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ABSTRACT 
In this study we examine how playing Zoombinis can help upper 
elementary and middle school learners build implicit 
computational thinking (CT) skills. Building on prior methods 
used with the digital science learning games, Impulse and 
Quantum Spectre, we are combining video analysis and 
educational data mining to identify implicit computational 
thinking that emerges through gameplay [1]. This paper reports on 
the first phase of this process:  developing a human labeling 
system for evidence of specific CT skills (e.g., problem 
decomposition, pattern recognition, algorithmic thinking, 
abstraction) in three Zoombinis puzzle by analyzing video data 
from a sample of elementary learners, middle school learners, 
game experts, and computer scientists. Future work will combine 
these human-labeled video data with game log data from these 
70+ learners and computer scientists to create automated 
assessments of implicit computational thinking skills from 
gameplay behaviors in large player audiences. This poster with 
video examples will share results of this work-in-progress. 
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1 INTRODUCTION 
Zoombinis is an award-winning, popular learning game that 

focuses on computational thinking. Originally designed as a 
puzzle game situated in the problems of database design, the 
dynamic suite of 12 puzzles, each with four levels, allows ample 
scaffolded problem-solving for young learners (ages 8 and above).  

 
With the re-release of Zoombinis for tablets, desktops, and 

Chomebooks, the authors are conducting a national 
implementation study with classes in grades 3-8 to understand 
how students implicitly learn computational thinking in 
Zoombinis gameplay. This study has two major components: 

a. To observe gameplay and build data detectors to 
identify implicit learning of computational thinking from player 
behaviors in the game, and 

b. To examine how teachers can bridge that implicit 
learning to explicit learning through classroom activity.  

 
This paper reports on the first phase of research towards part A - 
human-labeling gameplay observations to lay the groundwork for 
building data mining models and detectors. This work is grounded 
in the notion of implicit game-based learning assessments 
(GBLA), where game behaviors are thought to reveal knowledge 
that may go unexpressed in typical assessments used in school and 
educational research [1, 2]. 

2. IMPLICIT COMPUTATIONAL THINKING 
“We know more than we can tell” [Polanyi, 3] 
 
Implicit knowledge may not yet be articulated by the learner 

but is demonstrable through behaviors. Today’s STEM learning 
assessments are typically laden with terminology that may present 
barriers to learners’ expression of their underlying knowledge, 
and self-contained or decontextualized tests do not call upon 
previous knowledge or experience of learners to support new 
learning [4]. Game-based learning assessments show promise to 
provide a stealth method of assessing content and skills outside of 
school-like tests [5]. For research on Zoombinis, we defined a 
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learning progression of computational thinking and problem 
solving skills to guide our labeling of strategies and behaviors in 
gameplay consistent with facets of the progression (Figure 1). 

 
Drawing from various definitions of computational thinking 

from research and practice [6-9], we have defined a learning 
progression that we hypothesize can be operationalized within 
Zoombinis gameplay. 

 

Figure 1: An Iterative Learning Progression of CT that is 
operationalized in Zoombinis gameplay 

While this graphic is linear, the progression is iterative in practice 
with novices and experts moving back and forth through the steps, 
though possibly at different rates. The key elements of 
computational thinking that we hypothesize will be evident in 
Zoombinis gameplay are: 

• Problem decomposition: the reduction of ambiguity or 
complexity of a problem by breaking it into smaller, more 
manageable parts. This is comparable to isolating variables 
or systems to test.  

• Pattern Recognition: the recognition that objects are 
arranged following a rule or rules and the identification of 
groups of solutions or characteristics of solutions that can be 
categorized. 

• Abstraction: the removal of details to identify and extract 
relevant information to define main idea(s) or solutions.  

• Algorithm Design:  the creation of an ordered list of 
instructions for solving a problem or doing a task. Also, the 
creation or explication of general solutions to a problem or 
family of problems. Often in problem-solving and design, 
these CT skills are exhibited in a progression of behaviors 
across problems. 

 
In applying CT understanding to coding and design projects, 
learners may exercise additional facets of CT not in our current 
progression, such as efficiency and performance constraints, and 
debugging and systematic error detection [10]. These are being 
explored through research on coding environments such as 
Scratch [11] And Alice [12]. 
 
We have similarly defined specific, iterative Phases of Problem 
Solving that are intertwined with expressions of CT: 
1. Planning and preparation:  Using techniques that precede 

puzzle play to make more efficient and effective problem-
solving. 

2. First attempt:  First move in the puzzle with no planning or 
preparation.  

3. Trial & Error: No evidence of testing hypotheses in an 
ordered, planned way.  Actions are independent of prior 
actions.  

4. Systematic Testing: Testing hypotheses about underlying 
rule in an ordered, planned way.  Next action depends on 
previous action.  Goal of this phase is finding a working 
solution to implement.   

5. Systematic Testing with a Partial Solution:  Testing 
hypotheses about a second dimension of the underlying rule 
when the first dimension is known. 

6. Implementing a Full Solution:  Completing the pattern 
once the FULL working solution has been found.  There 
should be no errors in this phase. 

 
These facets of CT are demonstrated in their progression from 
Trial and Error, where there is no systematic pattern to the 
behaviors towards Systematic Testing, typically involving 
problem decomposition. When players recognize patterns in 
solutions to the smaller problems, they abstract that towards 
general rules so that they can then move towards Implementing a 
Solution to the larger puzzle. When learners encounter new 
puzzles that require similar solutions, they may begin to 
Generalize Solutions leading toward algorithm design.  The 
central question this research addresses is:  What are the 
behavioral indicators of implicit computational thinking in 
Zoombini gameplay that humans can reliably label? 

3. METHODS 
We are building automated tools that can use Zoombinis gameplay 
data to provide information about players’ implicit learning in the 
game using the same process we did for the physics game, 
Impulse [1]. To do this we: 

1. Video record and then human label Zoombinis gameplay 
from beginners and expert players, children and adults, to 
capture the variety of strategies used to solve the puzzles.  

2. Merge human labels with log data generated by the gameplay  
3. Distill log data into features useful for measuring strategies 

that appear in the videos, focusing on the strategies that are 
consistent with CT. 

4. Build detectors of players’ CT strategies in the gameplay log 
grounded in human labeling. 

5. Validate the detectors as formative assessments of implicit 
CT by comparing the performance of learners on external 
pre/post assessments of similar content. 

This paper reports details about human labeling system developed 
from analysis of 77 videos as the first step in the development of 
GBLA of implicit computational thinking. 

3.1 Sample & Procedures 
Forty-two elementary students in grades 3-5, 28 students in grades 
6-8, and seven computer scientists from the northeastern U.S. 
have thus far participated in our playtesting. Of these 77 
participants, there were 33 females and 44 males. Participants 
were recruited from local schools and clubs, as well as after- 
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school programs. Playtesting sessions last approximately 1 hour. 
ScreenFlow [13] is used to screen capture players’ activity and 
resulting game states; video of facial expressions and gestures; 
and audios of their discussions while playing.  When learners play 
individually, they are asked to think aloud as they play.  Groups of 
players are asked to talk with each other as they play.  

3.2 The Game: Zoombinis 
The goal of Zoombinis is for players to rescue 400 Zoombini 
characters from the evil Blouts on Zoombini Isle by safely moving 
them through 12 increasingly complex puzzles and arrive safely in 
Zoombiniville (Figure 2).   Three Zoombinis puzzles are the focus 
of this paper:  Allergic Cliffs, Pizza Pass, and Mudball Wall. 

 

 

 
Figure 2:  4 Zoombinis Screenshots. (1) Puzzle Map with labels 
(top left); (2) Allergic Cliffs (top right); (3) Pizza Pass (bottom 

left); and (4) Mudball wall (bottom right) 

3.2.1 Allergic Cliffs. The Zoombinis must cross two bridges 
spanning a chasm. Each bridge is accompanied by a cliff face that 
is allergic to one or more Zoombini traits. Players choose which 
of the two bridges each Zoombini should cross. Each Zoombini 
that causes a cliff face to sneeze is knocked back along the bridge 
to the starting side, and one of the six pegs holding both bridges 
up is dislodged. When all six pegs are gone, both bridges collapse, 
stranding the remaining Zoombinis. 
 

3.2.2 Pizza Pass.  The Zoombinis’ path is blocked by one or 
more trolls that demand a meal (pizza, or pizza and sundae) with a 
specific set of toppings. However, the trolls only say whether (a) 
they want more, (b) don’t like at least one of the toppings, or (c) 
the meal is perfect. If there is more than one troll, each troll must 
receive his or her particular meal preference.  
 

3.2.3 Mudball Wall. A large wall split into grid-squares 
blocks the Zoombinis’ progress. Three Zoombinis line up on 
planks at the bottom of the screen, waiting to be launched over the 
wall. Each grid-square of the wall contains 0-3 dots, indicating 
how many Zoombinis will be launched over the wall. The launch 

is triggered when the player fires a mud-ball onto a grid-square 
containing dots. A machine allows players to choose the shape 
and color of the next mud-ball to fire. The shape and color 
determine the landing position of the mud-ball on the wall. There 
is a limited amount of mud, and only those Zoombinis who make 
it over the wall by the time the mud runs out are safe.  

4.  HUMAN LABELS OF IMPLICIT 
COMPUTATIONAL THINKING  

The four authors have varying levels of computer science and 
Zoombinis play experience. We started with the definitions 
described in the ‘Implicit Computational Thinking’ section and an 
initial set of behavioral indicators. We iteratively watch 2-3 
videos independently, discuss our labeling as a team, and revise 
the labeling system to incorporate emergent gameplay behaviors.  

Table 1: Gameplay behavioral indicators of implicit 
computational thinking skill in Allergic Cliffs 

Gameplay Behaviors Labels 
Selecting Zoombinis with 
the same common 
attributes (e.g., nose color 
& eyes) 3+ times in a row 
and sending them over the 
same bridge. 

Systematic Testing—testing one 
attribute at a time 
 

Problem Decomposition—isolating   
attributes 
 

Pattern Recognition—placing all 
Zoombinis with blue noses over the 
top bridge 

Placing Zoombinis on the 
appropriate bridges once 
they have tested all values 
of the attribute they believe 
the bridges are using. 

Implementing a Full Solution 
 

Abstraction—they  generalize to 
the attribute level (nose color) rather 
than values (blue vs. yellow noses). 

Table 2: Gameplay behavioral indicators of implicit 
computational thinking skill in Pizza Pass 

Gameplay Behaviors Labels 
Selecting one pizza or ice 
cream topping at a time. 
After all topics have been 
tried, placing all those the 
troll likes on one pizza. 

Systematic Testing—testing one 
topping at a time 
 

Problem Decomposition—isolating 
toppings  
Pattern Recognition—selecting 
toppings the troll accepts 

Selecting one pizza or ice 
cream topping at a time 
until they find one a troll 
likes.  They retain the 
desired topping on all 
future pizzas and add new 
toppings one at a time 

Systematic Testing—testing one 
topping at a time 
 

Problem Decomposition—isolating 
toppings  
 

Pattern Recognition—selecting 
toppings the troll hasn’t rejected 
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Table 3: Gameplay behavioral indicators of implicit 
computational thinking skill in Mudball Wall 

Gameplay 
Behaviors 

Labels 

Creating 
mudballs by 
holding one 
attribute 
(shape or 
color) constant 

Systematic Testing—testing one mudball 
attribute at a time  
 

Problem Decomposition—isolating mudball 
attributes to columns or rows 
 

Pattern Recognition—recognizing whether 
common attribute is in the same column or row 

Varying both 
mudball 
attributes so 
that all values 
have been 
tested within 
the first 5 
moves 

Systematic Testing—systematically varying 
mudball attributes 
 

Pattern Recognition——recognizing whether 
common attribute is in the same column or row 
 

Abstraction—generalizing mudball values to 
attributes (e.g., rows are color, columns are 
shapes) 

While the labels are consistent across puzzles, the behavioral 
indicators used to identify each vary by puzzle. Tables 1-3 
describes sample gameplay indicators of computational thinking 
skills for the Allergic Cliffs, Pizza Pass, and Mudball Wall 
puzzles, respectively. In all cases, if a sequence of behaviors is 
repeated across multiple rounds (attempts to solve the puzzle), it 
is considered evidence of Algorithm Design. 

5. IMPLICATIONS & NEXT STEPS 
We have found evidence of implicit computational thinking in 

3 of the 12 Zoombinis puzzles. Our next steps are to identify 
behavioral indicators for other Zoombinis puzzles and to establish 
inter-rater reliability for the labeling system with a small sample 
of videos. The ultimate objective of this work is to build 
automated detectors of implicit computational thinking grounded 
in human labels applied to all video data.  

The measurement of implicit learning may enable the 
assessment of a broad array of diverse learners, even those who 
are unable to express their knowledge on a traditional exam. This 
work shows and example of using data mining methods to 
measure implicit learning through behaviors exhibited in digital 
environments, which may be particularly important for learners 
with cognitive differences [14]. The ability to measure 
computational thinking through behavior-based data generated by 
digital environments might provide novel forms of assessments 
leading to an inclusive STEM education and workforce 
opportunities.  
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