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An  integrated  sensor  chip  with  silicon  nanowire  ion-sensitive  field-effect  transistors  for  simultaneous
and  selective  detection  of  both  molecular  and  elemental  ions  in  a  single  sample  solution  is  demonstrated.
The  sensing  selectivity  is realized  by  functionalizing  the  sensor  surface  with  tailor-made  mixed-matrix
membranes  (MMM)  incorporated  with  specific  ionophores  for  the  target  ions.  A  biomimetic  container
molecule,  named  metal-organic  supercontainer  (MOSC),  is  selected  as  the  ionophore  for  detection  of
methylene  blue  (MB+),  a  molecular  ion,  while  a commercially  available  Na-ionophore  is  used  for  Na+,
an  elemental  ion. The  sensors  show  a near-Nernstian  response  with  56.4  ± 1.8  mV/dec  down  to  a  con-
centration  limit  of ∼1 �M  for MB+ and  57.9  ± 0.7  mV/dec  down  to  ∼60  �M for Na+, both  with  excellent
reproducibility.  Extensive  control  experiments  on  the  MB+ sensor  lead  to identification  of the  critical  role
of  the MOSC  molecules  in achieving  a stable  and  reproducible  potentiometric  response.  Moreover,  the

+

etection
MB -specific  sensor  shows  remarkable  selectivity  against  common  interfering  elemental  ions  in  phys-
iological  samples,  e.g.,  H+, Na+, and  K+.  Although  the  Na+-specific  sensor  is  currently  characterized  by
insufficient  immunity  to the  interference  by  MB+, the  root  cause  is  identified  and  remedies  generally
applicable  for hydrophobic  molecular  ions  are  discussed.  River  water  experiments  are  also  conducted  to
prove  the  efficacy  of our sensors.

©  2018  Elsevier  B.V.  All  rights  reserved.
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lexed analyses of liquid samples, e.g., water, sweat, blood,
d urine, have attracted great interest in recent years [1–5].
d may  consist of a complex matrix of small molecules,
r ions, and elemental ions. Such analyses can yield rich
on regarding water contaminations, individual’s physio-
ate or early disease diagnosis. For example, the glucose
uman sweat, as an important metabolite, is closely corre-
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he blood glucose level [6]. The sweat lactate is potentially
eful early indicator of pressure ischemia [7] and lactate
unction as a potential antioxidant agent [8]. Choline, as
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xample, containing a 2-Hydroxy-N,N,N-trimethylethan-
m cation, is an essential nutrient for neurotransmission
ides methyl groups in various biological processes [9,10].
m these molecular compounds, elemental ions such as
K+ are useful biomarkers of electrolyte imbalance and an

 loss of them could result in dehydration [11,12]. Neu-
als, as a further example, which also include important
l ions (K+, Ca2+, Mg2+, etc.), are actively involved in cell
eplication, response, and communication in the neuronal
[13]. Conventional methods, such as high-performance
romatography (HPLC) [14] and gas chromatography-
ctrometry (GC–MS) [15], are widely used for quantitative

ents of these molecular ions but usually require highly-
erators, expensive and bulky instrumentation, and are

e consuming [16]. Electrochemical sensors have also been

vestigated [13,16,17]. However, the integration of electro-

 sensors for multiple targets onto one chip has proven to
lt due to the different sensing mechanisms for different
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ionophore III 10  mg
ClPB 5.0 mg 5.0 mg 4.5 mg 4.5 mg

 330 mg 330 mg 165 mg 165 mg
 ∼5 mL ∼5 mL ∼5 mL ∼5 mL

S  

 

ahyd
cula

roph
a-Al
hase
. All 

r (18
e.

Devi

he  S
 usin
lator
n w
s w

 late
lecti
nden

e, PtS
onta

on ox
e as g

Prep

our  t
d w
out 

M),  

trol-
Ms a
M1  a
e tha
nce  

icles,
 on t

 MB
ppro

rdina
orme
ned 

MM
edur
om t

Elect

ll  el
ture 

icond
X. Chen et al. / Sensors and Actuators 

tiometric sensors employing ion-binding receptors, i.e.,
es, have been extensively studied in the past decades
tive detection of cations and anions [18,19]. However,
ially available ionophores are limited to the detection of
l and other small ions. There is a lack of ionophores for
logically relevant molecular ions [19]. As a new class of
es, supramolecular host materials are becoming increas-
vant in ion sensing applications [20]. In particular, a new
oordination based synthetic receptors, i.e., metal-organic
tainers (MOSCs), have been proven to be an extremely
host system, especially for large molecular ions [21–24].

 and charge-selective feature of the MOSCs towards target
r ions has been experimentally shown, with the binding
dependent on the molecular sizes and ionic charges of the
5]. It has been demonstrated in our previous work that, by
ting MOSC molecules into poly(vinylchloride) (PVC), con-

 ion-selective electrodes (ISEs) exhibited a near-Nernstian
 towards methylene blue (MB+) that has a positive charge
lecular size closely matching the MOSC’s cavity size [26].
bility of the nanocavity structure in the MOSCs is antic-

 afford exciting new opportunities in the potentiometric
f a wide range of molecular ion targets.
ccess in potentiometric molecular ion sensing using a

corporated membrane matrix offers the opportunity to
 both molecular and elemental ion sensors in a sin-

 In this work, we demonstrate an integrated sensor
g silicon nanowire based ion-selective field-effect tran-
iNW-ISFETs) for multiplexed analysis of molecular and
l ions in a single sample solution. A SiNW-ISFET sen-
ionalized with ˇ-cyclodextrin (ˇ-CD) was indeed shown
able of discriminating between D and L enantiomers
ine [27]. Using SiNW-ISFETs for electronic sensing is

eous due to the possibility of high-density integration
s integration with on-chip data processing circuits [28].
e-incorporated mixed-matrix membranes (MMMs)  are
s the ion-selective layer on the gate insulator of the
ETs since they have been shown to establish a more
terface potential with the solution [18,19] than cova-
nctionalized ion receptors [29–31]. MB+ is chosen as

y  target for molecular ion sensing since its interaction
SC molecules has been extensively studied in the past

 Na+-specific sensor is constructed using the same type
er matrix and a commercially available Na-ionophore, as
lemental ion sensor. Extensive control experiments are
d for investigating the critical role of MOSCs in MMM
stable and reproducible potentiometric responses. Con-
the complexity of preforming detections in a solution
tains multiple targets, ionic interference and possible

 between different sensors are necessary to be investi-
e performances of the MB+-specific sensor with a high
nd concentration of elementary ions along with the Na+-
ensor with a high background of molecular ions are
examined. River water experiments are also conducted

 water from the Fyris River (Sweden) to further prove the
utility of the SiNW-ISFET based sensors. Finally, multi-
tection of molecular and elemental ions in one solution

strated.
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OSC (1-Co), synthesized following a published pro-
23], was chosen for this study. Na-ionophore III
′, N′-Tetracyclohexyl-1, 2-phenylenedioxydiacetamide),

with elec
placed on
(VG) was
electrode
722 �L 722 �L 361 �L 361 �L
3.2 mg 3.2 mg

rofuran (THF), Bis(2-ethylhexyl)sebacate (DOS), high
r weight poly(vinylchloride) (PVC), potassium tetrakis(4-
enyl) borate (KTpClPB), KCl and NaCl were purchased from
drich and used without any further purification. HCl  was
d from BASF and methylene blue (MB) from Merck Milli-
concentration series were prepared using deionized (DI)
.2 M� cm)  and the Fyris River water to reach the target

ce fabrication

iNW-ISFET chips were fabricated as reported previously
g standard silicon process technology on silicon-on-

 wafers (SOI). In brief, the silicon layer in the channel
as thinned down from 260 to 40 nm via thermal oxidation.
ere first defined by lithography and dry etching. They were
rally shrunk to the desired width using wet  etching that
ve against surrounding SiO2 and has an etch rate highly

t on crystal orientation [32]. To reduce the series resis-
i/p+-Si leads were used for connecting the SiNW-ISFETs to
ct pads placed at the edges of the chip. Finally, a fresh thin
ide (SiO2) film was grown via rapid thermal oxidation to
ate insulator and on-chip passivation.

aration of MMMs

ypes of MMMs  were prepared: MOSC-doped MMM  pre-
ith MB  (MB+-MMM1), MMM  premixed with MB but
MOSC (MB+-MMM2), Na-ionophore doped MMM  (Na+-
and blank control MMM  containing only ionic sites
MMM). Detailed compositions for the four different
re listed in Table 1. The preparation procedure for MB+-
nd MB+-MMM2  can be found in our previous work [26],
t of Na+-MMM  is available in the literature [32].
the solution was prepared and there were no visible

 the MMMs  were fabricated by drop casting the solu-
he device area of the chips by pipettes. Then, the chips
+-MMM1  and MB+-MMM2  were placed in a fume hood
ximately 2 h while the chips with Na+-MMM  were left
ry atmosphere overnight. Before any measurement was
d, the chips with MB+-MMM1  and MB+-MMM2  were con-
in a 10 �M MB  solution overnight while the chips with
M  were conditioned in a 100 mM NaCl solution for 4 h. All
es of MMM  preparation and conditioning were conducted
emperature.

rical measurement

ectrical measurements were performed at room tem-
on a probe-station using a Keysight B1500A precision
uctor parameter analyzer. To facilitate measurement

trolyte, a polydimethylsiloxane (PDMS) container was

 the chip. During the measurement, the gate potential
 kept constant and was applied to an Ag/AgCl reference

 (with 3.4 M KCl as filling electrolyte, purchased from Har-
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Fig. 1. (a) Three-dimensional sketch of SiNW-ISFETs covered by electrolyte, (b) a zoom-in schematic showing the charge separation and equilibrium at the MMM/electrolyte
interface, (c) photo picture of our chip showing SiNW-ISFETs with MB+-MMM  (left) and Na+-MMM  (right) formed by drop-casting, insert: SEM micrograph of an SiNW-ISFET,
(d) IDS-VG tr red in
with MMM
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aratus) immersed in the solution. A three-dimensional
c of SiNW-ISFETs covered by electrolyte is presented in
ollowed by a zoom-in view of MMM/electrolyte inter-

 1b) showing the charge separation and equilibrium at
face. Fig. 1c shows the experimental arrangement for
ed detection. The SiNW-ISFET was biased in its subthresh-
n. The drain-to-source current (IDS) was monitored in

 with a constant VDS = 1 V. Solution exchanges during the
ent were realized manually using a pipette. In detail,

surement was initiated with a solution with a low sample
tion in the PDMS container in order to set an IDS base-

e the baseline became stable, the concentration in the
 was increased by adding samples of higher analyte con-
ns. Similar solution-exchange procedures were applied to
plexed detection, using a starting solution containing both
r and elemental ions of low concentrations. Before we
k from high concentration to low concentration for repeat-
iments, a thorough cleaning of the sensor was performed
ny hysteresis.
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ansfer characteristics, i.e., IDS vs VG, of two SiNW-ISFETs
 without MMM  measured in the same electrolyte are

 Fig. 1d. The two SiNW-ISFETs have the same channel

the MMM
tor as illu
(IG) is bel
3 orders o
 electrolyte (1 mM KCl), and (e) potential distribution in the SiNW-ISFET

ns,  i.e., 2 �m in length, 200 nm in width, and 40 nm in
oth devices exhibit similar subthreshold slope (SS), i.e.,
ec, while surface functionalization with MMM  has clearly

d the threshold voltage (VTH) from that of the device with
 insulator (marked SiO2 in the figure). As shown in the

 diagram in Fig. 1e, when a reference electrode (RE) is
 electrical potential of the electrolyte ( EL) is fixed by
For the SiO2/electrolyte interface, its potential (ϕOE) is
ed by the pH value of the electrolyte since the reaction
H+ in the electrolyte and the silanol groups (Si-OH) on the
ace is mainly responsible for surface charging [28]. How-
n the gate insulator is covered by MMM,  the potential at
/electrolyte interface (ϕME) is governed by the binding

etween the ionophores and target ions, as well as by the
es and ion concentrations in the MMM  and the electrolyte,
ely [18,19]. Given the same type of MMM  and same ionic
ion in the electrolyte, ϕME should remain unaltered. The

 difference in VTH for the two SiNW-ISFETs is, thus, the con-
 of ϕME departing from ϕOE. The negligible change of SS by
essential for maintaining the gate coupling efficiency and
ensitivity of the SiNW-ISFET [33]. This is due to the addi-
ic sites into MMM[19],  which converts the MMM  from an

 to a conductor, leading to negligible potential drop across

 bulk when it is in series connection with the gate insula-
strated in Fig. 1e. It is worth noting that the gate leakage
ow 2 nA for VG ranging from −0.5 to 0.5 V, and it is about
f magnitudes lower than the IDS at the SiNW-ISFET work-



92 X. Chen et al. / Sensors and Actuators B 270 

Fig. 2. �VT

of  time wh
including  re

ing point
electrolyt

3.2. Mole

The  d
SiNW-ISF
between 

sesses on
which de
these cav
sure 1.6 n
has show
both solu
of (1.42 ±
due in pa
and the M
multiple 

of the M
time whe
1 mM.  Al
�MB+ =10
the  MMM
negativel
shift of V
conductio
could be 

tainer, i.e
adding a 

already in
ple additi
governed

the  obser
Fig. 2a as
needed to
depicted
three ind
SiNW-ISF
of 56.4 ±
to deviat
when �M
explained
MMM,  le
gated by f
ionophor
from the
SiNW-ISF
conventi
MB+ ISEs
[36,37]. O
MMM wi
metric M
was furth
elementa
the SiNW
This imm
pated siz
for an eff
ties. Whe
10 mM,  t
13.2, 8.71
response

he Si
 such
ges o
e bu

OSC
enta
olecu
o  ach
a co
bran

 with
grad
+ in t
en) o
C inc
onse
T is a
e me

 the
or in

tially
t of th
e re

 MB
face
ixed

ontro
onse

 no M
ble 

ever
rol-M
H of the SiNW-ISFET functionalized with MB+-MMM1 (a) as a function
en �MB+ was  changed from low to high and (b) as a function of �MB+ ,
sponse to interfering ions such as Na+, K+, and H+.

, which is important for a stable sensor operation in the
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etection of MB+ using the MB+-MMM1  functionalized
ET relies on the size-selective feature of the interaction
the MOSC molecules and the MB+ ions. The MOSC pos-
e endo- (Ø ∼1.7 nm)  and six exo-cavities (Ø ∼0.74 nm),
termines its ion-capture properties [26]. The sizes of
ities fit nicely with the dimensions of MB+ that mea-
m in length and 0.7 nm in width [34]. Previous work [22]
n that 1-Co has the ability to selectively bind to MB+ in
tion and solid-state with an apparent binding constant

 0.31) × 104 M−1. This favorable binding is believed to be
rt to the so-called “cation-�” interaction between MB+

OSC cavity, respectively featuring a positive charge and
aromatic groups (aka �-systems). Fig. 2a shows �VTH
B+-MMM1  functionalized SiNW-ISFET as a function of
n the MB+ activity, �MB+ , is increased from 10 nM to

l VTH shifts are retrieved with respect to the VTH value at
 nM,  i.e., �VTH = 0 mV  at �MB+ =10 nM.  As �MB+ increases,

 surface becomes more positively charged (and more
y charged on the electrolyte side), leading to a negative
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ved instantaneous response of VTH to sample addition in
 well as the overshoot. More interface study will still be

 validate the hypothesis. The variation of VTH with �MB+ is
 in Fig. 2b, with each data point representing an average of
ependent measurements. The MB+-MMM1  functionalized
ET shows a near-Nernstian response to �MB+ with a slope

 1.8 mV/dec up to �MB+ =30 �M.  The change of VTH starts
e from ideal, giving rise to a slope of 35.8 ± 1.4 mV/dec

B+ is above 100 �M.  Such a deviation at high �MB+ can be
 by the co-extraction of MB+ and Cl− from the sample into

ading to the so-called Donnan failure [19]. This can be miti-
urther optimization of the MMM  composition, e.g., ratio of
e to ionic site [19]. The lower detection limit extrapolated

 MB+  response curve is ∼1 �M.  The performance of the
ET based MB+ sensor is close to our MOSC-incorporated

onal ISE [26], and is also comparable with early reported
 with different ion receptors and membrane compositions
ur results prove the concept of integrating MOSC-doped

th SiNW-ISFET with an excellent repeatability in potentio-
B+ sensing. The MB+-MMM1  functionalized SiNW-ISFET
er investigated for its response to common interfering
l ions. As shown in Fig. 2b, no substantial shift in VTH of
-ISFET is observed with �Na+ , �K+ , and �H+ up to 100 �M.
unity to the elemental ions is attributed to the antici-

e effect because these ions are too small in size to allow
ective competition with the MB+ ions for the MOSC cavi-
n the ion activities were further increased from 100 �M to
he SiNW-ISFET started to respond, giving rise to a slope of
, and 13.5 mV/dec for Na+, K+, and H+, respectively. Similar
s at high ion activities (except for H+) were also observed
NW-ISFET without MMM,  i.e., with bare SiO2, indicating

 responses are likely due to the response of SiO2 to the
f ion activities [28] in the MMM  as a result of the changes

lk electrolyte, and are not related to the binding between
 molecules and the ions. The superior selectivity against
l ions is a clear advantage of using MOSCs for recognition
lar ions in physiological and environmental processes.
ieve the desired Nernstian response, it is crucial to main-
nstant activity of the ion of interest in the bulk of the
e phase [18]. It has been shown in our previous work [26]
out MOSC molecules incorporated into the MMM,  MB+

ually leach into the aqueous phase, leading to a drift of
he membrane phase. Three consecutive response curves
f the SiNW-ISFET functionalized with such MMM  without
orporation, i.e., MB+-MMM2,  are depicted in Fig. 3a. The

 curve (black) of the MB+-MMM1  functionalized SiNW-
lso included as a reference. Due to the instability of �MB+
mbrane phase, the sensor response deviates significantly

 ideal Nernstian behavior. Moreover, the reproducibility
 comparison with the reference, as evident by its sub-

 larger standard deviation shown in Fig. 3b. The detection
e MB+-MMM2  functionalized SiNW-ISFET is also inferior

ference, which could be explained by MB+ leaching out
+-MMM2,  thereby [19] considerably raising �MB+ at the
, ˛IF

MB+ . In another case where MMM  contained neither
 ion of interest (MB+) nor MOSC molecules, designated
l-MMM, the sensor showed a negligible potentiometric

 during the first measurement. This is expected since there
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phase boundary potential with the MB+ in the solution.
, MB+ is relatively hydrophobic. As the SiNW-ISFET with

MM is used over and over again, the MB+ could be incor-

nto the hydrophobic membrane due to the hydrophobic
ns. This renders the MMM  to an ion-exchange membrane.
ing the measurement for the second and third times, �MB+
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Fig. 3. �VTH of the SiNW-ISFETs with different MMMs  as a function of �MB+ .
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