Diagnostic Test Generation that Addresses Diagnostic Holes

Irith Pomeranz

Abstract—A diagnostic test generation procedure targets fault pairs in a set of target faults with the goal of distinguishing all the fault pairs. When a fault pair cannot be distinguished, it prevents the diagnostic test set from providing information about the faults, and consequently, about defects whose diagnosis would have benefited from a diagnostic test for the indistinguishable fault pair. This is referred to in this paper as a diagnostic hole. The paper observes that it is possible to address diagnostic holes by targeting different but related fault pairs, possibly from a different fault model. As an example, the paper considers the case where diagnostic test generation is carried out for single stuck-at faults, and related bridging faults are used for addressing diagnostic holes. Considering fault detection, an undetectable single stuck-at fault implies that certain related bridging faults are undetectable. The paper observes that, even if a pair of single stuck-at faults is indistinguishable, a related pair of bridging faults may be distinguishable. Based on this observation, diagnostic tests for pairs of bridging faults are added to a diagnostic test set when the related single stuck-at faults are indistinguishable. Experimental results of defect diagnosis for defects that do not involve bridging faults demonstrate the importance of eliminating diagnostic holes.

Index Terms— Bridging faults, defect diagnosis, diagnostic test generation, set of candidate faults, stuck-at faults.

I. INTRODUCTION

Defect diagnosis is important as part of a yield improvement process for providing information about defects that occur in faulty circuits. A defect diagnosis procedure computes a set of candidate faults that are likely to be present in the faulty circuit given the output response of the circuit to a test set [1]. In many cases, a fault detection test set provides sufficient fail data for a defect diagnosis procedure to produce a small and accurate set of candidate faults.

When a fault detection test set is not sufficient for defect diagnosis, a diagnostic test set can be used. A diagnostic test set is produced by a diagnostic test generation procedure [1]-[21]. Similar to test generation for fault detection, diagnostic test generation targets a set of faults F. In contrast to test generation for fault detection, where the goal is to detect every fault in F, the goal of diagnostic test generation is to distinguish every pair of faults in F. A pair of faults (f_i, f_j) is distinguished by a test t if the faults produce different output responses to t. In this case, a defect diagnosis procedure can compare the responses of f_i and f_j with the response of the faulty circuit, and decide which one of the faults is more likely to be present in the circuit. If a pair of faults (f_i, f_j) is not distinguished, the faults produce the same output response to

Irith Pomeranz is with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomeranz@ecn.purdue.edu).

This work was supported in part by NSF grant CCF-1714147

every test. In this case, the defect diagnosis procedure is unable to decide which one of the faults is more likely to be present in a faulty circuit. Both faults are either included or excluded together from the set of candidate faults.

Two approaches exist for diagnostic test generation. The first approach generates a diagnostic test set that is independent of the faulty circuits that need to be diagnosed. In this case, F is the set of all the target faults from a selected fault model. Typically, the target faults are single stuck-at or transition faults since the numbers of faults for these fault models are such that it is practical to consider all the faults. The diagnostic test generation procedure attempts to distinguish all the fault pairs in F. Examples of this approach are the procedures described in [1]-[6].

The second approach applies a diagnostic test generation procedure only after defect diagnosis has already been applied to faulty circuits based on a fault detection test set. In this case, the goal of diagnostic test generation is to address specific faulty circuits for which the sets of candidate faults are large. Let C be a large set of candidate faults that was obtained for a faulty circuit. Using F = C, the diagnostic test generation procedure targets fault pairs from C. With a diagnostic test set that distinguishes fault pairs from C, the faulty circuit produces additional fail data that is relevant to the candidate faults in C. The defect diagnosis procedure can use this additional information for narrowing down the set of candidate faults. Examples of this approach are the procedures described in [7], [18], [20] and [21].

The second approach may target faults from different fault models that appear together in a set of candidate faults. For example, a large set of candidate faults C may consist of stuckat, stuck-open and bridging faults. In this case, diagnostic test generation is carried out for mixed pairs of faults from C. Only one fault model is typically used for the first approach because of the computational effort of diagnostic test generation for all the fault pairs in F, and the number of tests required for a diagnostic test set.

With both approaches, the presence of indistinguishable fault pairs in F prevents the diagnostic test set from providing information about the behavior of the faults. This affects the ability to diagnose defects whose diagnosis would have benefited from diagnostic tests for the indistinguishable fault pairs. This situation is referred to in this paper as a diagnostic hole. To address diagnostic holes, the paper makes the following new observation. As an example, the discussion focuses on the set of all the single stuck-at faults as the main target of diagnostic test generation under the first approach, with bridging faults being used for addressing diagnostic holes. However, different fault models can be considered in a similar

way under the first or second approach to diagnostic test generation.

Considering fault detection, a single stuck-at fault being undetectable implies that certain bridging faults, whose detection conditions include the detection of the single stuck-at fault, are also undetectable. Such a bridging fault is referred to as related to the stuck-at fault. However, if a pair of single stuck-at faults is indistinguishable, the pair of related bridging faults may be distinguishable. A test that distinguishes the pair of related bridging faults, when applied to a faulty circuit, provides additional information that is otherwise missing because of the indistinguishable pair of stuck-at faults. This allows diagnostic holes that are created by indistinguishable pairs of single stuck-at faults to be addressed by using diagnostic tests for pairs of related bridging faults. The bridging faults do not have to be realistic. By allowing arbitrary related bridging faults to be used, the procedure has more flexibility to generate additional diagnostic tests and improve the quality of defect diagnosis.

While a test hole is caused by missing tests for fault detection, a diagnostic hole is caused by missing diagnostic tests. The observation above indicates that addressing diagnostic holes can be done by distinguishing pairs of related faults from different fault models.

Motivated by this discussion, the paper suggests a new approach to diagnostic test generation. In this new approach, diagnostic test generation is carried out for two sets of faults, as follows.

- (1) Diagnostic test generation is first carried out for a set F_0 of target faults (the set of all the single stuck-at faults in this paper).
- (2) Let P_0 be the set of indistinguishable fault pairs in F_0 . For every fault pair in P_0 , one or more pairs of related faults are included in P_1 (in this paper, four-way bridging faults are used for defining P_1). Diagnostic test generation is carried out for P_1 to address the associated diagnostic holes.

Experimental results demonstrate that, although the fault pairs in P_0 are indistinguishable, related fault pairs in P_1 are distinguishable, and contribute new tests to the diagnostic test set. Moreover, when defect diagnosis is carried out with the enhanced diagnostic test set, more accurate results are obtained for defects that do not involve bridging faults.

It should be noted that both diagnostic test generation procedures and defect diagnosis procedures are important for ensuring accurate diagnosis. The main contribution of the paper is to diagnostic test generation, and not to defect diagnosis. In the context of defect diagnosis, realistic bridging faults are used since they are more likely to be present in the circuit. This property is not necessary when performing diagnostic test generation. In addition, by focusing on pairs of bridging faults that are related to indistinguishable pairs of stuck-at faults, the diagnostic test generation procedure described in this paper is different from a general diagnostic test generation procedure that targets multiple fault models. Specifically, the number of bridging fault pairs that the procedure targets is determined by the number of indistinguishable stuck-at fault pairs, and not by the total number of bridging fault pairs.

The paper is organized as follows. Section II discusses the

two approaches to diagnostic test generation in more detail. Section III discusses the relationship between single stuck-at faults and four-way bridging faults. This relationship allows pairs of four-way bridging faults to address diagnostic holes that are caused by indistinguishable pairs of single stuck-at faults. Section IV describes the diagnostic test generation procedure that addresses diagnostic holes, and presents results of diagnostic test generation. Section V describes an experiment that employs a defect diagnosis procedure to demonstrate the effects of the improved diagnostic test set, and presents experimental results.

II. DIAGNOSTIC TEST GENERATION

Diagnostic test generation is more time consuming than test generation for fault detection, and diagnostic test sets are larger than fault detection test sets. The second approach to diagnostic test generation reduces these overheads by targeting only fault pairs that appear in large sets of candidate faults. However, this approach also generates a different diagnostic test set for every faulty circuit. This can be a disadvantage when different faulty circuits are tested in parallel.

The procedure described in [21] attempts to partition the faulty circuits into a small number of groups where every group requires its own test set. However, it still requires different test sets for different groups.

The first approach to diagnostic test generation computes the same diagnostic test set regardless of the faulty circuits that need to be diagnosed. Computing a single diagnostic test set removes the need for multiple test sets altogether. It also has the advantage that diagnostic test generation is applied only once.

Because of the computational effort and number of diagnostic tests, the first approach uses a single fault model. Considering the accuracy of defect diagnosis, this is justified by the following considerations.

In the case of fault detection, a test set that is generated for a set of target faults F, such as single stuck-at faults, is also effective in detecting defects whose behaviors are not identical to those of single stuck-at faults. This is because the tests set up the activation and propagation conditions necessary for detecting faults as well as defects. Analogously, in the case of defect diagnosis, a test set that distinguishes a pair of faults in a set of target faults F is also effective in distinguishing defects whose behaviors are not identical to those of the target faults.

This argument is strengthened by the fact that many defect diagnosis procedures attempt to match the behavior of a faulty circuit with the behaviors of faults from specific fault models [22]-[24]. In this case, distinguishing between fault pairs from the fault models that are used by the defect diagnosis procedure helps the procedure provide smaller sets of candidate faults. This is true even if the defects present in the faulty circuit have different behaviors.

This argument fails when an indistinguishable fault pair leaves a diagnostic hole. In this case, the test set fails to provide information about the faults, and more important, about defects whose diagnosis would have benefited from a

diagnostic test for the indistinguishable fault pair. Diagnostic holes are also important when large sets of candidate faults provide the targets for diagnostic test generation. Diagnostic holes are addressed in this paper in the context of the first approach using single stuck-at and bridging faults. However, the resulting approach to diagnostic test generation can be applied with different sets of faults, and under the second approach.

III. SINGLE STUCK-AT AND FOUR-WAY BRIDGING FAULTS

For the discussion in this paper, g/a denotes the fault where line g is stuck at the value a. A four-way bridging fault g/a/h is defined in [25]-[26] as follows.

The fault is associated with two lines, g and h, and a value a. In the presence of the fault, the value a on line h dominates the value of line g, and causes it to assume the value a. If a test assigns g=a' and h=a in the fault-free circuit, the presence of the fault results in the fault effect a'/a on g. To detect the fault, the test needs to assign h=a and detect the fault g/a.

The four-way bridging fault g/a/h is related to the single stuck-at fault g/a in that the detection conditions of g/a/h contain the detection conditions of g/a. If g/a is undetectable, then g/a/h is also undetectable.

The relationship between pairs of related faults is discussed next. Let $(g_0/a_0,g_1/a_1)$ be a pair of detectable but indistinguishable single stuck-at faults. The pair $(g_0/a_0/h_0,g_1/a_1/h_1)$ consists of related four-way bridging faults, where $g_0/a_0/h_0$ is related to g_0/a_0 , and $g_1/a_1/h_1$ is related to g_1/a_1 . The ability to address the diagnostic hole that is created by the pair $(g_0/a_0,g_1/a_1)$ is based on the possibility that $(g_0/a_0/h_0,g_1/a_1/h_1)$ is distinguishable even though $(g_0/a_0,g_1/a_1)$ is not. This possibility can be explained as follows.

The fact that g_0/a_0 and g_1/a_1 are detectable but $(g_0/a_0,g_1/a_1)$ is indistinguishable implies that every test either detects both faults on the same outputs, or does not detect any one of them. Let us consider a test that detects both faults. If the test assigns $h_0=a_0$ and $h_1=a_1'$, or $h_0=a_0'$ and $h_1=a_1$, then it detects one of the four-way bridging faults of the pair, but not the other. In this case, the test distinguishes the fault pair $(g_0/a_0/h_0, g_1/a_1/h_1)$.

The following example illustrates this possibility. Figure 1 shows the combinational logic of ISCAS-89 benchmark s27. Line numbers are shown in square brackets. For every line, its value under a test is shown following the line number.

The pair of single stuck-at faults (14/1,20/0) is indistinguishable. Let us consider the pair of four-way bridging faults (14/1/3,20/0/15) that is related to the indistinguishable fault pair (14/1,20/0).

Under the test shown in Figure 1, the faults 14/1 and 20/0 are detected, and they create the same fault effects on lines 24 and 26.

The bridging fault 14/1/3 is not detected because line 3 assumes the value zero, and the value one is needed for activating the bridging fault. The bridging fault 20/0/15 is

detected because line 15 assumes the value zero, and the fault 20/0 is detected. Consequently, the pair of bridging faults (14/1/3,20/0/15) is distinguished by the test.

A diagnostic test for the pair of related bridging faults (14/1/3,20/0/15), when used as part of a diagnostic test set, provides additional information about the defects that are present in a faulty circuit. The information is related to the sites of the faults 14/1 and 20/0. This information is not otherwise available because the pair of stuck-at faults (14/1,20/0) is indistinguishable. Additional diagnostic information is obtained even without requiring that the bridging faults 14/1/3 and 20/0/15 would be realistic bridging faults.

The relationship between pairs of single stuck-at and bridging faults is used in the next section to address diagnostic holes of a diagnostic test set for single stuck-at faults.

IV. DIAGNOSTIC TEST GENERATION PROCEDURE THAT ADDRESSES DIAGNOSTIC HOLES

This section describes the diagnostic test generation procedure that addresses diagnostic holes because of indistinguishable fault pairs using single stuck-at and four-way bridging faults as the target fault models.

A. Phase 1 of the Procedure

The procedure first targets the set F_0 of single stuck-at faults. Any diagnostic test generation procedure can be used for producing a diagnostic test set T_0 for the fault pairs in F_0 . The diagnostic test generation procedure from [5] is used in this paper. The procedure starts from a fault detection test set T_{sa} for single stuck-at faults by initially assigning $T_0 = T_{sa}$. It adds to T_0 diagnostic tests for pairs of single stuck-at faults that are not distinguished by T_{sa} . After diagnostic test generation for F_0 , the pairs of faults that are not distinguished by T_0 are included in T_0 .

It should be noted that, during diagnostic test generation, it is not necessary to consider all the fault pairs from F_0 explicitly. Diagnostic fault simulation is used for computing the equivalence classes of T_0 initially, and as new tests are added to it. An equivalence class contains faults that are not distinguished by T_0 . Faults in different equivalence classes are distinguished by T_0 . The diagnostic test generation procedure targets pairs of faults from the same equivalence class of T_0 . After diagnostic test generation for F_0 is complete, the number of indistinguished fault pairs is typically small. At this point, the set P_0 can be represented as a set of pairs.

B. Phase 2 of the Procedure

Diagnostic test generation continues in the second phase to address the diagnostic holes given by P_0 . For a parameter denoted by b>0, the procedure targets a set of bridging fault pairs that is denoted by P_b . In P_b there are b pairs of fourway bridging faults for every fault pair in P_0 . It is possible to use b>1 since every single stuck-at fault g/a is related to several four-way bridging faults of the form g/a/h. The use of b>1 increases the likelihood that one or more of the pairs of bridging faults will be distinguished, and contribute to the

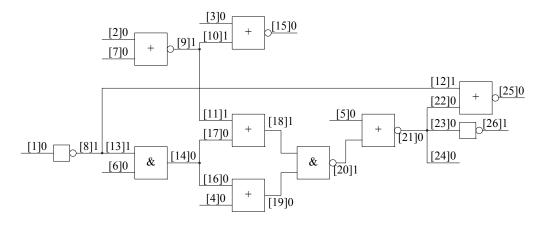


Fig. 1. Example of diagnostic hole

elimination of the diagnostic hole. The selection of a value for b will be discussed later. The selection of P_b for a given value of b proceeds in several steps as described next.

For every pair of faults $(g_0/a_0, g_1/a_1) \in P_0$, the faults g_0/a_0 and g_1/a_1 are included in a set that is denoted by D_0 . The faults in D_0 require related bridging faults in order to define pairs of bridging faults that will be included in P_b .

In the example of s27, the circuit has two indistinguishable fault pairs, (4/0,11/0) and (14/1,20/0). This results in $D_0 = \{4/0,11/0,14/1,20/0\}$.

Related bridging faults are included in a set that is denoted by B_0 . For every fault $g_i/a_i \in D_0$, a constant number $b_1 \geq b$ of bridging faults is added to B_0 . The use of $b_1 \geq b$ allows for undetectable bridging faults that will not be used for defining bridging fault pairs. The bridging faults based on $g_i/a_i \in D_0$ are computed as follows.

The procedure finds a set of lines H_i that will be used for defining bridging faults of the form $g_i/a_i/h_i$, with $h_i \in H_i$. It is possible to select H_i based on a layout analysis that yields realistic bridging faults [27]. However, realistic bridging faults tend to be easy-to-detect [28]. Hard-to-detect faults are selected in [28]. However, these faults tend to be undetectable. To avoid selecting only easy- or hard-to-detect bridging faults, in this paper, H_i includes every line h_i such that there is no directed path in the circuit from h_i to g_i . From H_i , the procedure selects h_i lines randomly. For every randomly selected line $h_i \in H_i$, the procedure adds the fault $g_i/a_i/h_i$ to B_0 .

Next, the procedure performs fault simulation with fault dropping of B_0 under T_0 . Faults that are not detected by T_0 are removed from B_0 . These faults will not be used for defining bridging fault pairs.

In the example of s27, with $b_1 = 8$, the detectable bridging faults shown in Table I are obtained for the faults in D_0 .

Next, for every pair of bridging faults $(g_0/a_0,g_1/a_1) \in P_0$, the procedure adds up to b faults to P_b as follows. Let $B_0(g_0/a_0)$ include the bridging faults from B_0 that have the form $g_0/a_0/h_0$, for different lines h_0 . Let $B_0(g_1/a_1)$ include the bridging faults from B_0 that have the form $g_1/a_1/h_1$, for different lines h_1 . Of all the fault pairs in $B_0(g_0/a_0) \times B_0(g_1/a_1)$ that do not have any lines in common,

TABLE I
EXAMPLE OF BRIDGING FAULTS

g_i/a_i	B_0
4/0	4/0/15 4/0/14 4/0/25 4/0/26
11/0	11/0/8 11/0/25 11/0/5 11/0/14 11/0/20 11/0/15
14/1	14/1/7 14/1/26 14/1/25 14/1/15 14/1/4 14/1/19
20/0	20/0/21 20/0/25 20/0/15 20/0/3

TABLE II
EXAMPLE OF PAIRS OF BRIDGING FAULTS

P_8	dist
(4/0/26,11/0/20)	
(4/0/25,11/0/20)	
(4/0/15,11/0/25)	
(4/0/26,11/0/8)	T8
(4/0/14,11/0/5)	
(4/0/26,11/0/15)	
(4/0/14,11/0/25)	
(4/0/25,11/0/8)	T8
(14/1/25,20/0/21)	T0
(14/1/26,20/0/21)	
(14/1/26,20/0/15)	T0
(14/1/19,20/0/3)	T8
(14/1/4,20/0/15)	T0
(14/1/19,20/0/25)	T0
(14/1/4,20/0/25)	T0
(14/1/7,20/0/25)	T0

the procedure selects b fault pairs randomly. The random selection ensures that every fault appears in approximately the same number of fault pairs in P_b .

In the example of s27, with b=8, the fault pairs shown in Table II are added based on the bridging faults shown in Table I.

Diagnostic fault simulation is carried out next for the fault pairs in P_b under the test set T_0 . Fault pairs that are not distinguished by T_0 are targeted by the diagnostic test generation procedure. Again, the procedure from [5] is used. The resulting diagnostic test set that includes T_0 and the new diagnostic tests added to it is denoted by T_b .

In the example of s27, the fault pairs that are marked with T0 under column dist are distinguished by T_0 . With b=8, diagnostic test generation distinguishes the fault pairs that are marked with T8 under column dist. Two tests are added to T_8 to distinguish these three fault pairs.

TABLE III
DIAGNOSTIC TEST GENERATION (ISCAS-89)

circuit	b	tests	ratio	pairs	indist	ntime
s526	0	60	1.00	-	34	4.29
s526	1	64	1.07	34	1	4.79
s526	32	108	1.80	1088	55	19.21
s641	0	42	1.00	-	7	6.00
s641	1	43	1.02	7	0	6.33
s641	32	55	1.31	224	3	12.33
s820	0	133	1.00	-	42	3.37
s820	1	139	1.05	42	22	4.88
s820	32	187	1.41	1344	610	71.83
s953	0	88	1.00	-	3	2.09
s953	32	95	1.08	96	41	7.42
s1196	0	159	1.00	-	28	2.48
s1196	1	169	1.06	28	10	2.95
s1196	32	235	1.48	896	279	25.48
s1423	0	71	1.00	-	148	7.47
s1423	1	102	1.44	148	1	7.75
s1423	32	251	3.54	4736	28	14.72
s5378	0	168	1.00	-	524	12.71
s5378	1	182	1.08	524	1	12.86
s5378	32	296	1.76	16768	23	15.77
s9234	0	340	1.00	-	1474	14.97
s9234	1	474	1.39	1474	12	15.48
s9234	32	1114	3.28	47168	426	33.66
s13207	0	281	1.00	-	2926	13.06
s13207	1	584	2.08	2926	10	13.34
s13207	32	1481	5.27	93632	281	26.37
s15850	0	212	1.00	-	3576	21.35
s15850	1	459	2.17	3576	7	21.67
s15850	32	1284	6.06	114432	332	37.21
s38417	0	337	1.00	-	4323	12.59
s38417	1	751	2.23	4323	5	12.69
s38417	32	2199	6.53	138336	49	15.70
s38584	0	376	1.00	-	2730	5.97
s38584	1	564	1.50	2730	33	6.02
s38584	32	1716	4.56	87360	963	8.77

C. Results of Diagnostic Test Generation

The diagnostic test generation procedure is applied to benchmark circuits using $b_1 = 64$, and b = 1, 2, 4, ..., 32. Several values of b are considered in order to show the effects of b on the results and select an appropriate value.

With b=1, 2, 4, ..., 32, the diagnostic test generation procedure produces diagnostic test sets that are denoted by $T_1, T_2, T_4, ..., T_{32}$. In addition, the test set T_0 is used as a baseline for comparison.

The results are shown in Tables III-V as follows. For every circuit, the results are shown for T_0 , T_1 and T_{32} . Intermediate test sets are omitted to avoid reporting on a large number of test sets. T_1 is omitted if it does not contain more tests than T_0 .

For every test set, after the circuit name, column b shows the value of b. Column tests shows the number of tests in T_b . Column ratio shows the increase in the number of tests relative to T_0 , which is computed as $|T_b|/|T_0|$.

Column pairs shows the number of bridging fault pairs that are included in P_b for b>0. A dash is entered for b=0. Column indist shows the number of indistinguished fault pairs in P_b for $b\geq 0$. In the case of b=0, the faults are single stuck-at faults. For b>0, the faults are bridging faults.

Column ntime shows information about the run time for producing T_b , where $b \ge 0$. Initially, $T_0 = T_{sa}$. The run time for fault simulation and diagnostic fault simulation of T_{sa} is

TABLE IV
DIAGNOSTIC TEST GENERATION (ITC-99)

circuit	b	tests	ratio	pairs	indist	ntime
b03	0	28	1.00	-	2	3.00
b03	1	29	1.04	2	0	3.50
b03	32	32	1.14	64	6	6.00
b04	0	56	1.00	-	3	2.12
b04	1	57	1.02	3	0	2.13
b04	32	64	1.14	96	2	2.34
b05	0	70	1.00	-	129	3.22
b05	1	95	1.36	129	6	3.48
b05	32	216	3.09	4128	104	10.64
b07	0	60	1.00	-	3	2.10
b07	1	61	1.02	3	0	2.10
b07	32	65	1.08	96	10	2.66
b08	0	66	1.00	-	64	5.50
b08	1	71	1.08	64	35	9.00
b08	32	84	1.27	2048	951	199.50
b09	0	29	1.00	-	2	2.00
b09	1	30	1.03	2	0	2.00
b09	32	32	1.10	64	6	3.33
b10	0	51	1.00	-	5	2.14
b10	1	52	1.02	5	4	2.43
b10	32	67	1.31	160	56	10.57
b11	0	77	1.00	-	35	2.86
b11	1	79	1.03	35	13	3.25
b11	32	115	1.49	1120	400	27.94
b14	0	529	1.00	-	326	3.00
b14	1	571	1.08	326	42	3.20
b14	32	811	1.53	10432	1283	14.29
b15	0	467	1.00	-	411	2.62
b15	1	497	1.06	411	37	2.69
b15	32	803	1.72	13152	1019	6.39
b20	0	620	1.00	-	453	2.83
b20	1	693	1.12	453	21	2.92
b20	32	1275	2.06	14496	508	6.37

denoted by ρ_{sa} . Let the run time for producing T_b be ρ_b . The normalized run time is defined as ρ_b/ρ_{sa} , and it shows the increase in run time, relative to the diagnostic fault simulation time of T_{sa} , because of the need to generate diagnostic tests. The normalized run time is reported in column ntime.

The following points can be seen from Tables III-V. For $b \geq 1$, the diagnostic test generation procedure targets approximately $b|P_0|$ pairs of bridging faults, where $|P_0|$ is the number of indistinguished pairs of stuck-at faults. Although not all the pairs of bridging faults are distinguished, a significant fraction of them are.

The number of tests grows with b. For many of the circuits, the number of tests less than doubles even with b=32. The increase is higher when the number of indistinguished single stuck-at faults is large. In this case, addressing the diagnostic holes requires more tests.

The normalized run time also increases with b. However, it is not always higher for a larger circuit. This indicates that the procedure scales similar to a diagnostic fault simulation procedure.

A value for b can be selected based on the test set size that can be accommodated. Tables III-V show only the extreme test sets with b=0, 1 and 32. There are also intermediate test sets that may be used, with intermediate numbers of tests.

V. DEFECT DIAGNOSIS

When diagnostic tests are added to T_0 in order to form the diagnostic test set T_b , for b > 0, the expectation is that a defect

TABLE V
DIAGNOSTIC TEST GENERATION (IWLS-05)

circuit	b	tests	ratio	pairs	indist	ntime
aes_core	0	251	1.00	-	2086	3.85
aes_core	1	291	1.16	2086	5	3.87
aes_core	32	587	2.34	66752	10	4.04
des_area	0	139	1.00	-	188	4.74
des_area	1	145	1.04	188	0	4.77
des_area	32	219	1.58	6016	25	5.91
i2c	0	68	1.00	-	8	2.39
i2c	32	86	1.26	256	0	2.55
pci_spoci_ctrl	0	169	1.00	-	40	2.69
pci_spoci_ctrl	1	178	1.05	40	1	2.78
pci_spoci_ctrl	32	232	1.37	1280	241	14.60
sasc	0	53	1.00	-	25	3.18
sasc	1	56	1.06	25	0	3.21
sasc	32	77	1.45	800	1	3.66
simple_spi	0	77	1.00	-	24	2.75
simple_spi	1	79	1.03	24	0	2.77
simple_spi	32	109	1.42	768	3	3.16
spi	0	556	1.00	-	59	2.87
spi	1	561	1.01	59	3	2.93
spi	32	624	1.12	1888	55	5.21
steppermotordrive	0	38	1.00	-	20	5.33
steppermotordrive	1	41	1.08	20	4	6.00
steppermotordrive	32	71	1.87	640	88	40.67
systemcaes	0	155	1.00	-	1451	9.78
systemcaes	1	189	1.22	1451	2	9.87
systemcaes	32	391	2.52	46432	52	10.97
systemcdes	0	96	1.00	-	252	7.15
systemcdes	1	111	1.16	252	0	7.25
systemcdes	32	213	2.22	8064	20	8.78
tv80	0	576	1.00	-	491	3.28
tv80	1	641	1.11	491	17	3.43
tv80	32	1212	2.10	15712	379	7.17
usb_phy	0	44	1.00	-	23	3.60
usb_phy	1	54	1.23	23	0	3.69
usb_phy	32	96	2.18	736	6	5.80
wb_dma	0	101	1.00	-	94	4.12
wb_dma	1	115	1.14	94	0	4.15
wb_dma	32	197	1.95	3008	13	5.15
		1 '	1.,,,			1 2.12

diagnosis procedure will produce more accurate results based on T_b . This section describes experiments to demonstrate this effect.

A. Basic Setup and Results

The defect diagnosis procedure from [24] is used in this section. The procedure receives as input the output response of a faulty circuit. It uses a set of modeled faults F (single stuck-at faults for the experiments in this paper) to define a set of candidate faults. For every fault in F it compares the output response in the presence of the fault to the output response of the faulty circuit. The comparison yields a score that measures the extent to which the output response of the fault matches that of the faulty circuit. The faults in F are ranked based on their scores, and the highest ranked faults are included in the set of candidate faults. The procedure from [24] performs the ranking for every output separately to ensure that every output value is accounted for.

The procedure is applied to defects that consist of multiple stuck-at faults (different defects are considered later in this section). A defect $d_i = \{d_{i,0}, d_{i,1}, ..., d_{i,m_i-1}\}$ consists of m_i single stuck-at faults that are present in the circuit together. The faults are selected randomly. For d_i and a test set T_b , the

TABLE VI DEFECT DIAGNOSIS (ISCAS-89)

ĺ			ca	nd	cand	cand red		sol	prec		
circuit	i	m_i	0	32	%	b	0	32	0	32	
s526	87	5	15	10	33.33	4	0.200	0.300	0.600	0.600	
s526	20	7	30	25	16.67	2	0.233	0.280	1.000	1.000	
s526	56	9	33	29	12.12	4	0.242	0.276	0.889	0.889	
s526	93	6	26	24	7.69	2	0.231	0.250	1.000	1.000	
s641	90	6	36	25	30.56	2	0.111	0.160	0.667	0.667	
s641	12	5	23	17	26.09	4	0.217	0.294	1.000	1.000	
s641	64	5	29	22	24.14	4	0.103	0.136	0.600	0.600	
s641	83	9	39	31	20.51	2	0.179	0.226	0.778	0.778	
s820	57	6	25	18	28.00	1	0.160	0.222	0.667	0.667	
s820	19	10	38	29	23.68	16	0.105	0.138	0.400	0.400	
s820	93	10	32	27	15.62	4	0.281	0.333	0.900	0.900	
s820	52	9	22	19	13.64	8	0.136	0.158	0.333	0.333	
s953	40	9	34	33	2.94	16	0.147	0.152	0.556	0.556	
s1196	79	6	14	11	21.43	1	0.357	0.455	0.833	0.833	
s1196	2	11	47	38	19.15	8	0.213	0.263	0.909	0.909	
s1196	3	6	21	17	19.05	1	0.190	0.235	0.667	0.667	
s1196	22	12	53	43	18.87	8	0.208	0.256	0.917	0.917	
s1423	90	11	37	26	29.73	1	0.297	0.423	1.000	1.000	
s1423	44	7	48	35	27.08	1	0.146	0.200	1.000	1.000	
s1423	14	9	42	32	23.81	1	0.143	0.188	0.667	0.667	
s1423	62	8	48	37	22.92	1	0.146	0.189	0.875	0.875	
s5378	72	7	43	29	32.56	1	0.140	0.207	0.857	0.857	
s5378	41	12	39	33	15.38	1	0.231	0.273	0.750	0.750	
s5378	1	11	48	41	14.58	1	0.229	0.268	1.000	1.000	
s5378	86	10	45	39	13.33	2	0.222	0.256	1.000	1.000	
s9234	7	14	85	73	14.12	1	0.153	0.178	0.929	0.929	
s9234	5	7	29	26	10.34	1	0.172	0.192	0.714	0.714	
s9234	80	14	141	127	9.93	1	0.092	0.102	0.929	0.929	
s9234	23	14	81	73	9.88	4	0.136	0.151	0.786	0.786	
s13207	50	14	143	87	39.16	1	0.098	0.161	1.000	1.000	
s13207	41	12	93	70	24.73	1	0.118	0.157	0.917	0.917	
s13207	56	14	79	60	24.05	1	0.127	0.167	0.714	0.714	
s13207	31	11	63	48	23.81	8	0.159	0.208	0.909	0.909	
s15850	39	12	94	59	37.23	16	0.117	0.186	0.917	0.917	
s15850	5	7	31	21	32.26	1	0.226	0.333	1.000	1.000	
s15850	85	7	84	69	17.86	1	0.071	0.087	0.857	0.857	
s15850	45	7	42	35	16.67	1	0.143	0.171	0.857	0.857	
s38417	0	8	61	33	45.90	1	0.131	0.242	1.000	1.000	
s38417	67	13	71	43	39.44	1	0.183	0.302	1.000	1.000	
s38417	11	15	90	70	22.22	8	0.167	0.214	1.000	1.000	
s38417	42	14	59	47	20.34	16	0.237	0.298	1.000	1.000	
s38584	93	15	80	68	15.00	1	0.175	0.206	0.933	0.933	
s38584	79	8	25	24	4.00	16	0.320	0.333	1.000	1.000	
s38584	92	14	33	32	3.03	32	0.394	0.406	0.929	0.929	

procedure produces a set of candidate faults that is denoted by $C_{i,b}$. The following parameters measure the accuracy of diagnosis.

- (1) The size of $C_{i,b}$ should be as small as possible.
- (2) The overlap between $C_{i,b}$ and d_i is defined as $V_{i,b} = C_{i,b} \cap d_i$. The overlap should be as large as possible.
- (3) The ratio $|V_{i,b}|/|C_{i,b}|$ is also referred to as the diagnostic resolution. A higher ratio implies that more of the candidate faults match the defect that is present in the circuit. Therefore, the ratio should be as large as possible.
- (4) The ratio $|V_{i,b}|/m_i$ is also referred to as the diagnostic precision. A higher ratio implies that more of the defects that are present in the circuit are included in the set of candidate faults. Therefore, the ratio should be as large as possible.

The effects of diagnostic test generation are studied for defects that produce large sets of candidate faults under T_0 . A set of candidate faults $C_{i,0}$ for a defect d_i of multiplicity m_i is considered large if it contains $2m_i$ faults or more.

To obtain such defects, it is necessary to consider defects

TABLE VII DEFECT DIAGNOSIS (ITC-99)

TABLE VIII DEFECT DIAGNOSIS (IWLS-05)

	l		ca	nd	cand i	cand red		sol	prec		
circuit	i	m_i	0	32	%	b	0	32	0	32	
b03	51	6	23	17	26.09	1	0.217	0.294	0.833	0.833	
b03	57	10	25	20	20.00	1	0.400	0.500	1.000	1.000	
b03	11	5	19	16	15.79	1	0.211	0.250	0.800	0.800	
b03	28	10	31	27	12.90	1	0.226	0.259	0.700	0.700	
b04	7	12	29	24	17.24	1	0.276	0.333	0.667	0.667	
b04	73	10	24	20	16.67	2	0.417	0.500	1.000	1.000	
b04	68	9	19	16	15.79	16	0.368	0.438	0.778	0.778	
b04	24	12	26	22	15.38	8	0.423	0.500	0.917	0.917	
b05	6	12	31	21	32.26	1	0.258	0.381	0.667	0.667	
b05	66	11	28	20	28.57	1	0.286	0.400	0.727	0.727	
b05	75	9	32	24	25.00	1	0.250	0.333	0.889	0.889	
b05	82	8	38	29	23.68	1	0.132	0.172	0.625	0.625	
b07	0	5	14	11	21.43	8	0.214	0.273	0.600	0.600	
b07	36	9	23	20	13.04	1	0.261	0.300	0.667	0.667	
b07	17	7	26	23	11.54	1	0.192	0.217	0.714	0.714	
b07	4	9	43	39	9.30	1	0.163	0.179	0.778	0.778	
b08	85	8	30	8	73.33	4	0.133	0.500	0.500	0.500	
b08	38	8	39	14	64.10	1	0.077	0.214	0.375	0.375	
b08	19	5	23	17	26.09	4	0.217	0.294	1.000	1.000	
b08	47	7	18	15	16.67	2	0.278	0.333	0.714	0.714	
b09	73	7	17	11	35.29	8	0.353	0.545	0.857	0.857	
b09	70	8	19	16	15.79	1	0.316	0.375	0.750	0.750	
b09	44	10	44	38	13.64	1	0.136	0.158	0.600	0.600	
b09	79	6	23	20	13.04	8	0.261	0.300	1.000	1.000	
b10	66	5	16	9	43.75	2	0.250	0.444	0.800	0.800	
b10	96	10	23	16	30.43	2	0.174	0.250	0.400	0.400	
b10	18	6	17	12	29.41	2	0.353	0.500	1.000	1.000	
b10	98	10	22	16	27.27	8	0.227	0.312	0.500	0.500	
b11	87	10	27	17	37.04	1	0.185	0.294	0.500	0.500	
b11	71	6	24	17	29.17	1	0.250	0.353	1.000	1.000	
b11	19	7 5	30	22	26.67	16	0.100	0.136	0.429	0.429	
b11	89	7	26	20	23.08	2	0.192	0.250	1.000	1.000	
b14 b14	43 35	12	41 53	26 37	36.59 30.19	8	0.146 0.151	0.231	0.857 0.667	0.857 0.667	
b14	90	10	41	31	24.39	0	0.131	0.210	0.500	0.500	
b14	31	14	52	40	23.08	1	0.122	0.101	0.300	0.300	
b15	50	12	50	40	16.00	1	0.192	0.230	0.714	0.714	
	42	15	144	121	15.97	1	0.180	0.214	0.730	0.730	
b15 b15	95	13	54	46	14.81	1	0.076	0.091	0.733	0.733	
b15	48	14	35	30	14.81	1	0.204	0.239	0.786	0.786	
b20	93	14	53	40	24.53	1		0.333	0.909	0.909	
b20 b20		12	128	102	24.53	1	0.245 0.070		0.929	0.929	
b20 b20	51 79	15	63	51	19.05	1	0.070	0.088 0.275	0.730	0.730	
b20 b20	13	13	50	42	16.00	1	0.222	0.275	0.933	0.933	
020	13	14	30	42	10.00	1	0.240	0.200	0.837	0.837	

	I		ca	nd	cand	red	re:	sol	pr	ec
circuit	i	m_i	0	32	%	b	0	32	0	32
aes_core	81	8	17	15	11.76	8	0.471	0.533	1.000	1.000
aes_core	15	13	36	32	11.11	1	0.361	0.406	1.000	1.000
aes_core	80	14	56	50	10.71	1	0.250	0.280	1.000	1.000
aes_core	40	16	59	53	10.17	2	0.254	0.283	0.938	0.938
des_area	78	10	53	38	28.30	1	0.151	0.211	0.800	0.800
des_area	13	8	26	19	26.92	1	0.308	0.421	1.000	1.000
des_area	49	9	96	75	21.88	1	0.062	0.080	0.667	0.667
des_area	57	8	30	24	20.00	4	0.200	0.250	0.750	0.750
i2c	67	10	44	32	27.27	4	0.205	0.281	0.900	0.900
i2c	42	9	39	36	7.69	4	0.231	0.250	1.000	1.000
i2c	47	7	16	15	6.25	4	0.438	0.467	1.000	1.000
i2c	66	6	17	16	5.88	16	0.294	0.312	0.833	0.833
pci_spoci_ctrl	25	6	14	9	35.71	2	0.286	0.444	0.667	0.667
pci_spoci_ctrl	81	6	23	15	34.78	2	0.217	0.333	0.833	0.833
pci_spoci_ctrl	80	9	44	34	22.73	1	0.182	0.235	0.889	0.889
pci_spoci_ctrl	2	11	31	24	22.58	1	0.161	0.208	0.455	0.455
sasc	96	11	59	44	25.42	2	0.169	0.227	0.909	0.909
sasc	21	10	20	18	10.00	16	0.450	0.500	0.900	0.900
sasc	40	12	31	28	9.68	8	0.355	0.393	0.917	0.917
sasc	92	12	43	40	6.98	2	0.256	0.275	0.917	0.917
simple_spi	85	7	19	17	10.53	2	0.368	0.412	1.000	1.000
simple_spi	26	7	25	23	8.00	32	0.240	0.261	0.857	0.857
simple_spi	7	11	32	31	3.12	32	0.312	0.323	0.909	0.909
spi	85	9	36	30	16.67	2	0.167	0.200	0.667	0.667
spi	42	9	37	32	13.51	1	0.189	0.219	0.778	0.778
spi	12	8	30	26	13.33	1	0.267	0.308	1.000	1.000
spi	50	13	41	36	12.20	4	0.268	0.306	0.846	0.846
steppermotordrive	89	7	22	12	45.45	1	0.091	0.167	0.286	0.286
steppermotordrive	65	10	31	19	38.71	2	0.226	0.368	0.700	0.700
steppermotordrive	9	7	22	16	27.27	1	0.273	0.375	0.857	0.857
steppermotordrive	15	5	13	10	23.08	1	0.231	0.300	0.600	0.600
systemcaes	73	10	52	32	38.46	4	0.173	0.281	0.900	0.900
systemcaes	6	14	70	57	18.57	1	0.200	0.246	1.000	1.000
systemcaes	69	11	47	39	17.02	1	0.213	0.256	0.909	0.909
systemcaes	76	16	72	61	15.28	1	0.222	0.262	1.000	1.000
systemcdes	85	9	68	30	55.88	1	0.132	0.300	1.000	1.000
systemcdes	39	11	43	33	23.26	1	0.209	0.273	0.818	0.818
systemcdes	95	10	43	33	23.26	1	0.233	0.303	1.000	1.000
systemcdes	50	13	46	36	21.74	1	0.283	0.361	1.000	1.000
tv80	25	11	58	49	15.52	2	0.172	0.204	0.909	0.909
tv80	60	13	125	106	15.20	1	0.088	0.104	0.846	0.846
tv80	32	14	51	44	13.73	1	0.275	0.318	1.000	1.000
tv80	18	9	67	59	11.94	1	0.090	0.102	0.667	0.667
usb_phy	58	6	12	10	16.67	2	0.417	0.500	0.833	0.833
usb_phy	47	12	28	26	7.14	1	0.357	0.385	0.833	0.833
usb_phy	4	6	18	17	5.56	1	0.278	0.294	0.833	0.833
usb_phy	5	9	19	18	5.26	1	0.421	0.444	0.889	0.889
wb_dma	98	8	35	27	22.86	1	0.200	0.259	0.875	0.875
wb_dma	30	14	61	58	4.92	16	0.213	0.224	0.929	0.929
wb_dma	81	9	22	21	4.55	32	0.409	0.429	1.000	1.000
wb_dma	93	13	47	45	4.26	16	0.277	0.289	1.000	1.000
	-		-		-		•		•	

with sufficiently high multiplicities. A higher multiplicity makes it more difficult to obtain a small and accurate set of candidate faults because of interactions between the faults. Defects with high multiplicities are prevalent in early stages of the yield improvement process for a new technology, justifying their consideration. For a circuit with L lines, multiplicities between log_4L and $2log_4L$ are used for this purpose.

For every defect d_i , the defect diagnosis procedure computes a set of candidate faults $C_{i,0}$ by using T_0 . It uses d_i for further analysis if $|C_{i,0}| \geq 2m_i$. In this case, the procedure also computes a set of candidate faults $C_{i,b}$ based on T_b , for b=1, 2, 4, ..., 32. After computing $C_{i,0}$, the procedure uses $F = C_{i,0}$ for b = 1, $F = C_{i,1}$ for b = 2, and in general, $F = C_{i,b/2}$ for b > 0. This is sufficient for checking whether the use of T_b narrows down the set of candidate faults relative to $T_{b/2}$, and it reduces the run time for defect diagnosis.

The procedure terminates after finding 100 defects with large sets of candidate faults under T_0 .

The additional diagnostic tests in T_b target specific diagnostic holes that are not always relevant for a defect d_i . Therefore, the use of T_b does not improve the results of defect diagnosis for every defect d_i . In addition, the defect diagnosis procedure does not always produce monotonic improvements in the results as more diagnostic tests are used. Tables VI-VIII report only on the defects where monotonic improvements are obtained. In these cases, the number of candidates is reduced starting at a certain value of b, the resolution is increased starting from this value, and the overlap and precision do not decrease.

For every circuit, Tables VI-VIII report on the four defects with the largest percentage reductions in the number of candidates.

Tables VI-VIII are organized as follows. After the circuit name, column i shows the index of the defect d_i . Column m_i shows its multiplicity m_i .

Column cand shows the number of candidate faults in $C_{i,b}$, for i=0 and 32. Reductions in the numbers of candidate faults may be obtained for 0 < b < 32, but they are not reported directly.

Column $cand \ red$ subcolumn % shows the percentage reduction in the number of candidate faults between $C_{i,0}$ and $C_{i,32}$. Subcolumn b shows the first value of b where a reduction in the number of candidate faults is obtained.

Column resol shows the resolution, $|V_{i,b}|/|C_{i,b}|$, for b=0 and 32. Column prec shows the precision, $|V_{i,b}|/m_i$, for b=0 and 32.

The numbers of candidate faults in Tables VI-VIII are high because of the selection of defects with high multiplicities that are difficult to diagnose. When a commercial tool is applied to defects of similar multiplicities it produces similar numbers of candidate faults.

From Tables VI-VIII it can be observed that there are many cases where the use of a test set T_b , for b>0, reduces the number of candidate faults significantly without reducing the overlap. The reduction in the number of candidates increases the diagnostic resolution. If further analysis is carried out in order to narrow down the set of candidate faults further, it is facilitated by the fact that the set of candidate faults is already smaller, increasing the resolution while preserving the precision.

There are additional cases, out of the 100 considered, that are not shown in Tables VI-VIII. For example, s1423 has 30 cases where the set of candidate faults is reduced between 2.27% and 29.73%; s5378 has 27 cases where the set of candidate faults is reduced between 1.49% and 32.56%; and b04 has 23 cases where the set of candidate faults is reduced between 2.00% and 17.24%.

These effects typically occur with $b \leq 16$, making it unnecessary to compute larger diagnostic test sets.

It is important to note that these effects occur even though the diagnostic holes are addressed by diagnostic tests for bridging faults, while the defects consist of multiple stuckat faults. Consequently, these effects can be expected to be independent of the type of defects that are present in the faulty circuit.

B. Additional Results

This subsection describes additional experiments to demonstrate different aspects of the approach described in this paper.

First, it is interesting to identify the smallest defect multiplicities that produce large sets of candidate faults, and require additional diagnostic tests as suggested here. For this study, the defect diagnosis procedure is applied to defects of multiplicities 2, 3, ..., $2log_4L$. For each multiplicity, 100 defects are selected randomly. A defect with the smallest multiplicity that benefits from additional diagnostic tests is reported in Table IX. The reported defect is the one with the largest percentage reduction in the number of candidate

TABLE IX
DEFECT DIAGNOSIS (SMALL MULTIPLICITY)

	ĺ		ca	nd	cand	cand red		sol	prec	
circuit	i	m_i	0	32	%	b	0	32	0	32
s526	23	4	15	10	33.33	4	0.267	0.400	1.000	1.000
s641	39	2	11	6	45.45	4	0.182	0.333	1.000	1.000
s820	45	5	22	20	9.09	16	0.227	0.250	1.000	1.000
s1196	78	3	18	11	38.89	2	0.167	0.273	1.000	1.000
s1423	39	2	14	8	42.86	8	0.143	0.250	1.000	1.000
b03	7	2	8	2	75.00	1	0.250	1.000	1.000	1.000
b04	60	2	9	7	22.22	2	0.222	0.286	1.000	1.000
b05	73	2	7	4	42.86	1	0.286	0.500	1.000	1.000
b07	0	2	7	4	42.86	8	0.143	0.250	0.500	0.500
b08	60	3	10	7	30.00	1	0.200	0.286	0.667	0.667
des_area	31	2	6	4	33.33	2	0.333	0.500	1.000	1.000
pci_spoci_ctrl	4	2	5	3	40.00	4	0.400	0.667	1.000	1.000
sasc	19	3	7	6	14.29	32	0.286	0.333	0.667	0.667
steppermotordrive	11	2	7	4	42.86	1	0.286	0.500	1.000	1.000
usb_phy	72	2	6	5	16.67	1	0.333	0.400	1.000	1.000

TABLE X
EXTENDED DIAGNOSTIC TEST GENERATION

	ba	sic	extended		
circuit	0	32	0	32	
s526	60	108	115	149	
s641	42	55	76	83	
s820	133	187	302	350	
s953	88	95	125	131	
s1196	159	235	257	307	
s1423	71	251	199	324	
b03	28	32	40	46	
b04	56	64	104	107	
b05	70	216	165	283	
b07	60	65	94	99	
b08	66	84	374	381	
b09	29	32	249	254	
b10	51	67	97	115	
b11	77	115	202	234	
des_area	139	219	254	306	
pci_spoci_ctrl	169	232	266	318	
sasc	53	77	234	249	
systemcdes	96	213	182	251	
usb_phy	44	96	100	132	

faults. This experiment requires large numbers of defects to be simulated, and it is applied only to several of the circuits.

Table IX demonstrates that there are defects with smaller multiplicities than the ones in Tables VI-VIII that produce large sets of candidate faults, and benefit from additional diagnostic tests based on distinguishable bridging faults.

It is also important to demonstrate that an extended diagnostic test set for single stuck-at faults does not obviate the need to address diagnostic holes. The diagnostic test set for single stuck-at faults is denoted by T_0 . To obtain an extended test set for T_0 , every pair of single stuck-at faults that are not distinguished by a fault detection test set T_{sa} is targeted four times, to produce four diagnostic tests. These tests are added to T_0 to obtain a larger and more comprehensive test set than the basic one used earlier in this section. Diagnostic test generation for bridging faults is applied as before starting from the extended test set T_0 .

The extended test sets obtained for several circuits are described in Table X. Column basic repeats the number of tests in T_0 and T_{32} from Tables III-V. Column extended shows the number of tests in T_0 and T_{32} using the extended test set.

 $\label{eq:table_XI} \textbf{TABLE} \ \textbf{XI}$ $\textbf{Defect Diagnosis} \ (\textbf{Extended Diagnostic Test Set})$

	ĺ		ca	nd	cand	red	res	sol	prec		
circuit	i	m_i	0	32	%	b	0	32	0	32	
s526	30	7	36	30	16.67	8	0.194	0.233	1.000	1.000	
s641	64	5	29	22	24.14	16	0.103	0.136	0.600	0.600	
s820	32	9	51	38	25.49	4	0.098	0.132	0.556	0.556	
s953	19	7	20	16	20.00	16	0.350	0.438	1.000	1.000	
s1196	81	6	14	11	21.43	2	0.357	0.455	0.833	0.833	
s1423	75	6	25	19	24.00	4	0.200	0.263	0.833	0.833	
b03	40	5	19	12	36.84	1	0.211	0.333	0.800	0.800	
b04	6	12	29	27	6.90	8	0.276	0.296	0.667	0.667	
b05	66	11	31	20	35.48	1	0.258	0.400	0.727	0.727	
b07	16	5	17	13	23.53	16	0.294	0.385	1.000	1.000	
b08	7	8	18	15	16.67	8	0.222	0.267	0.500	0.500	
b09	37	10	22	19	13.64	1	0.227	0.263	0.500	0.500	
b10	78	6	15	11	26.67	8	0.333	0.455	0.833	0.833	
b11	72	6	31	21	32.26	2	0.194	0.286	1.000	1.000	
des_area	77	13	76	50	34.21	1	0.145	0.220	0.846	0.846	
pci_spoci_ctrl	8	11	56	42	25.00	4	0.125	0.167	0.636	0.636	
sasc	24	12	35	34	2.86	4	0.286	0.294	0.833	0.833	
systemcdes	51	11	42	32	23.81	1	0.262	0.344	1.000	1.000	
usb_phy	68	9	30	27	10.00	1	0.300	0.333	1.000	1.000	

TABLE XII

DEFECT DIAGNOSIS (MULTIPLE STUCK-AT AND BRIDGING FAULTS)

	I			car	nd	cand	red	res	sol	prec	
circuit	i	m_i	br	0	32	%	b	0	32	0	32
s526	1	6	3	25	15	40.00	4	0.200	0.333	0.833	0.833
s641	91	6	4	46	26	43.48	1	0.130	0.231	1.000	1.000
s820	6	5	4	49	14	71.43	1	0.041	0.143	0.400	0.400
s953	67	10	5	43	37	13.95	2	0.186	0.216	0.800	0.800
s1196	20	10	4	64	42	34.38	2	0.125	0.190	0.800	0.800
s1423	78	6	2	25	14	44.00	1	0.200	0.357	0.833	0.833
b03	60	7	4	20	15	25.00	4	0.300	0.400	0.857	0.857
b04	83	11	5	52	31	40.38	1	0.115	0.194	0.545	0.545
b05	87	7	4	28	15	46.43	1	0.179	0.333	0.714	0.714
b07	56	5	2	14	12	14.29	16	0.214	0.250	0.600	0.600
b08	11	7	3	32	10	68.75	1	0.094	0.300	0.429	0.429
b09	25	6	3	29	14	51.72	8	0.138	0.286	0.667	0.667
b10	38	9	2	21	14	33.33	4	0.238	0.357	0.556	0.556
b11	10	7	3	30	18	40.00	2	0.133	0.222	0.571	0.571
des_area	29	11	5	71	46	35.21	1	0.127	0.196	0.818	0.818
i2c	15	6	3	21	16	23.81	2	0.238	0.312	0.833	0.833
pci_spoci_ctrl	90	6	2	13	8	38.46	1	0.308	0.500	0.667	0.667
sasc	83	7	4	22	17	22.73	16	0.318	0.412	1.000	1.000
simple_spi	71	11	9	41	25	39.02	2	0.195	0.320	0.727	0.727
steppermotordrive	94	5	4	24	13	45.83	1	0.083	0.154	0.400	0.400
systemcdes	63	8	6	144	31	78.47	1	0.042	0.194	0.750	0.750
usb_phy	45	10	8	45	23	48.89	1	0.111	0.217	0.500	0.500

Table X demonstrates that the extended test set T_0 is, in many cases, larger than the test set T_{32} obtained with the basic test set T_0 .

The results of defect diagnosis using the extended test sets are shown in Table XI. In this case, only the defect with the largest percentage reduction in the number of candidates is reported. Additional defects with significant percentage reductions are obtained, but they are not reported since they show similar behavior to that observed earlier.

Table XI shows large percentage reductions in the numbers of candidates even with an extended diagnostic test set for single stuck-at faults. Thus, performing more diagnostic test generation for single stuck-at faults does not compensate for the diagnostic holes that are created by indistinguishable stuck-at fault pairs.

Finally, additional results of defect diagnosis are shown in

TABLE XIII

DEFECT DIAGNOSIS (MULTIPLE STUCK-AT AND REALISTIC BRIDGING FAULTS)

	1					cand red					
circuit											
									0.079		
s820	24	7	5	56	22	60.71	1	0.054	0.136	0.429	0.429
s1196	88	11	11	39	26	33.33	1	0.103	0.154	0.364	0.364
s1423	55	12	7	48	21	56.25	1	0.146	0.333	0.583	0.583
s5378	79	7	6	49	28	42.86	1	0.082	0.143	0.571	0.571

TABLE XIV

DEFECT DIAGNOSIS (MULTIPLE STUCK-AT, BRIDGING AND
INTERCONNECT OPEN FAULTS)

	l			cand			cand red		resol		prec	
circuit	i	m_i	br	op	0	32	%	b	0	32	0	32
s526	64	9	0	5	49	20	59.18	1	0.102	0.250	0.556	0.556
s641	9	8	3	3	35	22	37.14	1	0.143	0.227	0.625	0.625
s820	23	5	4	1	40	16	60.00	4	0.075	0.188	0.600	0.600
s953	17	9	3	5	29	23	20.69	4	0.138	0.174	0.444	0.444
s1196	37	6	1	4	37	17	54.05	2	0.108	0.235	0.667	0.667
s1423	48	7	2	5	47	23	51.06	1	0.106	0.217	0.714	0.714
b03	1	8	2	3	17	11	35.29	4	0.294	0.455	0.625	0.625
b04	36	8	2	4	38	28	26.32	1	0.184	0.250	0.875	0.875
b05	59	12	4	6	50	27	46.00	1	0.160	0.296	0.667	0.667
b07	55	5	1	2	23	12	47.83	1	0.174	0.333	0.800	0.800
b08	83	5	2	2	35	13	62.86	1	0.086	0.231	0.600	0.600
b09	12	8	3	5	25	9	64.00	1	0.080	0.222	0.250	0.250
b10	63	6	4	1	61	25	59.02	2	0.066	0.160	0.667	0.667
b11	26	5	2	2	18	9	50.00	2	0.111	0.222	0.400	0.400
des_area	39	14	6	6	74	44	40.54	1	0.108	0.182	0.571	0.571
i2c	98	8	2	4	43	31	27.91	16	0.140	0.194	0.750	0.750
pci_spoci_ctrl	34	9	4	5	32	21	34.38	2	0.219	0.333	0.778	0.778
sasc	35	11	2	7	42	24	42.86	2	0.190	0.333	0.727	0.727
simple_spi	3	12	5	5	38	25	34.21	8	0.289	0.440	0.917	0.917
steppermotordrive	81	7	3	4	36	18	50.00	1	0.083	0.167	0.429	0.429
systemcdes	38	12	0	10	89	33	62.92	1	0.067	0.182	0.500	0.500
usb_phy	64	6	2	4	33	13	60.61	16	0.121	0.308	0.667	0.667

Tables XII, XIII and XIV. For Table XII, a defect consists of multiple stuck-at and bridging faults that are selected randomly. Since the faults are selected randomly, the bridging faults are, in general, different from the ones used for diagnostic test generation. Defects that consist of faults of different types are more difficult to diagnose, especially since the defect diagnosis procedure uses only single stuck-at faults for defining sets of candidate faults. Thus, this experiment verifies that the results of defect diagnosis are improved even when the defects are more difficult to diagnose.

As in Table XI, only the defect with the largest percentage reduction in the number of candidates is reported in Table XII. Column br of Table XII shows the number of bridging faults that are included in a defect of multiplicity m_i .

Table XII shows large percentage reductions in the numbers of candidates even with defects that are more difficult to diagnose.

For Table XIII, a defect consists of multiple stuck-at and realistic bridging faults that are selected randomly. Realistic bridging faults are obtained using the procedure described in [27]. In this case also, large percentage reductions in the numbers of candidates are obtained.

For Table XIV, a defect consists of multiple stuck-at, bridging and interconnect open faults that are selected randomly.

An interconnect open fault has either three or five aggressors. Column br of Table XIV shows the number of bridging faults and column op shows the number of interconnect open faults that are included in a defect of multiplicity m_i . Again, large percentage reductions in the numbers of candidates are obtained for these defects.

VI. CONCLUDING REMARKS

This paper observed that a diagnostic hole occurs when a fault pair from a set of target faults cannot be distinguished. It also observed that it is possible to address diagnostic holes by targeting related fault pairs from a different fault model. The paper used this observation to enhance a diagnostic test set that is computed for single stuck-at faults. When a pair of single stuck-at faults is indistinguishable, the diagnostic test generation procedure described in the paper adds diagnostic tests for related pairs of bridging faults. Experimental results of defect diagnosis for defects that do not involve bridging faults in benchmark circuits demonstrated the importance of eliminating diagnostic holes.

Although the discussion was focused on single stuck-at faults and bridging faults, this new approach to diagnostic test generation can be applied with different fault models.

REFERENCES

- [1] M. Abramovici, M. A. Breuer and A. D. Friedman, *Digital Systems Testing and Testable Design*, IEEE Press, 1995.
- [2] P. Camurati, D. Medina, P. Prinetto and M. Sonza Reorda, "A Diagnostic Test Pattern Generation Algorithm", in Proc. Intl. Test Conf., 1990, pp. 52-58.
- [3] T. Gruning, U. Mahlstedt and H. Koopmeiners, "DIATEST: A Fast Diagnostic Test Pattern Generator for Combinational Circuits", in Proc. Intl. Conf. on Computer-Aided Design, 1991, pp. 194-197.
- [4] F. Corno, P. Prinetto, M. Rebaudengo and M. Sonza Reorda, "GARDA: A Diagnostic ATPG for Large Synchronous Sequential Circuits", in Proc. Europ. Design & Test Conf., 1995, pp. 267-271.
- [5] I. Pomeranz and S. M. Reddy, "A Diagnostic Test Generation Procedure for Synchronous Sequential Circuits Based on Test Elimination", in Proc. Intl. Test Conf., 1998, pp. 1074-1083.
- [6] A. Veneris, R. Chang, M. S. Abadir and S. Seyedi, "Functional Fault Equivalence and Diagnostic Test Generation in Combinational Logic Circuits Using Conventional ATPG", Journal of Electronic Testing: Theory and Applications (JETTA), vol. 21, no. 5, Oct. 2005, pp. 495-502.
- [7] K. Gearhardt, C. Schuermyer and R. Guo, "Improving Fault Isolation Using Iterative Diagnosis", in Proc. Intl. Symp. for Testing and Failure Analysis, 2008, pp. 390-395.
- [8] R. Adapa, E. Flanigan and S. Tragoudas, "A Novel Test Generation Methodology for Adaptive Diagnosis", in Intl. Symp. on Quality Electronic Design, 2008, pp. 242-245.
- [9] M. A. Shukoor and V. D. Agrawal, "A Two Phase Approach for Minimal Diagnostic Test Set Generation", in Proc. European Test Symp., 2009, pp. 115-120.
- [10] Y. Higami, Y. Kurose, S. Ohno, H. Yamaoka, H. Takahashi, Y. Shimizu, T. Aikyo and Y. Takamatsu, "Diagnostic Test Generation for Transition Faults using a Stuck-at ATPG Tool", in Proc. Intl Test Conf., 2009, pp. 1-9.
- [11] Y. Zhang and V. D. Agrawal, "A Diagnostic Test Generation System", in Proc. Intl. Test Conf, 2010, pp. 1-9.
- [12] J. Ye, X. Zhang, Y. Hu and X. Li, "Substantial Fault Pair At-a-Time (SFPAT): An Automatic Diagnostic Pattern Generation Method", in Proc. Asian Test Symp., 2010, pp. 192-197.
- [13] R. Guo. W.-T. Cheng, T. Kobayashi and K.-H. Tsai, "Diagnostic Test Generation for Small Delay Defect Diagnosis", in Proc. Intl Symp. on VLSI Design Autom. and Test, 2010, pp. 224-227.
- [14] I. Pomeranz, "Generation of Mixed Broadside and Skewed-Load Diagnostic Test Sets for Transition Faults", in Proc. Pacific Rim Intl. Symp. on Dependable Computing, 2011, pp. 45-52.

- [15] S. Prabhu, M. S. Hsiao, L. Lingappan and V. Gangaram, "A SMT-based Diagnostic Test Generation Method for Combinational Circuits", in Proc. VLSI Test Symp., 2012 pp. 215-220.
- [16] Y.-H. Chen, C.-L. Chang and C.H.-P. Wen, "Diagnostic Test-pattern Generation Targeting Open-segment Defects and its Diagnosis Flow", IET Computers & Digital Techniques, Vol. 6, No. 3, 2012, pp. 186-193.
- [17] M. Scholzel, T. Koal and H. T. Vierhaus, "Systematic Generation of Diagnostic Software-based Self-test Routines for Processor Components", in Proc. European Test Symp., 2014, pp. 1-6.
- [18] Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Virazel and E. Auvray, "On the Generation of Diagnostic Test Set for Intra-cell Defects", in Proc. Asian Test Symp., 2014, pp. 312-317.
- [19] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda and B. Becker, "Effective Generation and Evaluation of Diagnostic SBST Programs", in Proc. VLSI Test Symp., 2016, pp. 1-6.
- [20] M. E. Amyeen, D. Kim, M. Chandrasekar, M. Noman, S. Venkataraman, A. Jain, N. Goel and R. Sharma, "A novel Diagnostic test Generation Methodology and its Application in Production Failure Isolation", in Proc. Intl. Test Conf., 2016, pp. 1-10.
- [21] M. E. Amyeen, I. Pomeranz and S. Venkataraman, "A Joint Diagnostic Test Generation Procedure with Dynamic Test Compaction", in Proc. Asian Test Symp., 2016.
- [22] S. Venkataraman and S. B. Drummonds, "POIROT: A Logic Fault Diagnosis Tool and its Applications", in Proc. Intl. Test Conf., 2000, pp. 253-262.
- [23] X. Tang, W.-T. Cheng, R. Guo and S. M. Reddy, "Diagnosis of Multiple Physical Defects Using Logic Fault Models", in Proc. Asian Test Symp., 2010, pp. 94-99.
- [24] I. Pomeranz, "OBO: An Output-By-Output Scoring Algorithm for Fault Diagnosis", in Proc. IEEE Computer Society Annual Symp. on VLSI, 2014, pp. 314-319.
- [25] S. Sengupta, S. Kundu, S. Chakravarty, P. Parvathala, R. Galivanche, G. Kosonocky, M. Rodgers and T. M. Mak, "Defect-Based Tests: A Key Enabler for Successful Migration to Structural Test", Intel Technology Journal, Q.1, 1999.
- [26] V. Krishnaswamy, A. B. Ma, P. Vishakantaiah, "A Study of Bridging Defect Probabilities on a Pentium (TM) 4 CPU", Intl. Test Conf., 2001, pp. 688-695.
- [27] F. J. Ferguson and J. P. Shen, "A CMOS Fault Extractor for Inductive Fault Analysis", IEEE Trans. on Computer-Aided Design, Nov. 1988, pp. 1181-1194.
- [28] I. Pomeranz, S. M. Reddy and S. Kundu, "On the Characterization and Efficient Computation of Hard-to-Detect Bridging Faults", IEEE Trans. on Computer-Aided Design, Dec. 2004, pp. 1640-1649.

PLACE PHOTO HERE Irith Pomeranz received the B.Sc degree (Summa cum Laude) in Computer Engineering and the D.Sc degree from the Department of Electrical Engineering at the Technion - Israel Institute of Technology in 1985 and 1989, respectively. From 1989 to 1990 she was a Lecturer in the Department of Computer Science at the Technion. From 1990 to 2000 she was a faculty member in the Department of Electrical and Computer Engineering at the University of Iowa. In 2000 she joined the School of Electrical and Computer Engineering at Purdue University. Her

research interests include testing of VLSI circuits, design for testability, synthesis and design verification. Dr. Pomeranz is a recipient of the NSF Young Investigator Award in 1993, and of the University of Iowa Faculty Scholar Award in 1997. Three of her conference papers won best paper awards, and three other papers were nominated for best paper awards. One of her papers was selected by the 2016 International Test Conference as the most significant paper published ten years before. She delivered a keynote speech at the 2006 Asian Test Symposium. She served as associate editor of the ACM Transactions on Design Automation, the IEEE Transactions on Computers, and the IEEE Transactions on VLSI Systems. She served as guest editor of the IEEE Transactions on Computers January 1998 special issue on Dependability of Computing Systems, and as program co-chair of the 1999 Fault-Tolerant Computing Symposium. She served as program chair of the 2004 and the 2005 VLSI Test Symposium, and as general chair of the 2006 VLSI Test Symposium. She is a Golden Core Member of the IEEE Computer Society.