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Abstract—The requirements elicitation process often starts
with an interview between a customer and a requirements ana-
lyst. During these interviews, ambiguities in the dialogic discourse
may reveal the presence of tacit knowledge that needs to be made
explicit. It is therefore important to understand the nature of
ambiguities in interviews and to provide analysts with cognitive
tools to identify and alleviate ambiguities. Ambiguities perceived
by analysts are sometimes triggered by specific categories of
terms used by the customer such as pronouns, quantifiers, and
vague or under-specified terms. However, many of the ambiguities
that arise in practice cannot be rooted in single terms. Rather,
entire fragments of speech and their relation to the mental state
of the analyst need to be considered.

In this paper, we show that particular types of ambiguities can
be characterised by means of argumentation theory. Argumenta-
tion is the study of how conclusions can be reached through
logical reasoning. In an argumentation theory, statements are
represented as arguments, and conflict relations among state-
ments are represented as attacks. Based on a set of ambiguous
fragments extracted from interviews, we define a model of the
mental state of the analyst during an interview and translate
it into an argumentation theory. Then, we show that many of
the ambiguities can be characterized in terms of ‘attacks’ on
arguments. The main novelty of this work is in addressing the
problem of explaining fragment-level ambiguities in requirements
elicitation interviews through the formal modeling of the analyst’s
mental model using argumentation theory. Our contribution
provides a data-grounded, theoretical basis to have a more
complete understanding of the ambiguity phenomenon, and lays
the foundations to design intelligent computer-based agents that
are able to automatically identify ambiguities.

I. INTRODUCTION

Requirements elicitation is the process of gathering system
requirements from stakeholders [1], [2], and can be performed
through a variety of techniques, such as workshops, focus
groups, scenarios and prototypes [3], [4]. Interviews with
stakeholders are the most commonly used technique [5]-[8],
and considered among the most effective ways to transfer
knowledge [9]-[12]. Usually, requirements elicitation inter-
views involve a customer and a requirements analyst. The
goal of the interview is to transfer the customer’s knowledge
and needs to the analyst, so that the latter can collect precise,
correct and complete requirements, to be later conveyed to
a requirements document. The success of an interview de-
pends on several factors, such as the influence of domain
knowledge [5], [13], [14]; the trustworthiness, motivation,
and expressive ability of the customer [2]; the absorptive
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capacity and communication skills of the analyst [4], [5];
and ambiguities in the dialogic discourse [2]. Ambiguity in
particular may play a negative or a positive role. Indeed, if
the analyst cannot detect an ambiguity in the words of the
customer, the knowledge transfer might be compromised [2].
Instead, a detected ambiguity can lead to the discovery of
tacit knowledge [15], which is unexpressed, system-relevant
information that needs to be elicited [16], [17]. For this reason,
it is important to provide a framework to explain the ambiguity
phenomenon and to give analysts the tools to recognise and
alleviate ambiguity. In our previous work [18], we showed
that some of the ambiguities occurring in interviews can be
rooted in the nature of the terms used by the customer. In
particular, we identified five categories of ambiguity cues,
namely (1) under-specified, (2) vague, (3) quantifiers, (4)
pronouns, and (5) domain-specific terms. However, about half
of the ambiguity episodes analysed in our study could not
be explained by focusing solely on the terms used by the
customer. To understand these episodes, the mental context
of the analyst, and its relation with the speech fragments of
the customer need to be taken into account.

This paper aims to provide a theory for explaining ambigu-
ity cases that cannot be rooted in single terms. To this end, we
propose to use argumentation theory [19], [20] as a formal tool
to show that these ambiguities can be represented as ‘attacks’
between arguments of a structured discourse that occurs in
the mind of the analyst. By means of argumentation, we
formalise one specific type of ambiguity, namely acceptance
unclarity [21]. This phenomenon occurs when the analyst
is not able to accept a speech fragment expressed by the
customer, either because it is inconsistent with their current
understanding of the problem space, or because it is insufficient
to comprehend the problem.

We performed our study using an approach that is in-
spired by grounded theory [22]. Grounded theory entails
an incremental process that focuses on a dialogue between
the researcher and the data at hand, in which concepts are
extracted from data, and theories are produced in terms of
connections among concepts. In this work, we used data
from 34 requirements elicitation interviews, involving domain
experts and computer scientists. From this data, we isolated
232 customer’s speech fragments that were classified as am-
biguous. In the study presented in this paper, we focused
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on the subset of those fragments where the ambiguity is not
triggered by a single term but by the entire fragment, and
that caused the acceptance unclarity phenomena. We inspected
those fragments and incrementally defined a theory based
on argumentation to explain them. In this paper, we present
our theory, together with examples taken from the interviews
to show how the different categories of ambiguity can be
explained by the theory. As with any qualitative study, the
current contribution is biased by the background, vision and
expectations of the authors. However, we believe that the
reported examples provide sufficient evidence of the soundness
of our approach. We believe that our contribution can be used
as a theoretical basis to understand the nature of ambiguities
in oral interviews. On the other hand, it can also act as a
baseline for the development of intelligent computer-based
agents that are able to detect particular types of ambiguities
occurring during requirement elicitation interviews, as well as
for detection of ambiguities in written requirements.

The remainder of the paper is structured as follows. In
Sec. II we provide some background on ambiguity in inter-
views, and on argumentation theory. In Sec. III we describe
the methodology followed in this study. Sec. IV presents our
argumentation-based theory of ambiguity. Sec. V exemplifies
the different categories of ambiguities and how they are repre-
sented and explained in the theory. Finally, Sec. VI discusses
related works, and Sec. VII presents our conclusions.

II. BACKGROUND
A. Ambiguity in Interviews

In our previous work [21], a categorisation of ambiguities in
requirements elicitation interviews was provided. In this paper,
we will focus on the ambiguity category named acceptance
unclarity, which occurs whenever the analyst can understand
the meaning of the customer’s words, but cannot accept it for
some reason. For the sake of space, we provide an informal
definition only for this category. Formal definitions for all
categories are available in Ferrari er al. [21].

To understand the phenomenon of acceptance unclarity, it
is useful to provide a description of the process followed by
the analyst to understand the customer’s requirements. During
an interview, the customer articulates units of information, i.e.,
system-related needs or domain-related knowledge. A unit of
information is articulated by means of speech fragments, i.e.,
any consecutive set of words. Two main phases model the
process of understanding of a speech fragment by an analyst:
interpretation and acceptance. Interpretation is the phase in
which the analyst gives a meaning to the speech fragment of
the customer. Acceptance is the phase in which the analyst
considers whether that meaning is acceptable with respect to
their current understanding and knowledge of the problem
space. With the term acceptable we mean that the speech
fragment (a) appears sufficiently accurate to comprehend the
problem, and (b) the analyst does not register any type of in-
consistency with their current understanding of the problem, or
with their knowledge of the domain. For example, consider the
following speech fragment: The onboard system of the train
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shall use a TCP/IP protocol to communicate. The fragment
can be interpreted, but it is not acceptable because it does not
specify the device with which the system should communicate
through the TCP/IP protocol. An analyst who hears the frag-
ment would perceive an insufficiency, since the information
that they have is insufficient to form a complete picture of
the problem. Now, consider the speech fragment: The train
shall be able to stop within 5 meters, after an obstacle is
detected on the line. The fragment can be interpreted, but it
is not acceptable by an analyst who knows that trains require
hundreds of meters to stop when they are going at their full
speed. In other terms, the analyst perceives an inconsistency.

An acceptance unclarity occurs whenever the analyst (a)
can assign an interpretation to the speech fragment of the
customer, (b) the interpretation matches the intended meaning
of the customer, but (c) the interpretation is not acceptable. The
cases of insufficiency and inconsistency exemplified above are
both cases of acceptance unclarity.

B. Argumentation

Argumentation theory [23] is a form of reasoning that makes
explicit the reasons for the conclusions that are drawn and how
conflicts between reasons are resolved. This can provide a
natural mechanism to handle inconsistent and uncertain infor-
mation and to resolve conflicts of opinion between intelligent
agents [20]. Argumentation in general has many uses [24] and
is a particularly useful tool for the modeling of human dialog
and phenomena such as negotiation and debate.

In argumentation theory, Dung’s abstract argumentation
framework [25] has been particularly influential, as it attempts
to capture the essence of the process of reasoning about
arguments and their acceptability, thus making it generally
applicable across different application domains [26]. In its
most simple form, the framework is a pair (A, D), where A is
a set of arguments, which may be viewed as statements, and
D is a set of attacks among those arguments. For example,
an argument A; € A stating that speed will be measured
using a laser device can be attacked by another argument
Ay € A stating that no laser device may be used. This attack
is represented as (A1, A2) € D. Based on its arguments and
attacks, argumentation frameworks enable the determination
of which arguments are acceptable (or justified). This is
performed through the calculation of the so-called extensions
of argumentation frameworks.

Due to the abstract nature of Dung’s framework, it is
generally necessary to instantiate it before its application to
a particular domain. As described in [26], the instantiation
of Dung’s framework typically consists of first transforming
a description of the application domain (the argumentation
inputs) (I), into an argumentation framework (AF), through
the application of some function (f). Dung’s machinery is then
used to determine possible sets of acceptable arguments (AA)
by calculating the extensions of AF, denoted by £EX'(AF). The
acceptable arguments are then mapped to outputs (O) through
the application of another function (g). The four steps of this
process are depicted in Fig. 1.
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The instantiation of arguments typically consists of provid-
ing arguments an internal structure in the form of inference
rules. In this paper, we consider the ASPIC™T framework [27]
for structured argumentation. In ASPIC™, basic arguments
may correspond to simple propositions or to inference relations
having the following elements:

« a set of assumptions or premises defining the conditions

of the applicability of the argument,

« a conclusion representing the claim of the argument and,

« a method of deduction defining when the conclusion is
entailed by the premises.

When arguments are described using the structure presented
above, several attack types may be distinguished. Those attack
types, depicted in Fig. 2, are briefly described as follows:

o Rebutting (Fig. 2-(a.1)): an argument (As) rebuts some
argument (A7) whenever the conclusion of A; cannot be
true if the conclusion of A, holds.

o Undermining (Fig. 2-(a.2)): an argument (As) undermines
some argument (A1) whenever one of the premises of A;
cannot be true if the conclusion of A, holds.

o Undercutting (Fig. 2-(a.3)): an argument (As) undercuts
another argument (A;) whenever the conclusion of Ay
attacks the inference relation of A;.

An argument A indirectly attacks an argument B, if A attacks
an argument that is (below B) in the inference tree of B. An
example of an indirect attack is shown on the right hand side
of Fig. 2 where A, indirectly attacks Bs and Bs. Note that
B; and B, are called the proper sub-arguments of B3 and
that A, is said to attack By (or Bs) on (its sub-argument) Bj.
Furthermore, an attack between two arguments A and B is
called a symmetric attack if A attacks B and B attacks A. It
is asymmetric if only A attacks B.

To summarize the working of ASPIC™: starting from
a knowledge base (or a set of propositions) and a set of
inference rules, a set of arguments is generated in the form
of inference trees, as depicted in Fig. 2. An attack relation
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is then derived from the structure of the generated argu-
ments and a Dung’s abstract argumentation framework is
built. For example, the arguments in Fig. 2(b) generate the
argumentation framework AF = (A, D) where the set of
arguments is A = {Ay, Ag, By, Ba, B3} and the set of attacks
is D {B; <+ Aj}!. The extensions of AF are then
calculated. Of interest to us in this paper are the grounded
and preferred extensions. Intuitively, a grounded extension
contains the arguments that are always justified, i.e. it rep-
resents the skeptical semantics of argumentation frameworks.
A preferred extension is a (maximal) set of arguments that
can be collectively accepted. Note that whenever an argument
is not included in a preferred extension, then this argument
must be in conflict with (or is attacked by) the extension. For
example, AF has:

o the grounded extension {4;} and,
« the preferred extensions {41, As} and {A;, By, Bs, B3 }.

This can be interpreted as indicating that A; is always justified
whereas either Ay or {Bi, B2, B3} may be accepted but not
both. We say that an argument is credulously accepted if it
belongs to at least one preferred extension. In this paper, a
simplified version of ASPIC™ is used where some features
such as rebutting attacks and preferences between arguments
are not considered and are left for future work.

III. RESEARCH METHODOLOGY

The methodology adopted for this study is inspired by
grounded theory [22]. This is a qualitative research approach,
in which the researcher analyses the data, and, through an
iterative process of continuous confrontation with the data,
develops a theory that explains it. Our approach does not
strictly follow the guidelines of grounded theory as described
by Corbin and Strauss [22], but rather its spirit, in that each
category that composes a theory should be grounded on data.
Our deviation from grounded theory is mainly due to the type
of phenomenon considered, and the means adopted to analyse
it. Grounded theory focuses on social phenomena, while here
we are interested on a cognitive phenomenon, i.e., ambiguity.
In grounded theory, the data analysis is performed through a
process of coding, in which codes are conceptual categories
that explain the data. In our case, we elaborate the data through
a formal framework, i.e., argumentation, which explains the
data not just through categories, but by mapping the data to
a formal model. Below, we provide the details of the data
considered, and the methodology followed in our study.

a) Data: We used a dataset of 232 ambiguous speech
fragments, which we isolated in our previous study [21]. The
speech fragments were identified from a set of 34 unstructured
interviews that we arranged to study the phenomenon of
ambiguity. In all interviews, the 2nd author of the current study
acted as the analyst, while the customers were played by differ-
ent domain experts and computer scientists. More information
about the data is available in our previous publications [18],
[21]. For each fragment, the following information had been

IThe notation of (A <+ B) is used as a shortcut for (A, B), (B, A).



provided: a natural language description of the ambiguity
phenomenon that occurred; the category of ambiguity accord-
ing to Ferrari ef al. [21] (interpretation unclarity, acceptance
unclarity, multiple understanding, undetected incorrect dis-
ambiguation, detected incorrect disambiguation); the category
of the term that triggered the ambiguity phenomenon in the
fragment (under-specified, vague, quantifier, pronoun, domain-
specific, or Fragment — in case the ambiguity could not be
rooted in any specific term). For the current study, we selected
only those fragments that belonged to the acceptance unclarity
category, and for which the trigger of the ambiguity was
Fragment. A total of 77 fragments was selected.

b) Methodology: The methodology applied in our study
follows a series of iterations, which are described below.

Preliminary Theory Definition. The 1st author was given a
first subset of 8 fragments from 6 interviews. He inspected
them and interacted with the 2nd author to better understand
the perception that the latter had had of the ambiguity cases
— we recall that the 2nd author acted as analyst during the
interviews. From this phase, the 1st author developed an initial
version of the theory presented in this paper. The theory
was composed of (1) a method for translating the ambiguity
phenomena into an argumentation framework and (2) a set of
categories of attacks that occur between arguments and can
explain the ambiguity phenomena. The structure of the theory
remained the same also in its final version.

Categories Assessment. Then, the 3rd author, together with
the 2nd author, inspected all the fragments. They annotated
them with natural language memos that clarified the ambiguity
phenomena that occurred, in light of the theory developed by
the Ist author. In addition, they annotated the fragments with
the categories of attacks defined by the first version of the
theory. The goal of this phase was to assess the fitness of
the categories on the data. Then, they went back to the 1st
author with fragments that did not fit the theory, and with
recommendations to improve the categories.

Method Assessment. Meanwhile, the 1st author was given
6 fragments belonging to 1 interview, in which he applied
the method for translating the ambiguity phenomena into
an argumentation framework. The goal of this analysis was
to asses the soundness of the method on a sample of the
data. Based on this analysis, he provided recommendations
to improve the method.

Theory Revision. The theory was revised to consider the
recommendations on the categories, and on the method. This
has resulted in an improved theory that is able to cover
and explain additional types of ambiguity. These iterations
were useful as they lead to the successive identification of
the different types of elements and relations of the model
described in Sec. IV-A, and the constraints in Sec. IV-C.

Theory Assessment. The 2nd and 3rd author re-annotated
the fragments according to the new categories of the theory,
to re-assess their fitness. The annotation was reviewed by the
Ist author. Then, a sample of 7 representative fragments was
selected to be carefully analysed by the 1st author, who applied
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the final method on these fragments to validate its soundness.
Those cases are the ones presented in this paper.

IV. AN ARGUMENTATION-BASED METHOD

In oral interviews, analysts try to construct a mental model
of the conversation based on information provided by cus-
tomers and certain assumptions made by the analyst. The
model includes both information about the system to be built
and about the application domain since, during the interview,
both aspects are discussed. The ambiguities on which we focus
are episodes of acceptance unclarity, as defined in Sec. II.
In this section, we first present the elements and relations of
the proposed mental model of the analyst. Those elements
and relations encode the analyst’s current understanding of
the problem space. Each time the analyst hears a speech
fragment, they interpret it and confront this interpretation with
their mental model of the system to be built. Conflicts that
arise in this phase are acceptance unclarity cases. We then
show how this model can be translated into an argumentation
theory so that we can reason about the model and make a
characterization of different acceptance unclarity cases.

A. Model Elements and Relations

The analyst’s mental model M includes two sets: a set of
elements £ and a set of relations R.

a) Elements Types and Representation: The set of ele-

ments £ = &, UE,,, UE, is composed of the following types:

o Statement (&;): statements can be optative, typically
when they refer to system requirements, or indicative,
typically when they refer to domain aspects [28].

o Motivation (&,,): description of a rationale element for
a statement. The motivation answers why questions about
a statement. It can explain the goal for a requirement, or
provide the motivation for a domain aspect.

o Realisation (&£,): description of a solution element to
realise a statement in practice. The realisation answers
how questions about a statement. It can be regarded as
a specification for a requirement, or as a realisation of
some domain aspect in the application domain.

Elements represent knowledge elements and are expressed
in the form of simple atomic propositions, e.g., a moti-
vation may be expressed as product_procurement. Every
element e € & is associated to its type through the func-
tion type : € — {statement, motivation, realisation},
e.g., type(product_procurement) = motivation means that
product_procurement is a motivation element. Whenever, a
speech fragment is interpreted by the analyst, an associated
knowledge element is added to their mind. Then, the analyst
assigns a type to the newly collected element and constructs
a model of the system based on this new knowledge ele-
ment, considering the knowledge already gathered through
previous interpretations of speech fragments, and also inferred
or assumed knowledge elements. In this paper, we do not
distinguish between explicit, implicit or inferred knowledge
elements. Considering these aspects is possible, and would
help assigning different degrees of confidence to knowledge



elements according to their type. However, this would unnec-
essarily complicate the model at this stage.

b) Relations Representation: The set R captures logical
relations between different elements in the model. A relation
is expressed in the form of an inference rule » € R describing
a logical connection between a set of elements E C &, called
the premises, and an element e € &, called the conclusion.
Intuitively, a relation r means that the truth of the conclusion
e depends on the truth of the premises E.

Relations are specified using expressions of the form
ey, ...,en, = e where e, e, ..., e, are elements. Relations state
that when the premises, i.e., eq, ..., e,, are true, then, unless
there is some evidence to the contrary, the conclusion, i.e., e,
should hold.

B. Model Formalization in ASPICT

The ASPICT framework [29] enables the definition of
argumentation theories that include structured arguments and
the generation of abstract argumentation frameworks [30],
as discussed in Sec. II-B. A basic ASPIC™ argumentation
theory is composed of a knowledge base KB, a set of inference
rules ZR and a logical language £. Due to space limitations,
we do not present the formal semantics of ASPICT and
refer the interested readers to Modgil and Prakken [27]. In
this section, we briefly discuss the components of ASPIC*
argumentation theories and describe how the analyst’s mental
model M can be represented as one.

a) Logical Language: Let UE be the universe of ele-
ments of M, i.e., the set of all possible propositions from
which elements of £ can be drawn. The logical language
composed of elements of /£ and their negations is called
the ASPIC™ logical language of the model M.

b) Knowledge Base: An ASPICT knowledge base
KB = (K,,, K,) consists of two disjoint subsets: K,, of axiom
premises and K, of ordinary premises. Ordinary premises
represent fallible premises that can be attacked as opposed
to premises in /C,,, which represent axioms that must always
be true. Let £ be the set of elements of M, the knowledge
base (0, &) is called the ASPIC™T knowledge base of M.
Notice that every element e € £ is included as an ordinary
premise, i.e., as an assumption and not as a certain fact.

c) Inference Rules: The set of inference rules of an
ASPIC™ argumentation theory is a pair ZR = (R, Rg)
where R, is a set of strict inference rules and Ry is a set
of defeasible inference rules. Strict inference rules are of the
form ¢1,...,¢, — ¢ and defeasible inference rules are of
the form ¢1, ..., o, = ¢ where ¢, ¢1, ..., ¢, are well-formed
formulas of £ [26]. Let R be the set of relations of M. The set
IR = (0, R) is called the ASPIC™ inference rules of M.
Notice that every r € R is represented as a defeasible rule
in ZR, i.e., their inferences may be attacked and withdrawn
when there is an evidence to their contrary.

d) ASPIC™T Argumentation theory: The argumentation
theory of a model M is the theory that is composed of the
ASPICT logical language, knowledge base and inference
rules of M.

C. Model Constraints

This section defines four constraints that models of M
should satisfy and describes how they can be incorporated
in the argumentation theory of a model M. These constraints
arguably encode completeness and soundness requirements.
They belong to two general categories: satisfaction constraints,
and realisation constraints. The former encodes the idea that,
when analysts hear a fragment that they interpret as a statement
or a motivation, they shall also be able to mentally refine the
content expressed in the fragment and identify a means to
realise it. The latter encodes the idea that when analysts hear
a fragment that they interpret as a statement or realisation,
they shall be able to abstract from the fragment to understand
the rationale behind it. Those refinement and abstraction
constraints emulate the process that analysts follow in order
to accept the different fragments that they hear.

a) Statement Satisfaction Constraint (SSC): this con-
straint means that every statement element, being it a domain
aspect or a system requirement, has to be realisable, i.e., can
be satisfied by some plausible set of realisation elements.

To check this constraint on the analyst’s mental model M =
(€,R), we build an ASPIC* argumentation theory A7’ =
(KB,ZR, L) as follows:

o L is the ASPIC™ logical language of M,

o« KB =(K,,K,) where K,, = 0 and I, = £, where &, is
the set of realisation elements in M, ie., & ={e|e €
& and type(e) = realisation},

e IR is the set of of relations R.

Let & = {e | e € & andtype(e) = statement} be the
statement elements in M. A statement s € &£, is said to be
realisable iff s can be credulously inferred from A7, i.e., s
belongs to at least one of the preferred extensions of AT,
The set {unrealisable(s)|s € & such as s is not realisable}
is called the set of statement satisfaction constraint elements
generated from M, denoted ..

For example, let . = {a,b,c}, & = {s1} and R = {}
be the realisation elements, statement elements and relations
of M respectively. In this case, s; is not credulously inferred
from the argumentation theory AT’. Therefore, s is not real-
isable. In this case, the set of statement satisfaction constraint
elements generated from M is {unrealisable(s1)}.

Let AT = ((Ky,Kp), (Rs, Ra), L) be the argumentation
theory of M, the argumentation theory of M extended with
statement satisfaction constraints is the theory AT g5 =
(KBsscy Rsses Lsse) such that:

o L is the logical language £ extended with the set
{unrealisable(s)|s € UE and type(s) = statement}
and their negations,

o KB, is the knowledge base KB extended with the state-
ment satisfaction constraint elements generated from M
represented as axiom premises in KBgg,, i.e., KBgsse =
(K U&sse, Kp) and,

° Rssc = <R9 U Rssc>Rd> where Rssc =
{unrealisable(s) — —s | s € &}, ie., the set of
relations (inference rules) R is extended with a strict



rule {unrealisable(s) — —s} for every statement

element of M.

b) Motivation Satisfaction Constraint (MSC): this con-
straint means that every motivation element must be satisfiable
in the model M. More precisely, it encodes the notion that
each motivation, being it a rationale for a domain aspect, or
a system goal, shall be satisfiable by some set of statement
elements. Violations of this constraint occur when the analyst
finds that, given the current statements, a certain system goal
is not satisfiable. Similarly, violations also occur when some
domain-specific goal is not satisfiable by some set of domain
aspects. This constraint can be defined in a similar way to
statement satisfaction constraints and, therefore, will not be
further discussed here for brevity.

c) Realisation Relevance Constraint (RRC): this con-
straint means that every realisation element must be relevant to
the satisfaction of some statement. Violations of this constraint
occur when the analyst cannot find a requirement that justifies
the need for a practical solution element (or specification) that
was suggested by the customer, or when the analyst cannot
find a domain aspect that justifies the need for some practical
realisation element. This constraint is defined as follows.

Let & = {e| e € € and type(e) = realisation} be the set
of realisation elements of M and R’ C &, be a subset of it.
R’ is called a relevant realisation set for a statement s € &,
iff (1) s can be credulously inferred from the argumentation
theory ((/C,,, R'), R, L) and s cannot be credulously inferred
from any argumentation theory ((KC,,, R”), R, L) where R" is
a proper subset of R’, i.e., when R” C R’. Let RR(s) be the
union of all the relevant realisation sets for a statement s € &;.
A realisation element r € &, is said to be irrelevant iff it does
not belong to any relevant realisation set of any statement, i.e.,
Bs € & such that r € RR(s). The set {irrelevant(r) | r €
& and r is irrelevant} is called the set of realisation relevance
constraint elements of M.

For example, let & = {a,b,c,d}, & = {s} and R =
{(a,b,c = s),(a,b = s),(d = s)}, then the relevant
realisation sets of s are S; = {d} and Sy = {a,b} and
RR(s) = {a,b,d}. If s is the only statement, then the
realisation element c is irrelevant.

The argumentation theory of M extended with realisation
relevant constraints, denoted A7 .., can be defined in a sim-
ilar way to the argumentation theory extended with statement
satisfaction constraints.

d) Statement Relevance Constraint (SRC): this constraint
means that every statement element must be relevant to the
satisfaction of some motivation element. It encodes the notion
that each requirement and domain aspect should contribute to
the satisfaction of some motivation element. Violations of this
constraint occur when the analyst cannot find a reason for the
existence of some statement. The definition of this constraint
is similar to the one of the realisation relevance constraint.

V. CATEGORIES OF AMBIGUITY

Acceptance unclarity stems from two main sources, namely
inconsistency and insufficiency. For the detection of inconsis-
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tencies, a model of the analyst’s mental state M is defined,
as described in Sec. IV-A. This model is then translated into
its ASPIC™ argumentation theory, as presented in Sec. IV-B.
After arguments are generated from this argumentation theory,
inconsistencies take the form of symmetric attacks between the
generated arguments. On the other hand, insufficiencies take
the form of asymmetric attacks when the argumentation theory
of M is extended with constraints, as described in Sec. IV-C.

A. Inconsistency Categories

An inconsistency occurs whenever the analyst perceives a
contradiction after the introduction of a knowledge element
by the customer. Inconsistencies are detected when there are
symmetric attacks between the arguments built on the basis
of the argumentation theory of the analyst’s model M. In this
section, the notation S (X, Y), where X,Y€ {m, s, 7}, is used
to represent an attack between an element of types X and
another of type Y. For example, (S (m, s)) is an attack between
a motivation and a statement element. Notice that this is an
informal classification where an attack is said to be of type
(X, Y) if the inconsistency is perceived after the introduction
of an element of type X, leading to a situation where a choice
has to be made between this element and another of type Y.
According to this classification, there are 6 basic categories
of inconsistency — given by the number of possible unordered
pairs between element types. A more formal classification of
attacks is left for future work.

Example V.1 (S (s, s)). One of our customers wants to
develop a system to allow patients to measure the amount of
glucose in their blood, and then send the result to their general
practitioner. If the glucose level is above a certain threshold,
the practitioner pays a visit to the patient. The customer says:
On the doctor’s side, it (the system) is a PC program [...] In
one-two days the doctor sees the notification (s1). The domain
knowledge of the analyst tells him that the doctor might be
on holiday (r;). Hence, the notification might be severely
delayed (inference relation ¢; with conclusion sy = —s1).
The analyst asks for clarifications. The customer replies: The
general practitioner is substituted by another doctor who
accesses the same system.

We model this example as a model M which includes:
« the elements £ = {s1,71, 52},
o the relations R = {r; = sa}.
The arguments constructed on the basis of the argumentation
theory of M, depicted in Fig. 3(a), are:
e Bj: in one-two days the doctor sees the notification,
o A;: the doctor might be on holiday,
o As: since the the doctor might be on holiday, the notifi-
cation might be severely delayed.
The Dung’s abstract argumentation framework AF' generated
from this argumentation theory consists of:
o the arguments: {A;, A2, By} and,
o attacks: {As < Bp} which intuitively means that there
is a (symmetric direct) attack between B; and As.
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The grounded and preferred extensions of AF' are:

« the grounded extension: {A;} and,

« the two preferred extensions: {A;, B1} and {41, As}.
Thus, the calculation of the extensions of this mental model
reveals that A; can be accepted unconditionally, but one has to
choose to accept either By or Ao, i.e., either accept the relation
1 = So, 1.€., “since the doctor might be on holiday, then the
notification might be severely delayed’ or the statement s1,
i.e., “in one-two days the doctor sees the notification” .

Example V.2 (S (m, s)). One of the customers wants a
recycling-support system that, given the envelope of a product,
indicates to the user which trash bin should be used. One of
the system goals, made explicit during the interview, is fo
avoid fines from the municipality for incorrect recycling (my).
According to the domain knowledge of the analyst, trash bins
are placed along the streets (r1), and therefore there is no way
to trace the owner of the rubbish, once it is thrown in the trash
bin (inference relation ¢; with conclusion s1). This goal was
in contrast with the domain knowledge of the analyst, who
could not see how the municipality identifies the person who
violates the aforementioned rule (ss = —s1).

We represent this example as a model M which includes:
« the elements & = {my,r1, 51, S2},
o the relations R = {r; = s1}.
The arguments generated from ASPIC™ theory of M, de-
picted in Fig. 3(b), are:
o Aj: trash bins are placed along the streets,
o As: since trash bins are placed along the streets, garbage
cannot be traced back to their owner,
¢ Bj: people who do not recycle should be fined,
e Bs: to fine people, the municipality must be able to trace
products in trash bins back to their owners.
The Dung’s abstract argumentation framework AF' corre-
sponding to this argumentation theory consists of:
o the arguments: {A;, Ay, By, Bo} and,
« attacks: {As > B}
The grounded and preferred extensions of AF are:
« the grounded extension: {A;} and,
o the two preferred extensions:

{A17A2} and
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Thus, the calculation of the extensions of this mental model
reveals that A; is unconditionally acceptable, but, if one
accepts Asg, then {Bs, B1} must be rejected, or the opposite.

Example V.3 (S (s, r)). One of the customers wants to develop
an app to manage medical-related reservation (e.g., Xx-rays,
specialists visits, blood tests, efc.) in Tuscany. The analyst
assumed that the current reservation system, based on phone
calls, was centralised (s1). During the interview, this statement
was attacked by the description of a realization given by the
customer. More precisely, the customer says: depending on
where the examination/visit will be (r1), [The patient has to
call] Nottola or Siena (r2). The analyst could not understand
how this realization was possible since calling Nottola or
Siena (r9) means that the reservation system is not centralized
(inference i with conclusion —s7).

The arguments generated on the basis of the argumentation
theory of the mental model of the analyst for this example are
depicted in Fig. 3(c).

B. Insufficiency Categories

An insufficiency occurs whenever the analyst perceives
that they need more information in order to accept a new
knowledge element from the customer. Insufficiencies cannot
be detected by directly inspecting the model as it requires
a form of (meta) reasoning on the model. To enable this
kind of reasoning, we labeled knowledge elements and in-
troduced the different constraints in Sec. IV-C. Note that
this approach is somewhat similar in spirit to the meta-
argumentation approach proposed in [26]. However, the target
argumentation system in this paper is ASPIC™ and not
Dung’s argumentation framework. There are 12 categories of
insufficiencies, given by the rank of the cartesian product
between the number of constraints (4, namely SSC, MSC,
RRC, SRC - acronyms are defined in Sect. IV-C) and the
number of element types (3, namely m, s, r). Insufficiencies
are revealed by asymmetric attacks in the argumentation theory
of M when it is extended with constraints, as described in
Sec. IV-C. In the following examples, the notation A (Z, X)
where Z € {SSC, RRC,MSC,SRC} and X € {m,s,r} is
used to represent asymmetric attacks between some knowledge
element of type X and a constraint argument of type Z.



Example V.4 (A (SSC, s)). One of our customers is a
mechanical engineer who wishes to develop a system to
facilitate getting the quotes of mechanical components from
different vendors. When speaking about the implementation of
the system to get the quotes, he says: I should have the name of
the vendor, and an email address to contact (optative statement
s1). The analyst could not understand how, in practice, this
information could be retrieved. In other words, the analyst
was not able to find a realisation for this statement.

This simple example can be represented as a model M
which only includes the elements £ = {s1} and an empty
set of relations R = {}. The ASPIC™ theory of M is
consistent in the sense that there are no attacks between its
arguments. In order to reveal this kind of ambiguities, we
construct the ASPIC™ argumentation theory with statement
satisfaction constraints A7 .. as described in Section IV-C.
The arguments built on top of this argumentation theory are
depicted in Fig. 3(d). which shows an asymmetric attack be-
tween the constraint By and the unrealised statement A;. This
argumentation theory has only one and the same grounded
and preferred extension, namely the extension { By, Bz} which
should be interpreted as follows:

e DBj: statement s; is not realisable,

o By: therefore sy cannot be accepted.

Example V.5 (A (MSC, s)). One of our customers is a
physician who wishes to develop a system for automatically
monitoring the diet of a representative sample of the popula-
tion for research purposes. Currently, the diet of this sample
is evaluated by means of a questionnaire, where people are
asked how often do they eat meat, vegetables, fish, etc. The
sample is randomly selected, and the customer says that the
problem is that people tell lies [about their diet] (domain
aspect sj). Hence, one of the goals of the system should
be to know exactly what people eat (motivation m;). She
suggests having a system in which people take pictures of their
meals (requirement sg). However, after some discussion, it
became clear that this system could not address the previously
agreed goal. In other terms, the analyst could not find a set of
statements that allows satisfying the motivation of the system
(therefore the satisfaction of the motivation is not entailed from
the collected knowledge).

The application of the motivation satisfaction constraints to
Example V.5 produced the arguments depicted in Fig. 3(e).
Note that if statement satisfaction constraints are verified, then
s1 and sy would be detected as unrealisable.

Example V.6 (A (RRC, r)). One of our customers wants to
develop a Web-based platform to ease communication between
citizens and representatives of the parliament. When speaking
about the realisation of the idea, he makes the following
scenario: If I have many crimes in one area (r1), and I start
having many posts about security coming from that region
(r2), I can associate this [the crimes with the region] (s1).
The analyst could not understand what was the requirement
addressed by this scenario (the relation ¢; with premises
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Fig. 4: Distribution of (a) symmetric and (b) asymmetric attacks.

{r1,7r2} and the conclusion s; is not accepted by the analyst),
since the main requirement understood up to that moment was
to allow citizens to send information to the representative of
the parliament. In other terms, a statement that can be satisfied
with the suggested realisation was missing.

The application of realisation relevance constraints to Ex-
ample V.6 produces the arguments depicted in Fig. 3(f).

Example V.7 (A (SRC, s)). One of our customers wants
to develop a mobile application that allows him to know
the closest and cheapest petrol station while he is driving
(m1). When speaking about the parameters that the application
should take into account, the customer says: Whether or
not you'’re on the highway, which I think is also important
(s1). The analyst could not understand the motivation of
this statement (a relation between s; and previously stated
motivations was not identified), since, in his experience, fuel
prices do not depend on whether you are on the highway or
not (r1). After asking for clarifications, the customer specified
that It [the fuel] is cheaper for you if you exit the highway.

The application of statement relevance constraints to V.7
produces the arguments depicted in Fig. 3(g).

C. Statistics on the Data

Among the 77 analyzed fragments, 39 were categorised as
symmetric attacks (inconsistency), 29 as asymmetric attacks
(insufficiency) while 1 included both conflicting and miss-
ing aspects. The remaining 8 (around 12%) could not be
represented within the framework: 4 cases were incorrectly
classified as acceptance unclarities due to fragments, while
they were rooted in terms; and the remaining 4 were insuf-
ficiency cases which detection requires the incorporation of
additional constraints in the framework. This extension is left
for future work. In Figure 4, we report the distribution of
(a) symmetric and (b) asymmetric attacks over the different
categories. In both cases, there is a category of attack that is
much more frequent than the others. Specifically, symmetric
attacks between statements (S (s, s)) represent almost half
of the symmetric cases. Attacks between a statement and
the constraint expressing the need to have a realisation for
a statement (A (SSC, s)) represent more than half of the
asymmetric cases.



VI. RELATED WORK

This section discusses related work on ambiguity, inconsis-
tency, insufficiency and argumentation.

a) Ambiguity: Ambiguity in natural language has been
studied extensively in RE, especially in relation to its oc-
currence in written requirements. In particular, strategies
were defined to prevent ambiguities by means of formal
approaches [31]-[33] or constrained natural languages [34],
[35]. Other approaches aim to detect ambiguities in require-
ments. These approaches are mainly rule-based, i.e., based on
linguistic patterns to be matched within requirements [36]. Au-
tomated tools such as QuARS [37], SREE [38] and others [39],
[40] were developed according to this philosophy. Other
work [41], [42] focuses on the usage of statistical approaches
to detect particular types of ambiguity cases, the so-called
innocuous ambiguities — i.e., linguistic ambiguities that have
one single reading in practice. All the cited work focuses on
ambiguities in written texts that can be rooted in terms. Our
work differs since we focus on ambiguities that depend on the
context, referred to as pragmatic ambiguities [36].

b) Inconsistency: Inconsistency occurs when a require-
ments document contains conflicting, contradictory descrip-
tions of the expected behavior of the system to be built or
of its domain [43]. The majority of techniques developed
to detect inconsistencies focus on the usage of formal log-
ics [43] or models [44]-[46] to evaluate the overall consis-
tency of formalised requirements, specifications and domain
assertions. Tools for the detection of inconsistencies, such as
EA-Analyser [47], were also developed. The majority of the
cited work focuses on the analysis or negotiation phases of
the RE process, when (part of) the requirements are already
documented. Our work focuses on the early elicitation phase.

¢) Insufficiency: In RE, insufficiency is explicitly studied
by Pitts and Browne [48] in the context of requirements
elicitation interviews. In particular, they studied how analysts
with different degrees of expertise have different cognitive
strategies to assess the sufficiency of the information that they
receive from the customer. To our knowledge, insufficiency
is not treated by other studies. However, insufficiency is
closely related to the concept of requirements completeness.
In a sense, insufficiency is the perception of some form
of incompleteness in the requirements from the point of
view of the analyst. Studies about requirements completeness
provide several definitions of the concept [49]-[51]. In these
studies, completeness is regarded as an objective property
of the specification, although its evaluation requires domain
expertise, e.g., to build a domain model against which the
completeness of a specification has to be evaluated. Our
paper emphasizes a subjective aspect of incompleteness. For
this reason, in line with Pitts and Browne, we use the term
insufficiency. However, while we focus on insufficiency of
single fragments of information received, Pitts and Browne
focus on the determination of the sufficiency of the overall
information received during the interview.

d) Argumentation: Two forms of argumentation have
been often considered for modeling and reasoning about
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RE artifacts: Toulmin arguments and Dung’s argumentation
frameworks. One of the first works on argumentation in RE is
that of Haley et al. [52] where security satisfaction arguments
are proposed as a means to convince a reader that a system sat-
isfies its security requirements. Franqueira et al. [53] extended
this work and introduced a risk assessment method (RISA),
which identifies rebuttals and mitigations needed to satisfy
security requirements. Mirbel and Villeta [54] proposed an
approach for the management of requirements artifacts based
on argumentation-theory. Given goal-oriented requirements
models, where goals are associated using different relations,
an extended argumentation framework is generated and pos-
sible alternative sets of consistent requirements are identified.
Ingolfo et al. [55] propose a five-step iterative process to sys-
tematically establish compliance of system requirements with
law through discussions among stakeholders. Jureta et al. [56]
proposed the ACceptability Evaluation Framework (ACE) to
represent, in the form of a graph, information exchanged in a
discussion about the relative validity of an RE artifact. Bagheri
and Ensan [57] model interaction and inconsistencies between
requirement statements using Dung’s abstract argumentation
framework. They also propose techniques to rank and select
between the framework’s preferred extensions, when more
than one exists. In comparison, firstly, our aim is to model
the phenomenon of ambiguities arising in oral interviews.
Secondly, we consider ASPIC™ for structured argumentation
which builds on the foundational work of Dung. This arguably
provides our modeling language a high-level of expressiveness
and, at the same time, enables us to profit from a large amount
of theoretical work in this highly active research field.

VII. CONCLUSION

Ambiguity in natural language is a complex phenomenon
that has been studied by philosophers, linguists and computer
scientists. However, most previous work on the topic has fo-
cused on ambiguities in written text, specifically, those caused
by ambiguous natural language terms. Our work advances
the state-of-the-art by focusing on ambiguities that occur in
oral communication that cannot be rooted in single terms.
We showed that argumentation theory can be used to explain
these cases of ambiguity, which are particularly common
in requirements elicitation interviews. Our future work will
provide the basis to automate the method described in this
paper. We are aware that a full automation would require
advanced natural language processing (NLP) technologies that
can perform semantic tasks, which are not currently avail-
able [38]. Hence, we will focus on identifying (a) the tasks of
the method that can be automated, and (b) those that require
human intervention, to come to a semi-automated process.
Further automation of this process will be possible when the
required NLP technologies are available.
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