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A B S T R A C T

A model of coupled limit cycle oscillators is developed and analyzed to discover and map out the system’s
locking behavior. This sixth order model is motivated by the physical problem of a pair of closely spaced doubly
clamped, thin silicon beams, coupled to each other through electrostatic fringing fields. The beams are assumed
to be detuned with respect to each other. The beams are optically thin and are situated above a thick silicon
substrate. When illuminated with continuous laser light a cavity interferometer is formed. Coupling of this optical
interference with thermal stresses creates an inherent feedback loop that can drive the beams into limit cycle
oscillation. Numerical analysis is used to study the range of coupling strengths and detunings over which 1:1,
and other integer frequency ratio locking can be obtained. Results show that 1:1 locking can occur over a broad
range of detuning even at relatively low levels of coupling. For coupling strengths just above the threshold for
locking, both locked and drift states can exist, depending on the initial conditions. Locking at 2:1, 3:1, 3:2 and
5:2 frequency ratios are observed for detunings that are close but not exactly equal to these integer ratios.

1. Introduction

Micro- and nano-electromechanical systems (MEMS and NEMS) have
revolutionized applications such as sensing [1–3], navigation [4,5],
signal processing [6,7], ink jet printing [8] and optical switching [9].
Many of the MEMS sensors exploit linear and nonlinear resonance
behavior [10,11] in which the dependence of a dynamical response
such as frequency and phase on physical characteristics such as mass
absorption or acceleration [12] is used to transduce the desired quantity.
Such devices typically consist of small scale, flexible structures with
dimensions in the micron to nanometer range. Although this technology
has advanced rapidly, the space for design of transformative MEMS and
NEMS is still wide open. One of the keys to exploiting this design space
is the discovery and understanding of non-linear dynamic phenomena
in MEMS and NEMS.

An example of the importance of nonlinearity in MEMS resonant sen-
sors is found in Ref. [13]. In this experiment a cantilever beam is coated
with a polypyrrole receptor layer which swells as it adsorbs ethanol,
producing a static bending and a shift in frequency. By operating the
system at high amplitude and near jumps in the amplitude–frequency
response (backbone curve) the frequency change due to adsorption was
enhanced by about 3× relative to operation in the linear regime, showing
a path to high sensitivity chemical sensors.
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While future systems may exploit large arrays of oscillators, the focus
here is on a model for the nonlinear dynamics of a pair of coupled,
thermo-optical limit cycle oscillators (LCO). In the envisioned system
a thermo-optical feedback mechanism induces limit cycle oscillations
in flexible micro-scale beams. A static voltage difference between the
beams couples the oscillators through forces caused by electro-static
fringing fields [14]. As a prelude to design, fabrication and testing of
such systems, a model is developed here and investigated to determine
the coupling strength needed for 1:1 frequency ratio locking of two opto-
thermal LCOs with different individual frequencies. The analysis also
explores the frequency to which the LCOs lock, the effect of the strength
of the cubic nonlinearity on locking, the effect of initial conditions on
locking for weak coupling strengths and the regions of 2:1, 3:1, 3:2 and
5:2 frequency ratio locking.

The literature on coupled LCOs provides insights into the phenomena
that are likely to occur in the envisioned, current system. A simple
analog to the system studied here is two linearly coupled, detuned van
der Pol oscillators [15–17]. As the coupling strength is increased, the
system will transition from drift in which the relative phases of the
two oscillators diverge, to a weakly locked (or phase entrained) mode
in which the phase difference varies periodically with zero average, to
strongly locked (or phase locked) in which the phase difference is zero.

https://doi.org/10.1016/j.ijnonlinmec.2018.03.009
Received 15 January 2018; Received in revised form 16 March 2018; Accepted 19 March 2018
Available online 30 March 2018
0020-7462/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ijnonlinmec.2018.03.009
http://www.elsevier.com/locate/nlm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2018.03.009&domain=pdf
mailto:atz2@cornell.edu
mailto:vadis@eng.tau.ac.il
https://doi.org/10.1016/j.ijnonlinmec.2018.03.009


A.T. Zehnder et al. International Journal of Non-Linear Mechanics 102 (2018) 92–100

Fig. 1. Two doubly clamped nano-beams with electrostatic coupling.

Locking can be in- or out-of-phase [18]. Note that many authors refer to
locking of oscillators, as described above, as frequency locking [19] or
synchronization [20–22]. Locking of an oscillator to an external signal
(not studied here) is often referred to as entrainment [23,24] or injection
locking [25] or simply as locking [26]. In this paper we use ‘‘locking’’
to refer to synchronization of oscillators at 1:1 or M:N frequency ratios,
where M and N are integers. In all cases studied here the 1:1 locking is
‘‘weak’’ meaning that the phase difference varies periodically, but with
a constant average.

Several groups have explored MEMS resonators coupled through
electrostatic attraction. A low frequency vibration sensing system was
developed by coupling a highly damped low frequency resonator to a
high 𝑄 (low damping), high frequency resonator [27,28]. The mixing of
these signals transforms the vibration signal into a high frequency signal
that is then measured to infer the amplitude and frequency of sensed,
low frequency vibration. A pair of cantilever based oscillators with
feedback proportional to the sum of their velocities was shown to lock
when the pair’s uncoupled frequencies are within the 3 dB bandwidth
and to oscillate separately (drift) when the frequency difference is
greater than this threshold [29]. Two plate shaped resonators set into
LCO via displacement feedback were observed to oscillate with reduced
phase noise relative to the individual oscillators [30]. Similarly, two
electrostatically coupled oscillators were seen to lock with in- or out-of-
phase motion [31]. Analytical models of the system predict very similar
results. Locking of thermally driven dome shaped oscillators is studied
in Ref. [32]. Under one-way coupling in which oscillator 1 sees a heater
voltage proportional to the displacement of oscillator 2, the LCOs lock
with a relative phase that depends on the sign of the coupling coef-
ficient. Two capacitively coupled oscillators with hardening behavior
are observed to improve their frequency stability by 7× when phase
locked, [33] an important result for applications such as MEMS based
clocks. Pairs of coupled, piezoelectrically actuated beams were studied
experimentally and numerically in Ref. [20]. Similar to [33] relative to
the unlocked case, a reduction in phase noise of −3 dB was observed
when the oscillators locked. Partial and complete injection locking of
two coupled modes of a doubly clamped SiNi beam to a common
parametric drive was experimentally demonstrated in Ref. [25].

A description of the physical system under investigation is provided
in the next section, followed by the model and a discussion of the
system parameters. The behavior of a single LCO is described to set the
stage for analysis and discussion of 1:1, 2:1, 3:1, 3:2 and 5:2 locking
of two detuned LCOs. At low coupling strengths the locking regions are
dependent on the initial conditions. At the lock/drift boundary of the
1:1 coupled state an unstable out-of-phase mode is found.

2. Physical system

A system of two, electrostatically coupled limit cycle oscillators,
as sketched in Fig. 1, motivates the model analyzed here. Physically

Fig. 2. Schematic setup. The absorbed and reflected laser power are periodic
with the gap between the beam and substrate. Inset plots the fraction of laser
power absorbed vs. the gap for an optically thin Si beam above a gap. The
inherent coupling of absorbed light and the resulting heating to motion can
induce limit cycle oscillation.

such a system would consist of two micron size scale, doubly clamped
beams fabricated from a device layer of a silicon on insulator (SOI)
wafer. Each beam is attached to two anchors and is designed to deflect
in the out-of-plane (𝑧) direction. Deliberately, or via variations in
the fabrication process, the two beams will have different dimensions
leading to different linear (i.e. low amplitude) and LCO frequencies.
The two beams are fabricated with a small gap between them. A
voltage difference is applied between the beams. The resulting fringing
electrostatic field [14] couples the beams through a force that is linear
for small differences in beam deflection but drops off as the difference
increases.

The setup for inducing opto-thermal LCOs in a single micro-scale
beam resonator is outlined in Fig. 2. The Si resonator is optically thin
(can transmit light) and is suspended over a thick substrate. A contin-
uous laser is focused to a spot at the center of the resonator. In typical
experiments the resonator is mounted in a high vacuum system to elim-
inate viscous damping. Laser light incident on the resonator is partially
absorbed, partially reflected and partially transmitted. Transmitted light
is reflected from the substrate back to the resonator. The net result
is that the resonator–gap–substrate system forms a Fabry–Pérot cavity
interferometer whose laser absorption and reflection depend on the gap.
As the resonator moves through the interference field, it modulates
the reflected and absorbed light and hence the thermal stress in the
beam. Thermal stress induces vertical deflection of the beam. Deflection
modulates the absorbed light and hence the temperature, leading to a
feedback loop that can drive limit cycle oscillations. This general setup
has been used to excite and study oscillations in resonators of various
sizes and shapes including cantilevers, doubly clamped beams, disks,
and domes [34,35].
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Table 1
Parameter values used in analysis [35]. The electrostatic parameter 𝑝 is esti-
mated from Ref. [38].
Parameter Value Units

𝐻 6780 K/W
𝐵 .112
𝛼 0.035
𝛾 0.011
𝑧0 0.18
𝐶 .02 1/K
𝐷 2.84 × 10−3 1/K
𝑄 1240
𝛽 15.5
𝑝 2.4

3. Model of system

The mathematical model extends the model of a single, thermo-
optically driven MEMS oscillator [34,36,37] to a pair of such oscillators
coupled by electrostatic fringing fields. With time normalized to the
small amplitude period of oscillation, and the displacements 𝑧1 and
𝑧2 of the first modes of oscillators 1 and 2 normalized by the laser
wavelength, a simplified model capturing the absorption of light, its
modulation due to motion, the effect of temperature on the mechanics
and the electrostatic coupling is:

𝑧̈1 +
𝑧̇1
𝑄

+ (1 + 𝐶𝑇1)𝑧1 + 𝛽𝑧31 +
𝑉 2(𝑧1 − 𝑧2)
1 + |𝑧1 − 𝑧2|

𝑝 = 𝐷𝑇1 , (1)

𝑇̇1 = −𝐵𝑇1 +𝐻𝑃𝑙𝑎𝑠𝑒𝑟[𝛼 + 𝛾sin2(2𝜋(𝑧1 − 𝑧0))] , (2)

𝑧̈2 +
𝑧̇2
𝑄

+ 𝜅(1 + 𝐶𝑇2)𝑧2 + 𝛽𝑧32 +
𝑉 2(𝑧2 − 𝑧1)
1 + |𝑧2 − 𝑧1|

𝑝 = 𝐷𝑇2 , (3)

𝑇̇2 = −𝐵𝑇2 +𝐻𝑃𝑙𝑎𝑠𝑒𝑟[𝛼 + 𝛾sin2(2𝜋(𝑧2 − 𝑧0))] . (4)

The mechanical model is similar to a Mathieu–Duffing resonator with
forcing proportional to temperature. The Mathieu type term, (1 +
𝐶𝑇 )𝑧, provides parametric excitation at twice the oscillator’s frequency
through the thermal coupling. The Duffing term, 𝛽𝑧3 leads to amplitude
dependent frequency, which will be one of the keys to locking. The
thermal model is reduced to a lumped thermal mass with laser heating
and Newton’s law of cooling. All quantities in the above are non-
dimensional with the exception of temperature, 𝑇 , given in K and laser
power, 𝑃𝑙𝑎𝑠𝑒𝑟, given in W. In the thermal equations, 𝑇1 and 𝑇2 are
the average temperatures of oscillators 1 and 2, 𝐵 and 𝐻 are thermal
constants, 𝑃𝑙𝑎𝑠𝑒𝑟 is the laser power, 𝛼 is the minimum absorption, 𝛾 is
the contrast in absorption, and 𝑧0 represents the equilibrium position
of the oscillator with respect to the absorption curve. In the mechanical
equations𝑄 is the quality factor, 𝛽 is the cubic stiffness, 𝐶 is a coefficient
relating linear stiffness change to temperature and 𝐷 is the static
displacement per unit temperature change. The form of the electrostatic
coupling (𝑉 2 term) is approximated from Ref. [38,39]. The voltage
parameter, 𝑉 2 can be considered as inclusive of the actual voltage
squared multiplied by a coupling coefficient, that for an actual device
would be determined by finite element analysis [38,39]. The natural
frequencies of neighboring MEMS oscillators will be close, but not
exactly the same due to fabrication variations. Thus, in the model, the
linear frequency of oscillator 2 is detuned from oscillator 1 by the ratio
√

𝜅. The fixed model parameters are taken from Ref. [35] and are given
in Table 1. In experiments the value of 𝑄 has been observed to be as
high as 10,000, however a smaller value, 𝑄= 1240, (higher damping)
was taken in order to speed up the time for the solution to reach steady
state oscillation. The main effect of lower 𝑄 is that laser power, 𝑃𝑙𝑎𝑠𝑒𝑟,
needed to induce limit cycle motion will increase; it scales linearly with
1∕𝑄 [34].

To start to understand the behavior of this system and the space
in which locking will occur, the above system has been integrated nu-
merically and the results interrogated to determine the system behavior

over a range of locking strengths, detuning ratios and initial conditions.
The analysis below will show that the system may have a number of
responses, including: 1:1 in-phase ‘‘weak locking’’ in which the two
LCOs have the same frequency and a constant, average phase difference
or ‘‘drift’’ in which the two LCOs run at their separate frequencies. An
unstable out-of-phase 1:1 locking mode is found to exist at the lock/drift
boundary in the space of initial conditions. Integer frequency ratio (2:1,
3:1, 3:2 and 5:2) phase locking regions are found using a model modified
to account for large detunings.

3.1. Analysis method

The system of equations above is converted to six coupled first
order equations in the variables (𝑧1, 𝑧̇1, 𝑇1, 𝑧2, 𝑧̇2, 𝑇2) and numerically
integrated using a Python code. The Python (SciPy) ordinary differential
equation solver, ‘‘odeint’’ uses the LSODA routine from the FORTRAN li-
brary ODEPACK [40]. Small jobs were run on a desktop computer, while
runs involving sweeping over a large parameter set were performed in
parallel on a multi-core computer. Parameters swept over include laser
power, 𝑃𝑙𝑎𝑠𝑒𝑟, detuning, 𝜅, and the electrostatic coupling voltage, 𝑉 . For
each parameter set the computations were run to a time span of 20𝑄
or more to ensure that steady state oscillations were achieved. As an
estimate of the computing cost, a sweep over 12500 parameter pairs
required approximately 38 core-hours.

To determine if the oscillators are locked, the Hilbert transforms [41]
of the steady state 𝑧1(𝑡) and 𝑧2(𝑡) were computed. From the Hilbert
transform the phase 𝜙1(𝑡) and 𝜙2(𝑡) of each oscillator was calculated
up to an arbitrary constant and the frequencies, 𝜔1 and 𝜔2 obtained
as the time averages of 𝜙̇1 and 𝜙̇2. If the difference between these
frequencies was within 0.001 the oscillators are considered to be locked.
The instantaneous phase difference, 𝛥𝜙(𝑡) = 𝜙1(𝑡) − 𝜙2(𝑡) was also
computed. If 𝛥𝜙(𝑡) is constant then strong locking would occur. If 𝛥𝜙(𝑡)
is periodic with a constant average then weak locking occurs. If 𝛥𝜙(𝑡)
increases with time then the system drifts. The above method yields
only the fundamental frequency, thus to examine the frequency content
of 𝑧1(𝑡) and 𝑧2(𝑡), the FFTs of the steady state results were also computed.

4. Behavior of a single LCO

We start with an analysis of the dynamics of a single thermo-optical
limit cycle oscillator [34,35]. Setting 𝑉 = 0, and sweeping the laser
power, 𝑃𝑙𝑎𝑠𝑒𝑟, up and down, the system of Eqs. (1) and (2) is integrated
until steady state is reached, starting from initial conditions (𝑧1 = 0, 𝑧̇1 =
0, 𝑇1 = 0). The values of (𝑧1, 𝑧̇1, 𝑇1) at the end of the integration are used
as the initial conditions for the next 𝑃𝑙𝑎𝑠𝑒𝑟 value.

The resulting amplitude and frequency of oscillation are shown
in Figs. 3 and 4. As 𝑃𝑙𝑎𝑠𝑒𝑟 is increased from zero, a supercritical
Hopf bifurcation occurs at 𝑃𝑙𝑎𝑠𝑒𝑟 = 𝑃𝐻𝑜𝑝𝑓 ≈ 0.0008 W. The value of
𝑃𝐻𝑜𝑝𝑓 depends on 1∕𝑄 as well as other system parameters, [34]. The
bifurcation can be sub- or super-critical, depending most strongly on
𝑧0 [34,35]. Fig. 4 shows that as the laser power, and hence the amplitude
of motion increase, the frequency of oscillation increases as would be
expected for a Duffing oscillator [42].

A key to the ability of the two LCOs to lock is the frequency tunability
resulting from the relatively large cubic stiffness nonlinearity, the 𝛽𝑧31
and 𝛽𝑧32 terms in Eqs. (1) and (3). Figs. 3 and 4 show that there is
a unique relationship between laser power, amplitude and frequency.
However as will be shown below, for the case of coupled oscillators at
a fixed 𝑃𝑙𝑎𝑠𝑒𝑟, the amplitude and frequency of the LCO can move up or
down the backbone curve, see Fig. 4, as needed to accommodate locking.
Similar behavior was found in the analysis of a single LCO entrained to
an inertial drive [23]. In that case, for inertial drive frequencies that
lead to entrainment the LCO amplitude and frequency moved along the
backbone curve as the frequency of the inertial signal was swept.

In all analyses that follow 𝑃𝑙𝑎𝑠𝑒𝑟 will be fixed at 0.002 W, well above
𝑃𝐻𝑜𝑝𝑓 . At this 𝑃𝑙𝑎𝑠𝑒𝑟 value, when the oscillators are uncoupled (𝑉 2 = 0)
the frequency of LCO 1 is 𝜔1 = 1.173 with an amplitude of 0.155.
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Fig. 3. Normalized amplitude of a single LCO vs. laser power. Hopf bifurcation
occurs at 𝑃𝑙𝑎𝑠𝑒𝑟 = 0.0008 W.

Fig. 4. Normalized amplitude–frequency relationship for a single LCO. The
arrows indicate that the frequency can be tuned by changing the amplitude of
the LCO.

5. 1:1 locking

5.1. Locking in space of detuning ratio
√

𝜅 and coupling strength 𝑉 2

The key question addressed in this analysis is: what level of electro-
static coupling would be needed to lock two oscillators whose uncoupled
frequencies differ from each other? The frequency differences could
arise from limitations on the fabrication precision or could be inten-
tional. LCO 1 has a linear frequency of one. LCO 2 has a linear frequency
of

√

𝜅. When 𝜅 = 1 the LCOs are identical. All system parameters except
𝜅 and 𝑉 2 are held constant. The results below will show that for low
coupling strengths some initial conditions will lead to 1:1 frequency
ratio weak locking behavior while other initial conditions will lead to
drift. The most experimentally relevant set of initial conditions is that
all quantities start at zero, thus in the following, the integrations are
performed with all initial conditions set to zero.

Consider first the uncoupled case, 𝑉 2 = 0, varying
√

𝜅 from 0.6 to
1.3. As Fig. 5 shows 𝜔1 = 1.173 is constant and 𝜔2 increases with

√

𝜅.
Note that the presence of the cubic nonlinearity, 𝛽𝑧32 in Eq. (3) means
that the LCO frequency is amplitude dependent and is not linear with
√

𝜅

Fig. 5. LCO frequencies vs. detuning for uncoupled and coupled cases.

If 𝑉 2 is set to 𝑉 2 = 0.0225 the LCOs are coupled and, as Fig. 5 shows,
will lock for 0.76 <

√

𝜅 < 1.14. For
√

𝜅 < 1 the frequency of the locked
pair is pulled down close to the uncoupled frequency of LCO 2. For
√

𝜅 > 1 the frequency of the locked pair is pulled down close to the
uncoupled frequency of LCO 1. Thus the frequency of the locked system
is always close to the lower of the uncoupled frequency of LCO 1 or LCO
2. This is in contrast to phase only models in which the lock frequency
is the average of the unlocked LCO frequencies [42]. Analysis of the
phase difference, 𝛥𝜙(𝑡), shows that the oscillators are weakly locked.
That is, the average of the phase difference is constant, but periodic
with a period that matches that of the locked LCOs. As the coupling
strength is increased the amplitude of the periodic oscillation of the
phase difference is reduced but never eliminated.

To complete the picture of locking a set of analyses was performed
sweeping over the detuning ratio,

√

𝜅 and 𝑉 2. Each integration starts
at zero initial conditions. The results are shown in Fig. 6(a) and the
zoomed in view at low coupling strengths, Fig. 6(b). A point is plotted
if the LCOs lock according the criterion |𝜔1 − 𝜔2| ≤ 0.001.

As would be expected based on the analysis of coupled van der Pol
oscillators [17], as coupling strength increases, the range of detuning
over which oscillators lock increases. What was unexpected is that
the lower bound of the locking space is almost flat, thus the coupling
strength needed for locking is nearly constant for 0.9 <

√

𝜅 < 1.05. This
is in contrast to analysis of coupled van der Pol models that show that the
coupling strength needed for 1:1 locking is linear in the detuning [18].
A second unexpected result is the erosion of the lower locking boundary,
namely the existence of gaps in the locking space for 𝑉 2 < 0.004, near
the lock/drift boundary. The reason for this erosion is explored in the
section below on sensitivity to initial conditions.

5.2. Effect of cubic nonlinearity

The ability of the LCOs to lock over a wide range of detuning arises
from the large tunability of each individual oscillator due to the cubic
stiffness nonlinearity, represented by the 𝛽𝑧31 and 𝛽𝑧32 terms in Eqs. (1)
and (3). As Fig. 4 shows the LCO frequency can vary up to about 30%
over the plotted amplitude range. Fig. 5 shows that as detuning is swept,
the faster of the two LCOs slows down to approximately the frequency
of the slower LCO. If 𝛽 is reduced then the tunability of each LCO is
reduced and it is expected that the locking region will narrow. This is
confirmed by the results shown in Fig. 6(a) where the boundaries of the
lock region for lower values of 𝛽, (𝛽 = 10 and 5) are superimposed on
the results for 𝛽 = 15.5.
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(a) (b)

Fig. 6. (a) Locking of LCOs 1 and 2 as a function of the detuning ratio,
√

𝜅 and coupling strength, 𝑉 2. Initial conditions are 𝑧1(0) = 𝑧2(0) = 0. Also shown are the
boundaries of the locking region for lower values of cubic stiffness nonlinearity, 𝛽 = 5 and 𝛽 = 10. (b) Detail of locking region for small values of coupling, 𝑉 2.

5.3. Sensitivity to initial conditions

As Fig. 6(b) shows, at low coupling strengths the boundary of the
locking space is not smooth and there are holes in the space. Analyses of
other coupled oscillator systems shows that locking is sensitive to initial
conditions. In studies of coupled metronomes [43] and pendulums [44]
it was found that the systems can lock to either in-phase or to out-of-
phase modes depending on the initial conditions. The size of the basin of
attraction, i.e. the size of the regions in initial condition space that lead
to locking was found to depend on coupling strength and connectivity
for systems consisting of a large number of oscillators [45]. In a study
of coupled, piezoelectrically driven beams it was found that near the
boundaries of the coupling space the fraction of randomly generated
initial conditions that lead to locking transitions from zero to one as the
coupling strength is increased [20].

The observation of holes in Fig. 6(b) and the results of the above
prior studies led to the question: Can locked and drift states co-exist? To
explore this question a series of analyses were performed varying the
coupling strength, 𝑉 2, holding

√

𝜅 = 0.90, holding the initial conditions
𝑧̇1(0) = 𝑧̇2(0) = 𝑇1(0) = 𝑇2(0) = 0 and varying the initial conditions
(𝑧1(0), 𝑧2(0)) over a grid of ±0.4.

Results of this analysis are shown in Fig. 7. As the coupling strength
increases to 𝑉 2 ≥ 0.013 the LCOs will lock for any initial conditions.
However, at low coupling strengths, for example 𝑉 2 = 0.010 the LCOs
lock inside two wedge-like regions given approximately by 𝑧2(0) ≥
|𝑧1(0)| and 𝑧2(0) ≤ −|𝑧1(0)|. As 𝑉 2 is further reduced only a skeletal
region of coupling is found in the initial condition space. These results
show that near the threshold of locking the system may either lock or
drift depending on initial conditions. If

√

𝜅 > 1 then the orientation
of the wedge-like region of locking is rotated by 90◦ in the space of
(

𝑧1(0), 𝑧2(0)
)

. The lock and drift states can be said to be locally stable
for 𝑉 2 < 0.013 and the lock state to be stable for 𝑉 2 ≥ 0.013.

To further explore the lock vs. drift behavior and to verify that the
results of Fig. 7 are correct, a series of integrations were performed
for initial conditions at the lock/drift boundary. With all other initial
conditions set to zero, setting the coupling below the value at which all
IC lead to locking, 𝑉 2 = 0.010,

√

𝜅 = 0.90, 𝑧2(0) = 0.25 and iterating
𝑧1(0) it was found that 𝑧1(0) = 0.2667592 lies very near the lock/drift
boundary. Note that for

√

𝜅 = 0.90 if the LCOs are uncoupled they will
have frequencies of 𝜔1 = 1.173 and 𝜔2 = 1.107 with amplitudes of 0.155
and 0.170 respectively.

For a point just to the left of the lock/drift boundary, 𝑧1(0) =
0.2667590 and 𝑉 2 = 0.010 the LCOs are found to lock in-phase at a
frequency of 1.131. Fig. 8(a) shows that when locked the two LCOs have
identical phase and frequency. Since the frequency of LCO 1 is pulled
down relative to its uncoupled value (see Fig. 5), its amplitude is also
reduced. Similarly the amplitude of LCO 2 is increased relative to its

uncoupled value. The FFTs of 𝑧1 and 𝑧2 are shown in Fig. 8(b). Peaks in
the FFT are seen at the fundamental frequency of 1.131 and at 2× and
3× multiples of the fundamental frequency. The 3× peak arises from the
cubic stiffness nonlinearity, while the 2× peak arises from the sin2 term
in the thermal equations. The strong 2× and 3× peaks suggest that fairly
robust 2:1 and 3:1 locking regions should occur in this system.

Changing the initial condition 𝑧1(0) by +0.000001 to 𝑧1(0) =
0.2667600, the system was found to drift. Fig. 9(a) shows that the LCOs
have different frequencies and that the phase is drifting. The FFTs,
Fig. 9(b) show peaks at 𝜔1 = 1.168 for LCO 1 and 𝜔2 = 1.117 for LCO
2. Although they are not locked, due to the coupling, the two LCOs still
have an effect on each other as seen by the multiple side bands in the
FFTs of 𝑧1 and 𝑧2 and by the difference in the LCO frequencies relative
to the corresponding uncoupled case.

The results show that in the space of initial conditions there is a
boundary between in-phase locking and drift. This leads to the question
of what is the nature of the system response on this boundary? Since the
lock and drift states are both locally stable, an unstable response must
exist on the boundary. Looking at the short time response of the system
with 𝑧1(0) = 0.2667600 and 𝑧2(0) = 0.25 Fig. 10 shows that starting from
an approximately in-phase set of initial conditions, the system quickly
reaches an out-of-phase 1:1 lock with a frequency of 1.298 and a steady
phase difference of 𝜋. However, this out-of-phase state is unstable and
after 𝑡 = 250 (about 40 cycles) the phase diverges from 𝜋 as the solution
evolves to the locally stable drift state. For a slightly lower value, just
inside the lock region, 𝑧1(0) = 0.2667592, the system quickly reaches out-
of-phase 1:1 lock but then evolves to the 1:1 in-phase lock state. Thus
on the boundary the system can for a short time be in the out-of-phase
lock, but will evolve either to drift or in-phase lock depending on which
side of the boundary the initial condition is.

To provide a more complete picture of the dependence of locking
on initial conditions a set of analyses were performed using initial
conditions (𝑧̇1(0) = 𝑧̇2(0) = 𝑇1(0) = 𝑇2(0) = 0). Random values of
𝑧1(0) and 𝑧2(0) were generated over the space 0 ≤ 𝑧1(0) ≤ 0.4, 0 ≤
𝑧2(0) ≤ 0.4. The calculation was repeated 25 times and the fraction of
initial conditions that led to locking calculated. The results are shown
in Fig. 11. An inner region where all initial conditions lead to locking is
surrounded by a region in which lock and drift states coexist.

6. Integer ratio locking

Phase only models, derived from perturbation analysis of coupled
van der Pol oscillators, show that locking can occur at 1:1, 2:1 and
other integer frequency ratios [46]. For example in [46] the region
of parameter space lying between 1:1 and 2:1 locking is described as
including a region of 3:2 locking as well as smaller regions of M:N
locking, where the ratio M/N lies between 1 and 2. In a study of coupled
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Fig. 7. Locking of LCOs for varying initial conditions and for coupling strengths near the threshold for locking. In this example
√

𝜅 = 0.90. The 𝑥 and 𝑦 axes of each
subplot are the initial conditions, 𝑧1(0) and 𝑧2(0). A point is plotted if the LCOs lock.

(a) (b)

Fig. 8. Example of a case where LCOs lock. Results for 𝑉 2 = 0.010,
√

𝜅 = 0.90, 𝑧2(0) = 0.25, 𝑧1(0) = 0.266759 (a) 𝑧1(𝑡) and 𝑧2(𝑡). (b) FFT of both signals.

(a) (b)

Fig. 9. Example of a case where LCOs drift. Results for 𝑉 2 = 0.010,
√

𝜅 = 0.90, 𝑧2(0) = 0.25, 𝑧1(0) = 0.266760 (a) 𝑧1(𝑡) and 𝑧2(𝑡). (b) FFT of both signals.
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(a) (b)

Fig. 10. Short time results for 𝑉 2 = 0.010, detuning ratio
√

𝜅 = 0.90, 𝑧2(0) = 0.25, 𝑧1(0) = 0.266760 (a) 𝑧1(𝑡) and 𝑧2(𝑡) near the start of integration. (b) Difference in
phase of LCO 1 and LCO 2 for short times.

Fig. 11. Fraction of initial conditions, 𝑧1(0), 𝑧2(0), holding all other I.C. to zero,
that result in 1:1 locking as a function of the detuning ratio,

√

𝜅 and the coupling
strength, 𝑉 2.

van der Pol–Duffing and van der Pol–Mathieu oscillators 2:1 [47], 3:1
and 4:1 [19] locking were found. 3:1 locking of coupled tuning fork
oscillators was experimentally observed in Ref. [21]. 3:1 locking of
coupled modes was demonstrated in a Si disk resonator [48].

To test if the current system will support other than 1:1 locking the
system of equations is modified to model beams with widely different
frequencies. The original system, Eq. (3) is only intended to model
beams with small levels of detuning. A simple modification is to allow
the cubic stiffness of 𝑧2, as well as the linear stiffness, to scale with 𝜅 :

𝑧̈2 +
𝑧̇2
𝑄

+ 𝜅(1 + 𝐶𝑇2)𝑧2 + 𝜅𝛽𝑧32 +
𝑉 2(𝑧2 − 𝑧1)
1 + |𝑧2 − 𝑧1|

𝑝 = 𝐷𝑇2 (5)

Note that in an actual device the linear and cubic stiffnesses as well as
other system will depend on the dimensions of the beam, and will not
necessarily scale proportionally to each other.

Based on prior results, [46] we expect to be able to find regions of
2:1, 3:1 and higher integer ratio locking. Regions of locking at higher
integer ratios may be indiscernible, but to confirm that at least some
exist we also look for 3:2 and 5:2 locking. To discover and map the
presence of these integer ratio locking regions, a sets of calculations
was performed sweeping over

√

𝜅 and 𝑉 2. Each integration starts at
zero initial conditions and is continued until steady state oscillations
are reached. Taking N:M to be 2:1, 3:1, 3:2 and 5:2 the oscillators are

Fig. 12. Left half of 1:1 locking region using Eqs. (1)–(4). 2:1, 3:1, 3:2 and
5:2 locking regions using Eq. (5) to model LCO 2. Initial conditions are 𝑧1(0) =
𝑧2(0) = 0. At 𝑉 2 = 0.04, the 2:1 locking range spans uncoupled frequencies of
2.027 < 𝜔1∕𝜔2 < 2.333. At 𝑉 2 = 0.04, the 3:1 locking range spans uncoupled
frequencies of 3.317 < 𝜔1∕𝜔2 < 3.274.

considered to be locked if |𝜔1−
𝑁
𝑀 𝜔2| < 0.001. Note that due to the strong

cubic nonlinearity the frequency of LCO 2 does not scale linearly with
√

𝜅. For example, when uncoupled, 𝜔2 =
1
2𝜔1 corresponds to

√

𝜅 = 0.42
rather than

√

𝜅 = 0.5.
The results of these calculations are shown in Fig. 12. These results

show, for zer initial conditions, the 2:1, 3:1, 3:2 and 5:2 lock regions,
along with the left half of the 1:1 lock region. All of the higher integer
ratio locking regions are much smaller than the 1:1 lock region. The
5:2 and 3:1 regions, in particular, are very narrow. In all cases the lock
regions tilt toward lower

√

𝜅 values as 𝑉 2 increases. This corresponds
to higher unlocked 𝜔1 ∶ 𝜔2 ratios as 𝑉 2 increases. Note that similar
to the 1:1 lock results, the 2:1 lock region shows erosion of the lower
boundary. Also similar to the 1:1 locking, for low values of coupling the
lock region boundaries were found to be sensitive to initial conditions.
Locking at other integer ratios is likely but is not explored here.

To gain a better understanding of the results consider a specific case:
At

√

𝜅 = 0.413 the uncoupled frequencies are 𝜔1 = 1.173 and 𝜔2 = 0.579,
with a 2.027:1 ratio. When coupled and locked the frequencies are
𝜔1 = 1.202 and 𝜔2 = 0.601, a 2:1 ratio. Note that the coupling increases
the frequencies of both oscillators, unlike the 1:1 locking in which the
lock frequency is approximately equal to the uncoupled frequency of the
slower oscillator, see Fig. 5.
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For 𝑉 2 = 0.04 the 2:1 lock region spans 0.350 <
√

𝜅 < 0.413
corresponding to a span of uncoupled frequency ratios from 2.333:1 to
2.027:1. For 𝑉 2 = 0.04 the 3:1 lock region spans 0.222 <

√

𝜅 < 0.226
corresponding to a span of uncoupled frequency ratios from 3.317:1 to
3.274:1.

7. Summary and conclusions

A sixth order model of two coupled limit cycles oscillators is studied
here. The model is motivated by the physical problem of the electro-
static coupling of a pair of doubly clamped microbeams, set into limit
cycle oscillation by laser illumination and coupled due to an imposed
difference in electrostatic voltage between the beams.

∙ Using system parameters approximated from experiments [36,
37,24,49,35] the models show that even with low levels of
coupling, pairs of microbeams can weakly lock at to each other
at 1:1 frequency ratio over a relatively large range of detunings,
approximately ±10% in linear frequency (Fig. 6(b)). In prior
experiments [35] on single oscillators, frequencies in the range
of 1 MHz were observed, thus the analysis here would suggest
that for those devices, locking over a range of ±100 kHz may be
observable.

∙ The width of the 1:1 lock region is reduced if the strength of the
cubic stiffness nonlinearity is reduced.

∙ Locking at 2:1, 3:1 3:2, and 5:2 frequency ratios is observed. Of
these, the 2:1 locking region is the widest and likely the most
accessible in actual devices.

∙ At the lowest levels of coupling lock and drift modes exist
simultaneously, separated in the space of initial conditions.

∙ For weak coupling a fraction of initial conditions will lead to
locking. As the coupling strength is increased, or the detuning
decreased, all initial conditions will lead to locking.

Future work will consider the dynamics of an array of oscillators with
systematically varying linear frequencies. Questions to be addressed
would be: Do blocks of oscillators lock to each other? How does the
number of oscillators and the associated frequency span of the blocks
vary with coupling strength [50]?
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