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1. Introduction

Overview

It has been a long-standing problem in geometric analysis to find a good notion of a
Ricci flow through singularities [30], [57]. The motivation comes from the fact that
a Ricci flow with a smooth initial condition can develop singularities without blowing
up everywhere; hence, one would like to continue the flow beyond the singular time.
From the broader perspective of the analysis of partial differential equations (PDEs),
this is just one instance of the widespread phenomenon of the breakdown of classical
solutions, a phenomenon that is central in geometric PDEs, and which is often handled
by using generalized solutions. For example, for mean-curvature flow of hypersurfaces in
R™, there are notions of generalized solutions [9], [15], [25] which became the foundation
for studying existence, uniqueness, partial regularity, compactness, and other structural
properties of solutions [9], [26], [42], [43], [78], [79]. Other geometric PDEs, such as
minimal surfaces [1], [2], [23], [28], [29], [60], [61], [65], [70], harmonic maps [8], [31], [40],
[48], [55], [63], [64], [66], and harmonic map heat flows [16], [49], [72], have undergone a
similar development.

Thus far, there has been little progress in implementing a similar program for Ricci
flow. In the approaches used for the equations above, one first defines “rough” objects—
e.g. integral currents, sets of finite perimeter, varifolds, Sobolev mappings—and then,
using an appropriate approximation scheme, one produces a generalized solution within
the class of rough objects, by appealing to a suitable weak compactness result. Certain
features, such as the existence of an ambient space, or the fact that one has a scalar
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equation, help enormously. The absence of these features in the case of Ricci flow creates
serious technical obstacles to using such an approach with Ricci flow.

In this paper, we solve the problem of flowing through singularities in 3-dimensional
Ricci flow. We do this using a novel approach that is quite different in spirit from earlier
work, and which may be adaptable to other geometric PDEs. We introduce generalized
solutions that we call singular Ricci flows. They are smooth Ricci flow spacetimes that
are possibly incomplete, but are subject to certain asymptotic conditions. We show
that singular Ricci flows have a number of good properties. In particular, we prove a
compactness result for families of spacetimes, and using this we obtain the following

existence theorem.

THEOREM 1.1. For every compact Riemannian 3-manifold M, there is a singular

Ricci flow with initial condition M.

In addition, we establish a number of structural results. These results, and further results
that will appear elsewhere, strongly indicate that singular Ricci flows provide a natural
analytical framework for 3-dimensional Ricci flows with singularities.

The notion of singular Ricci flows derives partly from the spectacular work of Hamil-
ton [35] and Perelman [58] on Ricci flow with surgery. After constructing Ricci flow with
surgery, Perelman was naturally lead back to the problem of flowing through singular-
ities. In [57, §13.2], Perelman wrote: “It is likely that by passing to the limit in this
construction one would get a canonically defined Ricci flow through singularities, but at
the moment I don’t have a proof of that”. In proving Theorem 1.1, we partially con-
firm Perelman’s expectation, by showing that Ricci flow with surgery (for a fixed initial
condition) subconverges to a singular Ricci flow as the surgery parameter goes to zero.(!)

Several aspects of the work in this paper may be applicable in other settings. First,
the strategy that we use here—defining generalized solutions using smooth (possibly
incomplete) spacetimes satisfying asymptotic geometric bounds—may be adaptable to
other geometric PDEs. In addition, there are technical ingredients in our work which
may have parallels in other situations, such as a compactness theorem valid for possibly
incomplete Riemannian manifolds, and a dynamical analysis of ancient solutions. A novel
feature of the setup is that the spacetimes are not assumed to be simply concatenations

of product spacetime regions. To our knowledge, this is the first appearance of such

(1) Note added in proof. Since this paper was submitted, there have been several developments
building on the results proven here. Perelman’s convergence conjecture ([57, §13.2], [58, p.1]) and the
uniqueness question (Question 1.6) were both addressed in [7]. These results, together with a number
of results from this paper (the existence of singular Ricci flows (Corollary 1.5), behavior of volume
(Theorem 1.3 (4), Theorem 5.5), and finiteness of bad worldlines (Theorem 7.1) were used to prove the
generalized Smale conjecture concerning the homotopy type of diffeomorphism groups of 3-manifolds [6].
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spacetimes in Ricci flow, although of course they are widely used in general relativity
and mean-curvature flow.

We mention that there is related work in the literature on Ricci flow through singu-
larities in certain cases, such as in the Kéahler case or under the assumption of rotational

symmetry; see the end of the introduction for a discussion.

Convergence of Ricci flows with surgery

Before formulating our first result, we briefly recall Perelman’s version of Ricci flow with
surgery (which followed earlier work of Hamilton). (To make this paper accessible to a
wider audience, in §A.9 we collect needed background results about Ricci flow and Ricci
flow with surgery.)

Ricci flow with surgery evolves a Riemannian 3-manifold by alternating between two
processes: flowing by ordinary Ricci flow until the metric goes singular, and modifying
the resulting limit by surgery, so as to produce a compact smooth Riemannian manifold
that serves as a new initial condition for Ricci flow. The construction is regulated by a
global parameter €>0, as well as decreasing parameter functions r, §, s¢: [0, 00)— (0, 00),
which play the following roles:

e The scale at which surgery occurs is bounded above in terms of §. In particular,
surgery at time ¢ is performed by cutting along necks whose scale tends to zero as §(t)
goes to zero.

e The function r defines the canonical neighborhood scale: at time ¢, near any
point with scalar curvature at least r(t)~2, the flow is (modulo parabolic rescaling)
approximated to within error ¢ by either a s-solution (see §A.5) or a standard post-
surgery model.

In Ricci flow with surgery, the initial conditions are assumed to be normalized,
meaning that at each point m in the initial time slice, the eigenvalues of the curvature
operator Rm(m) are bounded by 1 in absolute value, and the volume of the unit ball
B(m,1) is at least half the volume of the Euclidean unit ball. By rescaling, any compact
Riemannian manifold can be normalized.

Perelman showed that, under certain constraints on the parameters, one can imple-
ment Ricci flow with surgery for any normalized initial condition. His constraints allow
one to make § as small as one wants. Hence, one can consider the behavior of Ricci flow
with surgery, for a fixed initial condition, as § goes to zero.

In order to formulate our convergence theorem, we will use a spacetime framework.
Unlike the case of general relativity, where one has a Lorentzian manifold, in our setting

there is a natural foliation of spacetime by time slices, which carry Riemannian metrics.
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This is formalized in the following definition.

Definition 1.2. A Ricci flow spacetime is a tuple (M, t, 0, g) where

e M is a smooth manifold-with-boundary;

e tis the time function—a submersion t: M —1I where ICR is a time interval; we
will usually take I=[0, c0);

e the boundary of M, if it is non-empty, corresponds to the endpoint(s) of the time
interval: OM=t"1(9I);

e O, is the time vector field, which satisfies O(t=1;

e g is a smooth inner product on the spatial sub-bundle ker(dt) CTM, and g defines
a Ricci flow: L5, g=—2Ric(g).

For 0<a<b, we write My=t"'(a), M, p=t""([a,b]) and M<,=t"1([0,a]). Hence-
forth, unless otherwise specified, when we refer to geometric quantities such as curvature,

we will implicitly be referring to the metric on the time slices.

Note that, near any point meM, a Ricci flow spacetime (M,t,dy, g) reduces to
a Ricci flow in the usual sense, because the time function t will form part of a chart
(x,t) near m for which the coordinate vector field /9t coincides with Jy; then, one has
0g/0t=—2Ric(g). Also, there is a canonical Ricci flow spacetime associated with any
Ricci flow with surgery (see §A.9); we will often conflate this Ricci flow spacetime with
the Ricci flow with surgery.

Our first result partially answers the question of Perelman alluded to above, by

formalizing the notion of convergence and obtaining subsequential limits.

THEOREM 1.3. Let { M7 521 be a sequence of 3-dimensional Ricci flows with surgery

(in the sense of Perelman), where
o the initial conditions {M%} are compact normalized Riemannian manifolds that
lie in a compact family in the smooth topology;

e if 6;:[0,00)—(0,00) denotes the Perelman surgery parameter for M7, then

j—o0
Then, after passing to a subsequence, there is a Ricci flow spacetime
(Moo7t0078too7goo)7
and a sequence of diffeomorphisms
, j
{M? D U; LV]- C M}

with the following properties:
(1) U;CMI and V;CM™ are open subsets;
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(2) let R; and Roo denote the scalar curvature on M7 and M, respectively; given

t<oo and R<oo, if j is sufficiently large then

U; D {m; € M7 :tj(m;) <t and R;(m;)< R},
Vi D {Moo €M™ 1t (Moo) <t and Reo(moo) < R};

(3) @7 is time preserving, and the sequences {@l@tj 52, and {®lg, 52, converge
smoothly on compact subsets of M to 0:_ and goo, Tespectively;

(4) ®7 is asymptotically volume preserving: let V; Voo:[0,00)—[0,00) denote the
respective volume functions V;(t)=Vol(M]) and Vao(t)=Vol(M®); then the function
Voo: [0, 00) [0, 00) is continuous and lim;_,oc V;=Vao, with uniform convergence on com-
pact subsets of [0, 00).

Furthermore,

(a) the scalar curvature function Roo: MZr—R is bounded below and proper for all
T>0;

(b) M satisfies the Hamilton—Ivey pinching condition of (A.14);

(¢) M is x-non-collapsed below scale €, and satisfies the r-canonical neighborhood
assumption, where »x and r are the aforementioned parameters from Ricci flow with

surgery.

Theorem 1.3 may be compared with other convergence results such as Hamilton’s
compactness theorem [34] and its variants [44, Appendix E], as well as analogous results
for sequences of Riemannian manifolds. All of these results require uniform bounds on
curvature in regions of a given size around a basepoint, which we do not have. Instead,
our approach is based on the fact that in a 3-dimensional Ricci flow with surgery, the
scalar curvature controls the local geometry. We first prove a general pointed compactness
result for sequences of (possibly incomplete) Riemannian manifolds whose local geometry
is governed by a control function. We then apply this general compactness result in the
case when the Riemannian manifolds are the spacetimes of Ricci flows with surgery, and
the control functions are constructed from the scalar curvature functions. To obtain
conditions (1)—(3) of Theorem 1.3, we have to rule out the possibility that part of the
spacetime with controlled time and scalar curvature escapes to infinity, i.e. is not seen in
the pointed limit. This is done by means of a new estimate on the spacetime geometry
of a Ricci flow with surgery; see Proposition 3.3 below.

Motivated by the conclusion of Theorem 1.3, we make the following definition.

Definition 1.4. A Ricci flow spacetime (M, t,0¢, g) is a singular Ricci flow if it is

4-dimensional, the initial time slice M is a compact normalized Riemannian manifold
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and

(a) the scalar curvature function R: M<r—R is bounded below and proper for all
T>0;

(b) M satisfies the Hamilton-Ivey pinching condition of (A.14);

(c) for a global parameter e>0 and decreasing functions s, 7: [0, 00)— (0, 00), the
spacetime M is »-non-collapsed below scale € in the sense of §A.4, and satisfies the
r-canonical neighborhood assumption in the sense of §A.8.

Although conditions (b) and (c) in Definition 1.4 are pointwise conditions imposed
everywhere, we will show elsewhere that M is a singular Ricci flow if (b) and (c) are
only assumed to hold outside of some compact subset of M, for all T>0. Thus (b)
and (c) can be viewed as asymptotic conditions at infinity for a Ricci flow defined on
a non-compact spacetime. Condition (a) implies that, if a spatial slice is non-compact,
then the scalar curvature tends to infinity as one approaches an end; this latter property
compensates for the possible lack of completeness.

With this definition, Perelman’s existence theorem for Ricci flow with surgery and

Theorem 1.3 immediately imply the following result.

COROLLARY 1.5. If (M, go) is a compact normalized Riemannian 3-manifold, then
there exists a singular Ricci flow having initial condition (M, go) with parameter functions

» and r as in Theorem 1.3.

From the PDE viewpoint, flow with surgery is a regularization of Ricci flow, while
singular Ricci flows may be considered to be generalized solutions to Ricci flow. In
this language, Corollary 1.5 gives the existence of generalized solutions by means of a
regularization procedure. One can compare this with the existence proof for Brakke flows
in [9], [43] or level set flows in [15], [25].

The existence assertion in Corollary 1.5 leads to the following uniqueness question.

Question 1.6. If two singular Ricci flows have isometric initial conditions, are the

underlying Ricci flow spacetimes the same, up to diffeomorphism?

An affirmative answer would confirm Perelman’s expectation that Ricci flow with
surgery should converge to a canonical flow through singularities, as it would imply that,
if one takes a fixed initial condition in Theorem 1.3, then one would have convergence
without having to pass to a subsequence. Having such a uniqueness result, in conjunction
with Theorem 1.3, would closely parallel the results of [10], [37], [39], [47] that 2-convex
mean-curvature flow with surgery converges to level set flow when the surgery parameters

tend to zero.
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The structure of singular Ricci flows

The asymptotic conditions in the definition of a singular Ricci flow have a number of
implications which we analyze in this paper. In addition to clarifying the structure of
limits of Ricci flows with surgery as in Theorem 1.3, the results indicate that singular
Ricci flows are well-behaved objects from geometric and analytical points of view.

To analyze the geometry of Ricci flow spacetimes, we use two different Riemannian

metrics.

Definition 1.7. Let (M, t, 0%, g) be a Ricci flow spacetime. The spacetime metric on
M is the Riemannian metric gy=g-+dt?, where § is the extension of g to a quadratic
form on T M such that d¢€ker(g). The quasi-parabolic metric on M is the Riemannian
metric
g = (1+R*)?g+(1+R?) d¢*.

For the remainder of the introduction, unless otherwise specified, (M, t,dy,g) will
denote a fixed singular Ricci flow.

Conditions (b) and (c) of Definition 1.4 imply that the scalar curvature controls the
local geometry of the singular Ricci flow. This has several implications.

e (High-curvature regions in singular Ricci flows are topologically standard) For
every t, the superlevel set {z€M,;:R(z)>r"2(t)} is contained in a disjoint union of
connected components whose diffeomorphism types come from a small list of possibilities,
with well-controlled local geometry. In particular, each connected component C' of M;
has finitely many ends, and passing to the metric completion C adds at most one point
for each end (Proposition 5.16).

e (Bounded geometry) The spacetime metric gaq has bounded geometry at the scale
defined by the scalar curvature, while the quasi-parabolic metric g} is complete and has
bounded geometry in the usual sense—the injectivity radius is bounded below, and all
derivatives of curvature are uniformly bounded (Lemma 5.13).

The local control on geometry also leads to a compactness property for singular
Ricci flows:

e (Compactness) If one has a sequence {(M7,t;,dy,,g;)}32, of singular Ricci flows
with a fixed choice of functions in Definition 1.4, and the initial metrics {(My, g;(0))}52,
form a precompact set in the smooth topology, then a subsequence converges in the sense
of Theorem 1.3 (Proposition 5.22).

The proof of the compactness result is similar to the proof of Theorem 1.3. We also
have global results concerning the scalar curvature and volume:

e (Scalar curvature and volume control) For any T'<oo, the scalar curvature is

integrable on M. The volume function V(t)=vol(M,) is absolutely continuous and has
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a locally bounded upper-right derivative. The usual formula holds for volume evolution:

V(tl)—V(to):—/ Rdvolg,, (1.8)
Mitg.t1)
for all 0<tp<t; <o (Corollary 7.7).

Elsewhere we will discuss the structure of the completion of the spacetime, and will
also show:

e (Refined scalar curvature and volume estimates) For all p€(0,1) and all ¢, the
scalar curvature is L? on M. The volume V(¢) is locally a-Hélder in ¢ for some exponent
ac(0,1).

To describe the next results, we introduce the following definitions.

Definition 1.9. A path v: T—M is time-preserving if t(vy(t))=t for all t€I. The
worldline of a point me M is the maximal time-preserving integral curve v: I — M of the

time vector field 0¢, which passes through m.

If v: I—M is a worldline, then we may have supI<oco. In this case, the scalar
curvature blows up along v(t) as t—sup I, and the worldline encounters a singularity.
An example would be a shrinking round space form, or a neck pinch. A worldline may
also encounter a singularity going backward in time.

Definition 1.10. A worldline v: I —M is bad if inf I >0, i.e. if it is not defined at
t=0.

Among our structural results, perhaps the most striking is the following.

THEOREM 1.11. Suppose that (M, t, 0, g) is a singular Ricci flow and t20. If C is
a connected component of My, then only finitely many points in C' have bad worldlines.
Moreover, if v:I—M is a bad worldline, then for t€l sufficiently close to inf I, ~(t)

lies in a cap region of M.

As an illustration of the theorem, consider a singular Ricci flow that undergoes
a generic neck pinch at time tg, so that the time slice My, has two ends (e-horns in
Perelman’s language) which are instantly capped off when ¢ >ty. In this case, the theorem
asserts that only finitely many (in this case two) worldlines emerge from the singularity.
See Figure 1, where the bad wordlines are indicated by dashed curves. (The point in the
figure where the two dashed curves meet is not in the spacetime.)

A key ingredient in the proof of Theorem 1.11 is a new stability property of neck
regions in s-solutions. We recall that s-solutions are the class of ancient Ricci flows
used to model the high-curvature part of Ricci flows with surgery. We state the stability
property loosely as follows, and refer the reader to §6 for more details.
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Figure 1.

THEOREM 1.12. (Neck stability) Let M be a non-compact s-solution other than the
shrinking round cylinder. If v:I—M is a worldline and My, is sufficiently neck-like at
v(t1), then as t——o0, the time slice My looks more and more neck-like at ~y(t). Here

the notion of neck-likeness is scale invariant.

An easy but illustrative case is the Bryant soliton, in which worldlines other than
the tip itself move away from the tip (in the scale-invariant sense) as one goes backward
in time.

As mentioned above, Theorem 1.11 is used in the proof of (1.8) and the properties
of volume.

We mention some connectedness properties of singular Ricci flows.

e (Paths back to My avoiding high-curvature regions) Any point meM can be
joined to the initial time slice Mgy by a time-preserving curve ~:[0,t(m)]—M, along
which max{R(y(t)):t€[0, t(m)]} is bounded in terms of R(m) and t(m) (Proposition 5.21).

e (Backward stability of components) If vo, 71 : [to, t1]— M are time-preserving curves
such that vo(¢1) and v;(¢1) lie in the same connected component of My, , then ~o(t) and
~1(¢) lie in the same component of M, for all t€[tg,t1] (Proposition 5.17).
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Related work

We now mention some other work that falls into the broad setting of Ricci flow with
singular structure.

A number of authors have considered Ricci flow with low-regularity initial conditions,
studying existence and/or uniqueness, and instantaneous improvement of regularity [12],
[32], [33], [46], [62], [67]-[69], [75]-[76]. Ricci flow with persistent singularities has been
considered in the case of orbifold Ricci flow, and Ricci flow with conical singularities [13],
(14], [17], [19], [22], [36], [45], [50]-[52], [59], [77], [80], [83], [84]

Passing to flows through singularities, Feldman—-Ilmanen—Knopf noted that in the
non-compact Kéahler setting, there are some natural examples of flows through singular-
ities which consist of a shrinking gradient soliton that has a conical limit at time zero,
which transmutes into an expanding gradient soliton [30]. Closer in spirit to this paper,
Angenent—Caputo—Knopf constructed a rotationally invariant Ricci flow through singu-
larities starting with a metric on S"*! [3]. They showed that the rotationally invariant
neck pinches from [4], which have a singular limit as ¢ approaches zero from below, may
be continued as a smooth Ricci flow on two copies of S"*! for +>0. The paper [3] also
showed that the forward evolution has a unique asymptotic profile near the singular point
in spacetime.

There has been much progress on flowing through singularities in the Kéhler setting.
For a flow on a projective variety with log terminal singularities, Song—Tian [71] showed
that the flow can be continued through the divisorial contractions and flips of the minimal
model program. We refer to [71] for the precise statements. The paper [27] has related
results, but uses a viscosity solution approach instead of the regularization scheme in [71].
The fact that the Kédhler—Ricci flow—Ilike the Kéhler—Einstein equation—can be reduced
to a scalar equation, to which comparison principles may be applied, is an important
simplifying feature of Kéhler—Ricci flow that is not available in the non-Kéhler case.

Recently, Haslhofer—Naber gave alternative characterizations of the Ricci flow using
stochastic analysis [38]; they also announced an extension to evolving metric measure

spaces.

Concluding remarks

The work in this paper is related to the question of whether there is a good notion of a
generalized solution to the Ricci flow equation. The results here show that singular Ricci
flows give an answer in the 3-dimensional case, and in the 4-dimensional case under the
assumption of non-negative isotropic curvature.

By using different quantities to control the geometry, it may be possible to work
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with flows satisfying weaker curvature conditions. The general higher-dimensional case,
however, is mysterious, and finding a good notion of generalized solution is an intriguing
question. For mean-curvature flows with arbitrary smooth initial conditions, the situation
is somewhat similar.

As mentioned before, some of the technical methods in this paper, such as a com-
pactness result for possibly incomplete Riemannian manifolds, and a dynamical analysis
of ancient solutions, may be useful for other problems in geometric analysis.

Organization of the paper

The remainder of the paper is broken into two parts. Part I, which is composed of §§2—4,
is primarily concerned with the proof of the convergence result (Theorem 1.3). Part II,
which is composed of §§5-7, deals with results on singular Ricci flows. In addition, there
are three appendices.

We now describe the contents section by section.

§2 gives a general pointed compactness result for Riemannian manifolds and space-
times, whose geometry are locally controlled as a function of some auxiliary function. §3
develops some properties of Ricci flow with surgery; it is aimed at showing that the Ricci
flow spacetime associated with a Ricci flow with surgery has locally controlled geometry
in the sense of §2. §4 applies the two preceding sections to give the proof of Theorem 1.3.

85 establishes some foundational results about singular Ricci flows, concerning scalar
curvature and volume, as well as some results involving the structure of the high-curvature
region. §6 proves that neck regions in s-solutions have a stability property when going
backward in time. §7 proves Theorem 1.11, concerning the finiteness of the number of
bad worldlines, and gives several applications.

Appendix A collects a variety of background material about Ricci flows and Ricci
flows with surgery; the reader may wish to quickly peruse this, before proceeding to
the body of the paper. Appendix B extends Proposition 6.10 to general s-solutions.
Appendix C extends the results of the paper to 4-dimensional Ricci flow with non-negative

isotropic curvature.

Notation and terminology

We refer the reader to §A.1 for notation and terminology. All manifolds that arise will
be taken to be orientable.

We thank the referee for a careful reading and helpful comments.
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Part I
2. Compactness for spaces of locally controlled geometries

In this section we prove a compactness result (Theorem 2.4) for sequences of controlled
Riemannian manifolds. In §2.4 we extend the theorem to a compactness result for space-
times, meaning Riemannian manifolds equipped with time functions and time vector
fields.

2.1. Compactness of the space of locally controlled Riemannian manifolds

We will need a sequential compactness result for sequences of Riemannian manifolds
which may be incomplete, but whose local geometry (injectivity radius and all derivatives
of curvature) is bounded by a function of an auxiliary function ¢: M —[0, c0). A standard
case of this is the sequential compactness for sequences {(Mj;, g;,*;)} of Riemannian r-
balls, assuming that the distance function d;(x;,-): M;—[0,) is proper, and that the
geometry is bounded in terms of d;(x;, ).

Fix a smooth decreasing function t: [0, 00)— (0, 1] and smooth increasing functions
C:[0,00)—[1,00) for all k>0.

Definition 2.1. Suppose that (M, g) is a Riemannian manifold equipped with a func-
tion ¢: M — [0, 00).
Given A€[0,00], a tensor field £ is (1, A)-controlled if, for all mey=1([0, A)) and

k>0, we have

IV ¢(m)|| < Cr(v(m)).

If in addition ¢ is smooth, then we say that the tuple (M, g, ) is (¢, A)-controlled if
(1) the injectivity radius of M at m is at least t(¢)(m)) for all mey=1(]0, A)),
(2) the tensor field Rm, and 1) itself, are (v, A)-controlled.

Note that, if A=o0, then ¥~1([0, A)) is all of M, so there are quantitative bounds
on the geometry at each point of M. Note also that the value of a control function may
not reflect the actual bounds on the geometry, in the sense that the geometry may be
more regular near m than the value of 1)(m) suggests. This creates flexibility in choosing

a control function, which is useful in applications below.

Ezample 2.2. Suppose that (M, g, ) is a complete pointed Riemannian manifold.
Put t(m)=d(x,m). Then Rm is (¢, A)-controlled if and only if for all r€(0, A) and k>0
we have ||[V¥ Rm ||<Ck(r) on B(%,7).
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Ezample 2.3. Suppose that ¢ has constant value ¢>0. If A<c¢, then (M, g,v) is
vacuously (i, A)-controlled. If A>c¢, then (M, g,v) is (¢, A)-controlled if and only if for
all m€M we have inj(m)>t(c) and ||V¥ Rm(m)||<Cy(c).

There are compactness results in Riemannian geometry saying that one can extract
a subsequential limit from a sequence of complete pointed Riemannian manifolds having
uniform local geometry. This last condition means that, for each r>0, one has quan-
titative uniform bounds on the geometry of the r-ball around the basepoint; cf. [34,
Theorem 2.3]. In such a case, one can think of the distance from the basepoint as a con-
trol function. We will give a compactness theorem for Riemannian manifolds (possibly
incomplete) equipped with more general control functions.

For notation, if ®:U—V is a diffeomorphism, then we will write ®, for both the
push-forward action of ® on contravariant tensor fields on U, and the pull-back action

of ®~! on covariant tensor fields on U.
THEOREM 2.4. (Compactness for controlled manifolds) Let
{(Mjagj’*jij)};.;l

be a sequence of pointed tuples which are (;, Aj)-controlled, where lim; ., Aj=00 and
sup; ¥ (x;j)<oo. Then, after passing to a subsequence, there are a pointed (Yoo, 0)-
controlled tuple

(Moo, Goos X005 Voo)

and a sequence of diffeomorphisms
j
(M; >U; 25 vy € Moy,

such that the following conditions hold:

(1) given A,r<oo, for all sufficiently large j the open set U; contains the ball
B(*j,r) in the Riemannian manifold (d)j_l([(), A)),g;), and likewise V; contains the ball
B(%eo,7) in the Riemannian manifold (v 1([0, A)), goo);

(2) given £>0 and k>0, for all sufficiently large j we have

19195 —goollcn(v,) <€
and
D105 —toollom vy <&
(3) My is connected and, in particular, every €My, belongs to V; for j large.

We will give the proof of Theorem 2.4 in §2.3. We first describe some general results

about controlled Riemannian manifolds.
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2.2. Some properties of controlled Riemannian manifolds

One approach to proving Theorem 2.4 would be to imitate what one does when one
has curvature and injectivity radius bounds on r-balls, replacing the control function
based on distance to the basepoint by the control function . While this could be done,
it would be somewhat involved. Instead, we will perform a conformal change on the
Riemannian manifolds in order to put ourselves in a situation where the geometry is
indeed controlled by the distance from the basepoint. We then take a subsequential limit
of the conformally changed metrics, and at the end perform another conformal change
to get a subsequential limit of the original sequence.
Let (M, g,%) be (¢, A)-controlled. Put

G= (6;1 o¢>2g. (2.5)

We will only consider § on the subset ©~1([0, A)), where it is smooth. The next two

lemmas are about g-balls and g-balls.

LEMMA 2.6. For each finite a€(0, A], each x€~1([0,a)) and each r<oo, there is
some R=R(a,r) <00 so that the ball By(x,r) in the Riemannian manifold (v =1([0,a)), g)
is contained in the ball By(x, R) in the Riemannian manifold (v=1([0,a)),g).

2
§< <Cl(a)> g.
t(a)
Thus, any path in ¢»~1([0,a)) with g-length at most r has g-length at most C;(a)r/t(a),
so we may take R=C1(a)r/t(a). O

Proof. On ¢~1([0,a)) we have

Let * be a basepoint in ¢~1([0, A)).

LEMMA 2.7. For all Re(0, A—1(*)), the ball Bz(*, R) in the Riemannian manifold
(¢¥=1([0, A)), g) is contained in ¥~([0,%(x)+R)).

Proof. Given mé€ By(*, R), let v:[0, L]—v~1([0, A)) be a smooth path from * to m
with unit g-speed and g-length Le€(0, R). Then,

L L
wlm)=v() = [~ Goend< [ lavla)d

- [ Sweopsnoas [Cdwnonas [ 1a-t

The lemma follows. ]
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We now look at completeness properties of g-balls.

LEMMA 2.8. For all Re(0, A—(*)), the ball B(*, R) in the Riemannian manifold
(=1([0, A)), §) has compact closure in ~1([0, A)).

Proof. Choose R'€(R, A—(%)). From [5, Chapter 1, Theorem 2.4], it suffices
to show that any g-unit speed geodesic ~: [0, L)—1~1([0, A)) with v(0)=x, having §-
length L€ (0, R'), can be extended to [0, L]. From Lemma 2.7, ([0, L)) C¥~1([0, 1 (%) +
R’)). Hence, the g-injectivity radius along ([0, L)) is bounded below by t(¢(x)+R')).
For large K, the points {y(L—1/k)}2 form a Cauchy sequence in (»~1([0, 4)),d;).
As dj and d, are bi-Lipschitz on ¢~1([0,%(x)+R’)), the sequence is also Cauchy in
(¥1([0, A)),dy). From the uniform positive lower bound on the g-injectivity radius at
v(L—1/k), there is a limit in 1»~1([0, A)). The lemma follows. O

COROLLARY 2.9. If A=o0, then (M,§) is complete.
Proof. This follows from Lemma 2.8 and [5, Chapter 1, Theorem 2.4]. O
Finally, we give bounds on the geometry of g-balls.

LEMMA 2.10. Given v, {Cy}72, and S<oo, there exist a smooth decreasing func-
tion %[0, 00)—(0,1] and smooth increasing functions Cy: [0,00)—[1,00), k=0, with the
following properties. Suppose that (M, g,v) is (¥, A)-controlled and ¥(x)<S. Then,

(a) the tensor field Rmg and the function ¢ are (dg(x,-), A—S)-controlled on the
Riemannian manifold (v»=1([0, A)),g) (in terms of the functions {ék},;“;l);

(b) if R<A—S—1, then inj;>T(R) pointwise on Bj(x, R).

Proof. Conclusion (a) (along with the concomitant functions {ék}?:l) follows from
Lemma 2.7, the assumption that Rm, and ¢ are (1, A)-controlled, and the formula for
the Riemannian curvature of a conformally changed metric.

To prove (b), suppose that R<A—S—1 and meBj(x, R). Since dj and d, are bi-
Lipschitz on the ball Bg(x, R+1) in the Riemannian manifold (»=1([0, R+1+5)),g), we
can find e=¢(R, S, {Cx})>0 such that B,(m,e)C Bs(m,1)CBs(*, R+1). Since we have
a g-curvature bound on Bj(x, R+1) and a lower g-injectivity radius bound at m, we
obtain a lower volume bound vol(By(m,¢), g)Zvo=uvo(R, S, v, {Cx})>0. Since g and §
are relatively bounded on Bgy(m,€), this gives a lower volume bound vol(Bgz(m, 1), §) >
v1=v1(R, S,t,{Cx})>0. Using the curvature bound of part (a) and [11, Theorem 4.7],
we obtain a lower bound inj;(m)>io=io(R, S,t, {C}})>0. This proves the lemma. [

2.3. Proof of Theorem 2.4

Put gj:(cl/towj)ng. Consider the tuple (Mj,gj,*j, ¢j) Recall that lim;_,., A;=00.
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For the moment, we replace the index j by the index /. Using Lemmas 2.8 and 2.10,
and a standard compactness theorem ([34, Theorem 2.3]), after passing to a subsequence
we can find a complete pointed Riemannian manifold (Meso, goos*0o), domains U,CM,
and ‘ZCMOO, and diffeomorphisms Pl ﬁl—ﬂN/l such that

(a) s
b) *so 6171;
¢ 171 has compact closure;

d
e

- =

for any compact set K C M., we have K CV, for all sufficiently large [;

~—

(
(
(
(

~

given €>0 and k>0, we have
19291 —Gooll o (7,5.) <€ (2.11)

for all sufficiently large I.
Using Lemma 2.10 again, after passing to a further subsequence if necessary, we can

assume that there is a smooth ¥, on M, such that for all £>0 and k>0 we have
||(i)i1/}l _d}OOHCk(\N/l,goo) <eg

for all sufficiently large [. Put
G
Joo = (towoc> Joo-

We claim that, if the sequence {/; };";1 increases rapidly enough, then the conclusions
of the theorem can be made to hold with Vj=Bj__ (xee,j) CM>®, U;j=(®4) "1 (V;)Cc MY
and ®I =Pl lu,. To see this, we note the following facts.

e Given A,r<oco, Lemma 2.6 implies that the ball B(*s,r) in the Riemannian
manifold (¢ !([0, A)), go) Will be contained in V; for all sufficiently large ;.

e If the sequence {l; }3)0:1 increases rapidly enough, then for large j the map ®7 is
arbitrarily close to an isometry, and (®7).v; is arbitrarily close to 1o, on V;. Hence,
given A,r<oo, the ball B(x;,r) in the Riemannian manifold (wjfl([O,A)),gj) will be
contained in U; for all sufficiently large j, so conclusion (1) of the theorem holds.

e The metrics go, and g are bi-Lipschitz on V. Then, if the sequence {lj};-";l
increases rapidly enough, conclusion (2) of the theorem can be made to hold.

e Conclusion (3) of the theorem follows from the definition of Vj.

This proves Theorem 2.4.

2.4. Compactness of the space of locally controlled spacetimes

We now apply Theorem 2.4 to prove a compactness result for spacetimes.
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Definition 2.12. A spacetime is a Riemannian manifold (M, gaq) equipped with a
submersion t: M—R and a smooth vector field 9; such that dt(d;)=1.

Given A€[0, 0] and p€C> (M), we say that the tuple (M, gaq,t, O, ) is (¢, A)-
controlled if (M, ga, 1) is (v, A)-controlled in the sense of Definition 2.1 and, in addition,
the tensor fields t and 9y are (1, A)-controlled.

THEOREM 2.13. (Compactness for controlled spacetimes) Let

{(MjagMjatja (8t)j7*ja %) ;0:1

be a sequence of pointed tuples which are (1j, A;)-controlled, where lim; .., Aj=00 and
sup; ¥ (xj)<o0. Then, after passing to a subsequence, there exists a pointed (Yoo, 00)-

controlled tuple
(Moo’ gMe==, t<><>7 (6t)007 *o0 s woo)

and a sequence of diffeomorphisms
(MISU; 25, ¢ M=},

of open sets such that the following conditions are satisfied:

(1) given A<oco and r<oo, for all sufficiently large j the open set U; contains the
ball B(*;,r) in the Riemannian manifold (wj_l([O,A)),gMj), and likewise V; contains
the ball B(%oo, ) C (1[0, A)), grree)-

(2) ®7 ezactly preserves the time functions, that is

toooq)j:tj for all 7;
(3) @I asymptotically preserves the tensor fields g, (8¢)j, and vj: if

& €{gmi, (00,95}

and & is the corresponding element of {gae, (Ot) oo, Yoo}, then for all >0 and k=0

we have
H‘I’igy—foonck(vj) <€

for all sufficiently large j;

(4) M is connected and, in particular, every x€M®> belongs to V; for large j.

N C 2
gmi = ( L O%‘) IMi -

T

Proof. Put

Consider the pointed spacetime (M7, G, ti, (8¢) 5, %j,%5)-
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LEMMA 2.14. For every A<oo, the tensor fields Rmg,, t;, (9;);, and v; are all
(dg,; (xj, ), A)-controlled for all large j, in the sense of Lemma 2.10.

Proof. This follows as in the proof of Lemma 2.10. O

We follow the proof of Theorem 2.4, up to the construction of ®': (71%‘71 and Y.
Using Lemma 2.14, after passing to a further subsequence if necessary, we may assume
that there are smooth to and (9¢)eo on M such that, if &e{t;, (0¢);, 11}, then for all
€>0 and k>0 we have

19561 —Esoll o 7 g pee) <€

for all sufficiently large I. Again, t,o: M>—=R is a submersion and (9¢)ootoo=1. As

C 2
gMee = (:O%o) GMoe -

Let {¢s} be the flow generated by (9y)o; this exists for at least a small time interval if

before, put

the starting point is in a given compact subset of M. Put V]-':Bgoo (*c0,J). Then, there
is some A;>0 so that {¢s} exists on V] for [s|<A;. Given [;>>0, put Uj:(@j)’l(vj’).
Assuming that ; is large enough, we can define ®J: U;— M by

@/ (m)= ¢t]-(m)7foo(ci>lj (m)) (i)lj (m)).
By construction, to(®7(m))=t;(m), and so conclusion (2) of the theorem holds. If /; is
large, then ®7 will be a diffeomorphism to its image. Putting V;=®7(U;), if I; is large
enough, then V; can be made arbitrarily close to Vj. It follows that conclusions (1), (3)
and (4) of the theorem hold. O

Remark 2.15. In Hamilton’s compactness theorem [34], the comparison map ®7
preserves both the time function and the time vector field. In Theorem 2.13, the com-
parison map ®’ preserves the time function, but the time vector field is only preserved

asymptotically. This is good enough for our purposes.

3. Properties of Ricci flows with surgery

In this section, we prove several estimates for Ricci flows with surgery. These will be
used in the proof of Theorem 1.3, to show that the sequence of Ricci flow spacetimes
has the local control required for the application of the spacetime compactness theorem
(Theorem 2.13).

The arguments in this section require familiarity with some basic properties of Ricci
flow with surgery. For the reader’s convenience, we have collected these properties in
§A.8. The reader may wish to review this material, before proceeding.
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Let M be a Ricci flow with surgery in the sense of Perelman [44, §68]. As re-
called in §A.9, the following parameters—or more precisely positive decreasing parameter
functions—are associated with M:

e The canonical neighborhood scale function 7(t)>0. We may assume that r(0) < 1.

e The non-collapsing function s(t)>0.

e The parameter 6(¢)>0. This has a dual role: it is the quality of the surgery
neck, and it enforces a scale buffer between the canonical neighborhood scale r, the
intermediate scale p and the surgery scale h.

e The intermediate scale o(t)=4(¢)r(t), which defines the threshold for discarding
entire connected components at the singular time.

e The surgery scale h(t)<82(t)r(t).

e The global parameter £>0. This enters in the definition of a canonical neighbor-
hood. For the Ricci flow with surgery to exist, a necessary condition is that € be small
enough.

In this section, canonical neighborhoods are those defined for Ricci flows with
surgery, as in [44, Definition 69.1]. The next lemma gives a sufficient condition for

parabolic neighborhoods to be unscathed.

LEMMA 3.1. Let M be a Ricci flow with surgery, with normalized initial condi-
tion. Given T> 155, there are numbers p=pu(T)€(0,1), o=0(T)€(0,1), ig=io(T)>0 and
Ap=A5(T) <00, k=0 which satisfy the following property: if te( T] and |R(z,t)|<
po(0)=2—r(T)72, put Q=|R(x,t)|+r(t)2, then

(1) the forward and backward parabolic balls

L
100°

P (2,t,0QY?) and P_(x,t,0Q"'/?)

are unscathed;
(2) |Rm|<A4Q, inj=ioQ 2 and |V* Rm |<ArQ'T*/2 on the union

P (z,t, UQ_l/Q)Upf (z,t, UQ_1/2)

of the forward and backward parabolic balls.

Proof. By [44, Lemma 70.1], we have R(z’,t')<8Q for all (z',#') € P_(z,t,n~1Q~'/?),
where 1< 0o is a universal constant. The same argument works for P, (z,t,n~1Q~'/?).
Since R is proper on time slices (cf. [44, Lemma 67.9]), it follows that B(z,t,n~'Q~'/?)
has compact closure in its time slice.

If Mg%, then

8Q =8(|R(z,t)[+r(t)7?) <8(|R(x,t)|+1(T)7?) < 8uo(0) > < o(t') 2
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for all ¥'€[t—n"2Q ', t+n"2Q~1]. Hence, if o<n~! then the forward and backward
parabolic balls P:(z,t,0Q~'/?) do not intersect the regions that are affected by the
surgery procedure; see Remark A.10.

To show that the balls Py (x,t,0Q~'/?) are unscathed, for an appropriate value of o,
it remains to show that P_(z,t,cQ /) does not intersect the time-zero slice. We have
t—0?Q 7' >t—0o?r(t)?. Since t>1t5 and r(t)<r(0)< {5, if o<3 then t—0?Q ' > 55 and
the balls Py (z,t,0Q~/?) are unscathed.

The Hamilton-Ivey estimate of (A.14) gives an explicit upper bound |Rm|<A¢Q
on Pi(x,t,0Q~1/?). Using the distance distortion estimates for Ricci flow [44, §27],
there is a universal constant a>0 such that, whenever (2/,t)€ P (z,t, 20Q1/?), we
have P_(z/,t',aQ~Y?)C P, (z,t,0Q */?)UP_(z,t,0Q~'/?). Then Shi’s local derivative
estimates [44, Appendix D] give estimates |V* Rm |<A,Q**/2 on P (.1, %0@‘1/2).

Since t<T, we have s(t)>(T). The s-non-collapsing statement gives an explicit

1/2

lower bound inj>ig@~"/* on a slightly smaller parabolic ball, which, after reducing o,

we can take to be of the form Py (x,t,0Q~/?). O

If M is a Ricci flow solution and : [a, b)) —M is a time-preserving spacetime curve,
then we define length, _(7) using the spacetime metric gr(=dt*+g(t). The next lemma
says that, given a point (zg,%p) in a s-solution (in the sense of §A.5), it has a large
backward parabolic neighborhood P such that any point (x1,¢;) in P can be connected
to (xo, o) by a time-preserving curve whose length is controlled by R(zg,t), and along

which the scalar curvature is controlled by R(xo, o).

LEMMA 3.2. Given x>0, there exist A=A(x)<oo and C=C(x)<oco with the fol-
lowing property: if M is a »x-solution and (xg,tg) €M, then

(1) there is some (x1,t1)€P- (o, to, %AR(xo,to)_l/z) with R(z1,t1)<3R(zo,t0);

(2) the scalar curvature on P_(xg,to,2AR(z0,t0) ") is at most $CR(xo, to);

(3) given (z1,t1)€P- (xo, to, %AR(mo,to)_l/Q), there is a time-preserving curve

7: [t1, to] — P- (o, to, %AR(ﬂﬂo,to)*l/z)
from (x1,t1) to (xo,to) with

length, (7)< %C(R(mo, to)_1/2+R(x0, to)_l).

Proof. To prove (1), suppose, by way of contradiction, that for each j€Z* there are
a s-solution M7 and some (2, )€ M7 such that R>1R(x),t}) on P_(x},t},15). By
compactness of the space of normalized pointed s-solutions (see §A.5), after normalizing
so that R(a:%,t%)zl and passing to a subsequence, there is a limiting »-solution M/,
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defined for ¢<0, with R}% everywhere. By the weak maximum principle for complete
non-compact manifolds [44, Theorem A.3] and the evolution equation for scalar curvature,
there is a universal constant A>0 (whose exact value is not important) such that, if R> %
on a time-t slice, then there is a singularity by time t+A. Applying this with t=—2A
gives a contradiction.

Part (2) of the lemma, for some value of C, follows from the compactness of the
space of normalized pointed s-solutions.

To prove (3), the curve which starts as a worldline from (x1,¢1) to (x1,%0), and
then moves as a minimal geodesic from (z1,%y) to (zo,to) in the time-ty slice, has gaq-
length at most 2 AR(zg,t0)"/2+1A2R(z0,t9)~!. By a slight perturbation to make it
time-preserving, we can construct v in P_ (xo, to, %AR(%O, to)_l/Q) with length at most

$(A+1)R(z0, t0) "/ *+1(A+1)*R(zo, to) "

After redefining C', this proves the lemma. O

The next proposition extends the preceding lemma from s-solutions to points in
Ricci flows with surgery. Recall that € is the global parameter in the definition of Ricci

flow with surgery.

PRrROPOSITION 3.3. There is an €0>0 such that, if e<eg, then the following holds.
Given T<oo, suppose that o(0)<r(T)//C, where C is the constant from Lemma 3.2.
Then, for any Ro<o(0)~2/C, there are L=L(Ry,T)<oo and Ry=R;(Ry,T)<occo with
the following property. Let M be a Ricci flow with surgery having normalized initial
conditions. Given (xg,to) €M with to<T, suppose that R(xg,to)<Ro. Then, there is
a time-preserving curve 7: [0, to] = M with v(to)=(zo,t0) and length, (v)<L such that
R(y(t))< Ry for all t€]0,to].

Proof. We begin by noting that we can find €y >0 such that, if e<eg, then for any
(z,t)eM with ¢<T which is in a canonical neighborhood, Lemma 3.2 (2) implies that
R<CR(z,t) on P_(x,t, AR(z,t)~/?). If in addition R(zx,t)<0(0)~%/C, then for any
(2’ t')EP_(x,t, AR(x,t)"'/?) we have

R(a', ") < 0(0) 2 < o(t') .

Hence, the parabolic neighborhood does not intersect the surgery region.
To prove the proposition, we start with (xo,%p) and inductively form a sequence of

points (z;,t;) and the curve v as follows, starting with ¢=1.

Step 1. If R(xi_l, tz‘—l) 27’(@_1)_2 then go to Substep A If R(xi_l, ti—l) <’I"(t1‘_1)_2
then go to Substep B.
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Substep A. Since R(w;_1,t;_1)=r(t;—1)"2, the point (z;_1,t;_1) is in a canonical

neighborhood. As will be explained, the backward parabolic ball
P_(2i_1,tim1, AR(zi1,ti1) " /?)

does not intersect the surgery region. Applying Lemma 3.2 and taking &y small, we
can find (.’ﬂi, tl) epP_ (ZL’i_l, ti—1, AR(.Ti_l, ti_1)71/2) with R(.’ﬂl, tl) < %R(:ci_l, ti—l)a and a

time-preserving curve
Vi ltistioa] — Po(xi—1, tio1, AR(zi—1,t;-1) " Y/?)
from (x;,t;) to (z;—1,t;—1) whose length is at most
C(R(wi—1,ti—1) Y +R(zi 1, tim1) ™),

along which the scalar curvature is at most CR(x;_1,t;—1). If £;>0 then go to Step 2. If

t;=0 then the process is terminated.

Substep B. Since R(x;_1,t;—1)<r(ti—1)72, put z;=x;,_1 and
ti=inf{t: R(x;_1,s) <r(s) ">

for all s€t,t;—1]}. Define ~: [t;,t;—1]—M to be the worldline v(s)=(x;_1,s).
If ¢;>0, then go to Step 2. (Note that R(x;,t;)=r(t;)2.) If t;=0, then the process

is terminated.
Step 2. Increase ¢ by 1 and go to Step 1.

To recapitulate the iterative process, if Ry is large, then there may initially be a
sequence of Substeps A. Since the curvature decreases by a factor of at least 2 for each
of these, the number of these initial substeps is bounded above by log,(Rg/r(0)~2).
Thereafter, there is some (z;_1,t;_1) such that R(x;_1,t;—1)<r(t;—1)~2. We then go
backward in time along a segment of a worldline until we either hit a point (z;,¢;) with
R(x;,t;)=7(t;)~2, or we hit time zero. If we hit (z;,¢;), then we go back to Substep A,
which produces a point (x;11,%;+1) with at most half as much scalar curvature, etc.

We now check the claim in Substep A that the backward parabolic ball

P_(zi—1,ti—1, AR(zi—1, ;1) /?)

does not intersect the surgery region. In the initial sequence of Substeps A, we always
have R(z;_1,ti—1)<Ro<0(0)"2/C. If we return to Substep A sometime after the initial

sequence, we have

1
R(wi—1,ti1)=7r(ti—1) 2 <r(T) %< 5@(0)_2-
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Either way, from the first paragraph of the proof, we conclude that
P (i1, ti—1, AR(zi1,ti1) /%)™

does not intersect the surgery region.

We claim that the iterative process terminates. If not, the decreasing sequence (t;)
approaches some t,,>0. For an infinite number of i, we must have R(z;,t;)=r(t;)2,
which converges to 7(t) 2. Consider a large i with R(x;,t;)=r(t;)2. The result of
Substep A is a point (z;4+1,%;4+1) with
1

1 _ _
R(Il,tz) = §T(t1) 2 ~ 57’(1500) 2.

N |

R(xiy1,tiy1) <

If 7 is large, then this is less than r(t; 1) 2~7(ts ) 2. Hence, one goes to Substep B to
find (w;11,ti12) with R(x;11,tii0)=r(tir2)~2. However, there is a double-sided bound

on

OR
E (xiJrl, t) forte [ti+2, ti+1],

coming from the curvature bound on a backward parabolic ball in [44, Lemma 70.1] and
Shi’s local estimates [44, Appendix D]. This bound implies that the amount of backward
time required to go from a point with scalar curvature R(z;41,t;+1)< %T(ti)_QN %7"(1300)_2

to a point with scalar curvature R(w;11,ti12)="(tira) 2~r(teo) 2 satisfies
tig1—tipo > const. 7(tsg)?.

This contradicts the fact that lim;_ oo t;=tcc-

We note that the preceding argument can be made effective. This gives a upper
bound N on the number of points (x;,t;) of the form N=N(Ry,T). We now estimate
the length of 7. The contribution to the length from segments arising from Substep B
is at most 7. The contribution from segments arising from Substep A is bounded above
by NC(r(0)+7(0)?).

It remains to estimate the scalar curvature along . Along a portion of 7 arising from
Substep A, the scalar curvature is bounded above by CR(z;—1,t;—1) <C max(Ro,r(T)2).
Along a portion of v arising from Substep B, the scalar curvature is bounded above by
r(T)~2. Thus we can take R;=(C+1)(Ro+r(T)~2). This proves the proposition. [

Finally, we give an estimate on the volume of the high-curvature region in a Ricci
flow with surgery. This estimate will be used to prove the volume convergence statement
in Theorem 1.3.
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PRrROPOSITION 3.4. Given T'<oo, there are functions 51T72: [0,00)—[0, c0), with

1. T/ — 1. T _
Rgr;ogl(R) 0 and 51_1r>1(1)52(5) 0,

having the following property. Let M be a Ricci flow with surgery, with normalized initial
condition. Let V(0) denote its initial volume. Given R>r(T)~2, if t is not a surgery
time, then let V>R(t) be the volume of the corresponding superlevel set of R in My. If
t is a surgery time, let V>§‘(t) be the volume of the corresponding superlevel set of R in
the post-surgery manifold M; . Then, if t€[0,T], we have

V(1) < (] (R)+e3 (5(0))V(0).

Proof. Suppose first that M is a smooth Ricci flow. Given t€[0,T], let i;: Mo— M,
be the identity map. For x€Mj, put

Z: dVOlg(t)
Ji(z) = —22
t(x) dVOlg(O)

Let 7,:[0,t]— M be the worldline of z. From the Ricci flow equation,

Jy(z) = e Jo Bvs()) ds,

Suppose that meM; satisfies R(m)>R. Then R(m)>r(t)~2. Let €M, be the
point where the worldline of m hits M. From (A.8) we have

dR(7x(s))

T <NR(7(s))” (3.5)

as long as R(v.(s))=7(s)~2. Let t; be the smallest number such that R(7y,(s))>7(s)2
for all s€[t,t]. Since r(0)< &

75> the normalized initial conditions imply that ¢;>0. From
(3.5), if s€[t1,t] then

1
R(m)~t+n(t—s)’

R(72(s)) = (3.6)

In particular,
1

()2 = R(t)) > ORI

From (3.6), )
R(m)~!
R(m) =t 4n(t—t1)

/ Rl (s))ds > —% log

ty

Hence,

't m)~ 1! 1/n
e (I ) (RO ) < (R (7))
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On the other hand, for all s>0, equation (A.11) gives

3
> -
R(ya(9)) 2 — 1755
S0
e ot ROuw(9) ds (1 4.94,)3/2,
Thus,

Ji(2) < (1427)%2(R(m)r(T)?)~ /.

Integrating over such x€ My, arising from worldlines emanating from
{me M,:R(m)> R}, (3.7)

we conclude that
V21 () < (1+27)%2(Re(T)*) "/ "V(0),

so the conclusion of the proposition holds in this case with
eT(R) = (1+2T)3/*(Rr(T)?) /. (3.8)

Now suppose that M has surgeries. For simplicity of notation, we assume that ¢ is
not a surgery time; otherwise, we replace M; by M. We can first apply the preceding
argument to the subset of (3.7) consisting of points whose worldline goes back to M.
The conclusion is that the volume of this subset is bounded above by ¥ (R)V(0), where
eT(R) is the same as in (3.8). Now consider the subset of (3.7) consisting of points whose
worldline does not go back to My. We can cover such points by the forward images of
surgery caps (or rather the subsets thereof which go forward to time t), for surgeries that
occur at times t, <t. Let Vtcjp be the total volume of the surgery caps for surgeries that
occur at time t,. Let Vi®"°'¢ be the total volume that is removed at time Z, by the
surgery process. From the nature of the surgery process [44, §72], there is an increasing
function 4¢”: (0, 00) — (0, 00), with lims_,¢ ¢'(§)=0, such that

cap
e <00(0).

e

This is essentially because the surgery procedure removes a long capped tube, whose
length (relative to h(t)) is large if §(¢) is small, and replaces it by a hemispherical cap.
On the other hand, using (A.12),

D ppemeve L (1427)*21(0),

ta<t
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since surgeries up to time ¢ cannot remove more volume than was initially present or
generated by the Ricci flow. The time-t volume coming from forward worldlines of
surgery caps is at most

(1+27)%2 Y Ve,

ta<t

Hence, the proposition is true if we take

e2(8) = (14+27)35(9). O

4. The main convergence result

In this section, we prove Theorem 4.1 except for the statement about the continuity of
Voo, which will be proved in Corollary 7.7.

The convergence assertion in Theorem 4.1 involves a sequence { M/ 521 of Ricci
flows with surgery, where the functions r and s are fixed, but §;—0; hence, g; and h;
also go to zero. We will conflate these Ricci flows with surgery with their associated

Ricci flow spacetimes; see §A.9.

THEOREM 4.1. Let {MJ };‘;1 be a sequence of Ricci flows with surgery with normal-
ized initial conditions such that the following conditions are satisfied:

e the time-zero slices {./\/l{)} are compact manifolds that lie in a compact family in
the smooth topology;

e lim;_, 5j(0)20.

Then, after passing to a subsequence, there is a singular Ricci flow
(Mt Oty s Goo )
and a sequence of diffeomorphisms
{MIoU; ¢—j>Vj c M=}

such that the following conditions are satisfied:
(1) UjCMI and V;CM™ are open subsets;
(2) given t>0 and R<oo, we have

U; D {me M :t;(m) <t and Rj(m)< R}, (4.2)
V; D{m e M :ty(m) <t and Roo(m)< R} (4.3)

for all sufficiently large j;
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(3) ®7 is time preserving, and the sequences {@15@ 72, and {CI)Z;gj 52, converge
smoothly on compact subsets of M to 0; and g0, respectively (note that, by (4.3),
any compact set K CM® will lie in the interior of Vj, for all sufficiently large j);

(4) for every t=0, we have

3
. .3 .
ik R>—1 (4.4)
and
max(V;(t), Voo (t)) < Vo (1+2t)%/2,

where V;(t)=vol(M3), Vao (t)=vol (M) and Vo=sup; V;(0) <oc;
(5) ®7 is asymptotically volume preserving: if Vj,Veo:[0,00)—[0,00) denote the
respective volume functions V;(t)=vol(M2) and Vao (t) =vol(M$®), then lim; o0 V;=Vao

uniformly on compact subsets of [0,00).

Proof. Because of the normalized initial conditions, the Ricci flow solution g; is
1

» 100

in time to a family of metrics g;(t) which is smooth for ¢t€(—oco

}. As a technical device, we first extend g; backward
7ﬁ] To do this, as

in [41, proof of Theorem 1.2.6], there is an explicit smooth extension h; of g;(t)—g;(0)

smooth on the time interval [0

to the time interval t€ (foo, ﬁ], with values in smooth covariant 2-tensor fields. The
extension on (—oo,0] depends on the time-derivatives of g;(¢)—g;(0) at ¢=0 which, in
turn, can be expressed in terms of g;(0) by means of repeated differentiation of the
Ricci flow equation. Let ¢: [0, 00)— [0, 1] be a fixed non-increasing smooth function with
Blio,1=1 and @|2,00)=0. Given £>0, for t<0 put

gi(t) =9j(0)+¢<—z)hj(t)~

Using the precompactness of the space of initial conditions, we can choose € small enough
so that g;(¢) is a Riemannian metric for all j and all ¢<0. Then

(1) g;(t) is smooth in t€ (—o0, 155 ];

(2) g;(t) is constant in t for t<<—2¢;

(3) for <0, g;(¢) has uniformly bounded curvature and curvature derivatives, inde-
pendent of j.

Let ga be the spacetime Riemannian metric on M/ (see Definition 1.7). Choose a
basepoint ;€ M?.

After passing to a subsequence, we may assume that, for all j,

m

SO\ TG
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where p=p(j) is the parameter of Lemma 3.1. Put ¢;(z,t)=R;(z,t)*+t*, where R, is the
scalar curvature function of the Ricci flow metric g;. Put A;=32. If (x,t) 61/13-_1([0, Aj)),
then |R;(z,t)|<j and |t|<j. In particular,

Ry, )] <J < e (0)72=r(5) 72 < i (0) <5 ()77, (4.5)

so (x,t) avoids the surgery region.
We claim that there are functions v and C}, such that Definition 2.12 holds for all
J. Suppose that ¢;(x,t)<A;. When ¢<0 there is nothing to prove, so we assume that

t>0. If te [O, ﬁ], then the normalized initial conditions give uniform control on g;(t).
Ift> 1—(1)0, then
_ 1 _
tr(t) 2> mr(O) 2>1>07,

where o0=0(4) is the parameter from Lemma 3.1, and we use the assumption that r(0) < %0

from the beginning of §3. Then,

t>o?r(t)* > 02% =0?Q7!,
|R(x,t)|+r(t) 2

so the parabolic ball P_(z,t,6Q~/?) of Lemma 3.1 does not intersect the initial time
slice. As |Rj(z,t)|<po;(0)~2—r(j)~2 from (4.5), we can apply Lemma 3.1 to show that
(M7, gags, ;) is (5, Aj)-controlled in the sense of Definition 2.1. Note that Lemma 3.1
gives bounds on the spatial and time derivatives of the curvature tensor of g;(¢), which
implies bounds on the derivatives of the curvature tensor of the spacetime metric gy -

Finally, the function t; and the vector field 9, along with their covariant derivatives,
are trivially bounded in terms of gas.

After passing to a subsequence, we may assume that the number N of connected
components of the initial time slice M% is independent of j. Then, the theorem follows
from the special case when the initial times slices are connected, since we may apply it
to the components separately. Therefore, we are reduced to proving the theorem under
the assumption that /\/16 is connected.

After passing to a subsequence, Theorem 2.13 now gives a pointed (¢, 00)-controlled
tuple

(Moo7g./\/l°°utoov (at)ocn*oou woo)

satisfying conditions (1)—(4) of Theorem 2.13. We truncate M to the subset t ! ([0, o0)).
We now verify the claims of Theorem 4.1.

Part (1) of Theorem 4.1 follows from the statement of Theorem 2.13. Given >0
and R<oo, Proposition 3.3 implies that there are r=r(R,f)<oco and A=A(R,{)<oo
such that the set {meMif:R(m)gﬁ} is contained in the metric ball B(x;,r) in the
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Riemannian manifold (1/1;1([0, A)),gmi). Hence, by the definition of ¢; and part (1) of
Theorem 2.13, we get (4.2).

Pick moo €M™, Put too=t(Mms). By Theorem 2.13 (4), we know that m. belongs
to V; for large j. Now, Theorem 2.13 (3) and the definition of v; imply that

Voo (Moo ) = R(mog )2 +12.. (4.6)

If j is large, then it makes sense to define (zj,ts)=(®7) " (mo)EMI. Then, for j
large, R(x;,tx) <R(moo)+1 and so, by Proposition 3.3, there is a time-preserving curve
71 [0, too]— M7 such that

max (lengtthj (7;), max R('yj(t))) <C=C(R(Mso),too)-

t€[0,too]

By Theorem 2.13 (1), we know that Im(y;)CU; for large j. By Theorem 2.13(3), for
large j the map ®/ is an almost-isometry. Hence, there are r=r(R(mu),ts) <o and
A=A(R(Mewo),te0) <00 such that me is contained in the metric ball B(xso,7) in the
Riemannian manifold ((¢s) ([0, A)), gme). Combining this with (4.6) and Theo-
rem 2.13 (1) yields (4.3). This proves Theorem 4.1 (2).

Theorem 4.1 (3) now follows from Theorem 4.1 (2) and from parts (2) and (3) of
Theorem 2.13.

Equation (4.4) follows from (A.11) and the smooth approximation in part (3) of
Theorem 4.1. Let V].<R(t) be the volume of the R-sublevel set for the scalar curvature
function on M. (If t is a surgery time, we replace M; by M;.) Let V<F(t) be the
volume of the R-sublevel set for the scalar curvature function on M$°. Then,

Voo(t) = lim VEE(t)= lim lim ViF(t) <limsup V;(t).
R—o00 R—00 J—00 j—oo
Theorem 4.1 (4) now follows from combining this with (A.12).

Next, we verify the volume convergence assertion (5). Let |- ||z denote the sup
norm on L*°([0,T]). By parts (2) and (3) of Theorem 4.1, there is some I (j, R)>0,
with lim;_, €2 (j, R)=0, such that

VP =V Rl <50, R). (4.7)
Also, if S>R, then
IVLF VBl = Jim [V =V F | <limsup |V =V r. (4.8)
o j—oo

Proposition 3.4 implies that

V5=V Iz < (e (R)+¢3 (8;(0)) Vo (4.9)
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Combining (4.8) and (4.9), and taking S— oo, gives
Voo = Villr <1 (R)VA. (4.10)
Combining (4.7), (4.9) and (4.10) yields
Vi =Vasllr < (261 (R) +¢5 (6;(0))) Vo+e5 (j, R).-

Given >0, we can choose R<oo so that 267 (R)Vy<4o0. Given this value of R, we can
choose J so that, if 7> J, then

&3 (8;(0))Vo+es (4, R) < 30.

Hence, if j>J, then ||V;—V|r<o. This shows that lim; ., V;=Vo, uniformly on
compact subsets of [0, 00), and proves Theorem 4.1 (5).

Finally, we check that M is a singular Ricci flow in the sense of Definition 1.4.
Using Theorem 4.1 (3), one can pass the Hamilton—Ivey pinching condition, canonical
neighborhoods, and the non-collapsing condition from the MJ’s to M, and so parts
(b) and (c) of Definition 1.4 hold.

We now verify Definition 1.4 (a). We start with a statement about parabolic neigh-
borhoods in M>. Given T>0 and R<oo, suppose that ms, €M™ has t(ms,)<T and
R(moo)<R. For large j, put m;=(®7)"(mo)EMI. Lemma 3.1 supplies parabolic
regions centered at the 7;’s which pass to M. Hence, for some r=r(T, R)>0, the for-
ward and backward parabolic regions P, (meo,7) and P_(mu, ) are unscathed. There
is some K=K (T, R)<oo such that, when equipped with the spacetime metric g, the
union Py (Moo, 7)UP_(Meo,r) is K-bilipschitz homeomorphic to a Euclidean parabolic
region.

From (4.4), we know that R is bounded below on M5 7. In order to show that
R is proper on MF&T], we need to show that any sequence in a sublevel set of R has a
convergent subsequence. Suppose that {my}32; CM™ is a sequence with t(my)<T and
R(my)<R. After passing to a subsequence, we may assume that t(my)—t€[0,00).
Then, the regions P(mk, ﬁr, rz)UP(mk, ﬁr, —T2) will intersect the time slice M;__
in regions whose volume is bounded below by a constant times r3. By the volume
bound in Theorem 4.1 (4), only finitely many of these can be disjoint. Therefore, after
passing to a subsequence, {my}?2 , is contained in P, (mg, %r) UP_ (mg, %r) for some /.
As P, (mg, %r) UP_ (mg, %r) has compact closure in P, (myg,r)UP-(my,r), a subsequence

of {my}72; converges. This verifies Definition 1.4 (a). O
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Part II
5. Basic properties of singular Ricci flows

In this section we prove some initial structural properties of Ricci flow spacetimes and
singular Ricci flows. In §5.1 we justify the maximum principle on a Ricci flow spacetime
and apply it to get a lower scalar curvature bound. In §5.2 we prove some results about
volume evolution for Ricci flow spacetimes which satisfy certain assumptions, that are
satisfied in particular for singular Ricci flows. The main result in §5.3 says that, if M
is a singular Ricci flow and ~o,71: [to, t1] =M are two time-preserving curves such that
Yo(t1) and 71 (t1) are in the same connected component of My, , then v (t) and ~;(t) are
in the same connected component of M, for all t€(ty, t1].

We recall the notion of a Ricci flow spacetime from Definition 1.2. In this section,
we will consider it to only be defined for non-negative time, i.e. t takes value in [0, c0).
We also recall the metrics gr and ¢35 from Definition 1.7. Let n+1 be the dimension
of M. Our notation is the following:

o M;=t"1(t);

o M p=t"([a,b]);

° MgT:til([O,T]).

5.1. Maximum principle and scalar curvature

In this subsection we prove a maximum principle on Ricci flow spacetimes and apply it

to get a lower bound on scalar curvature.

LEMMA 5.1. Let M be a Ricci flow spacetime. Given T€(0,00), let X be a smooth
vector field on Mgp with Xt=0. Given a smooth function F:Rx[0,T]—R, suppose that

ueC®(Mgr) is a proper function, bounded above, which satisfies
O < Agyu+Xu+F(u,t).
Suppose further that ¢:[0,T]—R satifies
O = F(¢(t)7 t)

with ingtial condition ¢(0)=a€R. If u<a on My, then u<pot on Mcrp.

Proof. As in [73, proof of Theorem 3.1.1], for £>0, we consider the ordinary differ-
ential equation (ODE)

8t¢a = F(¢a(t)v t)+€
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with initial condition ¢.(0)=a+-e. It suffices to show that for all small € we have u<¢.
on MgT.

If not, then we can find some >0 such that the property u<¢. fails on M. As
u is proper and bounded above, there is a first time ¢y such that the property fails on
My, and an me M, such that u(m)=¢.(ty). The rest of the argument is the same as
in [73, proof of Theorem 3.1.1]. O

LEMMA 5.2. Let M be a Ricci flow spacetime. Suppose that for each T>=0 the
scalar curvature R is proper and bounded below on Mcr. Suppose that the initial scalar

curvature is bounded below by —C', for some C>0. Then

c

R > 5.3

() 2 = ¢ty /n (53)

Proof. Since R is proper on M, we may apply Lemma 5.1 to the evolution equa-

tion for —R and follow the standard proof to get (5.3). O
5.2. Volume

In this subsection we first justify a Fubini-type statement for Ricci flow spacetimes. Then
we show that certain standard volume estimates for smooth Ricci flows extend to the
setting of Ricci flow spacetimes under two assumptions: first that the quasi-parabolic
metric is complete along worldlines that do not terminate at the time-zero slice, and
second that in any time slice almost all points have worldlines that extend backward to
time zero.

The Fubini-type statement is the following.

LEMMA 5.4. Let M be a Ricci flow spacetime. Given 0<ty<ty<oo, suppose that
F: My, 1,1 R is measurable and bounded below. Suppose that My, 4,1 has finite volume
with respect to gaq. Then,

to
/ Fdvolg,, :/ / FdVOlg(t) dt.
M[ t1 J My

Proof. As F is bounded below on M, ;,), for the purposes of the proof we can

t1,t2]

add a constant to F' and assume that it is positive. Given me M, 4,], there is a time-
preserving embedding e: (a,b) x X - M with e, (9s)=0¢ (where s€(a,b)) whose image is
a neighborhood of m. We can cover My, ;,) by a countable collection {P;}; of such
neighborhoods, with a subordinate partition of unity {¢;};. Let e;: (a;, b;) x X;—P; be

the corresponding map. As

ta
[ erav,,= [ 6uF dvol, g dt,
Mty t0] t1 Je; ({t}xX;)
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we obtain
/ Fdvolg,, =Y / ¢iF dvol,,,
M[t1»12] i M[Hvtzl
to
=> / / ¢ F dvol ) dt
i t1 ei({t}XXi)
to
= / > / ¢ F dvoly ) dt
t1 i ei({t}XXi)
to
:/ FdVOlg(t) dt.
t1 J M,y
This proves the lemma. O

We now prove some results about the behavior of volume in Ricci flow spacetimes.

PROPOSITION 5.5. Let M be a Ricci flow spacetime. Suppose that

(a) the quasi-parabolic metric g3 of Definition 1.7 is complete along worldlines;

(b) if B:CM; is the set of points whose mazimal worldline does not extend backward
to time zero, then By has measure zero with respect to dvolyy, for each t20;

(c) the initial time slice Mo has volume V(0)<oo;

(d) the scalar curvature is proper and bounded below on time slabs Mcrp, and the
initial time slice has scalar curvature bounded below by —C, with C>0.

Let V(t) be the volume of My. Then, the following conditions hold:

(1) V() <V(0)(1+2Ct/n)"/;

(2) R is integrable on My, +,1;

(3) for all ty<to,

V(tg)—V(tl):—/ Rdvoly,;

Mty 1o]

(4) the volume function V(t) is absolutely continuous;

(5) given 0<t1<ta <00, we have

< C L 20,
1+20t1/n

n/2
V(t2) - V(1) ) V() (ta—t1).

n
Proof. Given 0<t1 <ty <00, there is a partition

M[tlvw] = Etl,tZ]UM/[;th]U ﬁll,tZ]’

where
(1) a point in ./\/lft1 ta] has a worldline that intersects both M;, and M,,;
(2) a point in Mf , , has a worldline that intersects My, but not My,

(3) a point in Mﬁ’l ) has a worldline that does not intersect My, .
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By our assumptions,
"
[tr.2] © U By
te(t,ta]

has measure zero with respect to dvoly,,; cf. the proof of Lemma 5.4. Put

Xl:MEtl,tz]thl and X2 :Mﬁ‘zl,t2]th1‘

For s€[ty, ta], there is a natural embedding i: X1 — M coming from flowing along world-

lines. The complement My, \ i, (X71) has measure zero. Thus,

V(tg):/ dvoly(s,) :/ iy, dvolg(s,) (5.6)
M, X1

and
V(tl):/ dVOlg(t1)+/ dVOlg(tl). (57)
X1 X2

Given z€ Xy, let v,: [t1,ta] =My, 4,1 be its worldline. Put

’L: dVOlg(s)
Js(x) = m($)~ (5.8)
From the Ricci flow equation,
Js(x) =exp < / R(vz(u)) du> . (5.9)
t1

Using Lemma 5.2,

to C
V(t2) /X1 Jt, (x) dvolg,)(x) /X1 exp (/t1 Tr2Cu/n du) dvoly(,)

142Cty /0 \"?
=V(t1) 1+2Ctz/n
When t;=0, this proves part (1) of the proposition.
Next,
/X (i}, dvolg(,y — dvolge,y) = /X (Jey () —1) dvolgy(s,y (x)

2 qJ(z
:/X /t %ds dvoly, ()

1

:7/}( [ 2 R(PY:E(S))Js(x) ds dVOlg(tl)(Qj) (510)

1

b
= — / RZ: dVOlg(s) ds
t1 J X1

:—/ Rdvolg,,
M/

[t1,t2]
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where we applied Lemma 5.4 with F:Rlef . in the last step.
“1-%2
Given z€ Xy, let e(x)€(t1, t2) be the supremal extension time of its worldline. From
the completeness of g% on worldlines that do not terminate at the time-zero slice,

e(x)
/ R(vz(u)) du = oo. (5.11)

ty

Thus, lim,_¢(y) Js(2)=0, so
@) qJ,(x
- dvolyq,) = / / % ds dvoly, ()
Xo Xo Jtq
e(x)
=— / / R(7vz(s))Js(x) ds dvoly,)(x)
Xo Jitq

e(x)
=— / / Rdsig dvolyy)
Xo Jtq

:—/ Rdvoly,,.

[t1,t2]

(5.12)

Part (3) of the proposition follows from combining equations (5.6), (5.7), (5.10) and
(5.12). Part (2) is now an immediate consequence.

By Lemma 5.4 and part (3) of the proposition, the function tHfMt R dvol is locally-
L' on [0, 00) with respect to the Lebesgue measure. This implies part (4).

To prove part (5), using Lemma 5.2 and parts (1) and (3), we have

to ta

V(te)—V(t1)=— Rdvol, ) dt < ——V(t)dt
(t2)= V() /t1 e o) /t1 1+2Ct/n ®)
C 2 n/2
<——|1+-C1 to—1t1).
1+2Ct1/n( +nC 2) V(0)(t2—t1)
This proves the proposition. O

5.3. Basic structural properties of singular Ricci flows

In this subsection we collect a number of properties of singular Ricci flows, the latter
being in the sense of Definition 1.4. We first show the completeness of the quasi-parabolic

metric.

LEMMA 5.13. If M is a singular Ricci flow, then the quasi-parabolic metric g‘}\fl of

Definition 1.7 is complete away from the time-zero slice.
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Proof. Suppose that v:[0,00)—M is a curve that goes to infinity in M, with tory
bounded away from zero. We want to show that its quasi-parabolic length is infinite. If
toy is not bounded, then the quasi-parabolic length of « is infinite from the definition of
gNys so we may assume that toy takes values in some interval [0,T]. Since R is proper
and bounded below on M¢rp, we have lim,_,, R(y(s))=00. After truncating the initial
part of , we may assume that R(y(s))>r(T)~2 for all s. In particular, each point 7(s)
is in a canonical neighborhood. Now,

dR(v(s)) ORdt

aliyyls)) _ dfvat /
ds ot ds+<VR77 Jo
h AROED[ _y (1R [, o e
ds = ot | |ds g7y J-

The gradient estimates in (A.8), of the form
|VR| < const. R? and |8,R| < const. R?,

are valid for points in a canonical neighborhood of a singular Ricci flow solutions. Then

\‘mgs”'lcm

dl 2

ds

v
for some universal C'<oo. We deduce that

[t 12
0 d 0

ds.
s ds s

ap
Im

Since the left-hand side is infinite, the quasi-parabolic length of v must be infinite. This

proves the lemma. O

The next lemma gives the existence of unscathed forward and backward parabolic
neighborhoods of a certain size around a point, along with geometric bounds on those

neighborhoods.

LEMMA 5.14. Let M be a singular Ricci flow. Given T <oo, there are numbers o=
o(T)>0, ig=1i0(T)>0 and Apr=Ar(T)<o0, k=0, with the following property. If meM
and t(m)<T, put Q=|R(m)|+r(t(m))~2. Then,

(1) the forward and backward parabolic balls Py (m,cQ /) and P_(m,cQ~'/?) are
unscathed;

(2) |Rm|<A40Q, inj=ioQ~Y? and |VF Rm |<ALQ™*/2 on the union

Py (m,0Q™"*)UP_(m,sQ~"/?)

of the forward and backward parabolic balls.
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Proof. The proof is the same as that of Lemma 3.1. O
The next two propositions characterize the high-scalar-curvature part of a time slice.

PrOPOSITION 5.15. Let M be a singular Ricci flow. For every £1>0, there is
a scale function r1:[0,00)—(0,00) with r1(t)<r(t) such that for every point meM
with R(m)>r1(t(m))~2 the e1-canonical neighborhood assumption holds, and moreover
(M, m) is e1-modelled on a x-solution. (Recall that here sx=x(t), i.e. we are suppressing

the time dependence in our notation.)

Proof. The proof is similar to the proof of [44, Theorem 52.7]. Suppose that the
proposition is not true. Then, there is a sequence of singular Ricci flows {M;}32,,
along with points m;c M, that together provide a counterexample. After passing to a
subsequence, we extract a limiting flow, as in Step 2 of the proof of [44, Theorem 52.7].
In that proof, the existence of a limiting flow used a point selection argument from Step 1
of the proof. In the present case, because of the canonical neighborhood assumption in
the definition of singular Ricci flow, we do not have to perform point selection in order
to extract a limiting flow.

Similarly, using the existing canonical neighborhood assumption simplifies Step 2 of
the proof of [44, Theorem 52.7]. The rest of the proof of the proposition is the same as
in Steps 3 and 4 of the proof of [44, Theorem 52.7].

As a further point, time slices are not assumed to be compact as in [44, Theo-
rem 52.7], and are therefore not necessarily complete. To deal with this, there are places

in the proof where one applies Lemma 5.14 to compensate for any incompleteness. [

PRrOPOSITION 5.16. Let M be a singular Ricci flow. For any T<oo and >0,
there exist C1=C1 (¢, T)<o0o and R=R(¢,T)<oo such that for every t<T each connected
component of the time slice My has finitely many ends, each of which is an é-horn.
Morever, for every R'>R, the superlevel set Mfﬁ/z{meMt:R(m)>R’} is contained
in a finite disjoint union of properly embedded 3-dimensional submanifolds {N;}¥_, with
boundary such that the following conditions are satisfied:

(1) each Nj is contained in the superlevel set M?CflR/;

(2) the boundary ON; has scalar curvature in the interval (Cy 'R, C1R');

(3) for each i one of the following holds:

(3a) N; is diffeomorphic to S'xS% or IxS? and consists of &é-neck points; note
that here the interval I can be open (a double horn), closed (a tube) or half-open (a
horn);

(3b) N; is diffeomorphic to D3=B3 or RP?\ B and its boundary ON;~S? consists
of é-neck points;

(3¢c) N; is diffeomorphic to S3, RP3 or RP3#RP3;
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(3d) N; is diffeomorphic to a spherical space form other than S* or RP3, and (M, x)
is é-modelled on a shrinking round spherical space form, for all x€ Nj;

(4) in cases (3b) and (3c), if S;CNj is a subset consisting of non-é-neck points such
that for any two distinct elements s1,s2€.S; we have d, (81, 52)>C’1R71/2 (s1), then the
cardinality |S;| is at most 1 in case (3b) and at most 2 in case (3c);

(5) each N; with non-empty boundary has volume at least C7 (R')~3/2.

Proof. The proof is the same as in [44, §67]. O

We now prove a statement about preservation of connected components when going

backwards in time.

PROPOSITION 5.17. Let M be a singular Ricci flow. If ~o,v1: [to, t1]— M are time-
preserving curves, and ~yo(t1) and ~1(t1) lie in the same connected component of My,

then ~o(t) and 1 (t) lie in the same connected component of M for every t€(tg,t1].

Proof. The idea of the proof is to consider the values of ¢ for which ~y(¢) can be
joined to v1(t) in My, and the possible curves ¢; in M; that join them. Among all such
curves ¢;, we look at one which minimizes the maximum value of scalar curvature along
the curve. Call this threshold value of scalar curvature R (t). We will argue that ¢;
can only intersect the high-scalar-curvature part of M, in its neck-like regions. But the
scalar curvature in a neck-like region is strictly decreasing when one goes backward in
time; this will imply that Ryt (t), when large, is decreasing when one goes backward in
time, from which the lemma will follow.

To begin the formal proof, suppose that the lemma is false. Let S C[tg,t1] be the set
of times t€[tg, t1] such that vo(¢) and 7 (¢) lie in the same connected component of My;
note that S is open. Put t=inf{¢:[t,;]CS}. Then f>ﬁ since Mo,1/100] is @ product.
Also, for i€{0,1} and t€[t, t,] close to £, if 7;(t) €M, is the worldline of ~;(#) at time ¢,
then 7;(t) lies in the same connected component of M, as v;(t). Therefore, after reducing
t; if necessary, we may assume without loss of generality that ~; is a worldline.

For t&([tg,t;] and R<oo, put Mféz{meMt:R(m)SR}. For t&(t,t1], let Ry be
the set of RER such that yo(¢) and v;(¢) lie in the same connected component of Mfﬁ.
Put Rt (t)=inf R;. Since R: M;—R is proper, the sets {Mfé}becrit(t) are compact
and nested, which implies that vo(¢) and 71 (¢) lie in the same component of

Mthcrit(t) — m Mfﬁ,

R>Rerit(t)

i.e. Rerit (t) ER;.

By Lemma 5.14, there is a C'<oo such that, for any te( L

100°
there is a 7=7(t1, R(m))>0, where 7 is a continuous function which is non-increasing in

tl} and any meM,,
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R(m), such that the worldline ~y,, of m is defined and satisfies

’ dR(ym (1))

g7 ’ < C-R(m)? (5.18)

in the time interval (t—7,t+7). Now for t&(f,t,] and ¢’ satisfying |t' —t| <7 (t1, Rexit (1)),
let Z; y C My denote the result of flowing Mchr“(t) under 9 for an elapsed time ' —%.

Then Z; s is well defined and contains (') and 71 (¢') in the same component, so

Reris(t') <max R < Reyig (t) +C- Rerig (£)2 -]t —1'].

t,t!

This implies that Reg: (£,t1]—R is locally Lipschitz (in particular continuous) and that
Rerig () — 00 (5.19)

as t—¢ from the right; otherwise, there would be a sequence t;—t along which Rt
is uniformly bounded above by some R<oo, which would allow us to construct Zy, i
whenever [f—t;|<7(t1, R), contradicting the definition of .

We now concentrate on ¢ close to £. Suppose that, for some t€ (£, 1], we have

Reyit(t) >>maux(7“_2(t1)7 max Rovp, max Ro’yl). (5.20)

[to,t1] [to,t1

M?(Rcrit (t)fl)

Then, by Proposition 5.16, the superlevel set is contained in a finite union
of components {N; ;}*, each diffeomorphic to one of the possibilities (3a)—(3d) in the
statement of the proposition. Let X; be the result of removing from M; the interior of
each NV; ; that is not of type (3a). Since yo(t) and v1(¢) lie outside Uf;l N+, and each NN;
of type (3b)—(3d) has at most one boundary component, it follows that yo(t) and ~; (¢)
lie in the same connected component of X;.

For t' <t close to t, let Xy C My be the result of flowing X; under d;. Now,
¥y = Xy 7 (e

consists of e-neck points, and at such a point the scalar curvature is strictly increasing
as a function of time. Hence, there is a 71 >0 such that the worldline ~,,: [t—71,t] =M
of any meY; satisfies

R(%n(t,)) < R(m) < Rerit (1)

for ' €[t—my,t). This implies that Reyit(t") < Rerit (t) when ' <t is close to t, again under
the assumption (5.20), which contradicts (5.19). O
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We now state a result about connecting a point in a singular Ricci flow M to the
time-zero slice by a curve whose length, with respect to the spacetime metric gpq, is
quantitatively bounded, and along which the scalar curvature is quantitatively bounded.

This is similar to Proposition 3.3.

ProrosITION 5.21. Let M be a singular Ricci flow. Given T, Ry<oco, there are
constants L=L(Ro,T)<oco and Ri=R1(Ry,T)<oc with the following property. Suppose
that R(mo)< Ro, with to=t(mo)<T. Then, there is a time-preserving curve 7: [0, to] =M
with y(to)=mo and length(y)<L such that R(y(t))< Ry for all t€]0,t].

Proof. The proof is the same as that of Proposition 3.3. O
Finally, we give a compactness result for the space of singular Ricci flows.

PROPOSITION 5.22. Let {M*}22, be a sequence of singular Ricci flows with a fized
choice of parameters €, r and s whose initial conditions {M}}2, lie in a compact
family in the smooth topology. Then, a subsequence of {M?}$°, converges, in the sense
of Theorem 4.1, to a singular Ricci flow M.

Proof. Using Proposition 5.21, the proof is the same as that of Proposition 4.1. [

Remark 5.23. In the setting of Proposition 5.22, if we instead assume that the
(normalized) initial conditions have a uniform upper volume bound, then we can again
take a convergent subsequence to get a limit Ricci flow spacetime M. In this case
the time-zero slice M§° will generally only be C*“-regular, but M will be smooth on
t=1(0,0).

6. Stability of necks

In this section we fix »#>0; the dependence of various constants on this choice of s is
implicit. We recall the notion of a »-solution from §A.5. In this section we establish a
new dynamical stability property of caps and necks in s-solutions, which we will use in
87 to show that a bad worldline v: I —M is confined to a cap region as ¢ approaches the
blow-up time inf 1.

Conceptually speaking, the stability assertion is that among pointed s-solutions,
the round cylinder is an attractor under backward flow; similarly, under forward flow,
non-neck points form an attractor. The rough idea of the argument is as follows. Suppose
that 0<1 and (xg,0) is a d-neck in a s-solution M. Then, (z,t) will also be neck-like,
as long as t<0 is not too negative. One also knows that M has an asymptotic soliton as
t— —o00, which is a shrinking round cylinder. Thus, M tends toward neck-like geometry
as t approaches —oo, which is the desired stability property. However, there is a catch
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here: the asymptotic soliton is a pointed limit of a sequence where the basepoints are
not fixed, and so a priori it says nothing about the asymptotic geometry near (zo,t) as

t— —o00. To address this, we exploit the behavior of the [-function.

6.1. The main stability asssertion

We recall the notation ./\71(75) from §A.1 for the parabolic rescaling of a Ricci flow space-
time M. We recall the notation Cyl and Sphere from §A.1 for the standard Ricci flow
solutions. We also recall the notion of one Ricci flow spacetime being e-modelled on

another one, from §A.2.

THEOREM 6.1. There is a Opeck =0neck (3¢) >0, and for all dy, 1 <oneck there is a
T=T(dg, 61, )E(—00,0) with the following property. Suppose that

(a) M is a s-solution with non-compact time slices;

(b) (x0,0)eM;

(¢) R(x0,0)=1;

(d) (M, (x0,0)) is a dp-neck.

Then, either M is isometric to the Zs-quotient of a shrinking round cylinder, or for
all te(—o0, T,

(1) (M, (z0,1)) is a 61-neck and

(2) (M(=t), (0, —1)) is d1-close to (Cyl, (yo, —1)), where yo€S2XR.

We recall the notion of a generalized neck from §A.2.

COROLLARY 6.2. If Oneck =0neck(2) as in the previous theorem, then there is a T=
T(5)<(—00,0) such that, if M is a »-solution with non-compact time slices, (xg,0)EM,
R(x0,0)=1 and (x0,0) is a generalized Opeck-neck, then (xg,T) is a generalized i&neck—
neck, and R(zo,T)<7.

6.2. Convergence of [-functions, asymptotic [-functions and asymptotic

solitons

In this subsection we prove some preparatory results about the convergence of [-functions,
with regard to a convergent sequence of 3-dimensional s-solutions.

Suppose that we are given that R(z1,t1)<C at some point (z1,%;) in a s-solution.
By compactness of the space of normalized pointed s-solutions (see §A.5), we obtain
R(z,t1)<F(C,ds, (x,21)) for some universal function F. Since R is pointwise non-

decreasing in time in a »-solution, we also have R(x,t)<F(C,ds, (z,z1) whenever t<t;.
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LEMMA 6.3. (Curvature bound at basepoint) Let {(M7, (x;,0))}; be a sequence of
pointed »-solutions, with sup; R(zj,0)<o0, and let 1;: MJ%O%(O, o0) be the reduced dis-
tance function with spacetime basepoint at (x;,0). Then, after passing to a subsequence,

we have convergence of tuples
(M7, (25,0),15) = (M, (2es, 0), Loo)-

Here the Ricci flow convergence is the usual smooth convergence on parabolic balls, and
the l;’s converge to a locally Lipschitz function lo uniformly on compact subsets of MZ,

after composition with the comparison map.

Proof. Since R(z;,0) is uniformly bounded above, the compactness of the space of

normalized pointed »-solutions implies that a subsequence, which we relabel as

{(M7, (2,0))};,
converges in the pointed smooth topology. Along the curve {z;}x (—o00,0)C M7, the
scalar curvature is bounded above by R(x;,0). For any a<b<0, this gives a uniform
upper bound on I; on {z;}x [a,b]C M. From (A.5), we get that [ is uniformly bounded
on balls of the form B(xj,b,r)c/\/li. Then, from (A.6), we get that [ is uniformly
bounded on parabolic balls of the form P(x;,b,7,a—b)CM’. Using (A.4) and passing
to a subsequence, we get convergence of {/;}; to some I, uniformly on compact subsets
of MZ,. O

PROPOSITION 6.4. (No curvature bound at basepoint) Let {(M7,(x;,0))}; be a
sequence of pointed s -solutions, and let l;: ./\/lj<0—>(0, 00) be the reduced distance function
with spacetime basepoint at (x;,0). Suppose that {(y;,—1)};, with (y;, —l)e/\/lj_l, s a
sequence satisfying sup; li(yj, —1)<oo. Then, after passing to a subsequence, the tuples
(M7, (y;,—1),1;) converge to a tuple (M, (Yoo, —1),ls0), where the following hold:

(1) the convergence (M7, (yj,—1))—(M>, (Yoo, —1)) is smooth on compact subsets
of MZ,, and M is either a x-solution defined on (—o0,0) or the static solution on R3;

(2) {l;}; converges to a locally Lipschitz function lo uniformly on compact subsets
of MZ,, after composition with the comparison diffeomorphisms;

(3) the reduced volume functions Vj:(—00,0)—(0,00) converge uniformly on com-

pact sets to the function Vae: (—o0,0)—(0,00), where

Voo (t) = (—t) /2 / e leo dvolg); (6.5)
Mg

(4) the function lo satisfies the differential inequalities (24.6) and (24.8) in [44]. If
Vo is constant on some time interval [to, t1]C (—00,0), then M is a gradient shrinking

soliton with potential .
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Proof. From (A.6), given a<b<0, there is a uniform bound for I; on {y;}x]a,?b].
From (A.3), there are bounds for R; on {y;}x[a,b]. Then, we get a uniform scalar
curvature bound on the balls B(y;, b, ) C/\/li7 and hence on the parabolic neighborhoods
P(y;,b,r,—At)CM?. Taking a——oo and b—0, and applying a diagonal argument, we
may assume that {(M7, (y;, —1))}; converges to a s-solution (M, (yoo, —1)). As in the
proof of Lemma 6.3, after passing to a subsequence, we get [;— I, for some /o, defined
on MZ,. The rest is as in [81] and [82]. O

LEMMA 6.6. Let (M, (x,0),1) be a shrinking round cylinder with R=1 at t=0, where
the [-function has spacetime basepoint (x,0). Then, the following statements hold:

(1) for every te(—o0,0) the l-function l: My—R attains its minimum uniquely at
(z,1);

(2) limy oo (M(—1), (2, —1),1)=(Cyl, (250, —1), oo ), where the coordinate z for the
R-factor in Cyl satisfies z(z)=0, and

22

loo =14 (6.7)

(3) limy, oo l(z,t)=1.

Proof. Part (1) follows from the formula for £-length:

0 0
o) = [ VR @) > [ ViR,

with equality if and only if v(t)=(z,t) for all t€[t,0]. Part (2) follows from applying
Lemma A.2 in §A.6 to parabolic rescalings of M. Part (3) is now immediate. O

From (6.7), we get that [, is strictly decreasing along backward worldlines, except at
its minimum value 1. In particular, if I (z,t9) <1+4¢&, then I (z,t1)<14¢ for all t; <to.
By compactness, this stability property is inherited by any tuple which approximates the

shrinking round cylinder.

LEMMA 6.8. For all £>0 and A€(0,1), there is a >0 with the following property.
Suppose that (M, (z,—1),1) is a x-solution, with 1-function based at (x,0), satisfying
the following properties:

(1) (M, (x,—1),1) is ji-close to (Cyl, (y,—1),ls) on the time interval [—A~1, —A],
for some (y,—1)eCyl;

(2) U(z,t)<14€ for all te]—1,—A].

(Here, loo(y, —1) need not be 1.) Then, l(x,t)<1+€ for all te[-A~1, —1].
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Proof. If the lemma fails then, for some >0 and A€(0,1), there is a sequence
{(M7,(z;,—-1),1;)}; such that, for all j, the following statements hold:

o (M (z5,—1),1;)is i~ -close to (Cyl, (y;, —1),ls) on the time interval [-A~1, —A]
for some (y;, —1)€Cyl_y;

o lj(x;,t)<1+¢€ for all te[—1,—A];

o lj(zj,t;)=1+¢ for some t;€[—A"1 —1].

Using (6.7) and passing to a limit, we obtain (Y, —1)€Cyl with the property that
loo (Yoo, —A) <14 and loo (Yoo, t) = 1+€ for some te[—A~1, —1]. But this contradicts the
formula o (7, t)=1+22/(—4t). O

6.3. Stability of cylinders with moving basepoint

In this subsection we prove a backward stability result for cylindrical regions, initially
without fixing the basepoint. We then prove a version fixing the basepoint, which will
imply Theorem 6.1.

We start with a preliminary lemma about reduced volume.

LEMMA 6.9. There are u>0 and 7>0 such that, if M is a s-solution defined on
(=00, 0] with R(z,0)=1, then V(7)< (4m)3/2 —p.

Proof. Using the monotonicity of the reduced volume, if the lemma fails then there
is a sequence {M7}32, of s-solutions and points (z;, 0)eMJ such that R(z;,0)=1 and
‘7Mj (7)=(4m)3/2—=1/j. After passing to a subsequence, there is pointed convergence to a
pointed s-solution (M, (zs,0)). Then, R(zs,0)=1 and Va ()= (47)3/2 for all 7>0.
This is a contradiction [44, proof of Proposition 39.1]. O

PROPOSITION 6.10. For all £€>0 and C<oo, there is a T=T(£,C)e(—00,0) with
the following property. Suppose that M is a non-compact »-solution defined on (—o0, 0]
and that the following conditions are satisfied:

o (z,0)e My is a point with R(x,0)=1,;

o [: Mo—R is the [-function with spacetime basepoint (z,0);

o t<T, and (y,t)eEM; is a point where the reduced distance satisfies l(y,t)<C.

Then, one of the following holds:

(1) the tuple (M(—t), (y,—1),1) is é-close to a triple (Cyl, (Yoo, —1),los), where
Yoo €S?XR and Iy, is the asymptotic [-function of (6.7); note that yo. need not be
at the minimum of lo in Cyl_y;

(2) M is isometric to a Zo-quotient of a shrinking round cylinder.

Proof. If the proposition were false, then for some £>0 there would be a sequence
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{(M7(z,0))}; of pointed s-solutions, and a sequence {T7}};, with T;— —o0, such that

e R(z;,0)=1,

e there is a point (y;, 7j) €M7, , with I(y;, T;)<C, such that both (1) and (2) fail
for t=Tj.

From Lemma 6.9, there are constants ;>0 and 7>0 such that, for each j, we have
Vi (1)< (47)3/2— . Using the monotonicity of the reduced volume and the existence
of the asymptotic soliton, there is a uniform positive lower bound on ‘7Mj (—Tj). After
passing to a subsequence, we can find ¢;€(T},0) such that T /t; —o0, and the reduced
volume is constant to within a factor (1+57") on a time interval [A;t;, A} 't;], where
Aj—o0.

By §A.5, for each j there is a point (Zj,tj)e./\/l'zj with l(Zj7tj)<%. After pass-
ing to a subsequence, by Proposition 6.4, the sequence of parabolically rescaled flows
{(/\;l] (—t;), (2, —1))}; pointed-converges to a gradient shrinking soliton (goo, (Yoo, —1))
that is either a s¢-solution or is flat R3. Since the reduced volume of (3\00, (Yoo, —1))
is also bounded above by (47r)3/27,u, it cannot be flat R3. In addition, 8% cannot be
a round spherical space form, as each Mé is non-compact. Also, 8% cannot be a Zo-
quotient of a shrinking round cylinder, because then ./\/lg would contain a one-sided RP?;
by the classification of non-compact s-solutions, this would imply that ./\/lg is isometric
to the Zs-quotient of a round cylinder for all ¢, contradicting the failure of (2). Therefore
8% must be a shrinking round cylinder.

On the other hand, for each j, there is an asymptotic soliton of M7. By the pre-
vious argument involving spherical space forms and one-sided RP?’s, the asymptotic
soliton must be a shrinking round cylinder. It follows that, for large j, the reduced
volume V4, (—t) is nearly constant in the interval (—oo, t;]. Proposition 6.4 now implies
that, after passing to a subsequence, {(/ﬂ](—Tj), (yj,—1),1;)}; converges to a gradient
shrinking soliton (/\//\loo, (Yoo, —1),100), which is a s-solution and whose asymptotic re-
duced volume is that of the shrinking round cylinder. From Lemma A.2, this implies

that M is a shrinking round cylinder, contradicting the failure of (1). O

We now use the stability result of Proposition 6.10, together with Lemma 6.8, to
show that worldlines that start close to necks have a nearly minimal value of [, provided

one goes at least a certain controlled amount backward in time.

LEMMA 6.11. (Basepoint stability) For all €>0, there exist §=06(¢)>0 and T=
T(é)e(—00,0) such that, if (M, (z,0)) is a pointed s-solution with R(x,0)=1, and
(2,0) is a 0-neck, then l(xz,t)<14€ for all t<T.

Proof. Suppose the lemma were false. Then, for some £>0, there would be a se-
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quence {(M7, (x;,0))}; of pointed s-solutions such that

(1) R(z;,0)=1 and
(2) (z;,0) is a (1/7)-neck, but

(3) 1j(zj,t;)=>1+¢ for some t;<—j.

We may assume that é<1. Let u3 >0 be a parameter to be determined later.

By Proposition 6.10, there is a 71 € (—00,0) such that, for large j and every (y,t)€
./\/lng1 with [;(y,t) <2, the tuple (/\;lj(ft)7 (y,—1),1;) is p1-close to (Cyl, (y', —1), 1) for
some (y',—1)eCyl_;.

Since (M7, (z;,0)) converges to the pointed round cylinder by assumption, we have
that Lemma 6.6(3) implies that there is a To€(—o00, T1] such that, for large j, we have
iz, To)<1+1e

Put t;=max{te(—o0, T>]:l;(z;,t) >1+£E}, so t;#T». Note that there is an A€ (0,1),
independent of i1, such that limsup,_, . T /t; <A, since

lj(Ij,TQ) < 1+%2€A< 1+é:lj(l‘j,tj),

in view of the time-derivative bound on [ given by (A.4).

For large 7, in /ﬂj(ftj) we have [;(z;,t)<1+4¢ for te[—1, —A], but [;(z;, —1)=1+¢.
Since 14+£<2, we know from Proposition 6.10 that (/\;lj(—tj), (xj,—1),1;) is py-close to
(Cyl, (¥, —1),ls) for some (y',—1)€Cyl_;, again for large j. If ii is the constant from

Lemma 6.8, and p1 <fi, then that lemma gives a contradiction. O

Proof of Theorem 6.1. This follows by Proposition 6.10 and Lemma 6.11. O

7. Finiteness of points with bad worldlines

In this section we study bad worldlines; recall from Definition 1.9 that a worldline ~: I —
M in a singular Ricci flow M is bad if inf I>0. In Theorem 7.1 we prove that only
finitely many bad worldlines intersect a given connected component in a given time slice.
We then give some applications.

The main result of this section is the following theorem.

THEOREM 7.1. Let M be a singular Ricci flow. For T <oo, every connected com-
ponent Cp of My intersects at most N bad worldlines, where N=N(T,vol(My)). In
particular, the set of bad worldlines in M is at most countable. Moreover, if v:I— M is

a bad worldline then, for tel sufficiently close to inf I, ~(t) lies in a cap region of M.

We begin with a lemma.
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LEMMA 7.2. For all D<oo there exist é=£€(s, D)>0 and A=A(3, D)<oo such that,
if meMy and (M, m) is é-modelled (see §A.2) on a »-solution of diameter <D, then
the following statements hold.

(1) The connected component Ny of My containing m is compact and has Rm>0.

(2) Let g'(-) be the Ricci flow on the (smooth manifold underlying) Ny defined on
the time interval [t,T"), with initial condition at time t given by ¢'(t)=g|n,, and blow-up
time T'. Let N be the corresponding Ricci flow spacetime. Then N<y is compact for
all '<T’, and if M is the connected component of My, containing Ny, then M s
isomorphic to N.

(3) R=AR(m) on M.

Proof. (1) Let Soll be the collection of pointed s¢-solutions (M’, (z,0)) such that
R(z,0)=1, and Diam(M})<D. Then every (M’,(x,0))€Soll has Rm>0, and since
SolD is compact, there is a A>0 such that Rm>\ in M, for all (M’, (z,0))€Sol). Part
(1) now follows.

(2) Let AV be as above. Then N, is compact for all #€[t,T"), and by Hamilton’s
theorem for manifolds with Ric>0, we know that

mrlréi/\r}t, R(m')—> o0 as t' —T'. (7.3)

Consider an isometric embedding of Ricci flow spacetimes Nj;— M ; that extends
the isometric embedding N;—M;, and which is defined on a maximal time interval
J starting at time ¢t. Notice that J cannot be a closed interval [t,#], since then the
embedding could be extended to a larger time interval using uniqueness for Ricci flows.
If J=[t,{) with {<T", then, since R is bounded on ./\/'[tﬂ7 by the properness of R on M7
we may extend the embedding to an isometric embedding ./\/'[tﬂ —)M[tﬂ, contradicting
the maximality of .J. Therefore, there exists an isometric embedding Ny 1) — M 17y of
Ricci flow spacetimes, as asserted. The image is clearly an open subset of Mxy; it is
closed, by (7.3). This proves (2).

(3) From the proof of (1) above, for every (M’, (x,0))€Sol2 we have R>6) on Mj,.
Taking A=3), and ¢ sufficiently small, we get that R>AR(m) in N¢, and therefore in N;
as well. By the maximum principle applied to the scalar curvature evolution equation,
we have R>AR(m) on N, and hence on J\jl as well. O

Proof of Theorem 7.1. In the proof below, we take sx=3(T). Recall that ¢ is the
global parameter used in the definition of a Ricci flow spacetime from Definition 1.4.

Let 1, A>0 be constants, to be determined later. During the course of the argument
below, we will state a number of inequalities involving £; and A; these will be treated as
a cumulative set of constraints imposed on £; and A, i.e. we will be assuming that each

inequality is satisfied.
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We recall that, by Proposition 5.17, C'r determines a connected component Cy of
M, for all t<T. Let Bad be the collection of bad worldlines intersecting Cr.

Choose 0<t_ <t <T such that t, —t_ <A, and let Bad};_ ) be the set of worldlines
~: I— M which belong to Bad, where inf I€[t_,t,). We will show that, if ¢, —t_<A=
A(3,T,¢), then |Badp;_ ;| is bounded by a function of s, T' and vol(My); the theorem

then follows immediately.

Step 1. If A<A(ey,s,¢,T), then there exists fe[O7T] such that
(a) for every worldline v: I—M in Bad we have inf [ <T;
_t,), and every t€(inf I,¢,] with téf, the

pair (M, ~(t)) is e;-modelled on a non-compact s-solution.

(b) for every worldline v: I —M in Bady,

By the compactness of the space of normalized pointed s-solutions (see §A.5), there

exist ea=¢2(e1)>0 and D=D(e1)<oo such that, if (M, ~(t)) is ea-modelled on a pointed

1
2

x-solution. Put e3=4 min(é(s, D), e2), where £(3, D) is as in Lemma 7.2.
Let W be the set of melJ;c C¢ such that the pair (M,m) is ez-modelled on

a pointed s-solution with diameter at most D. Suppose first that W is non-empty.

x-solution with diameter greater than D, then it is se&;-modelled on a non-compact

Lemma 7.2 implies that R(m)<A~tinfo, R for all meW; therefore, by the properness
of R: M<r—R, the time function t attains a minimum value T on W. Pick meWNMz.
Then, by Lemma 7.2, the connected component of M[iT] containing m is isomorphic
to the [T, T]-time slab of the spacetime A of a Ricci flow on a compact manifold with
positive Ricci curvature. In particular, it also coincides with [, e[F.1] Cy, and therefore
the curvature is bounded on the latter. Hence, for every ~:I—M in Bad, we have
inf I<T. If W is empty, then we put f:T; then, the conclusion of part (a) of Step 1
still holds, so we continue.

By Proposition 5.15, there exists EZR(Eg, »,7(T)) such that, for all me My with
R(m)}é, the pair (M,m) is e3-modelled on a pointed s-solution. By Lemma 5.14,
if A<A(§, »), v:I—M belongs to Badp_,, ) and te[t,,m]ﬂlﬂ[O,f), then we have
R(y(t))>R. Hence, either (M,~(t)) is (A) 3e1-modelled on a non-compact »-solution,
or (B) ez-modelled on a s-solution of diameter at most D; but in case (B) we would have
~(t)eW, which is impossible because t<T. This proves that part (b) of Step 1 holds
when 1?<7A“7 with &1 replaced by %51 in the statement. The borderline case t=T now
follows by applying the previous arguments to times ¢ slightly less than T and taking the
limit as ¢ /‘f This completes Step 1.

Hereafter, we assume that A<A(ey, »,¢,T). By part (a) of Step 1, the set Bad is
the same as the set of bad worldlines intersecting Cz. Hence, we may replace T' by f;
then, by part (b) of Step 1, for every v: I —M in Bad};_ . and every t€[t_,t,], the pair
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(M, ~(t)) is e1-modelled on a non-compact s¢-solution.

Step 2. Provided e;<e;(x), for all v:I—M belonging to Badp_,,) and every
teln[t_,t;), the pair (M,~(¢)) is not a generalized %5ncck—neck. (Here, peck is the

parameter from Corollary 6.2, and a generalized neck is in the sense of §A.2.)

Suppose that : /— M belongs to Bad|;_;.,), and (M, ~(fo)) is a generalized §0neck-

neck for some fo€IN[t_,t,). By Step 1, we know that (M, ~(f)) is e;-modelled on a
non-compact pointed s-solution (M?, (zo,0)). If 1 <& (30neck), then (M?, (zg,0)) will
be a generalized O0neck-neck. Let T1:T(5neck, %5neck)€(—oo,0) be as in Corollary 6.2.
Then, (M*, (zg,T})) is a generalized %5neck—neck. Ife1<&y (Tl, %5neck), then we get that

e v is defined at 1 =Fg+R (v(fy))T1;

. (M,’y(ﬁ)) is a generalized %5neck—neck;

o R(y(i1)<1R(1()).

Thus, we may iterate this to produce a sequence {f,1,... }CI such that

ti <ti_1+R(y(tp))Ty for all i.

This contradicts the fact that inf I€[t_, ¢, ), and completes Step 2.

Hereafter, we assume that e1<e1(s). Let Dg<oo be such that, if M’ is a non-

compact z-solution, mq, me € M; and neither m; nor ms is a i(Sneck—neck, then
dt(ml, mg) < DOR(ml)_l/Q. (74)
Let Dy €(2Dg, o) be a constant, to be determined in Step 4.

Step 3. Provided €1 <&} (s, D), if y1,72€Bady;_ 4,y and

dey (71(t4), 72(ts)) < D1R(7a(t4))) ™2, (7.5)

then vy =",.

Let I; be the domain of ~;, for i€{1,2}. Suppose that te[;NI;N[t_,t,]. By Steps 1
and 2, (M,71(¢)) is e1-modelled on a non-compact s-solution, and neither () nor
Y2(t) is a %6neck—neck. If £1 <&} (D1, Oneck) then, using the e1-closeness to a non-compact

#-solution and (7.4), we can say that

di(11(8),72(t)) < DiR(7(1))~/? (7.6)

implies
di(1(t),72()) < 2Do R(m (1)) /2.
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Since we are assuming (7.5), a continuity argument shows that (7.6) holds for all
tGIlﬁIQO[t+, t_]. If inf[1 >inf12, then
lim  R(v2(t)) = o0,

t—inf Iy
so inf I; =inf I5; a similar reasoning holds if inf I, <inf I;. Thus, inf I; =inf Is. Moreover,
if 1 <& (), then any geodesic from ~; (¢) to y2(t) in C; will lie in the set with Ric>0, so
di(71(t),72(t)) is a decreasing function of ¢. Since (7.6) implies that dy(v1(¢),72(¢))—0
as t—inf Iy, it follows that v =-,. This completes Step 3.

Hereafter, we assume that e <&} (¢, D1).

Step 4. Provided A<A(s,T), the cardinality of Badj;_ ) is at most

N = N (3, T,vol(My)).

Take éz%éneck, and let C;=C1(¢,T), R=R(4,T), and Ni,..., NyCMy, be as in
Proposition 5.16. With reference to Step 3, take D1 =C;. Let A<A(R, »,7(T)) be such
that if v: I— M belongs to Bady;_ ., and t€[t_,t,]NI, then R(y(t))=R; cf. the proof
of Step 1.

Then the set

S={v(t+):vy€Bady_; )}
is contained in

{meM,, :R(m)}R}CUNi.
By Step 3, for any two distinct elements 1,72 €Bad;_ ;) we have

de(71(t1),72(t)) = DiR™ Y2 (1 (t,)) = CLR™Y2(m(t.).

By Proposition 5.16, for all i€{1,...,k} we have |SNN;|<2. Therefore, |S|<2k. This
proves that Bad|;_ ) is finite, and hence a weaker version of the theorem, namely that
the set of all bad worldlines is countable.

Since the set of bad worldlines is countable, their union has measure zero in space-

time. Therefore, we may apply Proposition 5.5 to conclude that
vol(Cyy ) <vol(My,) < V(0)(142t)3/2.
If £>2, then each NV; has non-empty boundary. Hence, Proposition 5.16 (5) gives a bound
kE<k(V(0),T).

This proves Theorem 7.1; the assertion that bad worldlines are confined to cap
regions was established in the proof above. O
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COROLLARY 7.7. If M is a singular Ricci flow, then the conclusions of Proposi-
tion 5.5 hold.

Proof. By Theorem 7.1, the set of bad worldlines is countable, and hence has measure
zero. Combining this with Lemma 5.13 shows that the hypotheses of Proposition 5.5 are
satisfied. O

Remark 7.8. For mean-convex mean-curvature flow, the continuity of the volume

follows from the weak continuity of the mass measure, as established in [53].
Theorem 7.1 also has the following topological implications.

COROLLARY 7.9. Let M be a singular Ricci flow.
(1) If T>0 and WCMrp is an open subset that does not contain any compact

connected components of M, then there is a smooth time-preserving map
r:wx[0,T] — M
that is a “weak isotopy”, in the sense that it maps W x{t} diffeomorphically onto an

open subset of My, for all t€[0,T).
(2) For all T>0, the pair (M, Mgr) is k-connected for k<2.

Proof. (1) Let C be the collection of connected components of Mr. Pick CeC. Let
B be the set of bad worldlines intersecting C. By Theorem 7.1, the set B is finite, so its
intersection with C' is contained in a 3-disk D3. There is a to <7 such that the worldline
of every meC is defined in the interval [tc,T]. Hence, we get a time-preserving map
Fo:Cx[te, T)—M that is a diffecomorphism onto its image.

By assumption, either C' is non-compact, or C' is compact and W AC. Therefore,
there is a smooth homotopy {H;: WNC—C}icp, ) (purely in the time-T slice) such
that Hpy: WNC—C' is the inclusion map, H;: WNC—C' is a diffeomorphism onto its
image for all t€to, T], and Hy. (WNC)ND3=2. We define I' on (WNC) x[tc, T| by

T'(m,t) = Fc(Hi(m),t),
and extend this to (WNC)x|[0,ts] by following worldlines. Note that, if C;, Co€C are
distinct components of M, then Fe, (C1NW) is disjoint from Fe, (CoNW), so the re-
sulting map I" has the property that I'(-,¢): W —.M; is an injective local diffeomorphism
for every t€[0,T].

(2) Suppose that 0<k<2 and f: (D*, dD*)— (M, Mcr) is a map of pairs, where
ODkF=S%=1if k>1 and 9D =g. By Theorem 7.1, the Hausdorff dimension of the bad
worldlines is at most 1. Then, after making a small homotopy, we may assume that f
is smooth, and that its image is disjoint from the bad worldlines. We can now find a

homotopy through maps of pairs by using the backward flow of the time vector field,
which is well defined on f(DF). O
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Appendix A. Background material

In this appendix we collect some needed facts about Ricci flows and Ricci flows with

surgery. More information can be found in [44].

A.1. Notation and terminology

Let (M,t,0,g) be a Ricci flow spacetime (Definition 1.2). For brevity, we will often
write M for the quadruple. In a Ricci flow with surgery, we will sometimes loosely write
a point meM; as a pair (z,1).

Given s>0, the rescaled Ricci flow spacetime is M(s)=(M, t/s, s, g/s).

Given me M, we write B(m,r) for the open metric ball of radius r in M;. We
write P(m,r, At) for the parabolic neighborhood, i.e. the set of points m’ in M ;1 aq
if At>0 (or Mpgaey if At<0) that lie on the worldline of some point in B(m,7).
We say that P(m,r,At) is unscathed if B(m,r) has compact closure in M; and for
every m' € P(m, r, At) the maximal worldline v through m’ is defined on a time interval
containing [t,t+At] (or [t+At,t]). We write P.(m,r) for the forward parabolic ball
P(m,r,r?) and P_(m,r) for the backward parabolic ball P(m,r, —r?).

We write Cyl for the standard Ricci flow on S%2 xR that terminates at time zero,
with g(t)=(—2t)gs> +dz?. We write Sphere for the standard round shrinking 3-sphere

that terminates at time zero.

A.2. Closeness of Ricci flow spacetimes

Let M! and M? be two Ricci flow spacetimes in the sense of Definition 1.2. Consider a
time interval [a, b]. Suppose that m; €M and ma€ M? have t;(my)=t2(ma)=b. We say
that (M?,my) is e-close to (M!,m1) on the time interval [a,b], if there are open sub-
sets U; CM? with P(m;,e™1,a—b)CUj;, i€{1,2}, and there is a pointed diffeomorphism
®: (Uy, my1)— (U, mgy) such that

e B(m;,e~') has compact closure in M};

e P(m;, et a—b) is unscathed,;

o d is time preserving, i.e. toe P =1y;

o $,0y=0;

e ®*gy—g; has norm less than ¢ in the C'LY/</+1_topology (as defined using g;) on Uy
(where |- | denotes the integer part).

Remark A.1. The notion of e-closeness is not symmetric with respect to (M?*,my)
and (M2, my), but this will not be an issue, since we only use the associated topology.
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Now, consider an open time interval (—oo,b). Suppose that
tl(ml) = fg(mg) =ceE (*OO, b)

After time shift and parabolic rescaling, we may assume that c=—1 and b=0. In this
case, we say that (M?2,my) is e-close to (M1, m;) on the time interval (—oo,0) if there
are open sets U; CM? with P(m;,e™1,1—e)UP(m;, e~ 1, —e=2)CU;, i€{1,2}, and there
is a pointed diffeomorphism ®: (U, my)— (U, m2) such that

(1) B(m;,e~') has compact closure in M ;;

) P(m;,e~1,1—¢) and P(m;,e~1, —e~2) are unscathed;

(2
(3) @ is time preserving, i.e. tgoP=ty;

(4) ®.0, =0,;

(5) ®*go—g1 has norm less than ¢ in the C'Y/¢J+1_topology on Uj.

Let (M1,mq) and (M2, ms) be as above, and u;: M; —R be a continuous function
for i€{1,2}. Then, we say that (Maz, ma,us) is e-close to (My,my,uq) if (1)—(5) above

hold and, in addition,
sup{uzo®(m)—ui(m):me P(my, e ', 1—e)UP(my, e}, —672)} <e.

We will apply this notion when the u;’s are reduced distance functions.

We define e-closeness similarly on other time intervals, whether open or half-open.

Let (M1, mq) and (Ma, ma) be Ricci flow spacetimes. Then, we say that (Maz, ms)
is e-modelled on (My,mq) if, after shifts in the time parameters such that t;(m;)=
to(m2)=0, and parabolic rescaling by R(m1) and R(ms) respectively, the resulting Ricci
flow spacetimes are e-close on the time interval [—e~1,0]. (It is implicit in the definition
that R(m1)>0 and R(ms2)>0; this will be the case for us, since we are interested in
modelling regions of high scalar curvature.) A point m in a Ricci flow spacetime M is a
generalized e-neck if (M, m) is e-modelled on (M’,m’), where M’ is either a shrinking

round cylinder or the Zs-quotient of a shrinking round cylinder.

A.3. Necks, horns and caps

We say that (M, m) is a (strong) d-neck if, after time shifting and parabolic rescaling, it
is 0-close on the time interval [—1, 0] to the product Ricci flow which, at its final time, is
isometric to the product of R with a round 2-sphere of scalar curvature 1. The basepoint
is taken at time 0. In this case, we also say that m is the center of a §-neck.

If I is an open interval, then a metric on an embedded copy of S%2xI in M, such
that each point is contained in an §-neck is called a d-tube (resp. d-horn, or double -
horn) if the scalar curvature stays bounded on both ends (resp. stays bounded on one
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end and tends to infinity on the other, or tends to infinity on both ends). (Our definition
differs slightly from that in [44, Definition 58.2], where the definition is in terms of the
“0-necks” of that paper, as opposed to the “strong d-necks” that we are using now.)

A metric on B3 or B3\RP? such that each point outside some compact set is con-
tained in a d-neck is called a d-cap (resp. capped 6-horn) if the scalar curvature stays

bounded (resp. tends to infinity) on the end.

A.4. 3c-non-collapsing

Let M be an (n+1)-dimensional Ricci flow spacetime. Let s: [0, 00)—(0,00) be a de-
creasing function. We say that M is s-non-collapsed at scales below ¢ if, for each p<e

and all meM with t(m)>o?, whenever P(m, o, —0?) is unscathed and |Rm|<o~2 on

7

P(m, 0, —0?%), then we also have vol(B(m, g))>(t(m))o™. In the application to Ricci
flow with surgery, € will be taken to be the global parameter.

We refer to [44, §15] for the definitions of the I-function I(m) and the reduced volume
‘7(7') For notation, we recall that the [-function is defined in terms of £-geodesics going
backward in time from a basepoint m’€ M. The parameter 7 is backward time from m/,

ie. 7(m)=t(m')—t(m).

A.5. s¢-solutions

Given x€R*, a s»-solution M is a smooth Ricci flow solution defined on a time interval
of the form (—oo,C) (or (—oo,C]) such that the following properties are satisfied:

e the curvature is uniformly bounded on each compact time interval, and each time
slice is complete;

e the curvature operator is non-negative and the scalar curvature is everywhere
positive;

e the Ricci flow is »-non-collapsed at all scales.

We will sometimes talk about s-solutions without specifying ». Unless explicitly
specified, it is understood that C'=0. If (M,m) is a pointed s-solution, then we will
sometimes understand it to be defined on the interval (—oo, t(m)].

Examples of s-solutions are Cyl and Sphere.

Any pointed »-solution (M, m) has an asymptotic soliton. It is obtained by con-
structing the [-function using £-geodesics emanating backward from m. For any ¢t <t(m),
there is some point mj€M,; where {(m})<in. Put 7=t(m)—t. Then, the parabolic
rescaling (Ajl(r),m;) subconverges, as T—00, to a non-flat gradient shrinking soliton
called the asymptotic soliton [44, Proposition 39.1]. (In the cited reference, the conver-
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gence is shown on the (rescaled) time interval [71, f%}, but using the estimates of §A.7
one easily gets pointed convergence on the time interval (—oo,0).)

Hereafter, we suppose that the spacetime M of the s-solution is 4-dimensional. A
basic fact is that the space of pointed s-solutions (M, m), with R(m)=1, is compact
[44, Theorem 46.1].

Given 0 >0, let M denote the points in M that are not centers of §-necks. We call
these cap points. Put My s=M;NM;. From [44, Corollary 47.2], if  is small enough
then there is a C=C/(d, ») >0 such that, if M, is non-compact, then

e M, s is compact with Diam(M; 5)<CQ~'/? and

e C7'Q<R(m)<CQ whenever me M, 4,
where @Q=R(m/) for some m' €M, s.

If M is non-compact, and not a round shrinking cylinder, then M; ;#@. A version
of the preceding paragraph that also holds for compact s¢-solutions can be found in [44,
Corollary 48.1].

A compact s-solution is either a quotient of the round shrinking sphere, or is dif-
feomorphic to S3 or RP? [44, Lemma 59.3].

There is some >0 such that any s-solution is a sp-solution or a quotient of the
round shrinking S® [44, Proposition 50.1]

A.6. Gradient shrinking solitons

LEMMA A.2. Let M be a 3-dimensional gradient shrinking soliton that is a -
solution and blows up as t—0. For t<0 and a point (y,t)eM, let 1, €C°(My) be
the 1-function on M constructed using L-geodesics going backward in time from (y,t).
Then, there is a function loo €C°(M) such that the limit
tlah(?— byt = loo
exists, independent of y, with continuous convergence on compact subsets on M. Define
Vao: (—00,0)—5(0,00) as in (6.5). Then, one of the following statements holds:

(1) M is the shrinking round cylinder solution Cyl on S%xR, with

2 ~ 3/2
R(x’t):(_t)il lm((xaz)vt):1+_zizhf and Voo(t): 167; 5

(2) M is the Zy-quotient of the cylinder in (2), with Vi (t)=873/2/e; the pull-back
of loo to the cylinder is 1422 /(—4t);
(3) M is a shrinking round spherical space form Sphere /T, where I'CSO(4),
~ 16m2e3/2

R(x,t)zg(—t)—l, loc(x,t):% and Vo)==
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Proof. The classification of the solitons follows from [44, Corollary 51.22]. Let f be

a potential for the soliton, i.e.

1

Ric + Hess(f) = —519
and of
— = 2

There is a constant C such that R+|Vf|>+f/t=—C/t.

By [24, Theorem 3.7] and [56, Proposition 3.8], for any sequence ¢;—0~, after pass-

ing to a subsequence, there is a limit lim;_,o I, ;, with continuous convergence on com-

pact subsets of M. In the case of a gradient shrinking soliton, [20, §7.7.3] implies that

lim; o0 Iy 1, =f+C; cf. 24, Example 3.3]. Thus, the limit lim; ,o- [, ; exists and equals

f+C, independent of y. In our case, the formulas for I, and ‘700 now follow from

straightforward calculation.

A.7. Estimates on [-functions

O

We recall some estimates on the [-function that hold for s-solutions, taken from [81].

The letter C' will denote a generic universal constant. From [81, equation (2.53)],

r<<
T

From [81, equations (2.54) and (2.56)],

max([VI2, 1) < <.
2

From [81, equation (2.55)],

WVi(q1,7)— Vg2, 7)| < \/Ed(CIlan,T)'

From [81, equation (2.57)],

From [81, equation (3.7)],

Llan P (a1,
—Z(W)—HQM<l(q2,7)<2z(q1,7)+02M.

(A.3)

(A.5)

(A7)
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A.8. Canonical neighborhoods

In this subsection we recall the notion of a canonical neighborhood for a Ricci flow with
surgery, and define the notion of a canonical neighborhood in a singular Ricci flow. We
mention that this rather complicated looking definition is motivated by the structure of
»-solutions and the standard (post-surgery) solution.

Let r: [0,00)—(0, 00) be a decreasing function. Let >0 be small enough so that the
bullet points at the end of §A.5 hold (with d=¢). Let C;=C4(e) and C3=C5s(¢g) be the
constants in [44, Definition 69.1].

As in [44, Definition 69.1], a Ricci flow with surgery M defined on the time in-
terval [a, b] satisfies the r-canonical neighborhood assumption if every (z,t)e M;F with
scalar curvature R(x,t)>7(t)~2 has a canonical neighborhood in the corresponding for-

ward /backward time slice, in the following sense: there is an
€ (R(x,t) "2, C1R(z,t)~'/?)

and an open set UCM;Z, with B*(z,t,7)CUCB*(x,t,27), that falls into one of the
following categories:

(a) Ux[t—At,t]CM is a strong e-neck for some A¢>0 (note that, after parabolic
rescaling, the scalar curvature at (z,t) becomes 1, so the scale factor must be ~R(z,t),
which implies that At~ R(z,t)~1);

(b) U is an e-cap which, after rescaling, is e-close to the corresponding piece of a
»y-solution or a time slice of a standard solution;

(¢) U is a closed manifold diffeomorphic to S3 or RP3;

(d) U is e-close to a closed manifold of constant positive sectional curvature.

Moreover, the scalar curvature in U lies between C; ' R(z,t) and CoR(z,t). In cases
(a)—(c), the volume of U is greater than C; ' R(x,t)~3/2. In case (c), the infimal sectional
curvature of U is greater than Cy ' R(x, ).

Finally, we require that

IVR(z,t)| <nR(x,t)*? and ‘%f(z, t)‘ <nR(x,t)?% (A.8)

where 7 is the constant from [44, equation (59.5)]. Here, the time dervative

OR
E(a"ﬂ t)

should be interpreted as a one-sided derivative when the point (x,t) is added or removed
during surgery at time ¢.

We use a slightly simpler definition of canonical neighborhood in the case of singular
Ricci flows, for Definition 1.4. We do not need to consider forward /backward time slices
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and, in case (b), we do not need to consider the case where U is close to a time slice of

a standard solution.

Remark A.9. Alternatively, for a singular Ricci flow, one could replace the above
definition of canonical neighborhood with the requirement that every point satisfying
R>r(t)2 is e-modelled on a s(t)-solution. This is quantitatively equivalent to the

definition above, as follows from Proposition 5.15 and [44, Lemma 59.7].

A.9. Ricci flow with surgery

We recall that there are certain parameters in the definition of Ricci flow with surgery,
namely a number >0 and positive non-increasing functions r, s, d: [0, 00)— (0, 00). The
function 7 is the canonical neighborhood scale; cf. §A.8. The function s is the non-
collapsing parameter; cf. §A.4. The parameter € >0 is a global parameter in the definition
of a Ricci flow with surgery [44, Remark 58.5].

The function 6: [0, 00)— (0, 00) is a surgery parameter. There is a further parameter
h(t)<&2(t)r(t) such that, if a point (z,t) lies in an e-horn and has R(x,t)>h(t)~2, then
(x,t) is the center of a §(t)-neck [44, Lemma 71.1]. One can then perform surgery on
such cross-sectional 2-spheres [44, §72 and §73]. Perelman showed that there are positive
non-increasing step functions rp, »p and §p such that, if the (positive non-increasing)
function d satisfies §(t)<dp(t), then there is a well-defined Ricci flow with surgery, with
a discrete set of surgery times [44, Sections 77-80].

In particular, we may assume that ¢ is strictly decreasing. If r<rp and »<sxp
are positive functions, then the rp-canonical neighborhood assumption implies the r-
canonical neighborhood assumption, and sp-non-collapsing implies »-non-collapsing.
Hence, Ricci flow with surgery also exists in terms of the parameters (r, 5, 6). Conse-

quently, we may assume that r, 3¢ and § are strictly decreasing.

Remark A.10. We remark that for the purposes of this paper, it is necessary to
impose slightly stricter conditions on the surgery process than those that are needed for
the proof of the geometrization conjecture. Specifically, in the definition of Ricci flow
with (r,d)-cutoff [44, Definition 73.1], the surgery procedure involves choosing d-necks
inside e-horns, cutting along cross-sectional 2-spheres of the d-necks, and discarding the
tips of the e-horns; see steps (B)—(D) in [44, Definition 73.1]. Here, we require that the

d-necks are chosen so that the discarded tips have scalar curvature at least ﬁh_?

As in [44, §68], the formal structure of a Ricci flow with surgery is given by the
following data:
e a collection of Ricci flows {(M x[t;,t}), gr(-))i<k<n, where N<oo, My is a
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compact (possibly empty) manifold, ¢} =t,, for all I<k<N, and the flow g; goes sin-
gular at t; for each k<N; we allow t}, to be oo;

e a collection of limits {(2, gr) }1<k<n, in the sense of [44, §67], at the respective
final times ¢; that are singular if k<N (here ) is an open subset of M});

e a collection of isometric embeddings {¢x: X, — X, | hi<k<n, where X7 CQy and
X1 CMpy1, 1SE<N, are compact 3-dimensional submanifolds with boundary. The
X ,j”s are the subsets which survive the transition from one flow to the next, and the ;’s
give the identifications between them.

We will say that t is a singular time if t=t;=t,  , for some 1<k<N, or t=ty and
the metric goes singular at time ¢};.

A Ricci flow with surgery need not have any real surgeries, i.e. it could be a smooth
non-singular flow.

We now describe the Ricci flow spacetime associated with a Ricci flow with surgery.
We mention that in [44] a spacetime object was associated with a Ricci flow with surgery;
that construction was slightly different from the one used here, and did not produce
a Ricci flow spacetime in the sense of Definition 1.2. We begin with the time slab
M, x [ty t}] for 1<E<N, which has a time function t: M, x [t , t;]—[t;,, t}] given by the
projection onto the second factor, and a time vector field 0; inherited from the coordinate
vector field on the factor [t;,t}].

For every 1<k<N, put

Wy = (M \Int (X)) x {t). }

and, for 1<k<N, let
Wy = (M \Int (X)) x {t; }.

Since W' is a closed subset of the 4-manifold with boundary Mj, x [t;,t}], the comple-
ment Z,= (M x[t,,t}])\ (W, UW,") is a 4-manifold with boundary, where

02k = (M, x {ty., t )\ (W) UWy).

Note that the Ricci flow gi(-) with singular limit g defines a smooth metric g on the
sub-bundle ker dtCTZ}, that satisfies Lo, g =—2Ric(gx).
For every 1<k<N we glue Zj, to Z;4+1 using the identification

Tnt(X;) 25 Tnt(X,0y ),

to obtain a smooth 4-manifold with boundary M, where OM is the image of W UW},
under the quotient map | |, Z,—M. The time functions, time vector fields and metrics
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descend to M, yielding a tuple (M, t, d¢, g) which is a Ricci flow spacetime in the sense
of Definition 1.2.

Recall the notion of a normalized Riemannian manifold from the introduction. Our
convention is that the trace of the curvature operator is the scalar curvature. From [44,
Appendix BJ, if a smooth 3-dimensional Ricci flow M has normalized initial condition,

then the scalar curvature satisfies

3
> A1l
R(at) > - (A1)
If follows that the volume satisfies
V(t) < (1426)3/2V(0). (A.12)

These estimates also hold for a Ricci flow with surgery.
Let A be a symmetric 3x 3 real matrix. Let A; denote its smallest eigenvalue. For
t>0, put

K(t)={A:tr(A) > -3/(14¢t) and, if Ay < —1/(1+t), then (A.13)
tr(A4) = — A1 (log(—A1)+log(1+t)—3)}.

Then {K (t};>¢ is a family of O(3)-invariant convex sets which is preserved by the ODE on
the space of curvature operators [21, proof of Theorem 6.44]. If a smooth 3-dimensional
Ricci flow has normalized initial conditions, then the time-zero curvature operators lie in
K(0). Using (A.11), we obtain the Hamilton—-Ivey estimate, according to which, whenever

the lowest eigenvalue A (z,t) of the curvature operator satisfies A\; <—1/(1+4t), we have
R > -\ (log(—A1)+log(14+¢)—3). (A.14)

The surgery procedure is designed to ensure that (A.14) also holds for Ricci flows with
surgery.

(Perelman’s definition of a normalized Riemannian manifold is slightly different; he
requires that the sectional curvatures be bounded by 1 in absolute value [58, §5.1]. With
his convention, R(x,t)>—6/(1+4t) and V(¢)<(1+4t)%>/2V(0).)

Appendix B. Extension of Proposition 6.10

The main result in this appendix is Proposition B.1, which is an extension of Proposi-
tion 6.10 to general s-solutions. It uses similar ideas as Proposition 6.10, but is a bit
more complicated to state. We include this for the sake of completeness, as it gives a
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general quantitative picture of the behavior of s-solitons over time. It is not needed in
the body of the paper.

Let M be a »-solution defined on (—o00,0], and I: Mo—R be the [-function with
spacetime basepoint (z,0)€M,. Roughly speaking, Proposition B.1 says that the re-
duced volume for a s-solution, as a function of time, has two types of behavior: it can
remain close to the reduced volume of a gradient shrinking soliton over a long time in-
terval, or it can transition relatively quickly between two such values. During long time
intervals of the former kind, the s-solution and [-function are close, modulo parabolic
scaling, to a gradient shrinking soliton and its [-function. We now give the details.

Fix »>0. By Lemma A.2, there are only finitely many 3-dimensional gradient
shrinking solitons that are s-solutions. Let V5012{0<‘~/1<...<‘~/K} be the set of their

reduced volumes, in the sense of Lemma A.2.

PROPOSITION B.1. For all £€>0 and C<oo there is a 90=9(¢,C)<oo with the fol-
lowing property. Suppose that

o M is a x-solution defined on (—o0,0];

o (z,0)eMy;

o [: M_o—R is the [-function on M with spacetime basepoint (x,0).

Then, there is a partition P={—oco<Ty<...<T;=—1} of (—o0,—1], with i<2[Vsal,
such that if I;=[T;_1,T;] for j>0 and Iy=(—o00,Ty), then the following hold:

(1) if j is odd, then T;_1/T;<0;

(2) if j is even, then

(2a) for every (y,t)eMy,, with I(y,t)<C, the rescaled triple (M(=t), (y,1),1) is
é-close to a triple (M, (Yoo, —1),loc), where M is a gradient shrinking soliton with
potential function lo,, and ‘N/(t) is €-close to the reduced volume of M (see §A.2 for
the definition of é-closeness of triples);

(2b) [V(I;)NVsol|=1 if §>0 and |V (I;)NVaot| =0 if j=0;

(2¢) V(t) tends to an element of V) as t——oc.

We begin with a lemma.

LEMMA B.2. For all e1>0 and C<oo there exist u=pu(e1,C)<oo and 0(e1,C)>0
with the following property.

Let M be a »-solution defined on (—00,0], let (x,0)EMy be a basepoint and let
I:Moo—R be the corresponding l-function. Suppose that

o T'<T<0;
T /T>p;
V(T)<V(T")+6;
(y, T)eMr is a point where l(y, T)<C.
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Then, the rescaled triple (./\/;l(fT), (y,—1),1) is e1-close to a triple
(Moov (yom _1)7 lOO)a

where M is a gradient shrinking soliton with potential function l,, and V(T) 18 €1-

close to the reduced volume of M.

Proof. Suppose the lemma were false. Then, for some £; >0 and C'<oo there would
be sequences {M7}32,, {T} ?‘;I,N {Tj};-’oil and {y;}52, with T;<T;<0, (y;,Tj)eM’,
limj e T} /Tj=00 and limj e [V (T;) =V (1})|=0, but for each j the rescaled triple
(]\7[j(—Tj)7 (y;j,—1),1;) does not satisfy the conclusion of the lemma. Proposition 6.4
implies that, after passing to a subsequence, we have convergence of triples to a -
solution (M, (yoo; —1),loc). From the assumed properties of {M7}52,, the reduced
volume Vi, (t) of M will be constant for t<—1. Hence, M is a gradient shrinking

soliton, which gives a contradiction. O

Proof of Proposition B.1. From the monotonicity of the reduced volume 17(1?), the
existence of the asymptotic soliton and the fact that lim;_,q XN/(t):r/Rs (the reduced vol-
ume of flat R3 as a gradient shrinking soliton), it follows that, for all € (—o0, 0), we have
V(t)e[Vh, Vas].

Let p11=p(¢,C) and 6;=0(¢, C) be as in Lemma B.2. Choose ¢} <min (361, ‘71) small
enough so that the intervals {[IN/J»—G’17 f/j—l—G'l]}lgng are disjoint. Put

J; = V40, Vi1 —0,] for 1<j<K,

and Jg =[Vic+0}, Vis).

Putting szff_l(jj)ﬂ(—oo, —1] for 1< <K, we obtain a collection {J;}1<;<k of
at most K intervals in (—oo, —1].

We know that, for each t<0, there is a point y: € M, with I(y;, t)é%. Let

pe=p(07,2) and 6O, =0(07,2)

be as in Lemma B.2. Note that, for every 1<j <K, since dist(V (), Vsor) =8 for all ted;,
the contrapositive of Lemma B.2 implies that, for any 7", T'€J; with ‘7(T)<17(T’)+02,
we have T’ /T < 1. Tterating this 1+ [0, " length(J;)| times gives a bound
inf Jj
sup J;

<wpz=p3(&C).

The complement of |J; J; in (—oo, —1] is a union of open intervals. Let I=(t-,t.)

be one such interval. Then, V|; takes values in an interval of length at most 26} <6;.
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Therefore, by Lemma B.2, if t€l and t>t_/uy, then for all ye M, with I(y,t)<C,
conclusion (2a) of Proposition B.1 holds.

Thus, we may obtain the desired partition of (—oo,—1] by enlarging each non-
empty interval Jj=[t;_1,t;] to J;=[t;_1,t;/pu1], forming the union (J; J, and taking the
associated partition of (—oo, —1]. Conclusion (2b) of the proposition follows from the
construction. Conclusion (2c) of the proposition follows from the finiteness of Vs, the
monotonicity of the reduced volume and the existence of the asymptotic soliton. O

COROLLARY B.3. With the notation of Proposition B.1, depending on the topology
of Moy, the sequence {M* }o<a;<i of gradient shrinking solitons must necessarily be one
of the following:

(1) My is diffeomorphic to a spherical space form other than S or S3/Zs:

{Sphere /T'};
(2) My is diffeomorphic to the cylinder:
{Cyl};

(3) My is diffeomorphic to the Za-quotient of the cylinder:

{Cyl/Zs,Cyl}, {Cyl/Zs}, {Cyl};
(4) My is diffeomorphic to S3:

{Cyl, Sphere}, {Sphere}, {Cyl};
(5) My is diffeomorphic to S3/Zs:

{Cyl/Zs,Sphere /Z>}, {Sphere/Zs}, {Cyl/Zs}, {Cyl/Zs,Cyl}, {Cyl}.

Proof. The relevant gradient shrinking solitons are Cyl /Zo, Sphere /Zy, Cyl and
Sphere. From Lemma A.2, their reduced volumes are 16.39, 17.62, 32.78 and 35.24, re-
spectively. The corollary follows from the fact that the reduced volumes of the M?’s
form a strictly increasing sequence, the local stability of quotients of Sphere, and topo-

logical restrictions. O

Remark B.4. From explicit calculations, one can rule out the {Cyl} possibility in
case (3) of Corollary B.3. We expect that one can also rule out the {Cyl} possibility in
case (5).
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Appendix C. Non-negative isotropic curvature in four dimensions

In this appendix we extend the results of the paper to 4-dimensional Ricci flow with
non-negative isotropic curvature, under an assumption of no incompressible embedded
spherical space forms. The basic results about such flows are due to Hamilton [35].

Let (M, g) be a closed oriented 4-manifold with non-negative isotropic curvature.
Suppose that, under Ricci flow, the isotropic curvature does not immediately become
positive. By [54, Theorem 4.10], one of the following statements holds:

(1) (M,g) is flat;

(2) the universal cover (M,§) is an isometric product of metrics on $2 and a sur-
face 3;

(3) M is biholomorphic to CP? and g is a Kihler metric with positive first Chern
class.

In these three cases, the Ricci flow is well understood. In case (1), it is just a static
flow. In cases (2) and (3), the ensuing Ricci flow will be smooth on a time interval
[0,T) and non-existent thereafter. Hence, we assume that (M, g) has positive isotropic
curvature. This condition is preserved under the Ricci flow.

There is a version of the Hamilton—Ivey inequality for Ricci flow on a 4-manifold
with positive isotropic curvature [35, §B]. It has the implication that any blow-up limit
is a x-solution with positive isotropic curvature, and restricted isotropic curvature in the
sense of [18, equation (2.4)]. Any such compact solution is diffeomorphic to S*. Any such
non-compact solution is diffeomorphic to R%, or is an isometric product R x Z, where Z
is diffeomorphic to a spherical space form.

Using [56], we have the following extension of Lemma A.2.

LEMMA C.1. Let M be a 4-dimensional gradient shrinking soliton that is a -
solution, has positive isotropic curvature and restricted isotropic curvature in the termi-
nology of [18, equation (2.4)], and blows up as t—0. Given t<0 and a point (y,t)EM,
let 1, €C™(My) be the l-function on M constructed using L-geodesics going backward
in time from (y,t). Then, there is a function loo € C®(M) such that the limit

lim ly,t = loo

t—0— °
exists, independent of vy, with continuous convergence on compact subsets on M. Define
Vao: (—00,0)—5(0,00) as in (6.5). Then, one of the following statements holds:

(1) M is isometric to the shrinking round cylinder solution on (S3/T)xR, where
I'cSO(4), with

3 22 3275/2¢=3/2

R(m,t)zg(—t)*l’ lw((m’z)’t):§+—74t and XN/Oo(t)—T7



130 B. KLEINER AND J. LOTT

(2) M is a shrinking round S*, with

1 ~ 9672
R(z,t)=2(—t)"", lo(z,t)=2 and Vi(t)= —7

Let (M, g) be a compact 4-manifold with positive isotropic curvature and no em-
bedded mi-injective spherical space forms. The construction of Ricci flow with surgery,
starting from (M,g), was initiated by Hamilton [35]. There was a problem with [35]
because no canonical neighborhood result was available at that time. The construction
was revisited by Chen-Zhu [18], based on Perelman’s work in the 3-dimensional case
[57], [58] and a preprint version of [44]. The result of Lemma C.1, which follows from
[56], was not available when [18] was written. With the incorporation of Lemma C.1, the
construction of the Ricci flow with surgery is strictly analogous to Perelman’s work.

The results of the present paper now extend to the setting of 4-dimensional singular
Ricci flows with positive isotropic curvature, again under the assumption that the initial
time slice does not have any embedded 7;-injective spherical space forms.

Returning to Ricci flow with surgery, suppose that there are such embedded spherical
space forms in the initial time slice. There is still a well-defined Ricci flow with surgery,
but the time slices may be orbifolds with isolated singularities [17]. It should be possible
to extend the results of the present paper to the orbifold setting, using [45], but we do

not address the subject here.
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