ � �lθ� and p ∈ [0, 1] be parameters.

We assume that when a segment Si has at most lθ erasures,

the NR-decoder can decode it by checking the validity of

the up to 2lθ candidate solutions (based on the validity of

their corresponding words/phrases, grammar, etc.), and either

determines (independently) the correct solution with probabil-

ity p or makes no decision with probability 1 − p. And this

NR-decoding operation can be performed only once for each

segment.

Here lθ models the limit on time complexity (because the

decoder needs to check 2lθ solutions), and p models the proba-

bility of making an error-free decision. This is a simplification

of the practical NR-decoders shown in the last section that

make very high-confidence, although not totally error-free,

decisions. The model is suitable for compression algorithms

such as LZW coding with a fixed dictionary, Huffman coding,

etc., where each segment can be decompressed to a piece of

text. The greater l is, the better the model is.

B. Iteration with LDPC Decoder

The compressed text T is protected as information bits by

a systematic LDPC code. The LDPC code uses the peeling

decoder for BEC (where dc− 1 incoming messages of known

values at a check node determine the value of the outgoing

message on the remaining edge) to correct erasures. See the

decoding model in Fig. 3 (e). In each iteration, the LDPC

decoder runs one iteration of BP decoding, then the NR-

decoder tries to correct those l-information-bit segments that

contain at most lθ erasures (if those segments were never

decoded by the NR-decoder in any of the previous iterations).

Let ε0 < 1 be the BEC’s erasure rate. Let ε′t and εt be the

LDPC codeword’s erasure rate after the t-th iteration of the

LDPC decoder and the NR-decoder, respectively. Next, we

analyze the density evolution for regular (dv, dc) LDPC codes

of rate R = 1− dv

dc
.

Note that since the NR-decoder decodes only information

bits, for the LDPC decoder, the information bits and parity-

check bits will have different erasure rates during decoding.

Furthermore, information bits consist of l-bit segments, while

parity-check bits do not. For such an l-bit segment, if the

NR-decoder can decode it successfully when it has no more

than lθ erasures, let us call the segment lucky; otherwise, call

it unlucky. Lucky and unlucky segments will have different

erasure rates during decoding, too.

Every l-information-bit segment is lucky with probability

p, and unlucky with probability 1 − p. A lucky segment is

guaranteed to be decoded successfully by the NR-decoder

once the number of erasures in it becomes less than or equal

to lθ; and an unlucky segment can be considered as never

to be decoded by the NR-decoder (because such decoding

will not succeed). Since whether a segment is lucky or not

is independent of the party-check constraints and the LDPC-

decoder, for analysis we can consider it as an inherent property

of the segment (which exists even before the decoding begins).

C. Density Evolution Analysis

Define q0 = 1, qt �
εt
ε′t

and dt �
ε′t

εt−1

for t ≥ 1. Note that

decoding will end after t iterations if one of these conditions

occurs: (1) ε′t = 0, because all erasures are corrected by the

t-th iteration; (2) dt = 1, because the LDPC decoder corrects

no erasure in the t-th iteration, and nor will the NR-decoder

since the input codeword is identical to its previous output.

We now study density evolution before those boundary cases

occur.

For t = 1, 2, 3 · · · and k = 0, 1, · · · , l, let fk(t) denote the

probability that a lucky segment contains k erasures after t
iterations of decoding by the NR-decoder.

Lemma 5.

fk(1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

lθ
∑

i=0

(

l
i

)

(ε′1)
i(1− ε′1)

l−i if k = 0

0 if 1 ≤ k ≤ lθ
(

l
k

)

(ε′1)
k(1− ε′1)

l−k if lθ + 1 ≤ k ≤ l

Proof: Consider the LDPC-decoding and the NR-

decoding in the first iteration. Since the initial erasure rate

is ε0, the erasure rate after LDPC decoding will now be

ε′1 = q0ε0(1− (1− ε0)
dc−1)dv−1 where q0 = 1 by definition.

The probability that an l-information-bit segment contains

exactly i erasures is given by
(

l
i

)

(ε′1)
i(1 − ε′1)

l−i, which is

independent of whether the segment is lucky or unlucky. Thus

the probability that a lucky segment contains up to lθ erasures

is given by
∑lθ

i=0

(

l
i

)

(ε′1)
i(1− ε′1)

l−i. All such segments are

decoded by the NR-decoder successfully, while the remaining

segments are not. That leads to the conclusion.

Lemma 6. The erasure rate after the first iteration of NR-

decoding is

ε1 = ε0d1((1−R) +R(1− p)) + (
l

∑

k=lθ+1

k

l
fk(1))Rp

Proof: After NR-decoding, the erasure rate of a lucky

segment with k erasures is k
l
, and the erasure rate for

unlucky segments and parity-check bits is still ε′1. We have

d1 = ε′1/ε0. Hence the overall erasure rate after the 1st

iteration of NR-decoding is ε1 = ε0d1((1−R)+R(1− p))+
(
∑l

k=lθ+1
k
l
fk(1))Rp. (See Fig. 4 (b) for an illustration of

the computation tree for density evolution. For comparison,

we show the tree for classic BP decoding for BEC in Fig. 4

(a).)

Lemma 7. The erasure rate after the second iteration of

LDPC-decoding is

ε′2 = q0q1ε0(1− (1− ε1)
dc−1)dv−1
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.

Proof: We have q1 = ε1
ε′
1

. Since the NR-decoding of

the 1st iteration reduces the overall erasure probability by a

factor of q1 (from ε′1 to ε1), and the root variable node of

a computation tree is chosen uniformly at random from the

infinitely long and randomly constructed LDPC code, the root

node in the tree for the 2nd iteration of LDPC decoding now

has the erasure probability q1ε0. (See Fig. 4 (b).) Hence the

equation for the LDPC-decoder for the 2nd iteration will be

given by ε′2 = q0q1ε0(1− (1− ε1)
dc−1)dv−1. Note that LDPC

decoding is independent of NR-decoding because the parity-

check constraints are independent of the bits being lucky-

segment bits, unlucky-segment bits or parity-check bits. And

note that d2 =
ε′
2

ε1
is the probability that an erasure remains

as an erasure after the LDPC decoding. If d2 = 1, no change

was made by the LDPC-decoder; if d2 = 0, all erasures have

been corrected. In both cases, the decoding will end.

Lemma 8. For t ≥ 2,

fk(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

fk(t− 1) +
l
∑

i=lθ+1

lθ
∑

j=0

fi(t− 1)
(

i
j

)

(dt)
j(1− dt)

i−j

if k = 0

0 if 1 ≤ k ≤ lθ
l
∑

i=k

fi(t− 1)
(

i
k

)

(dt)
k(1− dt)

i−k if lθ + 1 ≤ k ≤ l

Proof: Now consider the second iteration of NR-

decoding. We only consider the case when 0 < d2 < 1. A

lucky segment has zero errors after the second iteration if

an only if either one of the two cases happen : a) that the

segment already has zero errors after the first iteration, or b)

the segment had lθ + 1 or more errors after the first iteration

and it has at most lθ erasures after second iteration of the

LDPC-decoding. Thus if k = 0,

fk(2) = fk(1) +
l

∑

i=lθ+1

lθ
∑

j=0

fi(1)

(

i

j

)

(d2)
j(1− d2)

i−j

A lucky segment cannot have k ≤ lθ erasures (with k ≥ 1)

after the second iteration of NR-decoding (because if so, it

would have corrected those erasures). So we have fk(2) = 0
for that case. Finally, a lucky segment has lθ + 1 ≤ k ≤ l
erasures if and only if it had k or more erasures after the first

iteration of NR-decoding and it has k erasures after the second

iteration of LDPC-decoding. Thus

fk(2) =
l

∑

i=k

fi(1)

(

i

k

)

(d2)
k(1− d2)

i−k if lθ + 1 ≤ k ≤ l

The remaining cases can be analyzed similarly. That leads

to the conclusion.

We now present the analytical formulas for the density

evolution of the iterative LDPC-NR decoding scheme. Its

proof follows the previous lemmas.

Theorem 9. For t ≥ 1,

εt = ((1−R) +R(1− p))ε0(
t
∏

i=1

dt) +Rp
l

∑

k=lθ+1

k

l
fk(t),

ε′t = (
t−1
∏

m=0

qm)ε0(1− (1− εt−1)
dc−1)dv−1.

Proof: The decoding performance for the 2nd iteration

of the LDPC-decoding has been analyzed in Lemma 7. The

erasure rate in unlucky-segment bits and parity-check bits

was decreased from ε′1 to ε′1d2 = ε0d1d2 by the LDPC-

decoding. Now the NR-decoder corrects those lucky segments

that had more than lθ erasures before the LDPC-decoding but

now has at most lθ erasures after the LDPC-decoding. So

ε2 = ε0d1d2((1−R) +R(1− p)) + (
l
∑

k=lθ+1

k
l
fk(2))Rp.

The analysis for the following iterations is similar to the 2nd

iteration. In general, since in the i-th iteration the NR-decoder

reduces the overall erasure rate by a factor of qi, the root

variable node in the computation tree for the t-th iteration of

LDPC decoding has the erasure probability (
∏t−1

i=0 qi)ε0. That

leads to the conclusion.

VN

CN CN

VN

CN CN

VN

CN CN

(a) 1st 

iteration

2nd

iteration

3rd

iteration

VN

CN CN

VN

CN CN

VN

CN CN

(b) 1st 

iteration

2nd

iteration

3rd

iteration

Fig. 4. (a) First three iterations of classic BP decoding (alone) for BEC. (b)
First three iterations of BP-decoding and NR decoding.

VI. UPPER BOUND TO ECC SIZES WITH NR

The previous analysis has been specifically for LDPC codes

with belief-propagation decoding algorithms. Let us now con-

sider more general ECCs and their capacity. The NR-decoders

for images and languages presented in Section III have a

common feature: they both have very low error probabilities

introduced by NR-decoding, namely, the corrections are made
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with high confidence by NR-decoders. That motivates us to

study the following theoretical model for error correction.

Let A = {0, 1, · · · , q−1} be an alphabet, where q ≥ 2. Let

C ⊆ An be a code of length n. Let r and t be integer parame-

ters with r+t ≤ n. Let the decoding process be an NR-decoder

followed by an ECC-decoder (similar to Fig. 3 (d)). Given a

noisy word y = (y1, y2, · · · , yn) ∈ An, assume that the NR-

decoder can determine the correct values of at least r symbols

with certainty, without introducing additional errors. (Note that

in practice, the errors corrected by the NR-decoder are only a

small portion of such bits (symbols with q = 2). Many more

such bits are non-errors, and the NR-decoder can determine

that they are error-free because they belong to highly likely

patterns, such as long and common phrases. Also note that in

general, the NR-decoder can decode both information bits and

parity-check bits.) Let P ⊆ {1, 2, · · · , n} denote the indexes

of such determined symbols (where |P | ≥ r), and without

loss of generality (WLOG), we may assume |P | = r for code

analysis (because having larger |P | only helps more). WLOG,

we may also assume that the symbols of y with indexes

in P are already correct symbols (because the NR-decoder

determines their values anyway). After the NR-decoding, the

ECC-decoder takes the pair (y, P ) as input, and decodes it

using maximum-likelihood (ML) decoding: the output is a

codeword x = (x1, x2, · · · , xn) ∈ C such that: (1) ∀ i ∈ P ,

xi = yi; (2) the Hamming distance dH(x,y) � |{i | 1 ≤ i ≤
n, xi �= yi}| = |{i | 1 ≤ i ≤ n, i /∈ P, xi �= yi}| is minimized.

∀ x,y ∈ An and P ⊆ {1, 2, · · · , n}, if xi = yi for every

i ∈ P , we say x =P y. We define St,P (x) � {(y, P ) | x =P

y, dH(x,y) ≤ t}. If ∀ x1,x2 ∈ C and P ⊆ {1, 2, · · · , n}
with |P | = r, we have St,P (x1)∩St,P (x2) = ∅, we call C an

(r, t)-ECC. An (r, t)-ECC is an error-correcting code that can

correct t Hamming errors when the NR-decoder determines the

values of any r symbols. It is an extension of t-error correcting

codes. We have the following sphere packing bound.

Theorem10. For an (r, t)-ECC C with code length n, alphabet

size q and r + t ≤ n, the code’s size

|C| ≤
qn

∑t
i=0

(

n−r
i

)

(q − 1)i
.

Proof: Define Pr � {P | P ⊆ {1, 2, · · · , n}, |P | =
r}, and define St,r(x) = ∪P∈Pr

St,P (x). It is not hard

to see |St,P (x)| =
∑t

i=0

(

n−|P |
i

)

(q − 1)i. Since ∀ P1 �=
P2, St,P1

(x) ∩ St,P2
(x) = ∅, we get |St,r(x)| =

(

n
r

)
∑t

i=0

(

n−r
i

)

(q − 1)i. We now show that C is an (r, t)-
ECC if and only if for any two codewords x1,x2 ∈ C, we

have St,r(x1) ∩ St,r(x2) = ∅: (1) If St,r(x1) ∩ St,r(x2) = ∅,

then for any P ∈ Pr, since St,P (x1) ⊆ St,r(x1) and

St,P (x2) ⊆ St,r(x2), we have St,P (x1) ∩ St,P (x2) = ∅. So

C is an (r, t)-ECC; (2) If St,r(x1) ∩ St,r(x2) �= ∅, then there

exists some P1, P2 ∈ Pr such that St,P1
(x1)∩St,P2

(x2) �= ∅;

and we must have P1 = P2 (otherwise the two sets are

disjoint). So C is not an (r, t)-ECC. So by the sphere-packing

bound, since there are totally qn
(

n
r

)

pairs of the form (x, P )

where x ∈ An and P ∈ Pr, we get |C| ≤
qn(nr)

|St,r(x)|
=

qn(nr)
(nr)

∑
t
i=0 (

n−r

i )(q−1)i
= qn

∑
t
i=0 (

n−r

i )(q−1)i
.

VII. CONCLUSIONS

This paper studies the discovery and utilization of NR in

data for error correction, including for languages and images.

It proposes non-iterative and iterative coding schemes that

combine NR-decoding with LDPC-decoding, and analyzes

their performance. A sphere-packing upper bound is also

shown for general ECCs that receive assistance from NR-

decoders.
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