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ABSTRACT

In this study we examine how playing Zoombinis can help upper
elementary and middle school learners build implicit
computational thinking (CT) skills. Building on prior methods
used with the digital science learning games, Impulse and
Quantum Spectre, we are combining video analysis and
educational data mining to identify implicit computational
thinking that emerges through gameplay [1]. This paper reports on
the first phase of this process: developing a human labeling
system for evidence of specific CT skills (e.g., problem
decomposition, pattern recognition, algorithmic thinking,
abstraction) in three Zoombinis puzzle by analyzing video data
from a sample of elementary learners, middle school learners,
game experts, and computer scientists. Future work will combine
these human-labeled video data with game log data from these
70+ learners and computer scientists to create automated
assessments of implicit computational thinking skills from
gameplay behaviors in large player audiences. This poster with
video examples will share results of this work-in-progress.
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1 INTRODUCTION

Zoombinis is an award-winning, popular learning game that
focuses on computational thinking. Originally designed as a
puzzle game situated in the problems of database design, the
dynamic suite of 12 puzzles, each with four levels, allows ample
scaffolded problem-solving for young learners (ages 8 and above).

With the re-release of Zoombinis for tablets, desktops, and
Chomebooks, the authors are conducting a national
implementation study with classes in grades 3-8 to understand
how students implicitly learn computational thinking in
Zoombinis gameplay. This study has two major components:

a. To observe gameplay and build data detectors to
identify implicit learning of computational thinking from player
behaviors in the game, and

b. To examine how teachers can bridge that implicit
learning to explicit learning through classroom activity.

This paper reports on the first phase of research towards part A -
human-labeling gameplay observations to lay the groundwork for
building data mining models and detectors. This work is grounded
in the notion of implicit game-based learning assessments
(GBLA), where game behaviors are thought to reveal knowledge
that may go unexpressed in typical assessments used in school and
educational research [1, 2].

2. IMPLICIT COMPUTATIONAL THINKING

“We know more than we can tell” [Polanyi, 3]

Implicit knowledge may not yet be articulated by the learner
but is demonstrable through behaviors. Today’s STEM learning
assessments are typically laden with terminology that may present
barriers to learners’ expression of their underlying knowledge,
and self-contained or decontextualized tests do not call upon
previous knowledge or experience of learners to support new
learning [4]. Game-based learning assessments show promise to
provide a stealth method of assessing content and skills outside of
school-like tests [5]. For research on Zoombinis, we defined a
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learning progression of computational thinking and problem
solving skills to guide our labeling of strategies and behaviors in
gameplay consistent with facets of the progression (Figure 1).

Drawing from various definitions of computational thinking
from research and practice [6-9], we have defined a learning
progression that we hypothesize can be operationalized within
Zoombinis gameplay.

| Computational Thinking Learning Progression I

Problem Pattern
Recognition

| Trial and Systematic | Working Full General
Error Testing Solution Solution Solution

Figure 1: An Iterative Learning Progression of CT that is
operationalized in Zoombinis gameplay

Algorithm

Abstraction Design

While this graphic is linear, the progression is iterative in practice
with novices and experts moving back and forth through the steps,
though possibly at different rates. The key elements of
computational thinking that we hypothesize will be evident in
Zoombinis gameplay are:

e  Problem decomposition: the reduction of ambiguity or
complexity of a problem by breaking it into smaller, more
manageable parts. This is comparable to isolating variables
or systems to test.

e Pattern Recognition: the recognition that objects are
arranged following a rule or rules and the identification of
groups of solutions or characteristics of solutions that can be
categorized.

e Abstraction: the removal of details to identify and extract
relevant information to define main idea(s) or solutions.

e Algorithm Design: the creation of an ordered list of
instructions for solving a problem or doing a task. Also, the
creation or explication of general solutions to a problem or
family of problems. Often in problem-solving and design,
these CT skills are exhibited in a progression of behaviors
across problems.

In applying CT understanding to coding and design projects,
learners may exercise additional facets of CT not in our current
progression, such as efficiency and performance constraints, and
debugging and systematic error detection [10]. These are being
explored through research on coding environments such as
Scratch [11] And Alice [12].

We have similarly defined specific, iterative Phases of Problem

Solving that are intertwined with expressions of CT:

1. Planning and preparation: Using techniques that precede
puzzle play to make more efficient and effective problem-
solving.

2. First attempt: First move in the puzzle with no planning or
preparation.
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3. Trial & Error: No evidence of testing hypotheses in an
ordered, planned way. Actions are independent of prior
actions.

4. Systematic Testing: Testing hypotheses about underlying
rule in an ordered, planned way. Next action depends on
previous action. Goal of this phase is finding a working
solution to implement.

5. Systematic Testing with a Partial Solution: Testing
hypotheses about a second dimension of the underlying rule
when the first dimension is known.

6. Implementing a Full Solution: Completing the pattern
once the FULL working solution has been found. There
should be no errors in this phase.

These facets of CT are demonstrated in their progression from
Trial and Error, where there is no systematic pattern to the
behaviors towards Systematic Testing, typically involving
problem decomposition. When players recognize patterns in
solutions to the smaller problems, they abstract that towards
general rules so that they can then move towards Implementing a
Solution to the larger puzzle. When learners encounter new
puzzles that require similar solutions, they may begin to
Generalize Solutions leading toward algorithm design. The
central question this research addresses is: What are the
behavioral indicators of implicit computational thinking in
Zoombini gameplay that humans can reliably label?

3. METHODS

We are building automated tools that can use Zoombinis gameplay
data to provide information about players’ implicit learning in the
game using the same process we did for the physics game,
Impulse [1]. To do this we:

1. Video record and then human label Zoombinis gameplay
from beginners and expert players, children and adults, to
capture the variety of strategies used to solve the puzzles.

2. Merge human labels with log data generated by the gameplay

3. Distill log data into features useful for measuring strategies
that appear in the videos, focusing on the strategies that are
consistent with CT.

4. Build detectors of players’ CT strategies in the gameplay log
grounded in human labeling.

5. Validate the detectors as formative assessments of implicit
CT by comparing the performance of learners on external
pre/post assessments of similar content.

This paper reports details about human labeling system developed

from analysis of 77 videos as the first step in the development of

GBLA of implicit computational thinking.

3.1 Sample & Procedures

Forty-two elementary students in grades 3-5, 28 students in grades
6-8, and seven computer scientists from the northeastern U.S.
have thus far participated in our playtesting. Of these 77
participants, there were 33 females and 44 males. Participants
were recruited from local schools and clubs, as well as after-
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school programs. Playtesting sessions last approximately 1 hour.
ScreenFlow [13] is used to screen capture players’ activity and
resulting game states; video of facial expressions and gestures;
and audios of their discussions while playing. When learners play
individually, they are asked to think aloud as they play. Groups of
players are asked to talk with each other as they play.

3.2 The Game: Zoombinis

The goal of Zoombinis is for players to rescue 400 Zoombini
characters from the evil Blouts on Zoombini Isle by safely moving
them through 12 increasingly complex puzzles and arrive safely in
Zoombiniville (Figure 2). Three Zoombinis puzzles are the focus
of this paper: Allergic Cliffs, Pizza Pass, and Mudball Wall.

Figure 2: 4 Zoombinis Screenshots. (1) Puzzle Map with labels
(top left); (2) Allergic Cliffs (top right); (3) Pizza Pass (bottom
left); and (4) Mudball wall (bottom right)

3.2.1 Allergic Cliffs. The Zoombinis must cross two bridges
spanning a chasm. Each bridge is accompanied by a cliff face that
is allergic to one or more Zoombini traits. Players choose which
of the two bridges each Zoombini should cross. Each Zoombini
that causes a cliff face to sneeze is knocked back along the bridge
to the starting side, and one of the six pegs holding both bridges
up is dislodged. When all six pegs are gone, both bridges collapse,
stranding the remaining Zoombinis.

3.2.2 Pizza Pass. The Zoombinis’ path is blocked by one or
more trolls that demand a meal (pizza, or pizza and sundae) with a
specific set of toppings. However, the trolls only say whether (a)
they want more, (b) don’t like at least one of the toppings, or (c)
the meal is perfect. If there is more than one troll, each troll must
receive his or her particular meal preference.

3.2.3 Mudball Wall. A large wall split into grid-squares
blocks the Zoombinis’ progress. Three Zoombinis line up on
planks at the bottom of the screen, waiting to be launched over the
wall. Each grid-square of the wall contains 0-3 dots, indicating
how many Zoombinis will be launched over the wall. The launch
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is triggered when the player fires a mud-ball onto a grid-square
containing dots. A machine allows players to choose the shape
and color of the next mud-ball to fire. The shape and color
determine the landing position of the mud-ball on the wall. There
is a limited amount of mud, and only those Zoombinis who make
it over the wall by the time the mud runs out are safe.

4. HUMAN LABELS OF IMPLICIT
COMPUTATIONAL THINKING

The four authors have varying levels of computer science and
Zoombinis play experience. We started with the definitions
described in the ‘Implicit Computational Thinking’ section and an
initial set of behavioral indicators. We iteratively watch 2-3
videos independently, discuss our labeling as a team, and revise
the labeling system to incorporate emergent gameplay behaviors.

Table 1: Gameplay behavioral indicators of implicit
computational thinking skill in Allergic Cliffs

Gameplay Behaviors Labels

Selecting Zoombinis with
the same common
attributes (e.g., nose color
& eyes) 3+ times in a row
and sending them over the
same bridge.

Systematic Testing—testing one
attribute at a time

Problem Decomposition—isolating
attributes

Pattern Recognition—placing all
Zoombinis with blue noses over the
top bridge

Placing Zoombinis on the
appropriate bridges once
they have tested all values
of the attribute they believe
the bridges are using.

Implementing a Full Solution

Abstraction—they generalize to
the attribute level (nose color) rather
than values (blue vs. yellow noses).

Table 2: Gameplay behavioral indicators of implicit
computational thinking skill in Pizza Pass

Gameplay Behaviors Labels

Selecting one pizza or ice
cream topping at a time.
After all topics have been
tried, placing all those the
troll likes on one pizza.

Systematic Testing—testing one
topping at a time

Problem Decomposition—isolating
toppings

Pattern Recognition—selecting
toppings the troll accepts

Selecting one pizza or ice
cream topping at a time
until they find one a troll
likes. They retain the
desired topping on all
future pizzas and add new
toppings one at a time

Systematic Testing—testing one
topping at a time

Problem Decomposition—isolating
toppings

Pattern Recognition—selecting
toppings the troll hasn’t rejected
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Table 3: Gameplay behavioral indicators of implicit
computational thinking skill in Mudball Wall

Gameplay Labels

Behaviors

Creating Systematic Testing—testing one mudball

mudballs by attribute at a time

holding one . . .

attribute Problem Decomposition—isolating mudball
attributes to columns or rows

(shape or

color) constant | Pattern Recognition—recognizing whether

common attribute is in the same column or row

Varying both
mudball
attributes so
that all values

Systematic Testing—systematically varying
mudball attributes

Pattern Recognition——recognizing whether
common attribute is in the same column or row

have been

tested within | Abstraction—generalizing mudball values to
the first 5 attributes (e.g., rows are color, columns are
moves shapes)

While the labels are consistent across puzzles, the behavioral
indicators used to identify each vary by puzzle. Tables 1-3
describes sample gameplay indicators of computational thinking
skills for the Allergic Cliffs, Pizza Pass, and Mudball Wall
puzzles, respectively. In all cases, if a sequence of behaviors is
repeated across multiple rounds (attempts to solve the puzzle), it
is considered evidence of Algorithm Design.

5. IMPLICATIONS & NEXT STEPS

We have found evidence of implicit computational thinking in
3 of the 12 Zoombinis puzzles. Our next steps are to identify
behavioral indicators for other Zoombinis puzzles and to establish
inter-rater reliability for the labeling system with a small sample
of videos. The ultimate objective of this work is to build
automated detectors of implicit computational thinking grounded
in human labels applied to all video data.

The measurement of implicit learning may enable the
assessment of a broad array of diverse learners, even those who
are unable to express their knowledge on a traditional exam. This
work shows and example of using data mining methods to
measure implicit learning through behaviors exhibited in digital
environments, which may be particularly important for learners
with cognitive differences [14]. The ability to measure
computational thinking through behavior-based data generated by
digital environments might provide novel forms of assessments
leading to an inclusive STEM education and workforce
opportunities.

ACKNOWLEDGMENTS

We are grateful for NSF/EHR/DRK12 grant#1502282 and the
study participants. We are thankful for the many contributions of
our research group, the Educational Gaming Environments group
at TERC, without whom the study could not have been conducted.

Rowe et al.

REFERENCES

[1] Rowe, E., Asbell-Clarke, J. & Baker, R. (2015). Serious
game analytics to measure implicit science learning. In C.S. Loh,
Y. Sheng, & D. Ifenthaler Serious Game Analytics:
Methodologies for Performance Measurement, Assessment, and
Improvement. Springer Science+Business..

2] Rowe, E., Asbell-Clarke, J., Baker, R., Eagle, M.,
Hicks, A., Barnes, T., Brown, R., & Edwards, T., (2017).
Assessing implicit science learning in digital games. Computers in
Human Behavior. DOI: 10.1016/j.chb.2017.03.043

[3] Polanyi, M. (1966). The Tacit Dimension. London:
Routledge. (University of Chicago Press. ISBN 978-0-226-67298-
4. 2009 reprint).

[4] Arena, D. A., & Schwartz, D. L. (2013). Experience and
explanation: Using videogames to prepare students for formal
instruction in statistics. Journal of Science Education and
Technology.

[5] Shute, V. J., Masduki, 1., Donmez, O., Dennen, V., Kim,
Y., Jeong, A. C., & Wang, C. (2010). Modeling, Assessing, and
Supporting Key Competencies Within Game Environments In
D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-
Based Diagnostics and Systematic Analysis of Knowledge (pp.
281-309). New York: Springer-Verlag.

[6] Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: What is involved and what is the
role of the computer science education community? 4CM
Inroads, 2(1), 48-54.

[7] Wing, J. M. (2011). Computational thinking. Paper
presented at the VL/HCC.
[8] Google (2016). CT Overview. Retrieved from

https://edu.google.com/resources/programs/exploring-
computational-thinking/#!ct-overview.

[9] CSTA (Producer). (2017). CSTA K-12 Computer
Science Standards. Retrieved from
http://www.csteachers.org/?page=CSTA Standards.

[10] Grover, S., & Pea, R. (2013). Computational Thinking
in K-12 A Review of the State of the Field. Educational
Researcher, 42(1), 38-43.

[11] Hoover, A., Barnes, J., Fatehi, B., Moreno-Leon, J.,
Puttick, G., Tucker-Raymond, E., & Harteveld, C., (2016,
October). Assessing Computational Thinking in Students’ Game
Designs. Poster presented at CHI Play, Austin, TX.

[12] Grover, S., Bienkowski, M., Basu, S., Eagle, M., Diana,
N., and Stamper, J. (2017, March). A framework for hypothesis-
driven approaches to support data-driven learning analytics in
measuring computational thinking in block-based programming.
In Proceedings of the Seventh International Learning Analytics &
Knowledge Conference (LAK '17). ACM, New York, NY, USA,
530-531. DOL: https://doi.org/10.1145/3027385.3029440

[13] Screenflow for Mac 6.0 [Computer software].

(2016). Nevada City, CA: Telestream.
https://www.telestream.net/screenflow/overview.htm

[14] Haladyna, T. M., & Downing, S. M. (2004). Construct-
irrelevant variance in high-stakes testing. Educational
Measurement: Issues and Practice, 23(1), 17-27.




