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Abstract—This work studies the Stopping-Set Elimination
Problem, namely, given a stopping set, how to remove the fewest
erasures so that the remaining erasures can be decoded by
belief propagation in k iterations (including k = ∞). The NP-
hardness of the problem is proven. An approximation algorithm
is presented for k = 1. And efficient exact algorithms are
presented for general k when the stopping sets form trees.

I. INTRODUCTION

In this paper, we study a basic theoretical problem for LDPC

codes: when the erasures in a noisy LDPC codeword cannot be

corrected by the decoder, how to remove the fewest erasures so

that the remaining erasures become decodable? The problem

has several applications:

• Distributed Storage. Distributed file systems like HDFS

have been widely used in big data applications. Typically,

they store data in blocks, and ECCs are applied over

the blocks (where each block is seen as a codeword

symbol of the ECC). Binary LDPC codes are naturally an

attractive candidate for distributed storage, as they have

excellent code rates, good locality (e.g., a missing block

can be recovered by a local disk from a few neighboring

blocks), and excellent computational simplicity (only

XOR is used for decoding, since when each block has

t bits, the decoding can be seen as t binary LDPC codes

being decoded in parallel). Meanwhile, almost all big IT

companies store multiple copies of their data at different

locations. So when one site loses some blocks in an

LDPC code and cannot recover them by itself, it needs to

retrieve some lost blocks from other remote sites. Since

communication with remote sites is much more costly

than accessing local disks, it is desirable to minimize the

number of blocks retrieved from remote sites as long as

the remaining erasures become decodable.

• Satellite-to-Ground Communication with Feedback. Con-

sider satellite-to-ground communication, where data (e.g.,

big sensing images) are partitioned into packets (i.e.,

blocks), and LDPC codes are applied over the packets

(similar to the case for distributed storage). As the chan-

nel is noisy, some packets received by the ground may be

un-decodable, and the ground will request the satellite to

retransmit some of those lost packets. Since the satellite-

to-ground communication can be costly, it is desirable to

minimize the number of retransmitted packets.

Let us define the problem more specifically. Let the LDPC

code’s decoder be the following widely-used iterative belief-

propagation (BP) algorithm: in each iteration, use every parity-

check equation involving exactly one erasure to decode that

erasure; and repeat until every equation involves zero or at

least two erasures. If the decoding fails, then we are left with

a stopping set, which is a set of erasures such that every

parity-check equation involving any of them involves at least

two of them. If we represent the LDPC code by a bipartite

Tanner graph, then a stopping set is a subset of variable nodes

(representing erasures) such that a check node adjacent to any

of them is adjacent to at least two of them.

We illustrate the average sizes of Stopping Sets for dif-

ferent raw bit-erasure rates (RBERs) in Fig. 1. It is for an

(8192,7561) LDPC code of rate 0.923 and regular degrees

(dv = 3, dc = 39). (For RBERs near the code’s decoding

threshold, the uncorrectable bit-erasure rates (UBER) after

BP decoding is shown in Fig. 1 (a).) For RBERs in the full

range from 0 to 1, the average stopping-set sizes (namely,

average number of un-decodable erasures after BP-decoding)

are shown in Fig. 1 (b). It can be seen that the average

stopping-set size increases approximately linearly (from 0 to

8192) as RBER increases from 0 to 1.
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Fig. 1. Statistics of an (8192,7561) LDPC code. (a) UBER for different
RBERs near the code’s decoding threshold. (b) Average stopping-set size for
different RBERs.

The problem to study can now be defined formally as

follows. Let G = (V ∪ C,E) be a bipartite graph, where

V (representing erasures) is a subset of the variable nodes in

an LDPC code’s Tanner graph, C is a subset of the check

nodes in the same Tanner graph such that every node in C
is adjacent to at least one node in V , and E is the set of

edges in the Tanner graph with one endpoint in V and another
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endpoint in C. If every node in C has degree two or more,

then G is called a Stopping Graph and V is called a Stopping

Set. Now let k ≥ 1 be an integer parameter. If an iterative BP

algorithm (as introduced earlier) that runs on G can decode all

the variable nodes in V (where every variable node in V is an

erasure) within k iterations, then V is called a Decodable Set

(or simply decodable); otherwise, it is a Non-Decodable Set

(or simply non-decodable). (Here we introduce the parameter

k to make the problem more general, and to control not only

the decodability of erasures but also the time for decoding.)

Note that a Stopping Set must be a Non-Decodable Set, but

not vice versa. The problem we study, called Stopping-Set

Elimination (SSEk) Problem, is as follows.

Definition 1. Given a Stopping Graph G = (V ∪ C,E), how

to remove the minimum number of variable nodes from V
such that the remaining variable nodes can be decoded by BP

decoding within k iterations?

If the constraint on “k iterations” does not exist, we can see

k as ∞ and call it the SSE∞ Problem.

The rest of the paper is organized as follows. In Section II

and III, we prove the NP-hardness of the SSE∞ Problem and

the SSEk Problem for finite k, respectively. In Section IV, we

present an approximation algorithm for the latter problem. In

Section V, we present efficient algorithms that return optimal

solutions for the SSE Problem when the Stopping Sets form

tree structures. In Section VI, we present conclusions. Due to

space limitation, we skip some details in proofs and analysis.

Interested readers can refer to the full paper [3] for the details.

II. NP-HARDNESS OF SSE∞ PROBLEM

In this section, we prove that the SSE∞ Problem is NP-

hard. The proof has two steps: first, using the well-known

Set Cover Problem, we prove that a related covering problem

where nearly all elements are covered – which we call the

Pseudo Set Cover Problem – is NP-complete; then, we reduce

the latter problem to the SSE∞ Problem.

A. NP-completeness of Pseudo Set Cover Problem

Consider the well-known Set Cover Problem. Let

T = {t1, t2, · · · , tn} be a universe of n elements. Let

S1, S2, · · · , Sm be m subsets of T such that T =
⋃m

i=1
Si.

(Each Si is said to cover its elements.) Let k ≤ m be a

positive integer. The Set Cover Problem asks if there exist

k subsets Si1 , Si2 , · · · , Sik such that T =
⋃k

j=1
Sij . We now

define a Pseudo Set Cover Problem that differs only in its

question: it asks if there exist k subsets Si1 , Si2 , · · · , Sik such

that |
⋃k

j=1
Sij | ≥ |T | − 1.

Theorem 2. The Pseudo Set Cover Problem is NP-complete.

The Pseudo Set Cover Problem is closely related to the

classic Set Cover Problem. For proof of the above theorem,

please see [3].

B. NP-hardness of SSE∞ Problem

We now prove the NP-hardness of the SSE∞ Problem by

using a reduction from the Pseudo Set Cover Problem. Let us

begin with some constructions.

Consider the bipartite graph shown in Fig. 2 (a). It consists

of four variable nodes (si, tj , ui,j and wi,j) and three check

nodes (c1i,j , c2i,j and c3i,j). We denote it by Di,j to indicate

that it connects node si and node tj . We prove some basic

property it has on iterative BP decoding.
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Fig. 2. (a) A bipartite graph Di,j that connects variable nodes si and
tj . (b) A symbol for the graph Di,j . (c) An instance of the Pseudo Set
Cover Problem, where T = {t1, t2, t3, t4, t5} and S1 = {t1, t3, t4},
S2 = {t1, t3}, S3 = {t2, t4, t5}. (d) The corresponding graph GI . (e)
The corresponding graph GI with full details. (f) The corresponding graph
GII .

Lemma 3. In the graph Di,j that contains the variable nodes si,
tj , ui,j , wi,j as a Stopping Set, if the value of the variable node

si becomes known, the BP decoding algorithm will recover the

values of all the three remaining variable nodes.

On the other hand, if the value of the variable node tj
becomes known, the BP decoding algorithm will not recover

the value of any of the other three variable nodes.

Proof: If the value of si becomes known, by using the

check nodes c1i,j and c2i,j , the BP decoding algorithm will

recover the values of ui,j and wi,j , respectively. Then via the

check node c3i,j , it will recover the value of tj .

If the value of tj becomes known, since c3i,j has degree 3,

the BP algorithm will not recover any more values.

The graph Di,j will be viewed as a “gadget” that connects

node si with node tj . To simplify the presentation, in the

following, we often represent it by the symbol shown in Fig. 2

(b), where the “gate” gi,j represents the five nodes (c1i,j , c2i,j ,

c3i,j , ui,j , wi,j) and their incident edges. The “direction” of the
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gate gi,j indicates the “directed” property shown in the above

lemma: decoding si leads to decoding tj , but not vice versa.

Consider the Pseudo Set Cover Problem with input param-

eters T = {t1, t2, · · · , tn}, S1, S2, · · · , Sm and k ≤ m as

introduced earlier. To reduce it to the SSE∞ Problem, we

will map every instance of the Pseudo Set Cover Problem to

some instance of the SSE∞ Problem.

Let us start by building a bipartite graph GI . We start by

assigning m+n nodes: for every subset Si (for 1 ≤ i ≤ m) or

element tj (for 1 ≤ j ≤ n) in the Pseudo Set Cover Problem,

there is a corresponding variable node si or tj in GI . Then,

whenever the Pseudo Set Cover Problem has tj ∈ Si, we

connect nodes si and tj by the bipartite graph Di,j . The graph

obtained this way is GI . An example is shown below.

Example 4. Let the Pseudo Set Cover Problem be T =
{t1, t2, t3, t4, t5} and S1 = {t1, t3, t4}, S2 = {t1, t3}, S3 =
{t2, t4, t5}. (As k is irrelevant to the mapping, we do not specify

it.) It is illustrated in Fig. 2 (c), where there is an edge between

Si and tj if and only if tj ∈ Si. The corresponding graph GI

is shown in both Fig. 2 (d) and (e), where the symbol for each

Di,j is used in Fig. 2 (d), and the full details of GI are shown

in Fig. 2 (e). It is easy to see the correspondence between GI

and the Pseudo Set Cover Problem. �

We now create a bipartite graph GII as follows. Given graph

GI , we add m+ 1 additional check nodes c0, c1, c2, · · · , cm.

For 0 ≤ i ≤ m and 1 ≤ j ≤ n, add an edge between the

check node ci and the variable node tj . For 1 ≤ i ≤ m, add

an edge between the check node ci and the variable node si.
The graph obtained this way is GII . (For example, following

Example 4, GII is as shown in Fig. 2 (f).)

In the following, we consider only cases where n > 1. (The

case n = 1 is trivial.) It is then simple to see that in GII , the

degree of every check node is at least two. So it is a Stopping

Graph, namely, an instance of the SSE∞ Problem.

Lemma 5. If for the Pseudo Set Cover Problem, there exist k
subsets that cover at least n − 1 elements of T , then for the

corresponding graph GII , k variable nodes can be removed so

that the remaining variable nodes form a Decodable Set.

Proof: Suppose that Si1 , Si2 , · · · , Sik are k chosen sub-

sets that cover at least n − 1 elements of T . Let us remove

the corresponding k variable nodes si1 , si2 , · · · , sik from the

graph GII . Since removing a variable node is equivalent to

turning the node from an erasure to a known value, by the

“directed” property of Di,j proved earlier, we know that the

BP decoding algorithm will recover the values of at least

n − 1 variable nodes among t1, t2, · · · , tn. That is because

if an element tj is covered by some chosen subset Sir (where

1 ≤ r ≤ k), since the value of the variable node sir is now

known, via the “gadget” Dir,j , the BP decoding algorithm can

recover the value of tj .

We now show that the BP decoding algorithm can recover

the values of all n variable nodes t1, t2, · · · , tn. From the

above discussion, we know that at most one of them – say tx

– is not decoded yet. So the BP algorithm can use the check

node c0 (which has degree n) to recover the value of tx as

tx = ⊕1≤i≤n,i �=xti.
Since the values of t1, t2, · · · , tn are all known now, for

i = 1, 2, · · · ,m, the BP decoding algorithm can use the check

node ci to recover the value of si (if its value is not already

known). So all the variable nodes can recover their values.

Therefore, the remaining variable nodes form a Decodable Set.

When a set of variable nodes S ⊆ V is removed from a

Stopping Graph G = (V ∪C,E), if the remaining nodes of V
become decodable, we call S an Elimination Set of size |S|.

Lemma 6. If GII has an Elimination Set of size k ≤ m, then

GII has an Elimination Set of size k that is also a subset of

{s1, s2, · · · , sm}.

Proof: Let X = {x1, x2, · · · , xk} be an Elimination Set

of GII , where each xi is a variable node. Let us create a

set Y = {y1, y2, · · · , yk} ⊆ {s1, · · · , sm} as follows. For

i = 1, 2, · · · , k, do:

• If xi ∈ {s1, s2, · · · , sm}, let yi = xi.

• If xi is either ui′,j′ or wi′,j′ – namely, it is a variable

node in the “gadget” Di′,j′ (more specifically, gi′,j′ ) that

connects si′ and tj′ – let yi = si′ if si′ is not in Y yet,

and let yi be any node in {s1, s2, · · · , sm} that is not yet

in Y otherwise.

• If xi = tj for some 1 ≤ j ≤ n, let si′ be a node such

that there is a “gadget” Di′,j connecting si′ and tj . (Such

a node si′ must exist because in the Pseudo Set Cover

Problem, tj is covered by at least one subset.) If si′ is

not in Y yet, let yi = si′ ; otherwise, let yi be any node

in {s1, s2, · · · , sm} that is not yet in Y .

With the above construction, for any node xi in X , there

exists a node si′ in Y such that either si′ = xi, or si′ and xi

exist in the same “gadget” Di′,j for some j. By the “directed”

property of gadgets Di′,j , we see that when the values of

variable nodes in Y are known, the BP algorithm can decode

all the variable nodes in X; and since X is an Elimination

Set, the BP algorithm can consequently decode all the variable

nodes in GII . So Y is an Elimination Set of size k that is a

subset of {s1, s2, · · · , sm}.

Lemma 7. If GII has an Elimination Set of size k
{si1 , si2 , · · · , sik} ⊆ {s1, s2, · · · , sm}, then for the cor-

responding Pseudo Set Cover Problem, the k subsets

Si1 , Si2 , · · · , Sik cover at least n− 1 elements of T .

Proof: The proof is by contradiction. Suppose that

Si1 , Si2 , · · · , Sik cover at most n− 2 elements of T . Then in

GII , when the values of {si1 , si2 , · · · , sik} are known, the BP

algorithm can use the “gadgets” Di,j to decode at most n− 2
variable nodes among t1, t2, · · · , tn. Then the BP algorithm

gets stuck because it cannot use any check node to decode any

more variable node:

• For any check node ci (where 0 ≤ i ≤ m), at least two

adjacent nodes in {t1, t2, · · · , tn} are not decoded yet. So
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the BP algorithm cannot use ci to decode more variable

nodes.

• For any “gadget” Di,j that connects si and tj , if si /∈
{si1 , si2 , · · · , sik}, by the “directed” property of the

gadget, the BP algorithm cannot use it to decode si
whether the node tj has been decoded or not.

That means {si1 , si2 , · · · , sik} is not an Elimination Set,

which is a contradiction. That leads to the conclusion.

By combining the above two lemmas, we get:

Lemma 8. If GII has an Elimination Set of size k ≤ m, then

for the corresponding Pseudo Set Cover Problem, there exist k
subsets that cover at least n− 1 elements of T .

We now prove our main result here.

Theorem 9. The SSE∞ Problem is NP-hard.

Proof: The SSE∞ Problem is an optimization problem.

Let us consider its decision problem: given a Stopping Graph

G = (V ∪ C,E) and a positive integer k, does it have an

Elimination Set of size k? Let us call this decision problem

Psse. It is clear that Psse ∈ NP .

We have shown a mapping that maps every instance of

the Pseudo Set Cover Problem to an instance of Psse. The

mapping takes polynomial time. By combining Lemma 5 and

Lemma 8, we see that the answer to the Pseudo Set Cover

Problem is “yes” (namely, there exist k subsets that cover at

least n − 1 elements of T ) if and only if the answer to Psse

is “yes” (namely, GII has an Elimination Set of size k). So

the mapping is a polynomial-time reduction. By Theorem 2,

the Pseudo Set Cover Problem is NP-complete. So Psse is

NP-complete, which leads to the conclusion.

III. NP-HARDNESS OF SSEk PROBLEM FOR FINITE k

We now consider a new question: if k is finite (or even

a constant), does the SSEk problem become polynomial-

time solvable? A positive answer seems possible at first sight,

because having a small k puts more localized constraints on

solutions. For example, if k = 1, to correct all remaining

erasures in just one iteration, in the subgraph induced by the

remaining variable nodes and their adjacent check nodes, every

variable node needs to be adjacent to at least one check node

of degree one. That is a very local property for the bipartite

graph and can possibly make the problem simpler. However,

our study below will give a negative answer. We will prove

that even the SSE1 Problem is NP-hard.

There have been a number of works on the node-deletion

problem [1], [2], [4], [6], which can be generally stated as

follows: find the minimum number of vertices to delete from

a given graph so that the remaining subgraph satisfies a

property π. They focus on properties that are hereditary on

induced subgraphs, namely, whenever a graph G satisfies π, by

deleting nodes from G, the remaining subgraphs also satisfies

π. However, the SSEk Problem is not hereditary, because

removing a check node can turn a decodable graph (the desired

property) into an un-decodable one.

We now prove the NP-hardness of the SSE1 Problem.

We use a reduction from the NP-complete Not-all-equal SAT

Problem [5], defined as follows: let x1, x2, · · · , xn be n
Boolean variables. A literal is either xi or x̄i (namely, the

NOT of xi) for some i ∈ {1, 2, · · · , n}. Let a clause be a

set of three literals. Let S = {C1, C2, · · · , Ck} be a set of k
clauses. The question is: Is there a truth assignment to the n
Boolean variables such that for every clause in S, the three

literals in the clause are neither all true nor all false (namely,

every clause has at least one true literal and also at least one

false literal)? (If the answer is “yes”, the problem is called

“satisfiable”.)

By convention, “true” is also represented by 1, and “false”

is also represented by 0. We give an example of the Not-all-

equal SAT Problem.

Example 10. Consider the following instance of the Not-all-

equal SAT Problem. Let n = 4 and k = 5. Let the

Boolean variables be x1, x2, x3, x4, and let the set of clauses

be C1 = (x1, x̄2, x3), C2 = (x̄1, x̄2, x4), C3 = (x2, x3, x4),
C4 = (x1, x̄3, x̄4), C5 = (x̄1, x2, x3). The above instance is

satisfiable because we can let the truth assignment be x1 =
1, x2 = 1, x3 = 0, x4 = 1, x5 = 1. Correspondingly, the

clauses become C1 = (1, 0, 0), C2 = (0, 0, 1), C3 = (1, 0, 1),
C4 = (1, 1, 0), C5 = (0, 1, 0). None of the clauses is (1, 1, 1)
(namely, all true) or (0, 0, 0) (namely, all false). �

A. Reducing Not-all-equal SAT Problem to SSE1 Problem

In this subsection, we construct a reduction that maps every

instance of the Not-all-equal SAT Problem to an instance of

the SSE1 Problem.

For every Boolean variable xi of the Not-all-equal SAT

Problem (for 1 ≤ i ≤ n), we create a graph as shown in Fig. 3

(a), which will be called the “gadget Vi”. It is a bipartite graph

of three variable nodes and three check nodes. (Here nodes X1
i

and X0
i represent the true and false values of xi, respectively.)

For every clause Cj of the Not-all-equal Problem (for 1 ≤
j ≤ k), we create two graphs as shown in Fig. 3 (b), which

will be called gadgets U1
j and U2

j , respectively. (Here for t =
1, 2, 3, nodes At

j and Bt
j represent the true and false values

of the t-th literal in clause Cj , respectively.) We then connect

them into one larger gadget Wj as shown in Fig. 3 (c), where

for t = 1, 2, 3, two paths are used to connect the nodes At
j

and Bt
j . (For example, the two paths between A1

j and B1
j have

nodes d1j , d2j and the four check nodes by them.)

In the final graph corresponding to the instance, the gadget

Vi will be connected to the rest of the graph only through

nodes X1
i and X2

i . So to simplify the presentation, we

sometimes represent Vi by the symbol in Fig. 3 (d), where the

two “interface nodes” X1
i , X2

i are shown and the remaining

details are hidden. Also in the final graph, the gadget Wj will

be connected to the rest of the graph only through nodes A1
j ,

A2
j , A3

j , B1
j , B2

j , B3
j ; so we sometimes represent it by the

symbol in Fig. 3 (e).

We now connect the gadgets for clauses to the gadgets

for Boolean variables. Consider a clause Cj , and assume its
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Fig. 3. (a) The gadget corresponding to a Boolean variable xi, for
i = 1, 2, · · · , n. (b) Two gadgets corresponding to a clause Cj , for
j = 1, 2, · · · , k. (c) The connected gadget corresponding to a clause Cj ,
for j = 1, 2, · · · , k. (d) Symbol for Vi. (e) Symbol for Wj . (f) Connect
clause gadget to Boolean variable gadget: case one. (g) Connect clause
gadget to Boolean variable gadget: case two. (h) An example of connecting
a clause gadget to variable gadgets. (i) Simplified representation of the graph
in (h). (j) The graph Gsse corresponding to the Not-all-equal Problem where
n = 4, k = 2, C1 = (x1, x3, x̄4), C2 = (x1, x̄2, x̄3), where gadgets are
represented by symbols. (k) A Stopping Tree G = (V ∪ C, E). (l) Its BFS
(Breadth-First Search) tree GBFS .

literals are Cj = (l1, l2, l3). For t = 1, 2, 3, if lt = xi for

some 1 ≤ i ≤ n, we connect At
j to X1

i and connect Bt
j to

X0
i (through some intermediate nodes) as shown in Fig. 3 (f).

Otherwise lt = x̄i for some 1 ≤ i ≤ n, and we connect At
j to

X0
i and connect Bt

j to X1
i as shown in Fig. 3 (g).

Example 11. Assume that a clause is Cj = (l1, l2, l3) =
(x1, x3, x̄4). Its gadget Wj is connected to the gadgets V1, V3,

V4 as in Fig. 3 (h).

To simplify the presentation of the graph, we represent the

connection between a node At
j (or Bt

j) and a node x1
i (or x0

i ) by

a rectangle that is generally denoted by the “H bar”. Then the

graph in Fig. 3 (h) is simplified as the presentation in Fig. 3 (i),

which shows the connections more clearly. However, it should

be noted that each At
j , Bt

j , x1
i or x0

i is connected to an H bar

via two edges, not one. �

By now, we have constructed the whole graph that corre-

sponds to an instance of the Not-all-equal Problem. The graph

will be denoted by Gsse. Let us see an example.

Example 12. For the Not-all-equal Problem, let n = 4 and k =
2. Let the two clauses be C1 = (x1, x3, x̄4), C2 = (x1, x̄2, x̄3).
Then the corresponding graph Gsse is shown in Fig. 3 (j), where

its gadgets are represented by symbols for clarity. �

It is easy to see that Gsse is a bipartite graph, where every

check node has degree more than one. (Specifically, every

check node has degree two.) So Gsse is a Stopping Graph.

The subsequent analysis will prove that the Not-all-equal

SAT Problem is satisfiable if and only if Gsse has an Elimi-

nation Set of size n+3k such that after its nodes are removed,

the BP algorithm can decode the remaining variable nodes in

just one iteration.

B. Properties of Reduction

The mapping from any instance of the Not-all-equal SAT

Problem to a graph Gsse has been shown. We now analyze

its properties. Due to space limitation, we omit a number of

proofs here. For detailed proofs, please see [3].

Let the bipartite graph Gsse be Gsse = (Vsse∪Csse, Esse),
where Vsse is the set of variable nodes, Csse is the set of

check nodes, and Esse is the set of edges. We now define the

concepts of Interface Nodes, One-Iteration Elimination Set and

Canonical Elimination Set.

Definition 13. Let Isse � {Xj
i | 1 ≤ i ≤ n, 0 ≤ j ≤ 1} ∪

{Aj
i | 1 ≤ i ≤ k, 1 ≤ j ≤ 3}∪{Bj

i | 1 ≤ i ≤ k, 1 ≤ j ≤ 3} be

a subset of variable nodes in Gsse. Every node in Isse is called

an “Interface Node.” (As an example, the interface nodes are

shown as circles in Fig. 3 (j).)

Definition 14. Let T ⊆ Vsse be a set of variable nodes in Gsse.

If after removing T from Gsse, the BP algorithm can decode

the remaining variable nodes in one iteration, then T is called a

“One-Iteration Elimination Set.”
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If T is a one-iteration elimination set and T ⊆ Isse, then T
is called a “Canonical Elimination Set.”

Lemma 15. If Gsse has a One-Iteration Elimination Set of α
nodes, then Gsse also has a Canonical Elimination Set of at

most α nodes.

Some properties of Canonical Elimination Sets are shown

in the next lemma. We first define “endpoints of an H bar.”

Definition 16. Let u be any node in {At
j | 1 ≤ j ≤ k, 1 ≤ t ≤

3} ∪ {Bt
j | 1 ≤ j ≤ k, 1 ≤ t ≤ 3}, and let v be any node in

{X1
i | 1 ≤ i ≤ n}∪{X0

i | 1 ≤ i ≤ n}. If u and v are connected

by an H bar, then they are called the two endpoints of that H
bar.

Example 17. In Fig. 3 (f), the endpoints of H bars are (At
j , X

1
i )

and (Bt
j , X

0
i ). In In Fig. 3 (g), such endpoint pairs are (At

j , X
0
i )

and (Bt
j , X

1
i ). �

Lemma 18. For the graph Gsse, a Canonical Elimination Set F
has the following properties: (1) Property 1: For i = 1, · · · , n,

either X1
i ∈ F or X0

i ∈ F ; (2) Property 2: For j = 1, 2, · · · , k
and t = 1, 2, 3, either At

j ∈ F or Bt
j ∈ F ; (3) Prop-

erty 3: For j = 1, 2, · · · , k, |F ∩ {A1
j , A

2
j , A

3
j}| ≥ 1 and

|F ∩ {B1
j , B

2
j , B

3
j }| ≥ 1; (4) Property 4: If u and v are the

two endpoints of an H bar, then either u ∈ F or v ∈ F .

Corollary 19. If F is a One-Iteration Elimination Set of Gsse,

then |F | ≥ n+ 3k.

Definition 20. Let F be a Canonical Elimination Set of Gsse.

If |F | = n+ 3k, then F is called an “Ideal Elimination Set” of

Gsse. (Here “Ideal” means “of minimum possible size.” Note

that an Ideal Eliminate Set may or may not exist for Gsse.)

The next lemma easily follows from Lemma 18.

Lemma 21. An Ideal Elimination Set F of Gsse has these

properties: (1) Property 1: For i = 1, 2, · · · , n, either X1
i or X0

i

is in F , but not both; (2) Property 2: For j = 1, 2, · · · , k and

t = 1, 2, 3, either At
j or Bt

j is in F , but not both; (3) Property 3:

For j = 1, 2, · · · , k, in the set {A1
j , A

2
j , A

3
j}, at least one node

is in F , and at least one node is not in F . The same is true for

the set {B1
j , B

2
j , B

3
j }; (4) Property 4: If u and v are the two

endpoints of an H bar, then either u or v is in F , but not both.

Given an Ideal Elimination Set of Gsse, we can construct a

solution to the Not-all-equal SAT Problem as follows.

Definition 22. Let F be an Ideal Elimination Set of Gsse.

A corresponding solution Sol(F ) for the Not-all-equal SAT

Problem is constructed as follows: ∀1 ≤ i ≤ n, the Boolean

variable xi = 1 (namely, xi is true) if and only if X1
i ∈ F .

Clearly, in the above solution Sol(F ), a Boolean variable

xi = 0 (namely, xi is false) if and only if X0
i ∈ F .

Lemma 23. Let F be an Ideal Elimination Set of Gsse, and let

Sol(F ) be its corresponding solution to the Not-all-equal SAT

Problem. Then for 1 ≤ j ≤ k and 1 ≤ t ≤ 3, the t-th literal in

the clause Cj is “true” if and only if At
j /∈ F .

Lemma 24. If F is an Ideal Elimination Set of Gsse, then

Sol(F ) is a satisfying solution to the Not-all-equal SAT Prob-

lem.

The above lemma is useful for the scenario where Gsse

has a One-Iteration Elimination Set of n + 3k nodes. We

now consider another possible scenario: the Not-all-equal SAT

Problem is satisfiable.

Given a satisfying solution to the Not-all-equal SAT Prob-

lem, we can construct an Ideal Elimination Set of Gsse. We

first define the corresponding set.

Definition 25. Let π be a satisfying solution to the Not-all-

equal SAT Problem; that is, with the solution π, every clause

has at least one true literal and at least one false literal. A

corresponding set of nodes, F(π), in Gsse is constructed as

follows:

• For i = 1, 2, · · · , n, if xi = 1 in the solution π, then

X1
i ∈ F(π) and X0

i /∈ F(π); otherwise, X1
i /∈ F(π) and

X0
i ∈ F(π).

• For j = 1, 2, · · · , k and t = 1, 2, 3, if the t-th literal of

clause Cj is true given the solution π, then At
j /∈ F(π)

and Bt
j ∈ F(π); otherwise, At

j ∈ F(π) and Bt
j /∈ F(π).

Lemma 26. Let π be a satisfying solution to the Not-all-equal

SAT Problem. Then F(π) is an Ideal Elimination Set of Gsse.

Theorem 27. The SSE1 Problem is NP-hard.

Sketches of proof: By Lemmas 15, 24, 26 and Corollary 19,

the Not-all-equal SAT Problem is satisfiable if and only if the

corresponding SSE1 Problem has a one-iteration elimination

set of size n+ 3k. �

IV. APPROXIMATION ALGORITHM FOR SSE1 PROBLEM

In this section, we present an approximation algorithm for

the SSE1 problem, for Stopping Graphs whose degrees of

variable nodes and check nodes are upper bounded by dv
and dc, respectively. Its approximation ratio is dv(dc − 1).
(Clearly, the same result also applies to regular (dv, dc)
LDPC codes and irregular codes with the same constraint on

maximum degrees.) Note that the optimization objective is to

minimize the size of the elimination set (namely, the number

of removed variable nodes). So the approximation ratio means

the maximum ratio of the size of an elimination set produced

by the approximation algorithm to the size of an optimal (i.e.,

minimum) elimination set.

Definition 28. In the Stopping Graph G = (V ∪ C,E), ∀ v ∈
V , define its “variable-node neighborhood” as Λ(v) � {u ∈
V − {v} | ∃ c ∈ C such that (u, c) ∈ E and (v, c) ∈ E}. That
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is, every variable node in Λ(v) shares a common neighboring

check node with v.

The algorithm will assign three colors to variable nodes:

• Initially, every variable node is of the color white. It

means that this variable node cannot be decoded by one

iteration of BP-decoding yet.

• As the algorithm proceeds, if a variable node’s color

turns black, it means the algorithm has included it in the

Elimination Set (namely, the algorithm has removed it).

• As the algorithm proceeds, if a variable node’s color turns

gray, it means the variable node is not yet removed, but

it will be decodable after one iteration of BP decoding.

The algorithm works as follows: (1) as initialization, make

every variable node white; (2) choose an arbitrary white

variable node v. Let Uv denote the set of variable nodes in

Λ(v) that are currently white or gray; turn the colors of the

nodes in Uv to black, and turn the color of v to gray. For

every check node c that is connected to at least one variable

node in Uv , check if exactly one of c’s neighboring variable

node is white and all c’s other neighboring variable nodes are

black; if so, turn that neighboring variable node’s color from

white to gray. (3) repeat the previous step until all variable

nodes are either black or gray. Then returns the set of black

variable nodes as the Elimination Set. The algorithm can be

shown to have time complexity O(d2vd
2
c |V |).

We now analyze the approximation ratio of the algorithm.

Say that the algorithm uses totally t iterations to identify

a sequence of t white variable nodes v̂1, v̂2, · · · , v̂t in the

Stopping Graph G = (V ∪ C,E), and turns the variable

nodes in Uv̂1
, Uv̂2

, · · · , Uv̂t
black. Let us define a sequence

of subgraphs G0, G1, · · · , Gt accordingly.

Definition 29. Let G0 = G. For i = 1, 2, · · · , t, let Gi be

obtained from Gi−1 by removing the nodes in Uv̂i
∪ {v̂i} ∪

{check nodes adjacent to v̂i} and their incident edges.

Note that for i = 1, 2, · · · , t, in the i-th iteration, the

algorithm removes only the variable nodes in Uv̂i
(namely,

turning them black) from the subgraph Gi−1, not v̂i or its

adjacent check nodes. (It turns v̂i to gray.) However, once Uv̂i

is removed, all the nodes in Λ(v̂i) are removed, so v̂i and

its adjacent check nodes become disconnected from the rest

of the graph (which is Gi). Therefore it becomes sufficient

to consider the SSE1 Problem for Gi in the next iteration,

and it can be seen that “v̂i+1, Uv̂i+1
, {check nodes adjacent to

v̂i+1}, v̂i+2, Uv̂i+2
, {check nodes adjacent to v̂i+2}, · · · , v̂t,

Uv̂t
, {check nodes adjacent to v̂t}” are all nodes in Gi.

Lemma 30. For i = 0, 1, · · · , t − 1, every one-iteration

elimination set for Gi contains at least one variable node in

Uv̂i+1
∪ {v̂i+1}.

Lemma 31. For i = 0, 1, · · · , t, let αi denote the minimum size

of a one-iteration elimination set for Gi. Then αi ≥ t− i.

Theorem 32. Let dv and dc denote the maximum degrees of

variable nodes and check nodes, respectively, in the Stopping

Graph G = (V ∪ C,E). Then the above algorithm has an

approximation ratio of dv(dc − 1).

Proof: By setting i = 0 in Lemma 31, we get α0 ≥ t,
namely, any one-iteration elimination set for G removes at

least t variable nodes. The algorithm removes the nodes in

Uv̂1
∪Uv̂2

∪· · ·∪Uv̂t
, whose size is |

⋃t

i=1
Uv̂i

| =
∑t

i=1
|Uv̂i

| ≤∑t

i=1
|Λ(v̂i)| ≤ t · dv(dc − 1). So the approximation ratio is

at most dv(dc − 1).

V. ALGORITHM FOR SSEk AND SSE∞ PROBLEMS

In this section, we present an algorithms for the SSEk

Problem for general k ≥ 1, including k = ∞, when the

Stopping Graph is a tree (or a forest). The algorithm outputs

an optimal solution and has linear time complexity.

The Stopping Graph G = (V ∪ C,E) can be a tree,

especially when the RBER is low. In this case, we call G
a Stopping Tree. Note that if G is a forest, the SSEk Problem

can be solved for each of its tree components independently.

Given a Stopping Tree G = (V ∪ C,E), we can pick an

arbitrary variable node v ∈ V as the root, run Breadth-First

Search (BFS) on G starting with v, and label the nodes of

G by v1, v2, · · · , v|V |+|C| based on their order of discovery

in the BFS. (Note that the root node v is labelled by v1, and

siblings nodes in the BFS tree always have consecutive labels.)

We denote the resulting BFS tree by GBFS .

For any non-root node v in GBFS , let π(v) denote its parent.

Let Gsub denote the subtree of GBFS obtained this way: if

we remove the subtree rooted at π(v|V |+|C|) from GBFS , the

remaining subgraph is Gsub.

Example 33. A Stopping Tree and its BFS tree are shown in

Fig. 3 (k) and (l), respectively. (Note that the node labels v1,

v2, · · · , v17 in Fig. 3 (k) are not known a priori; instead, they

are obtained after we run BFS on the graph with v1 as its root.)

Here v|V |+|C| = v17, π(v17) = v11, and Gsub is the subtree in

the dashed circle in Fig. 3 (l). �

The algorithm first runs BFS on G to get the tree GBFS

that labels nodes by v1, v2, · · · , v|V |+|C|, where v1 is the root.

Then it processes the nodes in the reverse order of their labels,

and keeps reducing the SSEk Problem – actually, a more

general form of the SSEk Problem, which shall be called the

gSSEk Problem – to smaller and smaller subtrees. Let us now

define this gSSEk Problem.

Definition 34. [gSSEk Problem] Let G = (V ∪ C,E) be

a Stopping Graph. and let k be a non-negative integer. Ev-

ery variable node v ∈ V is associated with two parameters

δ(v) ∈ {1, 2, · · · , k,∞} and ω(v) ∈ {0, 1, · · · , k,∞} sat-

isfying the condition that either δ(v) = ∞ or ω(v) = ∞,

but not both; and when the BP decoder runs on G, v’s value

can be recovered (namely, v can become a non-erasure) by the

end of the δ(v)-th iteration automatically (namely, without any

help from neighboring check nodes). Then, how to remove the
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minimum number of variable nodes from V such that for every

remaining variable node v with ω(v) ≤ k, it can be corrected by

the BP decoder in no more than ω(v) iterations? (By default, if

ω(v) = 0, v has to be removed from V because the BP decoder

starts with the 1st iteration.)

A solution to the gSSEk Problem (namely, the set of

removed nodes) is called a g-Elimination Set. We see that

if δ(v) = ∞ and ω(v) = k for every v ∈ V , then the gSSEk

Problem is identical to the SSEk Problem.

In GBFS , let τ ∈ {1, 2, · · · , |V |+|C|} denote the minimum

integer such that vτ either is a sibling of v|V |+|C| or is v|V |+|C|

itself. (So vτ , vτ+1, · · · , v|V |+|C| are siblings.) Define P �

{i | τ ≤ i ≤ |V | + |C|, ω(vi) ≤ k} and Q � {i | τ ≤
i ≤ |V | + |C|, δ(vi) ≤ k}. Since ∀ v ∈ V , either δ(v) or

ω(v) is ∞ but not both, P and Q form a partition of the set

{τ, τ + 1, · · · , |V |+ |C|}.

By convention, for the empty set ∅, we say maxi∈∅ δ(vi) =
maxi∈∅ ω(vi) = 0. We first make some observations.

Lemma 35. Suppose maxi∈P ω(vi) > maxi∈Q δ(vi). Let i∗

be an integer in P such that ω(vi∗) = maxi∈P ω(vi). Then

there exists a minimum-sized g-Elimination Set for GBFS that

includes the nodes in {vi|i ∈ P, i = i∗} but not vi∗ .

Lemma 36. Suppose maxi∈P ω(vi) ≤ maxi∈Q δ(vi). Then

there exists a minimum-sized g-Elimination Set for GBFS that

contains all the nodes in {vi|i ∈ P}.

The next two lemmas show how to reduce the gSSE
Problem from GBFS to its subtree Gsub. In some cases,

in the derived gSSE Problem for Gsub, the values of

δ(π(π(v|V |+|C|))) and ω(π(π(v|V |+|C|))) in Gsub may be

different from their original values in GBFS ; and in such

cases, to avoid confusion, we will denote the tree Gsub by

Ĝsub.

Lemma 37. Suppose maxi∈P ω(vi) ≤ maxi∈Q δ(vi). Con-

sider five cases:

1) Case 1: If |Q| > 0 and maxi∈Q δ(vi) = k, let S be a

minimum-sized g-Elimination Set for Gsub.

2) Case 2: If |Q| > 0, maxi∈Q δ(vi) < k and

δ(π(π(v|V |+|C|))) ≤ k, let S be a minimum-sized g-

Elimination Set for Ĝsub where δ(π(π(v|V |+|C|))) is

changed to min{δ(π(π(v|V |+|C|))),maxi∈Q δ(vi) + 1}.

3) Case 3: If |Q| > 0 and ω(π(π(v|V |+|C|))) ≤
maxi∈Q δ(vi) < k, let S be a minimum-sized g-

Elimination Set for Gsub.

4) Case 4: If |Q| > 0 and maxi∈Q δ(vi) <
ω(π(π(v|V |+|C|))) ≤ k, let S be a minimum-sized g-

Elimination Set for Ĝsub where δ(π(π(v|V |+|C|))) is

changed to maxi∈Q δ(vi) + 1 and ω(π(π(v|V |+|C|))) is

changed to ∞.

5) Case 5: If |Q| = 0, there are two sub-cases: (1)

if ω(π(π(v|V |+|C|))) = 0, let S be a minimum-

sized g-Elimination Set for Gsub; (2) otherwise,

let S be a minimum-sized g-Elimination Set for

Ĝsub where δ(π(π(v|V |+|C|))) is changed to 1 and

ω(π(π(v|V |+|C|))) is changed to ∞.

Then S ∪{vi|i ∈ P} is a minimum-sized g-Elimination Set for

GBFS .

Lemma 38. Suppose maxi∈P ω(vi) > maxi∈Q δ(vi). Let i∗

be an integer in P such that ω(vi∗) = maxi∈P ω(vi). Consider

two cases:

1) Case 1: If maxi∈P ω(vi) > δ(π(π(v|V |+|C|))), let S be

any minimum-sized g-Elimination Set for Gsub.

2) Case 2: If maxi∈P ω(vi) ≤ δ(π(π(v|V |+|C|))),
let S be any minimum-sized g-Elimination Set

for Ĝsub where δ(π(π(v|V |+|C|))) is changed

to ∞ and ω(π(π(v|V |+|C|))) is changed to

min{ω(π(π(v|V |+|C|))),maxi∈P ω(vi)− 1}.

Then S ∪{vi|i ∈ P, i = i∗} is a minimum-sized g-Elimination

Set for GBFS .

We can design an algorithm for SSEk as follows: (1) run

BFS on G to get GBFS and as initialization, let ω(v) = k
and δ(v) = ∞ for every v ∈ V ; (2) use Lemma 37 and 38

repeatedly to reduce the graph in the gSSE Problem from

GBFS to its subtree Gsub (or Ĝsub), and then to smaller and

smaller subtrees in the same way, until the subtree contains

only the root node v1; during this reduction process, more and

more nodes (namely either {vi|i ∈ P} in Lemma 37 or {vi|i ∈
P, i = i∗} in Lemma 38) are included in the Elimination

Set; (3) in the last step, when the subtree contains only v1,

include v1 in the Elimination Set if and only if ω(v1) ≤ k
at that moment. The above algorithm can be implemented by

processing the nodes in the reverse order of their labels – from

v|V |+|C| back to v1 – and has time complexity O(|V |+ |C|).
Due to space constraints, we omit its pseudo code here. We can

see that it returns an optimal (i.e., minimum-sized) k-iteration

Elimination Set of G = (V ∪ C,E).
For the special case of k = ∞, the algorithm can be

simplified: for every check node, include all but one of its

children in the Elimination Set S; also include v1 in S. For

its details, please see [3].
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