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Actuation of Higher Harmonics
in Large Arrays of
Micromechanical Cantilevers for
Expanded Resonant Peak
Separation
A large array of elastically coupled micro cantilevers of variable length is studied experi-
mentally and numerically. Full-scale finite element (FE) modal analysis is implemented
to determine the spectral behavior of the array and to extract a global coupling matrix. A
compact reduced-order (RO) model is used for numerical investigation of the array’s
dynamic response. Our model results show that at a given excitation frequency within a
propagation band, only a finite number of beams respond. Spectral characteristics of
individual cantilevers, inertially excited by an external piezoelectric actuator, were meas-
ured in vacuum using laser interferometry. The theoretical and experimental results col-
lectively show that the resonant peaks corresponding to individual beams are clearly
separated when operating in vacuum at the third harmonic. Distinct resonant peak sepa-
ration, coupled with the spatially confined modal response, make higher harmonic opera-
tion of tailored, variable-length cantilever arrays well suited for a variety of resonant-
based sensing applications. [DOI: 10.1115/1.4039568]

1 Introduction

Dynamics of large arrays of micro- and nano-electromechanical-
coupled resonators have received significant research attention
over the last two decades [1]. The first works on micromachined
arrays were motivated by the development of miniature electrome-
chanical filters [2]. Coupled resonators with nominally identical or
slightly detuned resonant frequencies yield a wider bandwidth
when compared to a single resonator. This basic feature continues
to stimulate research advancements in the area of micromechanical
filter design by exploring diverse architectures and operational
principles [3–11]. Due to their intrinsic filtering feature and ability
to increase bandwidth, architectures based on weakly coupled reso-
nators have found applications in inertial sensing [12] and
frequency-signature speech processing [13]. Micro- and nano-

electromechanical arrays also have a great potential to serve as
ultrasensitive detectors for chemical or biological analytes [14]. In
contrast to single micromechanical sensing structures where fre-
quency changes are monitored [15–19], sensing within arrays of
weakly coupled resonators is based on modal shape changes
[20–25]. Eigenmode changes in an array of mechanically coupled,
nearly identical microcantilevers, can be two to three orders of
magnitude greater than relative changes in resonance frequencies
when a mass is added [26]. Mode localization has also been used in
accelerometers [27] and light processing applications [28]. Previ-
ous reports highlight the influence of various system parameters
such as the mass-ratio [24], measurement noise [23], nonideal
clamping [29], coupling stiffness [30], anisotropy of the Young’s
modulus [31], and global and dissipative coupling [32] on the array
dynamics. In these arrayed structures, vibrations are possible only
within the allowed propagation band [33], defined as the interval of
frequencies between the lower (fL) and the upper (fU) cutoff values.
While most of the previous studies were focused on arrays of iden-
tical or almost identical beams [23,26,33–36], relatively few works
considered the case of beams with differing resonant frequencies
[13,21,37,38].
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In this work, we investigate, both numerically and experimen-
tally, the dynamics of a micromechanical cantilever array, elastically
coupled through a flexible overhang. The array is composed of 100
beams with linearly varying length. The fL and fU are defined by the
frequencies of the longest and the shortest cantilevers, respectively.
Our results show that at excitation frequencies within the propaga-
tion band, the vibrations are spatially localized within a region span-
ning only a few of the neighboring beams. We also demonstrate
excitation of the cantilevers at their higher harmonics and map the
corresponding propagation bands of the array experimentally and
numerically. The spatial localization of vibrations, allowing for
excitations of distinct array elements, enables new applications of
arrayed cantilever systems in a variety of sensing applications.
Direct probing of distinctly separated resonant peaks offers funda-
mentally new functionalities by enabling large resonator arrays to be
utilized for mass and inertial sensing. Furthermore, engineered large
resonator arrays mimicking a mechanical fourier transform system
could lead to the development of complex networks that could stim-
ulate novel classes of frequency sensing systems.

2 Device Architecture

The array shown in Fig. 1 contains N¼ 100 prismatic cantilevers
attached to a compliant overhang and designed to deflect in the out-
of-plane (z) direction. The cantilevers and the overhang have the
same thickness and are fabricated from the device layer of a silicon-
on-insulator substrate [36,39]. The device is attached to the silicon
substrate by an underlying� 3lm thick buried silicon dioxide layer.
To allow large unobscured vibrations and to prevent stiction, an
opening was created within the handle wafer under the beams. We
made cantilever arrays with b � 20lm, h � 5lm, Lo � 100lm,
pitch B� 50lm, L1¼ Lmax � 500lm, and LN¼Lmin � 350lm.

3 model

3.1 Finite Element Model. A full-scale three-dimensional
(3D) finite element (FE) analysis of the array was carried out
using a commercially available package. Within our analysis,
two-dimensional, eight-node, rectangular shell elements with
quadratic interpolating functions in each direction were used to
mesh the overhang region. A two-node, 12 degrees-of-freedom,
three-dimensional beam element with rectangular cross section
and consistent mass representation was used to mesh the cantile-
vers. The overhang plate was clamped at three out of its four
edges. Several mesh refinements were performed to assure that
the average numerical natural frequency error is less than 1%.

The results of the numerical linear modal analysis are shown in
Figs. 2–4. In general, an infinite number of propagation bands can
be obtained, each corresponding to higher harmonics of the canti-
levers. Since in this work, we measured the first three propagation
bands, the FE analysis is carried out for the first 300 (3N) natural
frequencies and the corresponding natural modes of the array.
Figure 2 shows three-dimensional snapshots of several natural
modes corresponding to different frequencies fi, where i¼ 1, 2 …
300 is the array’s mode number. Figure 3 shows normalized end-
point beam deflections at several natural modes. At each of the
natural frequencies only a limited number of beams manifest
observable modal amplitudes. The position of this spatial band
along the array is governed by the natural frequency. For instance,
as shown in Fig. 3, at lower and higher frequencies, the spatial
bands comprise longer and shorter beams, respectively. The width
of the spatial band, namely the number of the beams vibrating at a
specific natural frequency, is approximately the same for all the
propagation bands. Figure 4 shows the natural frequency depend-
ence on the mode number. The three frequency ranges correspond
to the three, nonoverlapping propagation bands. We anticipate
that the dynamics become more complex for overlapping bands.
Since N¼ 100, the first, second, and third bands each contain 100
frequencies, and are attributed to cantilevers vibrating at their
first, second, and third harmonics, respectively. The lowest cutoff

frequency obtained using the FE model is f 1ð Þ
L ¼ f1 ¼ 24:851 kHz,

and the upper cutoff of the first propagation band is f 1ð Þ
U ¼ f100 ¼

55:172 kHz. Hereafter ðÞ jð Þ; j ¼ 1; 2; 3 denotes the propagation

band number and the cantilever harmonic number. For
L1¼ 500lm and h¼ 5 lm, the first three harmonics of the ideally
clamped beam, calculated using the Euler–Bernoulli theory, are

f 1ð Þ ¼ 27:691 kHz, f 2ð Þ ¼ 173:550 kHz, and f 3ð Þ ¼ 485:994 kHz.
The first, second, and third propagation bands are associated with
the cantilever vibrations at their first, second, and third harmonics,
respectively. The frequency cutoff values for the second band are

f 2ð Þ
L ¼ f101 ¼ 151:198 kHz and f 2ð Þ

U ¼ f200 ¼ 345:638 kHz, and for

the third band are f 3ð Þ
L ¼ f201 ¼ 409:230 kHz and f 3ð Þ

U ¼ f300 ¼
845:169 kHz. Figure 4 shows that the propagation band frequency
range is significantly larger at higher harmonics. The FE model
results show the frequency range of the first, second, and third
band as f100 � f1 ¼ 30:321 kHz, f200 � f101 ¼ 194:440 kHz, and
f300 � f201 ¼ 435:939 kHz, respectively. Consequently, the shift
between the first two frequencies within the third propagation
band f202 � f201 ¼ 11:575 kHz is greater than f102 � f101 ¼ 4:166
kHz, which is, in turn, greater than f2 � f1 ¼ 635 Hz.

To understand the reason of this propagation band stretching,
consider the two adjacent ideally clamped cantilevers n and nþ 1
of lengths Ln and Lnþ1 ¼ Ln � DL, respectively. Here,
DL ¼ 1:515 lm is the difference in length between any two adja-
cent cantilevers. The shift between the natural frequencies of these
two cantilevers vibrating at the harmonic j¼ 1, 2, 3 is [40]

f
jð Þ

nþ1 � f jð Þ
n ¼ k jð Þð Þ2

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

qA Ln � DLð Þ4

s
� k jð Þð Þ2

2p

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4n

s

� k jð Þð Þ2

p

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4n

s
DL
Ln

� �
DL � Lnð Þ (1)

Fig. 1 (a) Schematic illustration of the cantilever array device.
The array contains N silicon cantilevers with linearly varying
length, width b, thickness h, pitch B, and an overhang Lo. n51, 2
. . . N represents the beam number within the array. The first canti-
lever n51 is the longest and of the length L15Lmax � 500lm.
The last beam n5N is the shortest and of length LN5Lmin �
350lm. The beams deflect in the out-of-plane z direction. The
length of the beams varies linearly between L1 � 500lm and L100

� 350lm. The difference in length between any two adjacent can-
tilevers is 1.515lm. (b) Top view of the array. Clamped edges are
schematically illustrated with diagonally hatched areas.
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where A¼ bh and I¼ bh3/12 are the corresponding area and the
second moment of area of the rectangular beam cross section, and

k jð Þ is the eigenvalue corresponding to the jth harmonic of the can-
tilever. E¼ 169GPa and q¼ 2300 kg/m3 are taken as the Young’s
modulus and the density of the silicon cantilever, respectively.

Since for an ideally clamped cantilever k 1ð Þ ¼ 1:875; k 2ð Þ

¼ 4:694, and k 3ð Þ ¼ 7:855, the frequency shift is higher for the
higher harmonics. Since Ln decreases with increasing n, the fre-
quency shift increases with the mode number within each propa-
gation band.

3.2 Reduced-Order Model. Analysis of the array’s dynamics
using full-scale FE models is time consuming. For this reason,

simplified reduced-order (RO) models of arrays are often con-
structed [33,34,36,41–43]. In these models, the array is repre-
sented as a mass-spring lattice chain. Corresponding mass, onsite
(OS), and intersite (IS) stiffness parameters are obtained using
either simplified beam models [33,34,43] or Galerkin decomposi-
tion [36,41,42].

Here, we construct the RO model of the array using modal rep-
resentation for the deflection of each cantilever. Vibrational
dynamics for each cantilever are described in the framework of
the Euler–Bernoulli theory. Since our work is focused on the lin-
ear modal analysis of the array, we neglect geometric and inertial
nonlinearities that are associated with large deflections and rota-
tions of the beam [33]. Under these assumptions the dynamics of
the nth beam within the array are described by the following non-
dimensional partial differential equation:

Fig. 2 Finite element results showing three-dimensional snapshots of several natural modes
that are associated with the corresponding natural frequencies fi. (a) f55 26.515kHz, (b)
f20528.865kHz, and (c) f805 43.313kHz illustrate cantilevers vibrating at the first harmonic.
(d) f1055 163.210kHz, (e) f1205 178.536kHz, and (f) f1805266.109kHz depict the cantilevers
vibrating at the second harmonic.

Fig. 3 Finite element results showing several normalized modal amplitudes of the array. Rows 1, 2, and 3 correspond to the
first, second, and third harmonics, respectively.
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@2wn

@t2
þ c

@wn

@t
þ l4n

@4wn

@y4
¼ � @2zB

@t2
(2)

Here, wn is the nondimensional deflection of the nth beam, y and t
are the coordinate along the beam and time, respectively, c is the
coefficient of the linear viscous damping (related mainly to ther-
moelastic and clamping losses), and ln¼ L1/Ln is the length ratio
parameter. The right-hand side in Eq. (2) represents a uniformly
distributed force, which appears due to a kinematic inertial excita-
tion by a piezo-electric transducer resulting from the substrate

motion with acceleration @2zB=@t
2. Nondimensional quantities

used in Eq. (2) are presented in Table 1. Since the coordinate ŷn
along each of the beams is normalized by the length Ln of the cor-
responding beam, we have y 2 0; 1½ �.

Since the bands are not overlapping and the corresponding fre-
quencies are separated (Fig. 4) we assume that the motion of each
cantilever can be represented by the expression (Einstein’s sum-
mation convention is not used)

w jð Þ
n y; tð Þ � q jð Þ

n tð Þu jð Þ yð Þ (3)

where q
jð Þ

n tð Þ denotes the generalized coordinate corresponding to

the jth harmonic of the nth beam. The functions u jð Þ yð Þ are the jth
linear undamped eigenmodes of an ideally clamped cantilever
given by the expression [40]

u jð Þ ¼ C jð Þ
�
sin k jð Þy

� �
� sinh k jð Þy

� �

� sin k jð Þð Þ þ sinh k jð Þð Þ
� �

cos k jð Þy
� �

� cosh k jð Þy
� �� �

cos k jð Þð Þ þ cosh k jð Þð Þ

#
(4)

Here, the constants C jð Þ are chosen such that u jð Þ 1ð Þ ¼ 1 and con-

sequently q
jð Þ

n tð Þ ¼ w
jð Þ

n 1; tð Þ. The mode shapes u jð Þ yð Þ are

obtained as a solution of the eigenvalue problem associated with
Eq. (2) with c ¼ 0; €zB ¼ 0 and subjected to the free-end boundary

conditions @2u jð Þ=@2y ¼ 0; @3u jð Þ=@3y ¼ 0 at y ¼ 1 and ideally

clamped boundary conditions u jð Þ ¼ 0; @u jð Þ=@y ¼ 0 at y ¼ 0.
Since at y¼ 0 the beam is attached to a flexible overhang, the
clamping conditions are nonideal. The resulting dynamics give
rise to a decrease of the beam’s natural frequency and in the
mechanical coupling between the cantilevers [33]. In our work,
we first use linear undamped eigenmodes of an ideally clamped
beam for the development of the OS terms and then account for
mechanical coupling by introducing the IS stiffness terms directly
into the RO model [36].

Substitution of Eq. (3) into Eq. (2), followed by the common
Galerkin procedure, yields a system of N linear ordinary differen-
tial equations. Because the arrayed cantilever devices are coupled
through the flexible overhang, further modifications to the model
are required to account for this IS mechanical interaction. In gen-
eral, since mechanical coupling is not local, each beam interacts
with beams beyond its nearest neighbors, and the coupling matrix
is fully populated. By adding elastic coupling, while neglecting
the overhang inertia, we obtain

m€qn jð Þ þ cm _q jð Þ
n þ k jð Þ

o l4nq
jð Þ

n �
X
s

~k
jð Þ

ns q
jð Þ

s ¼ �€zBa
jð Þ (5)

where

m ¼
ð1
0

u jð Þ
� 	2

dy k jð Þ
o ¼

ð1
0

u jð ÞÞ00
� 	2

dy a jð Þ ¼
ð1
0

u jð Þ dy

"

(6)

In Eq. (5), m is related to the mass of the beam, the coefficients

k
jð Þ

o are associated with the linear OS bending beam stiffness, and

~k
jð Þ

ns are the IS stiffness coefficients. For the adopted base functions

in Eq. (4), one obtains m¼ 0:25; k 1ð Þ
o ¼ 3:091; k 2ð Þ

o ¼ 121:3809;

k 3ð Þ
o ¼ 951:637; a 1ð Þ ¼ 0:391; a 2ð Þ ¼ 0:217; a 3ð Þ ¼ 0:127.

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k

jð Þ
o =m

q
¼ x jð Þ ¼ k jð Þð Þ2 is the nondimensional jth harmonic frequency of
the ideally clamped cantilever. In addition, ð Þ0¼ @=@y and _ð Þ ¼
@=@t denote derivatives with respect to the nondimensional coor-
dinate along the beam and nondimensional time, respectively.

Subdividing Eq. (5) by m and further rescaling time (s ¼ tx 1ð Þ),
yields

€qn jð Þ þ l2n
Qn

_q jð Þ
n þ l4nq

jð Þ
n �

X
s

k jð Þ
ns q

jð Þ
s ¼ �c jð Þ€zB (7)

where Qn ¼ x 1ð Þl2n=c is the OS damping parameter, c jð Þ ¼ a jð Þ=m
is the substrate acceleration parameter, and the over-dot is re-
defined as _ð Þ ¼ @=@s. In addition, the nondimensional IS stiffness

coefficients are redefined as k
jð Þ

ns ¼ ~k
jð Þ

ns =k
1ð Þ
0 .

Equation (7) can be conveniently written in the matrix form

M€q jð Þ þ C _q jð Þ þK jð Þq jð Þ ¼ F jð Þ (8)

where q ¼ fq jð Þ
n gT is the displacements vector, M ¼ I is the unit

mass matrix, C ¼ l2n=Qndns
� 	

is the diagonal damping matrix,

Table 1 Nondimensional quantities used in Eq. (2)

Nondimensional quantity Description

y ¼ ŷn=Ln Coordinate along the nth beam

t ¼ t̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðqAL41Þ

p
Time

wnðy; tÞ ¼ ŵnðŷn; t̂Þ=h Deflection of the nth beam

c ¼ ĉ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L41=ðEIqAÞ

p
OS damping parameter

ln ¼ L1=Ln Length ratio parameter

Fig. 4 Natural frequencies of the array obtained by the FE anal-
ysis. Three propagation bands corresponding to the first, sec-
ond, and third harmonics of the cantilevers, respectively, are
shown. Inset depicts the frequency curve corresponding to the
first propagation band of the array. The isolated dot in the inset

corresponds to the upper cutoff frequency f
(1)
U 5 f100 of the first

propagation band.
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F jð Þ ¼ f�c jð Þ€zBgT is the force vector, dns is the Kronecker’s delta,
and f gT denotes matrix transpose. The fully populated stiffness

matrix K jð Þ ¼ l4n dns � k
jð Þ

ns

h i
contains both OS and IS components.

A simpler and widely used [31,44] counterpart of Eq. (7) can
be derived based on the assumption of local, nearest neighbor,
mechanical interaction

€qn jð Þþ ln
Qn

_q jð Þ
n þ l2nq

jð Þ
n �g jð Þ q

jð Þ
nþ1�2q jð Þ

n þq
jð Þ

n�1


 �
¼�c jð Þ€qB (9)

where g jð Þ ¼ k
jð Þ

nn =2 n ¼ N=2ð Þ is the nondimensional local IS cou-
pling parameter corresponding to the jth propagation band. The
local model, Eq. (9), allows a simple physical representation of
the array using a mass-spring system [33].

3.3 Extraction of the Stiffness Coefficients From the Finite
Element Model. In order to evaluate the stiffness coefficients

k
jð Þ

ns , the results of a full-scale FE modal analysis were used
[35,36]. The analysis provided the values of the 3N frequencies
and the corresponding 3N eigenvectors. The first set of N values
corresponds to the cantilevers vibrating at their first harmonic
within the first propagation band. The second and third sets are
associated with the second and the third propagation bands,
respectively.

Since the propagation bands do not overlap, the same procedure
described below is performed for each band separately. Each
eigenvector is obtained as a set of nodal displacements in the FE

solution. Then, for each eigenvector, subsets ~w
jð Þ
rð Þ; are built such

that individual vectors ~w
jð Þ
rð Þ correspond to out-of-plane modal dis-

placements at the free-end of the cantilever. Here, ð Þ jð Þ
rð Þ

denotes

the eigenvector number within the jth propagation band, where

r ¼ 1…N. Since these eigenvectors are obtained numerically,
using an approximate FE model, Gram–Schmidt orthogonaliza-
tion was carried out prior to the formation of the modal matrix.
Consequently, we define the modal matrix as [40]

~W
jð Þ ¼ ~w

jð Þ
1ð Þ ~w

jð Þ
2ð Þ … ~w

jð Þ
Nð Þ

h i
(10)

Normalizing the eigenvectors using the orthogonality with respect
to the unit mass matrix (Eq. (7)) yields

W jð Þ ¼
~W

jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~W

jð ÞT ~W
jð Þ

q (11)

The normalized modal matrix is orthogonal with respect to the
stiffness matrix K jð Þ

W jð ÞTK jð ÞW jð Þ ¼ K jð Þ (12)

In Eq. (12), K jð Þ ¼ k jð Þ
rð Þdrs

h i
is the diagonal matrix where k jð Þ

rð Þ ¼
k jð ÞFE

rð Þ =k jð ÞFE
1ð Þ are the normalized eigenvalues extracted from the

full-scale FE analysis. As a result, the lowest cutoff normalized
eigenvalue of each of the propagation bands is equal to unity

k jð Þ
1ð Þ ¼ 1. Equation (12) allows us to express the stiffness matrix in

terms of the eigenvalues and eigenvectors obtained using the FE
model in the following form:

K jð Þ ¼ W jð ÞTð Þ�1
K jð Þ W jð Þ�1 (13)

To evaluate the role of the nonlocal coupling, it is instructive to
consider the structure of the stiffness matrix. Here, we present a
few elements around the main diagonal by including the first, last

and middle (N=2 ¼ 50) rows of K 1ð Þ

K 1ð Þ ¼

1:2152 �0:0006 �0:0002 �0:0001 0 …

1:1216 �0:0309 �0:0136 �0:0061 �0:0026 �0:0011 …

1:1124 �0:0430 �0:0191 �0:0085 �0:0036 �0:0015 …

1:1192 �0:0466 �0:0206 �0:0091 �0:0038 �0:0016 …

�

… 1:9916 �0:0984 �0:0430 �0:0187 �0:0077 �0:0031 …

�

… 3:9831 �0:2188 �0:0666 �0:0002
SYM … 4:0820 �0:1584 �0:0005

… 4:2783 �0:0026
… 4:9289

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
(14)

where the dominant diagonal elements contain also the onsite
stiffness terms l2n.

3.4 Results From Reduction-Order Model. First, the eigen-
frequencies of the array were obtained using the undamped homo-
geneous counterpart of Eq. (8). The coefficients of the stiffness

matrix K jð Þ were then calculated using Eq. (13). Our results show
that the nondimensional frequencies obtained using the RO model
coincide with the values provided by the full-scale FE analysis. To
quantify the influence of the nonlocal coupling in the stiffness
matrix, the eigenfrequencies were also calculated using the local
model, Eq. (9) (with the coupling coefficients g¼ 0.0447, 0.0712,

and 0.0965 for the first, second, and third propagation bands,

respectively), and the error jf LOCi � f FEi j=f FEi ; i ¼ 1…3N was eval-
uated for each of the frequencies. The values of g were obtained
using the FE model results, by equilibrating the diagonal terms of
the fully populated, Eq. (13), and the local, Eq. (9), matrices

K
jð Þ

nn ¼ l2n þ 2g jð Þ; n ¼ N=2. Our results show that the local model,
while providing a good accuracy (with an average error of 0.47%,
0.65%, and 0.5% for the first, second, and third bands), may lead to
an error of up to 9% in the frequencies close to the upper cutoff val-
ues. In this work, we use Eq. (7) with the fully populated matrix
and Eq. (13) for the numerical analysis of the array behavior.

To illustrate the response of the array to an inertial excitation,
Eq. (8) was solved numerically using the Runge–Kutta solver and
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time-series were obtained for each cantilever. The substrate accel-
eration parameter and the quality factor used in our calculations
were c¼ 0.01 and Q1¼ 1000, respectively. The array was subject
to harmonic driving such that €zB ¼ sin Xsð Þ, where X is the excita-
tion frequency. During the numerical frequency sweep, X was
incrementally varied between the lower and the upper frequency
cutoff values within the three propagation bands. At each excita-
tion frequency, the vibrational amplitudes were obtained using a
time-series output from the differential equation solver.

Figures 5(a) and 5(b) show the spectral responses for the
L25¼ 463.64 lm beam at the first and second harmonics, respec-
tively. Insets in Fig. 5 show the frequency interval of �330Hz
and �2100Hz for the corresponding first and second propagation
bands. Figure 6 shows the modal patterns of the array vibrating
within the first and the second propagation bands. Our RO model
results (Fig. 6) show good agreement with the full-scale FE model
prediction (Fig. 4).

4 Experiment

4.1 Setup. The experimental setup is shown schematically in
Fig. 7. Chips containing several arrays were indium bonded to a

Fig. 5 RO model results. Spectral response of the L255 463.64lm cantilever, calculated for
c50.01, Q51000 and using the stiffness matrix given by Eq. (13). Spectral response at the (a)
first and (b) second harmonics. Insets show enlarged region corresponding to smaller fre-
quency sweep interval.

Fig. 6 RO model results showing modal patterns of the array
calculated for c5 0.01, Q5 1000 and using the stiffness matrix
given by Eq. (13). Modal patterns at the (a) first and (b) second
harmonics. Inset shows smaller frequency interval. Gray levels
represent normalized vibrational amplitudes at each drive fre-
quency with the values varying between 0 and 1. Fig. 7 Schematic of the experimental setup
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piezo-electric actuator. The piezo and chip assembly was mounted
onto a holder and placed into a high vacuum chamber equipped
with an optical quality viewport. The chamber was evacuated to
� 10�4 Pa (� 10�6 mbar), where air damping is negligible. Elec-
trical feed-throughs were used to apply signals to the piezo-
electric actuator [45].

An optical interferometric system was used to monitor the
motion of the devices. We used a manual XY translation stage to
position a laser spot onto a selected cantilever device. Light from
a �15 mW He–Ne laser was directed through the microscope

objective onto the resonator. The reflected light collected by the
objective was measured using an AC coupled photodetector (PD).
The signal from the PD was fed to the input of a spectrum ana-
lyzer. The amplified spectrum analyzer radio frequency output
signal was fed to the piezo-electric actuator to inertially excite
device motion. In a typical experiment, a 10� objective was used
to focus the laser to a spot of approximately 10 lm diameter on a
specific beam to be measured, as shown in Fig. 8. The piezo drive
frequency was swept over a span that captures the array resonan-
ces. To assure fully developed steady-periodic response and to
eliminate the influence of the transient effects, the sweep time was
chosen to be at least �20 s and up to �180 s which is significantly
longer than the settling time of the cantilevers vibrations. The
resulting spectral response was measured from the modulated PD
output using the spectrum analyzer.

5 Experimental Results

Figure 9 shows the measured spectral response of several canti-
levers at frequencies within the first ((a)–(e)) and second ((f)–(j))
propagation bands. Our results show that the separation between
neighboring spectral peaks is larger in the second propagation
band. The frequency interval between neighboring peaks within
the first propagation band for L1 and L25 are �620Hz and
�500Hz, respectively (Figs. 9(a) and 9(c)). In contrast, the fre-
quency interval within the second propagation band is much
higher, where values for L1 and L25 are �3450Hz and �3200Hz,
respectively (Figs. 9(f) and 9(h)). Figure 9 also shows that the
spectral band shifts toward higher frequency values with increas-
ing n. The vibrations of the longest cantilever n¼ 1 are measured
at frequencies between �26.13 kHz and �29.34 kHz (Fig. 9(a)),
whereas the lowest and the highest resonances of the shorter

Fig. 9 Measured spectral response of five different cantilevers within the array at the (a)–(e)
first and (f)–(j) second harmonic. Insets in (a) and (f) show zoomed-in regions corresponding
to smaller frequency sweep intervals. The nominal lengths of the beams are L15500lm,
L155 478.79lm, L255 463.64lm, L355448.49lm, and L455 443.34lm.

Fig. 8 Optical micrograph of a laser beam focused onto a
micromechanical beam. The scale bar is � 50lm.
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(n¼ 25) beam are � 27.29 kHz and � 34.33 kHz, respectively
(Fig. 9(c)). Since increasing n implies shorter beams, the propaga-
tion band will shift toward higher frequencies as n increases.

Our experimental results show that when the drive frequency is
swept up, the spatial band propagates along the array from the lon-
gest toward the shortest beam (Figs. 9(a)–9(e) and Figs. 9(f)–9(j)).
The width of this spatial band, namely the number of beams
vibrating at measurable amplitudes at a specific excitation fre-
quency in the range between the upper and the lower frequency
cutoff, is smaller than the length of the array. Consequently, the
number of peaks in the measured spectral response of a specific
cantilever is smaller than the number of peaks corresponding to
the entire array. For example, Fig. 9(c) shows 33 spectral peaks
for L25, whereas the total number natural frequency in the first
propagation band is 100. Moreover, due to the oscillating charac-
ter of the natural modes of the array (Fig. 3), the peak amplitudes
corresponding to the different modes of the array are not equal,
Fig. 9. Due to higher stiffness, the shorter cantilevers, when com-
pared to longer beams, have lower vibrational amplitudes.

Figure 10 shows the measured third propagation band for L25.
The vibrations of the cantilever are measured within the interval
of frequencies spanning �166 kHz. The frequency interval
between the two lowest peaks is �7700Hz. Figures 10(b) and
10(c) show the influence of the driving voltage on the measured
spectra of the cantilever. Our measured linear drive voltage–
amplitude dependence (inset of Fig. 10(c)) show the expected
Lorentzian spectral shapes, as shown in Fig. 10(c). As expected
for a linear system, the center frequency value of the third har-
monic was independent, to within a few Hz, of the drive voltage.

Within the linear drive regime, we observed frequency shifts of
6.162.6Hz (mean6 error from the Lorentzian fit). The wide nat-
ural frequency separation coupled with high quality factors (vary-
ing between Q � 7945 and Q � 17953 on Figs. 10(b) and 10(c))
allow easy identification of individual peaks within the measured
spectrum of the arrays driven at higher harmonics.

Figure 11 shows the theoretical and experimental frequencies
of the array as a function of the mode number. We measured 57,
60, and 43 resonances in the first, second, and third bands, respec-
tively. The higher mode numbers that are associated with the
shorter beams require higher excitation amplitudes. At increased
drive amplitudes we observed nonlinear device behavior that leads
to structural damage of the array elements.

Both the theoretical (Fig. 5) and the experimental (Figs. 9 and
11) results demonstrate stretching of the propagation band at
higher harmonics. Figure 11 also shows that the measured fre-
quencies are higher than the theoretically predicted values. We
attribute these quantitative discrepancies to the uncertainty in the
device geometry and the overhang length Lo. The latter is gov-
erned by the side wall verticality of the backside etch and the
alignment between the front-to-back lithographic levels. Higher
experimental frequencies imply that the overhang length was
smaller than the nominal, as-designed, value.

6 Conclusions

In this work we explored, both numerically and experimentally,
the collective behavior of 100 cantilevers elastically coupled
through a flexible overhang. We carried out the FE analysis for

Fig. 10 (a) Measured spectral response of cantilever L25 vibrating at the third harmonic with
a drive frequency sweep time of � 20s. Measured frequency spectra as a function of the drive
voltage for peaks highlighted by dashed boxes at (b) 436.681kHz62.2Hz and (c)
491.694kHz62.6Hz (mean6 error from Lorentzian fit). Inset shows a linear dependence of
the photodiode output on the drive voltage. The error bars, calculated from the Lorentzian fit,
are smaller than the marker size. The solid line represents a linear fit.
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the first 300 natural frequencies and natural modes of the array.
The numerical results show three distinct types of modes. The first
100 natural modes of the array correspond to cantilevers vibrating
at their fundamental harmonics. The modes between 101 and 200
are associated with the second harmonics and modes between 201
and 300 with the third harmonics of the beams. The corresponding
natural frequencies form three propagation bands, each bounded
from below and from above by the lower and the upper cutoff fre-
quencies, respectively. The natural modes of the array have local-
ized characteristics whereby limited number of beams oscillates at
each of the natural frequencies. Our FE results also show stretch-
ing of the propagation bands for cantilevers vibrating at higher
harmonics.

We also presented a compact reduced-order model of the array
that was built using the Galerkin decomposition. The three terms
preserved in the Galerkin series provided a description of beam
vibrations at the first three harmonics. This was accomplished by
using the stiffness matrix that was evaluated from the results of
the FE analysis. The RO model also provided the response of the
array to harmonic excitation spanning the lower and upper cutoff
frequencies for each propagation band. We developed the time
history dynamics of each beam by numerically solving, using a
Runge–Kutta solver, a system of ordinary differential equations
for a mass-spring system.

Our experimental results of the array dynamics showed distinct
resonant spectra and were in good agreement with the FE and RO
model predictions for the three measured propagation bands. Fur-
thermore, the mode localization feature coupled with the ability to
control the location of the spatial propagation band along the array
allows for addressing selected cantilevers by changing the excita-
tion frequency. We anticipate that the array dynamics at higher
frequencies, corresponding to higher harmonics of the cantilevers,
may reduce the flicker and low-frequency environmental noise.
The distinct spectral separation combined with the Lorentzian
character of the response present new possibilities in frequency-
based sensing with coupled micromechanical arrays.
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