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Abstract. For almost all Riemannian metrics (in the C
∞ Baire sense)

on a closed manifold M
n+1, 3 ≤ (n + 1) ≤ 7, we prove that the union

of all closed, smooth, embedded minimal hypersurfaces is dense. This
implies there are infinitely many minimal hypersurfaces thus proving a
conjecture of Yau (1982) for generic metrics.

1. Introduction

Minimal surfaces are among the most extensively studied objects in Differ-
ential Geometry. There is a wealth of examples for many particular ambient
spaces, but their general existence theory in Riemannian manifolds is still
rather mysterious. A motivating conjecture has been:

Conjecture (Yau [19], 1982): Every closed Riemannian three-manifold
contains infinitely many smooth, closed, immersed minimal surfaces.

In this paper we settle the generic case, and in fact prove that a much
stronger property holds true: there are infinitely many closed embedded
minimal hypersurfaces intersecting any given ball in M .

Main Theorem: Let Mn+1 be a closed manifold of dimension (n + 1),
with 3 ≤ (n+ 1) ≤ 7. Then for a C∞-generic Riemannian metric g on M ,
the union of all closed, smooth, embedded minimal hypersurfaces is dense.

Besides some specific metrics (e.g. [9]), the existence of infinitely many
closed, smooth, embedded minimal hypersurfaces was only known for man-
ifolds of positive Ricci curvature Mn+1, 3 ≤ (n + 1) ≤ 7, as proven by the
last two authors in [13]. Before that the best result was due to Pitts (1981,
[14]), who built on earlier work of Almgren ([2]) to prove there is at least one
closed embedded minimal hypersurface. In [13] it was shown the existence
of at least (n+ 1) such hypersurfaces.

The main ingredient in the proof of our Main Theorem is the Weyl law for
the volume spectrum conjectured by Gromov ([6]) and recently proven by the
last two authors jointly with Liokumovich in [10]. We need the Morse index
estimates proven by the last two authors in [11], for minimal hypersurfaces
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constructed by min-max methods. And we use the Structure Theory of
White ([17], [18]), who proved that a generic metric is “bumpy”, meaning
that every closed minimal hypersurface is nondegenerate. Finally, we use
an idea of the first author ([8]) who proved an analogous density result for
closed geodesics (not necessarily embedded) in surfaces. The argument of [8]
is based on a different kind of asymptotic law, involving spectral invariants
in Embedded Contact Homology ([4]).

The volume spectrum of a compact Riemannian manifold (Mn+1, g) is a
nondecreasing sequence of numbers {ωk(M, g) : k ∈ N} defined variationally
by performing a min-max procedure for the area (or n-dimensional volume)
functional over multiparameter sweepouts. The first estimates for these
numbers were proven by Gromov in the late 1980s [5] (see also Guth [7]).

The main result of [10] used in this paper is:

Weyl Law for the Volume Spectrum (Liokumovich, Marques, Neves,
2016): There exists a universal constant a(n) > 0 such that for any compact
Riemannian manifold (Mn+1, g) we have:

lim
k→∞

ωk(M, g)k−
1

n+1 = a(n)vol(M, g)
n

n+1 .

In [5], Gromov worked with a definition of ωk(M, g) that was slightly dif-
ferent from ours (see Section 2 of this paper). He considered a parametriza-
tion of the space of hypersurfaces in M by the space of real functions on M ,
or more precisely by its projectivization. Namely, to a function f : M → R

(or to its equivalence class [f ]) he associated the zero set f−1(0) ⊂ M . In
our case, the space of hypersurfaces is the space Zn(M ;Z2) of n-dimensional
modulo two flat boundaries endowed with the flat topology. This allows us
to use the machinery of Geometric Measure Theory. The projectivization of
the space of real functions can be identified immediately with RP

∞, while
the fact that Zn(M ;Z2) is weakly homotopically equivalent to RP

∞ follows
from work of Almgren [1] (as explained in [12]). In Gromov’s work ([6]), ωk

is defined to be the smallest number such that the set of hypersurfaces with
volume less than or equal to ωk has “essential dimension” (Section 0.3.A,
[6]) greater than or equal to k.

Flat chains modulo two of any codimension were crucially used by Guth
[7] in his study of min-max volumes associated with cohomology classes.
In our case we restrict to codimension one (in which case the cohomology
classes are cup products) and add the no concentration of mass condition
for technical reasons related to Almgren-Pitts min-max theory.

The dimensional restriction in the Main Theorem is due to the fact that
in higher dimensions min-max (even area-minimizing) minimal hypersur-
faces can have singular sets. We use Almgren-Pitts theory ([2], [14]), which
together with Schoen-Simon regularity ([15]) produces smooth minimal hy-
persurfaces when 3 ≤ (n+1) ≤ 7. We expect that the methods of this paper
can be generalized to handle the higher-dimensional singular case.
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We finish the introduction with some idea of the proof. First we prove
that for each k ∈ N, the number ωk(M, g) is the volume of some smooth,
embedded, closed minimal hypersurface, perhaps with integer multiplicities.
The possible presence of integer multiplicities is one of the reasons why
constructing distinct minimal hypersurfaces is a difficult problem.

The main observation is that the Weyl Law for the Volume Spectrum
implies a mechanism to create new minimal hypersurfaces by perturbation of
the metric. Suppose g is a bumpy metric (a generic property by White) such
that no minimal hypersurface for g intersects some nonempty open set U ⊂
M . The fact that g is bumpy implies there can be at most countably many
minimal hypersurfaces for g. We consider a family of conformal deformations
g(t) = (1 + th)g for small t ≥ 0, where h is a nonzero nonnegative function
with support contained in U . Because the volume of M goes up strictly
with t, the Weyl Law for the Volume Spectrum tells us that for any t > 0
some k-width ωk will satisfy ωk(g(t)) > ωk(g), and therefore ωk assumes
uncountably many values. Because g(t) = g outside U , for some g(t′),
t′ > 0, there must be a minimal hypersurface that intersects U . Hence by
perturbing g to g(t′) we have kept all the minimal hypersurfaces for g intact
but gained a new one that intersects U .

2. Preliminaries

We denote by Zn(M ;Z2) the space of modulo two n-dimensional flat
chains T in M with T = ∂U for some (n + 1)-dimensional modulo two
flat chain U in M , endowed with the flat topology. This space is weakly
homotopically equivalent to RP

∞ (see Section 4 of [12]). We denote by λ the
generator of H1(Zn(M ;Z2),Z2) = Z2. The mass (n-dimensional volume) of
T is denoted by M(T ).

Let X be a finite dimensional simplicial complex. A continuous map
Φ : X → Zn(M ;Z2) is called a k-sweepout if

Φ∗(λ̄k) 6= 0 ∈ Hk(X;Z2).

We say X is k-admissible if there exists a k-sweepout Φ : X → Zn(M ;Z2)
that has no concentration of mass, meaning

lim
r→0

sup{M(Φ(x) ∩Br(p)) : x ∈ X, p ∈ M} = 0.

The set of all k-sweepouts Φ that have no concentration of mass is denoted
by Pk. Note that two maps in Pk can have different domains.

In [13], the last two authors defined

Definition: The k-width of (M, g) is the number

ωk(M, g) = inf
Φ∈Pk

sup{M(Φ(x)) : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of Φ.
As remarked in the Introduction, this is a variation of a definition of

Gromov (Section 4.2.B, p. 179, [5]).
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Lemma 2.1. The k-width ωk(M, g) depends continuously on the metric g

(in the C0 topology).

Proof. Suppose gi is a sequence of smooth Riemannian metrics that con-
verges to g in the C0 topology. Given ε > 0, let Φ : X → Zn(M ;Z2) be a
k-sweepout of M that has no concentration of mass (this condition does not
depend on the metric) and such that

sup{Mg(Φ(x)) : x ∈ X} ≤ ωk(M, g) + ε,

where Mg(T ) is the mass of T with respect to g.
Since

ωk(M, gi) ≤ sup{Mgi(Φ(x)) : x ∈ X}

≤ (sup
v 6=0

gi(v, v)

g(v, v)
)
n

2 sup{Mg(Φ(x)) : x ∈ X}

≤ (sup
v 6=0

gi(v, v)

g(v, v)
)
n

2 (ωk(M, g) + ε),

and ε > 0 is arbitrary, we get lim supi→∞ ωk(M, gi) ≤ ωk(M, g). Similarly,
one can prove lim infi→∞ ωk(M, gi) ≥ ωk(M, g).

�

The proof of the next Proposition is essentially contained in Section 1.5
of [11], but we prove it here for the sake of completeness. It follows from the
index estimates of the last two authors ([11]) and a compactness theorem of
Sharp ([16]).

Proposition 2.2. Suppose 3 ≤ (n + 1) ≤ 7. Then for each k ∈ N, there
exist a finite disjoint collection {Σ1, . . . ,ΣN} of closed, smooth, embedded
minimal hypersurfaces in M , and integers {m1, . . . ,mN} ⊂ N, such that

ωk(M, g) =

N∑

j=1

mjvolg(Σj),

and
N∑

j=1

index(Σj) ≤ k.

Proof. Choose a sequence {Φi}i∈N ⊂ Pk such that

lim
i→∞

sup{M(Φi(x)) : x ∈ Xi = dmn(Φi)} = ωk(M, g).

Denote by X
(k)
i the k-dimensional skeleton of Xi. Then Hk(Xi, X

(k)
i ;Z2) =

0 and hence the long exact cohomology sequence gives that the natural

pullback map from Hk(Xi;Z2) into Hk(X
(k)
i ;Z2) is injective. This implies

(Φi)|X(k)
i

∈ Pk. The definition of ωk then implies

lim
i→∞

sup{M(Φi(x)) : x ∈ X
(k)
i } = ωk(M, g).
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The interpolation machinery developed by the last two authors ([13], item

(ii) of Corollary 3.12) implies that we can suppose Φi : X
(k)
i → Zn(M,Z2)

is continuous in the F-metric (see Section 2.1 of [13]) for every i.
We denote by Πi the homotopy class of Φi as defined in [11]. This is the

class of all maps Φ′
i : X

(k)
i → Zn(M,Z2), continuous in the F-metric, that

are homotopic to Φi in the flat topology. In particular, (Φ′
i)
∗(λ

k
) = Φ∗

i (λ
k
).

Continuity in the F-metric implies no concentration of mass, hence every
such Φ′

i is also a k-sweepout.
Therefore the min-max number (defined in Section 1 of [11])

L(Πi) = inf
Φ′

i
∈Πi

sup
x∈X

(k)
i

{M(Φ′
i(x))}

satisfies

ωk(M, g) ≤ L(Πi) ≤ sup{M(Φi(x)) : x ∈ X
(k)
i }

and in particular

lim
i→∞

L(Πi) = ωk(M, g).

Theorem 1.2 of [11] now implies the existence of a finite disjoint collection
{Σi,1, . . . ,Σi,Ni

} of closed, smooth, embedded minimal hypersurfaces in M ,
and integers {mi,1, . . . ,mi,Ni

} ⊂ N, such that

L(Πi) =

Ni∑

j=1

mi,jvolg(Σi,j),

and
Ni∑

j=1

index(Σi,j) ≤ k.

The monotonicity formula for minimal hypersurfaces in Riemannian man-
ifolds implies that there exists δ > 0, depending only on M , such that the
volume of any closed minimal hypersurface is greater than or equal to δ.
Hence the number of components Ni and the multiplicities mi,j are uni-
formly bounded. The Compactness Theorem of Sharp (Theorem 2.3 of [16])
implies that there exists a finite disjoint collection {Σ1, . . . ,ΣN} of closed,
smooth, embedded minimal hypersurfaces in M , satisfying

N∑

j=1

index(Σj) ≤ k,

and integers {m1, . . . ,mN} ⊂ N such that, after passing to a subsequence,

Ni∑

j=1

mi,j · Σi,j →
N∑

j=1

mj · Σj

as varifolds. Hence ωk(M, g) =
∑N

j=1mjvolg(Σj), and the proof of the
proposition is finished.
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�

Proposition 2.3. Let Σ be a closed, smooth, embedded minimal hypersur-
face in (Mn+1, g). Then there exists a sequence of metrics gi on M , i ∈ N,
converging to g in the smooth topology such that Σ is a nondegenerate min-
imal hypersurface in (Mn+1, gi) for every i.

Proof. If g̃ = exp(2φ)g, then the second fundamental form of Σ with respect
to g̃ is given by (Besse [3], Section 1.163)

AΣ,g̃ = AΣ,g − g · (∇φ)⊥,

where (∇φ)⊥(x) is the component of ∇φ normal to TxΣ. The Ricci curva-
tures are related by (see Besse [3], Theorem 1.159):

Ricg̃ = Ricg − (n− 1)(Hessgφ− dφ⊗ dφ)− (∆gφ+ (n− 1)|∇φ|2) · g.

Suppose both φ and ∇φ vanish on Σ. Then g̃|Σ = g|Σ and AΣ,g̃ = AΣ,g.

In particular, Σ is also minimal with respect to g̃ and |AΣ,g̃|
2
g̃ = |AΣ,g|

2
g. A

unit normal N to Σ with respect to g is also a unit normal to Σ with respect
to g̃ and

Ricg̃(N,N) = Ricg(N,N)− (n− 1)Hessgφ(N,N)−∆gφ.

Since ∇φ = 0 on Σ, we have ∆gφ = Hessgφ(N,N) on Σ and therefore

Ricg̃(N,N) = Ricg(N,N)− nHessgφ(N,N).

Let η : M → R be a smooth function such that is equal to 1 in Vδ(Σ) and
equal to zero in M \ V2δ(Σ), where Vr(Σ) = {x ∈ M : dg(x,Σ) ≤ r}. We
choose δ > 0 sufficiently small so that the function x 7→ dg(x,Σ)

2 is smooth
in V3δ(Σ). We define h(x) = η(x)dg(x,Σ)

2 for x ∈ V3δ(Σ) and h(x) = 0 for
x ∈ M \ V3δ(Σ), so h : M → R is a smooth function that coincides with
x 7→ dg(x,Σ)

2 in some small neighborhood of Σ.
Let gi = exp(2φi)g, where φi =

1
i
h. Since h(x) = dg(x,Σ)

2 in a neighbor-

hood of Σ, we have that, on Σ, φi = 0, ∇φi = 0 and Hessgφi(N,N) = 2
i
,

and Σ is minimal with respect to gi.
Therefore

Ricgi(N,N) + |AΣ,gi |
2
gi
= Ricg(N,N) + |AΣ,g|

2
g −

2n

i
.

The Jacobi operator acting on normal vector fields is given by the expres-
sion

LΣ,g(X) = ∆⊥
Σ,gX + (Ricg(N,N) + |AΣ,g|

2
g)X.

Since gi|Σ = g|Σ, we have ∆⊥
Σ,gi

X = ∆⊥
Σ,gX and hence

LΣ,gi(X) = LΣ,g(X)−
2n

i
X.

We conclude that

spec (LΣ,gi) = spec (LΣ,g) +
2n

i
.

Hence Σ is nondegenerate with respect to gi for every sufficiently large i. �
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3. Proof of the Main Theorem

We denote by M the space of all smooth Riemannian metrics on M ,
endowed with the C∞ topology.

Proposition 3.1. Suppose 3 ≤ (n+ 1) ≤ 7, and let U ⊂ M be a nonempty
open set. Then the set MU of all smooth Riemannian metrics on M such
that there exists a nondegenerate, closed, smooth, embedded, minimal hyper-
surface Σ that intersects U is open and dense in the C∞ topology.

Proof. Let g ∈ MU and Σ be like in the statement of the proposition. Be-
cause Σ is nondegenerate, an application of the Inverse Function Theorem
implies that for every Riemannian metric g′ sufficiently close to g, there
exists a unique nondegenerate closed, smooth, embedded minimal hypersur-
face Σ′ close to Σ. This follows, for instance, from the Structure Theorem of
White (Theorem 2.1 in [17]) since the nondegeneracy of Σ is equivalent to
the invertibility of DΠ(g,Σ) (here Π is as in [17]). In particular, Σ′ ∩U 6= ∅
if g′ is sufficiently close to g. This implies MU is open.

It remains to show the set MU is dense. Let g be an arbitrary smooth
Riemannian metric on M and V be an arbitrary neighborhood of g in the
C∞ topology. By the Bumpy Metrics Theorem of White (Theorem 2.1,
[18]), there exists g′ ∈ V such that every closed, smooth immersed minimal
hypersurface with respect to g′ is nondegenerate. If one of these minimal
hypersurfaces is embedded and intersects U then g′ ∈ MU , and we are done.

Hence we can suppose that every closed, smooth, embedded minimal hy-
persurface with respect to g′ is contained in the complement of U . Since g′

is bumpy, it follows from Sharp (Theorem 2.3 and Remark 2.4, [16]) that
the set of connected, closed, smooth, embedded minimal hypersurfaces in
(M, g′) with both area and index bounded from above by q is finite for every
q > 0. Therefore the set

C = {
N∑

j=1

mjvolg′(Σj) : N ∈ N, {mj}
N
j=1 ⊂ N, {Σj}

N
j=1 disjoint collection

of closed, smooth, embeddedminimal hypersurfaces in (M, g′)}

is countable.
Choose h : M → R a smooth nonnegative function such that supp (h) ⊂ U

and h(x) > 0 for some x ∈ U . Define g′(t) = (1 + th)g′ for t ≥ 0, and let
t0 > 0 be sufficiently small so that g′(t) ∈ V for every t ∈ [0, t0]. Notice that
g′(t) = g′ outside some compact set K ⊂ U for every t > 0.

We have vol(M, g′(t0)) > vol(M, g′). It follows from the Weyl Law for
the Volume Spectrum (see Introduction) that there exists k ∈ N such that
ωk(M, g′(t0)) > ωk(M, g′). Assume by contradiction that for every t ∈
[0, t0], every closed, smooth, embedded minimal hypersurface in (M, g′(t))
is contained in M \ U . Since g′(t) = g′ outside K ⊂ U we conclude from
Proposition 2.2 that ωk(M, g′(t)) ∈ C for all t ∈ [0, t0]. But C is countable
and we know from Proposition 2.1 that the function t 7→ ωk(M, g′(t)) is
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continuous. Hence t 7→ ωk(M, g′(t)) is constant in the interval [0, t0]. This
contradicts the fact that ωk(M, g′(t0)) > ωk(M, g′).

Therefore we can find t ∈ [0, t0] such that there exists a closed, smooth,
embedded minimal hypersurface Σ with respect to g′(t) that intersects U .
Since g′(t) ∈ V , Proposition 2.3 implies there exists a Riemannian met-
ric g′′ ∈ V such that Σ is minimal and nondegenerate with respect to g′′.
Therefore g′′ ∈ V ∩MU and we have finished the proof of the Proposition.

�

Proof of the Main Theorem. Let {Ui} be a countable basis of M . Since, by
Proposition 3.1, each MUi

is open and dense in M the set ∩iMUi
is C∞

Baire-generic in M. This finishes the proof. �
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