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Abstract

We characterize groups quasi-isometric to a right-angled Artin group (RAAG) G with
finite outer automorphism group. In particular, all such groups admit a geometric
action on a CAT(0) cube complex that has an equivariant “fibering” over the Davis
building of G. This characterization will be used in forthcoming work of the first

author to give a commensurability classification of the groups quasi-isometric to cer-
tain RAAGs.
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1. Introduction

Overview

In this article we will study right-angled Artin groups (RAAGs). Like other authors,
our motivation for considering these groups stems from the fact that they are an eas-
ily defined yet remarkably rich class of objects, exhibiting interesting features from
many different vantage points: algebraic structure (subgroup structure, automorphism
groups; see [17], [24], [47], [56]), finiteness properties (see [8], [11]), representa-
tion varieties (see [43]), CAT(0) geometry (see [21]), cube complex geometry (see
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[34], [62]), and coarse geometry (see [5], [6], [9], [13], [36], [37], [61]). Further
impetus for studying RAAGs comes from their role in the theory of special cube
complexes, which was a key ingredient in Agol’s spectacular solution of Thurston’s
virtual Haken and virtual fibered conjectures (see [2], [34], [40], [53], [62]).

Our focus here is on quasi-isometric rigidity, which is part of Gromov’s pro-
gram for quasi-isometric classification of groups and metric spaces. In this article we
build on [9], [10], [37], and [36], which analyzed the structure of individual quasi-
isometries G — G, where G is a RAAG with finite outer automorphism group. Our
main results are a structure theorem for groups of quasi-isometries (more precisely
quasiactions) and a characterization of finitely generated groups quasi-isometric to
such RAAGs. Both are formulated using a geometric description in terms of Caprace—
Sageev [14] restriction quotients and the Davis [22] building.

Background

Prior results on quasi-isometric classification of RAAGs may be loosely divided into

two types: internal quasi-isometry classification among (families of) RAAGs and

quasi-isometry rigidity results characterizing arbitrary finitely generated groups
quasi-isometric to a given RAAG. In the former category, it is known that, to clas-
sify RAAGs up to quasi-isometry, it suffices to consider the case when the groups
are 1-ended and do not admit any nontrivial direct product decomposition or, equiv-
alently, when their defining graphs are connected, contain more than one vertex, and
do not admit a nontrivial join decomposition (see [36, Theorem 2.9], [41], [51]). This
covers, for instance, the classification up to quasi-isometry of RAAGs that may be

formed inductively by taking products or free products, starting from copies of Z.

Beyond this, internal classification is known for RAAGs whose defining graph is a

tree (see [6]) or a higher dimension analogue (see [5]) or when the outer automor-

phism group is finite (see [9], [36]). General quasi-isometric classification results in
the literature are much more limited; if H is a finitely generated group quasi-isometric
to a RAAG G, then we have the following.

1) If G is free or free Abelian, then H is virtually free or free Abelian, respec-
tively (see [4], [25], [27], [57]).

(i) IfG = Fy x Z*, then H is virtually Fj x Z* (see [60]).

(iii)  If the defining graph of G is a tree, then H is virtually the fundamental group
of a nongeometric graph manifold that has nonempty boundary in every Seifert
fiber space component, and consequently, H is virtually cocompactly cubu-
lated (see [6], [31], [42]).

(iv) If G is a product of free groups, then H acts geometrically on a product of
trees (see [3], [41], [49]).
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Unlike (i)—(iii), which give characterizations up to commensurability, the characteri-
zation in (iv) only asserts the existence of an action on a good geometric model; the
stronger commensurability assertion is false, in view of examples of Wise [61] and
Burger—-Mozes [13].

The setup

We now recall some terminology and notation; see Section 3 for more details. If "
is a finite simplicial graph with vertex set V(I"), we denote the associated RAAG by
G(T"). This is the fundamental group of the Salvetti complex S(I'), a nonpositively
curved cube complex that may be constructed by choosing a pointed unit-length circle
(S, *y) for every vertex v € V(I"), forming the pointed product torus [, (S}, *y),
and passing to the union of the product subtori corresponding to the cliques (complete
subgraphs) in I". The clique subtori are the standard tori in S(I").

We denote the universal covering by X(I'") — S(I"); here X(I") is a CAT(0) cube
complex on which G(I") acts geometrically by deck transformations. The inverse
image of a standard torus in S(I") under the universal covering X (I") — S(I") breaks
up into connected components; these are the standard flats in X(I") which we partially
order by inclusion. Note that we include standard tori and standard flats of dimen-
sion 0.

The poset of standard flats in X(I") turns out to be crucial to our story. Using
it one may define a locally infinite CAT(0) cube complex |B|(I") whose cubes of
dimension k > 0 are indexed by inclusions F; C F5, and Fp, F, are standard flats
where dim F, = dim F; + k. Elements of the 0-skeleton | 8| (") correspond to the
trivial inclusions F C F, where F is a standard flat, so we will identify | 8] (I")
with the collection of standard flats and define the rank of a vertex of |B|(T") to be
the dimension of the corresponding standard flat; in particular, we may identify the
0-skeleton X ©(I") with the set of rank 0 vertices of |B|®. Since G(I') ~ X(I')
preserves the collection of standard flats, there is an induced action G(I") ~ |B|(T")
by cubical isomorphisms. The above description is a slight variation on the origi-
nal construction of the same object given by Davis, in which one views |B|(I") as
the Davis realization of a certain right-angled building B(I") associated with G(I),
where the apartments of B (I") are modelled on the right-angled Coxeter group W (I")
with defining graph I" (see [22] and Section 3). By abuse of terminology we will refer
to this cube complex as the Davis building associated with G(I'); it has been called
the modified Deligne complex in [19] and flat space in [10].

The following lemma is not difficult to prove.
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LEMMA 1.1

. Every isomorphism | 8| (") — | B|©(T") of the poset of standard flats ext-
ends to a unique cubical isomorphism |B|(I') — | B|(T") (Section 3.4).

. Every cubical isomorphism of |B| — |B| induces a poset isomorphism
|B|©@ — |B|© (Lemma 3.15).

. A bijection ¢© : |B|OT) > XOT) - XOT) ¢ |B|O() induces/
extends to a poset isomorphism |B|© (') — | B|©(T) if and only if it is flat-
preserving in the sense that, for every standard flat Fy C X(I"), the 0-skeleton
F 1(0) is mapped bijectively by ¢©@ onto the 0-skeleton of some standard flat
F, (Section 5.1).

Remark 1.2

We caution the reader that a cubical isomorphism |B|(I") — |8B|(T") need not arise
from an isomorphism B(I") — B(T") of the right-angled building, because a cubical
isomorphism need not preserve residue types.

Rigidity and flexibility

We now fix a finite graph I" such that the outer automorphism group Out(G(I")) is
finite; by work of [20] and [23], one may view this as the generic case. The reader
may find it helpful to keep in mind the case when I" is a pentagon. Since there is no
ambiguity in I’ we will often suppress it in the notation below.

It is known that, even if Out(G(I")) is finite, X = X (") is not quasi-isometrically
rigid: there are quasi-isometries that are not at a finite sup distance from isometries,
and there are finitely generated groups H that are quasi-isometric to X, but do not
admit geometric actions on X (Corollary 6.11). On the other hand, quasi-isometries
exhibit a form of partial rigidity that is captured by the building |8B|. The follow-
ing result is a consequence of [36, Theorem 4.18] (see also [9, Theorem 1.6]) and
Lemma 1.1.

THEOREM 1.3

Suppose Out(G(T")) is finite and G(T) £ Z. If ¢ : X @ — X O s an (L, A)-quasi-
isometry, then there is a unique cubical isomorphism |B| — |B| such that the asso-
ciated flat-preserving bijection ¢ : X @ — X © s at finite sup distance from ¢, and
moreover,

d(¢.¢) =sup{v € X | d(¢(v).¢(v))} < D = D(L, A).

By the uniqueness assertion, we obtain a cubical action QU(X) ~ |B] of the quasi-
isometry group of X on |8|.
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We point out that the partial rigidity statement of the theorem does not hold
for general RAAGS; in fact, it holds only for the RAAGs covered by [36, Theo-
rem 4.18], because when Out(G(I")) is infinite, there are automorphisms of G(I")—
either transvections or partial conjugations (see [47], [56])—which do not satisfy the
conclusion of the above theorem.

The main results

We will produce good geometric models quasi-isometric to X(I") that are simultane-
ously compatible with group actions, the underlying building | 8|, and cubical struc-
ture. The key idea for expressing this is the following.

Definition 1.4

A cubical map g : Y — Z between CAT(0) cube complexes (see Definition 3.4) is a
restriction quotient if it is surjective and the point inverse ¢~ (z) is a convex subset
of Y foreveryz € Z.

It turns out that restriction quotients as defined above are essentially equivalent to
the class of mappings introduced by Caprace—Sageev [14] with a different definition
(see Section 4 for the proof that the definitions are equivalent). Restriction quotients
Y — | 8| provide a means to “resolve” or “blow up” the locally infinite building | 8]
to a locally finite CAT(0) cube complex.

THEOREM 1.5 (see Section 3 for definitions)

Let H ~ X be a quasiaction of an arbitrary group on X = X(I'), where Out(G(T"))

is finite and G(I") 2 7. Then there is an H -equivariant restriction quotient H

Y L HA~ | B| where the following hold.

(a) H ~ |8| is the cubical action arising from the quasiaction H ~ X using
Theorem 1.3, and H ~ Y is a cubical action.

(b) The point inverse g~ (v) of every rank k vertex v € | B|© is a copy of R¥
with the usual cubulation.

() H ~ X is quasiconjugate to the cubical action H ~ Y.

THEOREM 1.6

If |Out(G(T"))| < oo and G(T') % Z, then a finitely generated group H is quasi-
isometric to G(I') if and only if there is an H -equivariant restriction quotient H
Y L HA | B|, where the following hold.

(a) H ~Y is a geometric cubical action.

(b) H ~ |B]| is cubical.
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(©) The point inverse ¢~ (v) of every rank k vertex v € |B|© is a copy of R¥
with the usual cubulation.

Remark 1.7
In fact, the restriction quotient ¥ — |B| in Theorems 1.5 and 1.6 has slightly more
structure (see Theorem 6.2).

In particular, we have the following result.

COROLLARY 1.8
Any group quasi-isometric to G is cocompactly cubulated, that is, it has a geometric
cubical action on a CAT(0) cube complex.

One may compare Theorem 1.6 with rigidity theorems for symmetric spaces or
products of trees, which characterize a quasi-isometry class of groups by the existence
of a geometric action on a model space of a specified type (see [3], [25], [28], [41],
[45], [49], [50], [57]-[59]). As in the case of products of trees—and unlike the case
of symmetric spaces—there are finitely generated groups H as in Theorem 1.6 which
do not admit a geometric action on the original model space X, so one is forced to
pass to a different space Y (see [9], [36]). Also, Theorems 1.5 and 1.6 fail for general
RAAG:sS, for instance, for free Abelian groups of rank at least 2 and for products of
non-Abelian free groups [ [, G, fork > 1.

The quasi-isometry invariance of the existence of a cocompact cubulation as
asserted in Corollary 1.8 is false in general. Some groups quasi-isometric to H? x R
admit a cocompact cubulation, while others are not virtually CAT(0) (see [12]). Com-
bining [6], [48], and [31], it follows that there is a pair of quasi-isometric CAT(0)
graph manifold groups, one of which is the fundamental group of a compact special
cube complex, while the other is not virtually cocompactly cubulated. The quasi-
isometry invariance of cocompact cubulations fails to hold even among RAAGs: for
n > 1 there are groups commensurable to Z" that are not cocompactly cubulated
(see [30]).

Earlier cocompact cubulation theorems in the spirit of Corollary 1.8 include the
cases of groups quasi-isometric to trees, products of trees, and hyperbolic k-space HF
for k € {2,3} (see [3], [7], [25], [26], [40], [41], [49], [57]). It is worth noting that
each case requires different ingredients that are specific to the spaces in question.

Further results
We briefly discuss some further results here, referring the reader to the body of the
article for details. One portion of the proof of Theorem 1.5 has to do with the geometry
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of restriction quotients and, more specifically, restriction quotients with a right-angled

building as the target. We view this as a contribution to cube complex geometry and

to the geometric theory of graph products; beyond the references mentioned already,

our treatment has been influenced by the papers of J anuszkiewicz—Swiatkowski [39]

and Haglund [32]. The main results on this are as follows.

(a) We show in Section 4 that restriction quotients may be characterized in several
different ways.

(b) We show that having a restriction quotient g : ¥ — Z is equivalent to knowing
certain “fiber data” living on the target complex Z.

(c) When | 8| is the Davis realization of a right-angled building 8 and ¥ — |B|
is a restriction quotient whose fibers are copies of R¥ with dimension specified
as in Theorems 1.5 and 1.6, the fiber data in (b) may be distilled even more,
leading to what we call “blow-up data.”

As by-products of (a)—(c), we obtain the following.

. A characterization of the quasiactions H ~ X(I") that are quasiconjugate to
isometric actions H ~ X(I") (see Section 6.2).

. A characterization of the restriction quotients Y — |8B]| satisfying
Theorem 1.5(b) for which Y is quasi-isometric to X (see Corollary 6.4, The-
orem 6.5).

. A proof of uniqueness of the right-angled building modelled on the right-

angled Coxeter group W(I") with defining graph I', with countably infinite
rank 1 residues (Corollary 5.21). This was previously established in [33].

It follows from [46] that a finitely generated group H quasi-isometric to a sym-
metric space of noncompact type X admits an epimorphism H — A with finite ker-
nel, where A is a cocompact lattice in the isometry group Isom(X). In contrast to this,
we have the following result, which is inspired by [49, Theorem 9 and Corollary 10].

THEOREM 1.9 (see Theorem 6.10)

Suppose G is a RAAG with G(I') £ Z and | Out(G)| < co. Then there are finitely
generated groups H and H' quasi-isometric to G that do not admit discrete, virtually
faithful cocompact representations into the same locally compact topological group.

Open questions
As mentioned above, Corollary 1.8 may be considered part of the quasi-isometry
classification program for finitely generated groups. This leads to the following.

Question 1.10
If Out(G(I")) is finite, what is the commensurability classification of groups quasi-
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isometric to G(I")? Are they all commensurable to G(I")? What about cocompact
lattices in the automorphism group of X(I")?

For comparison, we recall that any group quasi-isometric to a tree is commensu-
rable to a free group, but there are groups quasi-isometric to a product of trees that
contain no nontrivial finite-index subgroups and are therefore not commensurable to
a product of free groups (see [13], [61]). We mention that Theorem 1.6 will be used
in [38] to answer Question 1.10 in certain cases.

Another question motivated by Corollary 1.8 is the following.

Question 1.11
Under what conditions on a RAAG G must every group quasi-isometric to G be
virtually cocompactly cubulated?

Discussion of the proofs

Before sketching the arguments for Theorems 1.5 and 1.6, we first illustrate them
in the tautological case when H = G and the quasiaction is the deck group action
G ~ X. In this case, we cannot take ¥ = X, as there is no H -equivariant restriction
quotient H ~ X — H ~ |B] satisfying Theorem 1.6(c). Instead, we use a different
geometric model.

Definition 1.12 (Graph products of spaces [32])

For every vertex v € V(I"), choose a pointed geodesic metric space (Zy, *y). The
I-graph product of {(Z, *v) }vev(r) is obtained by forming the product [, (Z,, *,)
and passing to the union of the subproducts corresponding to the cliques in I". We
denote this by [[(Zy, *,). When the Z,,’s are nonpositively curved, then so is the
graph product (see [32, Corollary 4.6]).

There are three graph products that are useful here.

(1) The Salvetti complex S(T') is the graph product [ (S}, *,), where (S}, %,)
is a pointed unit circle.

(2)  Forevery v € V(I'), let (L, x,) be a pointed lollipop, that is, L, is the wedge
of the unit circle Sl} and a unit interval I,, and the base point %, € L, is
the vertex of valence 1. Then the graph product [ [ (L. *y) is the exploded
Salvetti complex S, = S.(I"). We denote its universal covering by X, — S..

3) If (Zy, *y) is a unit interval and x, € Z, is an endpoint for every v € V(I'),
then the graph product [ [-(Z,, *y) is the Davis chamber, that is, it is a copy
of the Davis realization |c| of a chamber ¢ in |B|(I"); for this reason we will
denote it by |c|r.
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By collapsing the interval 7, in each lollipop L, to a point, we obtain a cubical map
Se — §; this has contractible point inverses, and is therefore a homotopy equivalence.
If we collapse the circles SI} C L, to points instead, we get a map S, — |c|r to the
Davis chamber whose point inverses are closed, locally convex tori. The point inverses
of the composition X, — S, — |c|r cover the torus point inverses of S, — |¢|r, and
their connected components form a “foliation” of X, by flat convex subspaces. It turns
out that by collapsing X, along these flat subspaces, we obtain a copy of |8, and the
quotient map X, — |B| is a restriction quotient X, — |B|. Alternately, one may
take the collection K of hyperplanes of X, dual to edges 0 C X, whose projection
under X, — |c|r is an edge, and then one may form the restriction quotient using the
Caprace—Sageev construction.

Remark 1.13

The exploded Salvetti complex and the restriction quotient X, — | 8| were discussed
in [9] in the 2-dimensional case, using an ad hoc construction that was initially
invented for “ease of visualization.” However, the authors were unaware of the general
description above, and the notion of restriction quotient had not yet appeared.

We now discuss the proofs of Theorem 1.5 and the forward direction of Theo-
rem 1.6.
The forward direction of Theorem 1.6 reduces to Theorem 1.5, by the standard

observation that a quasi-isometry H — G L X allows us to quasiconjugate the left
translation action H ~ H to a quasiaction H ~ X. Therefore, we focus on Theo-
rem 1.5.

Let H ~ X be as in Theorem 1.5. By a bounded perturbation, we may assume
that this quasiaction preserves the O-skeleton X c X. Applying Theorem 1.3, we
may further assume that we have an action H ~ X© by flat-preserving quasi-
isometries. The fact the we have an action, rather than just a quasiaction, comes from
the uniqueness in Theorem 1.3; this turns out to be a crucial point in the rest of this
article.

Given a standard geodesic £ C X, the parallel set Py C X decomposes as a prod-
uct Ry x Oy, where Ry is a copy of R; likewise there is a product decomposition of
0-skeleta PZ(O) ~ 7y X QEO). One argues that the action H ~ X © permutes the col-
lection of 0-skeleta {PE(O)}g and that, for any £, the stabilizer Stab(PZ(O), H) of PZ(O)
in H acts on PZ(O) ~ 7y X QEO), preserving the product structure. We call the action
H, = Stab(Pe(O), H) ~ 7y a factor action. The factor actions are by bijections with
quasi-isometry constants bounded uniformly independent of £. See Definition 5.32 for
a rigorous definition of factor action and Section 6 for more details on the argument
in this paragraph.



546 HUANG and KLEINER

It turns out that factor actions play a central role in the story. For instance, when
the action H ~ X is the restriction of an action H ~ X by cubical isometries, the
factor action Hy ~ Zy is also an action by isometries for every standard geodesic £.
In general, the factor actions can be arbitrary: up to isometric conjugacy, any action
A ~ Z by quasi-isometries with uniform constants can arise as a factor action for
some action as in Theorem 1.5. A key step in the proof is to show that such actions
have a relatively simple structure.

PROPOSITION 1.14 (Semiconjugacy)
Let U R 7 be an action of an arbitrary group by (L, A)-quasi-isometries. Then there

. . . . o1 L . ..
is an isometric action U ™ 7, and surjective equivariant (L/ LA )-quasi-isometry

UR7Z—URZ,

where L' and A’ depend only on L and A.
This is proved in Proposition 6.3.

Remark 1.15

The assumption that pg is an action, as opposed to a quasiaction, is crucial: if a group
U has a nontrivial quasihomomorphism « : U — R, then the translation quasiaction
U AR defined by &(u)(x) = x + a(u) is quasiconjugate to a quasiaction on Z, but
not to an isometric action on Z.

It follows immediately from Proposition 1.14 that U R 7 is quasiconjugate to
an isometric action on the tree R. In that respect Proposition 1.14 is similar to the
theorem of Mosher—Sageev—Whyte [49, Theorem 1] about promoting quasiactions
on bushy trees to isometric actions on trees. Since R is not bushy, [49, Theorem 1]
does not apply, and indeed, the example above shows that the assumption of bushiness
is essential in that theorem.

Continuing with the proof of Theorem 1.5, we see that Proposition 1.14 gives a
good geometric model for the factor action Stab(PE(O), H) ~ Zy: we simply extend
each isometry Z; — Z; to an isometry R, — Ry, thereby obtaining a cubical action
Stab(Pe(O), H) ~ Ry. In vague terms, the remainder of the proof is concerned with
combining these cubical models into models for the fibers of a restriction quotient
Z — |B| in an H -equivariant way. This portion of the proof is covered by more
general results about restriction quotients (see (b) and (c) in the “Further results”
section).
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Organization of the article

A summary of notation can be found in Section 2. Section 3 contains some back-
ground material on quasiactions, CAT(0) cube complexes, RAAGs, and buildings.
One can proceed directly to later sections with Sections 2 and 3 as references.

The main part of the article is Sections 4—7, where we prove Theorem 1.6. In Sec-
tion 4 we discuss restriction quotients, showing how to construct a restriction quotient
Y — Z starting from the target Z and an admissible assignment of fibers to the cubes
of Z. Then we discuss equivariance properties and the coarse geometry of restriction
quotients.

In Section 5, we introduce blowups of buildings based on Section 4. These are
restriction quotients ¥ — |B], where the target is a right-angled building and the
fibers are Euclidean spaces of varying dimension. We motivate our construction in
Sections 5.1 and 5.2. Blowups of buildings are constructed in Section 5.3. Several
properties of them are discussed in Sections 5.4 and 5.5. We incorporate a group
action into our construction in Section 5.6.

In Section 6.1, we apply the construction in Section 5.6 to RAAGs and prove The-
orem 1.6 modulo Theorem 1.14, which is postponed until Section 7. In Section 6.2 we
answer several natural questions motivated by Theorem 1.6 and prove Theorem 1.9.

2. Index of notation

. B: a combinatorial building (Section 3.4).

. |8B]: the Davis realization of a building (Section 3.4).

. Chambers in the combinatorial building 8B are ¢, ¢/, d.

. |c|r: the Davis chamber (the discussion after Definition 1.12, Section 3.4).

. S the collection of all spherical residues in the building 8.

. projg : 8 — R: the nearest point projection from B to a residue R (Sec-
tion 3.4).

. A g: the collection of parallel classes of rank 1 residues in the combinatorial
building B. We also write A when the building 8 is clear (Section 5.3).

. T: a type map which assigns each residue of B a subset of A g (Section 5.3).

. CCC: the category of nonempty CAT(0) cube complexes with morphisms
given by convex cubical embeddings.

. Pc: the parallel set of a closed convex subset of a CAT(0) space (Section 3.2).

. W(I'): the right-angled Coxeter group with defining graph I" (Section 3.4).

. G(I'): the RAAG with defining graph I

. X(T') — S(I'): the universal covering of the Salvetti complex (Section 3.3).

. Xe(I') = Se(IM): the universal covering of the exploded Salvetti complex
(after Definition 1.12 and Section 5.1). We also write X, — S, when the graph
I" is clear.
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. & (T'): the extension complex (Definition 3.5).

. X — X(K): the restriction quotient arising from a set K of hyperplanes in a
CAT(0) cube complex (Definition 1.4).

. Lk(x,X) or Lk(c, X): the link of a vertex x or a cell ¢ in a polyhedral com-

plex X.
. T' o T'y: the join of two graphs.
. K * K;: the join of two simplicial complexes.

3. Preliminaries

3.1. Quasiactions
We recall several definitions from coarse geometry.

Definition 3.1

An (L, A)-quasiaction of a group G on a metric space Z isamap p: G x Z — Z such
that p(y,-) : Z — Z is an (L, A) quasi-isometry for every y € G, d(p(y1,p(y2,2)),
p(y1y2.2)) < Aforevery y1,y2 € G,z € Z,and d(p(e,z),z) < A forevery z € Z.

The action p is discrete if, for any point z € Z and any R > 0, the set of all
y € G such that p(y, z) is contained in the ball Bg(z) is finite; p is cobounded if Z
coincides with a finite tubular neighborhood of the “orbit” p(G, z). If p is a discrete
and cobounded quasiaction of G on Z, then the orbit map y € G — p(y, z) is a quasi-
isometry. Conversely, given a quasi-isometry between G and Z, it induces a discrete
and cobounded quasiaction of G on Z.

Two quasiactions p and p’ are equivalent if there exists a constant D such that

sup supd (p(y.2).p'(y.2)) < D.
yeG zeZ

Definition 3.2
Let p and p’ be quasiactions of G on Z and Z’, respectively, and let ¢ : Z — Z' be a
quasi-isometry. Then p is quasiconjugate to p’ via ¢ if there is a D such that

sup sup d(¢ o p(y,2), ' (v, ¢(2)) < D.
yeG zeZ

3.2. CAT(0) cube complexes
We refer to [12] for background about CAT(0) spaces ([12, Chapter I1.1]) and cube
complexes ([12, Chapter I1.5]). We refer to [53] and [54] for CAT(0) cube complexes
and hyperplanes.

A unit Euclidean n-cube is [0, 1]" with the standard metric. A midcube is the
set of fixed points of a reflection with respect to some [0, 1]-factor of [0, 1]*. A cube
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complex Y is obtained by taking a collection of unit Euclidean cubes and gluing them

along isometric faces. The gluing metric on Y is CAT(0) if and only if Y is simply

connected and the link of each vertex in Y is a flag simplicial complex (see [29]); in
this case, Y is called a CAT(0) cube complex.

Let X be a complete CAT(0) space, and let C C X be a closed convex sub-
set. Then there is a well-defined nearest point projection from X to C, which we
denote by ¢ : X — C. Two convex subsets C; and C, are parallel if d(-,C3)|c,
and d(-, C1)|c, are constant functions. In this case, the convex hull of C; and C; is
isometric to Cy x [0,d(Cy, C»)].

For a closed convex subset C C X, we define Pc, the parallel set of C, to be
the union of all convex subsets of X which are parallel to C. If C has the geodesic
extension property, then Pc is also a closed convex subset and admits a canonical
splitting Pc = C x C+ (see [12, Chapter I1.2.12]).

Suppose Y is a CAT(0) cube complex. Then two edges e and e’ are parallel if and
only if there exist sequences of edges {e; }/'_, such thate; = e, e, =¢’, and ¢;, ;4
are the opposite sides of a 2-cube in Y. For each edge e C Y, let N, be the union of
cubes in Y which contain an edge parallel to e. Then N, is a convex subcomplex of
Y; moreover, N, has a natural splitting N, = h, x [0, 1], where [0, 1] corresponds to
the e-direction. The subset s, x {1/2} is called the hyperplane dual to e, and N, is
called the carrier of this hyperplane. Each hyperplane is a union of midcubes and,
hence, has a natural cube complex structure, which makes it a CAT(0) cube complex.
The following statements are true for hyperplanes.

(1) Each hyperplane % is a convex subset of Y. Moreover, Y \ % has exactly two
connected components. The closure of each connected component is called a
half-space. Each half-space is also a convex subset.

(2)  Pick an edge e C Y. We identify e with [0, 1] and consider the CAT(0) pro-
jection 7, : Y — e = [0, 1]. Then & = 7,1 (1/2) is the hyperplane dual to e,
and 7, 1([0,1/2]), 7, 1([1/2,1]) are two half-spaces associated with /. The
closure of 77,71 ((0, 1)) is the carrier of /.

Let Y be a CAT(0) cube complex, and let / € Y be a geodesic line (with respect
to the CAT(0)-metric) in the 1-skeleton of Y. Let e C / be an edge, and pick x € e.
We claim that if x is in the interior of e, then 7, L(x) = n71(x). It is clear that
771 (x) € 7,1 (x). Suppose y € 7, ! (x). Recall that 7, ' (x) C Ne. It follows from
the splitting N, = h, x [0, 1] as above that the geodesic segment Xy is orthogonal
to [, thatis, Z(y,y") = /2 for any y" € I\ {x}; thus, y € 7; ' (x).

The above claim implies 7, !(x) is a convex subset for any x € /. Moreover, the
following lemma is true.
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LEMMA 3.3
Let Y and | be as before. Pick an edge e C Y. If e is parallel to some edge e’ C I,
then m(e) = e’; otherwise, wy(e) is a vertex of I.

Now we define an alternative metric on the CAT(0) cube complex Y, which is
called the /!-metric. One can view the 1-skeleton of Y as a metric graph with edge
length equal to 1, and this metric extends naturally to a metric on Y. The distance
between two vertices in ¥ with respect to this metric is equal to the number of hyper-
planes separating these two vertices.

A combinatorial geodesic in Y is an edge path in ¥ ) which is a geodesic with
respect to the /!-metric. However, we always refer to the CAT(0)-metric when we
talk about a geodesic.

If Y is finite-dimensional, then the /'-metric and the CAT(0)-metric on Y are
quasi-isometric (see [14, Lemma 2.2]). In this article, we will use the CAT(0)-metric
unless otherwise specified.

Definition 3.4 ([14, Section 2.1])

A cellular map between cube complexes is cubical if its restriction 0 — 7 between
cubes factors as 0 — n — t, where the first map o — 7 is a natural projection onto a
face of o and the second map 1 — t is an isometry.

3.3. RAAGs

Pick a finite simplicial graph I', and recall that G(T") is the RAAG with defining
graph T". Let S be a standard generating set for G(I"), and label the vertices of I" by
elements in S. G(I") has a nice Eilenberg—MacLane space S(I"), called the Salvetti
complex (see [15], [18]). Recall that S(I') is the graph product [ (S}, *,), where
(S}, *y) is a pointed unit circle (see Definition 1.12).

The 2-skeleton of S(I') is the usual presentation complex of G(I'), so
71(S(I")) = G(I"). The 0-skeleton of S(I') consists of one point whose link is a
flag complex, so S(I") is nonpositively curved and S(I") is an Eilenberg—-MacLane
space for G(I") by the Cartan-Hadamard theorem (see [12, Theorem I1.4.1]).

The closure of each k-cell in S(I") is a k-torus. Tori of this kind are called stan-
dard tori. There is a one-to-one correspondence between the k-cells (or standard torus
of dimension k) in S(I") and k-cliques in I". We define the dimension of G(I") to be
the dimension of S(I).

Denote the universal cover of S(I") by X(I'), which is a CAT(0) cube complex.
Our previous labeling of vertices of I' induces a labeling of the standard circles of
S(I"), which lifts to a labeling of edges of X(I'). A standard k-flat in X(T') is a
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connected component of the inverse image of a standard k-torus under the covering
map X(I') = S(I'). When k = 1, we also call it a standard geodesic.

For each simplicial graph I, there is a simplicial complex & (I") called the exten-
sion complex, which captures the combinatorial pattern of how standard flats intersect
each other in X(I"). This object was first introduced in [44]. We will define it in a
slightly different way (see [36, Section 4.1] for more discussion).

Definition 3.5 (Extension complex)

The vertices of #(I") are in one-to-one correspondence with the parallel classes of
standard geodesics in X (I"). Two distinct vertices vy, v, € #(I") are connected by an
edge if and only if there is a standard geodesic /; in the parallel class associated with
v; (i = 1,2) such that /; and /, span a standard 2-flat. Then & (I') is defined to be the
flag complex of its 1-skeleton; namely, we build & (I") inductively from its 1-skeleton
by filling a k-simplex whenever we see the (k — 1)-skeleton of a k-simplex.

Since each complete subgraph in the 1-skeleton of & (I") gives rise to a collection
of mutually orthogonal standard geodesic lines, there is a one-to-one correspondence
between k -simplices in & (I") and parallel classes of standard (k + 1)-flats in X(I"). In
particular, there is a one-to-one correspondence between maximal simplices in & (I")
and maximal standard flats in X(I"). Given a standard flat F C X(I"), we denote the
simplex in & (I") associated with the parallel class containing F by A(F).

3.4. Right-angled buildings

We will follow the treatment in [1], [22], and [52]. In particular, we refer to [22,
Sections 1.1-1.3] for the definitions of chamber systems, galleries, residues (which
are particular subsets of chambers), Coxeter groups, and buildings. We will focus on
right-angled buildings, that is, the associated Coxeter group is right-angled, though
most of the discussion below is valid for general buildings.

Let W = W(T') be a right-angled Coxeter group with (finite) defining graph I.
Let B = B(I") be a right-angled building with the associated W -distance function
denoted by 6 : B x B — W. We will also call 8(I") a right-angled T -building for
simplicity.

Let I be the vertex set of I'. Recall that a subset J C [ is spherical if the sub-
group of W generated by J is finite. Let S be the poset of spherical subsets of /
(including the empty set), and let |S|A be the geometric realization of S, that is, |S|a
is a simplicial complex such that its vertices are in one-to-one correspondence to ele-
ments in S and its n-simplices are in one-to-one correspondence to (n + 1)-chains
in S. Note that |S|a is isomorphic to the simplicial cone over the barycentric subdi-
vision of the flag complex of T".
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Recall that, for elements x < y in S, the interval I, between x and y is a poset
consisting of elements z € S such that x < z < y with the induced order from S.
There is a natural simplicial embedding |/x,|a < |S|a. Each |Ixy|A is a simplicial
cone over the barycentric subdivision of a simplex and, thus, can be viewed as a
subdivision of a cube into simplices. (The Hasse diagram of I, can be identified as
the 1-skeleton of this cube.) It is not hard to check that the collection of all intervals
in S gives rise to a structure of a cube complex on |S|a. Let |S| be the resulting cube
complex. Then |S| is CAT(0).

A residue is spherical if it is a J-residue with J € S. The rank of this residue
is the cardinality of J. Let S” be the poset of all spherical residues in B. For x €
S’ which comes from a J-residue, we define the rank of x to be the rank of the
associated residue and define a type map t : S* — S which maps x to J € S. Let
|S"| A be the geometric realization of S”. Then the type map induces a simplicial map
t:1|S"|a — |S|a. For x € S", let S, be the sub-poset made of elements in S” which
are > x. If x is of rank 0, then S’, is isomorphic to S; moreover, there is a natural
simplicial embedding |S.|ao — |S”|a, and ¢ maps the image of |S”| A isomorphically
onto |S|a.

As before, the geometric realization of each interval in S” is a subdivision of a
cube into simplices. Moreover, the intersection of two intervals in S” is also an inter-
val. Thus, one gets a cube complex |B| whose cubes are in one-to-one correspondence
with intervals in S”. |B)] is called the Davis realization of the building B, and |B| is a
CAT(0) cube complex by [22]. Moreover, the above type map induces a cubical map
t:]8B|— |S|. Let R C B be a residue. Since R also has the structure of a building,
there is an isometric embedding |R| — |B| between their Davis realizations. |R| is
called a residue in | B|.

In the special case when B is equal to the associated Coxeter group W, there
is a natural embedding from the Cayley graph of W to |B| such that vertices of the
Cayley graph are mapped to vertices of rank 0 in |$B]|. And |B| can be viewed as the
first cubical subdivision of the cubical completion of the Cayley graph of W. (The
cubical completion means we attach an n-cube to the graph whenever there is a copy
of the 1-skeleton of an n-cube inside the graph.)

Each vertex of |B| corresponds to a J -residue in B and, thus, has a well-defined
rank. For a vertex x of rank 0, the space |S’|a discussed in the previous paragraph
induces a subcomplex |Byx| C |B|. Note that ¢ maps |By| isomorphically onto |S]|,
while |By| is called a chamber in | B| (there is a one-to-one correspondence between
chambers in |$B| and chambers in B). Let |B| and |B, | be two chambers in |B|.
Since there is an apartment 4 C B which contains both x and y, this induces an
isometric embedding || — | 8| whose image contains |By| and |8, |. Here, |A| is
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isomorphic to the Davis realization of the Coxeter group W and is called an apartment
in |B].

Definition 3.6

For ¢1, ¢, € B, define d(c1, c2) to be the minimal length of word in W (with respect
to the generating set /) that represents §(c1, ¢3). For any two residues R, R, € B,
we define d(R1, R,) = min{d(cy,¢2) | c1 € R1,c2 € Ry} It turns out that, for any
¢1 € R1 and ¢; € Ry with d(cy,c2) = d(R1, R2), §(c1,c2) gives rise to the same
element in W (see [1, Chapter 5.3.2]). This element is defined to be §(R1, R>).

LEMMA 3.7
We have that d(cy,c3) = 2d;1(c1,¢2), where d;i means the ['-distance in | 8B|. Since
c1 and cy can also be viewed as vertices of rank 0 in |B|, dj1(c1,c2) makes sense.

Proof

If 8 = W, then this lemma follows from the above description of the Davis realiza-
tion of a Coxeter group. The general case can be reduced to this case by considering
an apartment || C | 8| which contains ¢; and c,. Note that |#| is convex in | B|. O

Given a residue R C B, there is a well-defined nearest point projection map as
follows.

THEOREM 3.8 ([1, Proposition 5.34])

Let R be a residue, and let ¢ be a chamber. Then there exists a unique ¢’ € R such
that d(c,c’) =d(R,c).

This projection is compatible with several other projections in the following
sense. Let |R| C |B] be the convex subcomplex corresponding to R. Let ¢ and ¢’
be as above. We also view them as vertices of rank 0 in |B]. Let ¢; be the combi-
natorial projection of ¢ onto |R| (see [34, Lemma 13.8]), and let ¢, be the CAT(0)
projection of ¢ onto |R|.

LEMMA 3.9
We have that ¢’ = ¢ = c,.

Proof

c1 = ¢, follows from Lemma 3.10 below. To see ¢’ = ¢y, by Lemma 3.7, it suffices
to prove that c; is of rank 0. When B = W, this follows from ¢; = ¢;, since we can
work with the cubical completion of the Cayley graph of W instead of |W| (the latter
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is the cubical subdivision of the former) and apply [36, Lemma 2.3]. The general case
follows by considering an apartment || C |8| which contains ¢ and c. Note that in
this case || N |R| can be viewed as a residue in |A)|. O

LEMMA 3.10

Let Cy be a convex subcomplex in a CAT(0) cube complex C. Pick a vertex x € C.
Let x1 (resp., x3) be the combinatorial projection (resp., CAT(0) projection) of x
onto Cy. Then x1 = x».

Proof

By [36, Lemma 2.3], x, is a vertex. If x, # x;, then by [34, Lemma 13.8], the con-
catenation of the combinatorial geodesic w; which connects x, and x; and the combi-
natorial geodesic w, which connects x; and x is a combinatorial geodesic connecting
x and x;. By [34, Proposition 13.7], w; C Cj. Let e C w; be the edge that contains
X2, and let y be the other endpoint of e. Then y and x are on the same side of the
hyperplane dual to e (see [34, Lemma 13.1]). It is not hard to see d(y, x) < d(x3,x)
(here d denotes the CAT(0) distance), which yields a contradiction. O

Definition 3.11

Let proj g be the map defined in Theorem 3.8. Two residues R, and R, are parallel
if projg, (R2) = R1 and projg, (R1) = Ra. In this case, projg, and projg, induce
mutually inverse bijections between R, and R,. These bijections are called paral-
lelism maps between R and R,. They are also isomorphisms of chamber systems;
that is, they map residues to residues (see [1, Proposition 5.37]).

It follows from the uniqueness of the projection map that if ' : R — R’ is the
parallelism map between two parallel residues and R C R is a residue, then J; and
f(R,) are parallel, and the parallelism map between R, and f(R;) is induced by f.

LEMMA 3.12

If R1 and R, are parallel, then |Ry| and |R,| are parallel with respect to the
CAT(0)-metric on |B|. Moreover, the parallelism map between Ry and R, induced
by projg, and projg, is compatible with the CAT(0) parallelism between |R| and
|R2| induced by CAT(0) projections.

Proof
By Lemma 3.9, it suffices to show that, for any residue R € 8B, |R] is the convex hull
of the vertices of rank 0 inside |R|. This is clear when 8 = W if one considers the
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cubical completion of the Cayley graph of W. The general case also follows, since
|R| is a union of apartments in |R|, and |R]| is convex in | B]. O

It follows that if 1 and R, are parallel residues and if R, and R3 are parallel
residues, then R is parallel to R3. Moreover, let f;; be the parallelism map from &R;
to R ; induced by the projection map. Then fi3 = f23 o fi2.

Given chamber systems Cy,...,Cy over Iy,..., I, their direct product C; x
--- X Cy is a chamber system over the disjoint union /; LI --- L I%. Its chambers are k-
tuples (c1,...,cx) with ¢, € C;. Fori € I;, (c1,...,ck) is i-adjacent to (d1,...,dy)
if c; =d;j for j #1t and ¢; and d; are i -adjacent.

Suppose the defining graph I" of the right-angled Coxeter group W admits a join
decomposition ' =Tj o0l 0---0T. Let I = Ule I; be the corresponding decom-
position of the vertex set of I', and let W = ]_[fle W; be the induced product decom-
position of W. Pick a chamber ¢ € B, and let B; be the [;-residue that contains c.
Define a map ¢ : B — B1 X Bz x -+ x By by ¢(d) = (projg, (d),projg,(d),...,
projg, (d)) for any chamber d € B.

THEOREM 3.13 ([52, Theorem 3.10])
The definition of ¢ does not depend on the choice of ¢, and ¢ is an isomorphism of
buildings.

It follows from the definition of the Davis realization that there is a natural iso-
morphism |B1 X By X +++ X By | = |B1| X |Ba| X --- X | By |. Thus, we have a product
decomposition |B| = |B;| X |Bz| X - -+ X |Bg|, where the isomorphism is induced by
CAT(0) projections from | 8] to |B;|’s. (This is a consequence of Lemma 3.12.)

We define the parallel set of a residue R C B to be the union of all residues in
B that are parallel to R. Now we show that parallelism preserves types of residues
in right-angled buildings. (This may not be true for buildings which are not right-
angled.)

LEMMA 3.14

Suppose R is a J-residue. Let J+ C I be the collection of vertices in T which are
adjacent to every vertex in J. Then the following statements hold.

(1)  If another residue R’ is parallel to R, then R’ is a J -residue.

2) The parallel set of R is the J U J*-residue that contains R.

Proof
Suppose that R’ is a Jq-residue. Let w = §(R, R’) (see Definition 3.6). It follows
from [1, Lemma 5.36(2)] that R’ is a (J N wJ,w™!)-residue. Since R and R’ are
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parallel, they have the same rank; thus, J = wJ;w™!. By considering the Abelianiza-
tion of the right-angled Coxeter group W, we deduce that J = J; (this proves the first
assertion of the lemma) and w commutes with each element in J . Thus, w belongs to
the subgroup generated by J+, and R’ is in the J U J+-residue § that contains (R.
Then the parallel set of &R is contained in §. It remains to prove that every J -residue
in & is parallel to (R, but this follows from Theorem 3.13. O

Pick a vertex v € | 8| of rank k, and let R = ]_[f-;l R be the associated residue
with its product decomposition. Let {v)}1ca be the collection of vertices that are
adjacent to v. Then there is a decomposition {v) } ecp = {vy <v}U{vy > v}, where
{v) > v} denotes the collection of vertices whose associated residues contain R. This
induces a decomposition Lk(v,|8B|) = K; * K, of the link of v in |B]| (see [12,
Definition 1.7.15]) into a spherical join of two CAT(1) all-right spherical complexes.
Note that K is finite, since {v; > v} is finite. Moreover, K; =~ Lk (v, |R|). However,
|R| = ]_[f=1 |R;|; thus, K is the spherical join of k discrete sets such that elements
in each of these discrete sets are in one-to-one correspondence to elements in some
R;. Now we can deduce from this the following result.

LEMMA 3.15

Suppose B is a right-angled building such that each of its residues of rank 1 contains
infinitely many elements. If o : | B| — |B| is a cubical isomorphism, then o preserves
the rank of vertices in | B)|.

4. Restriction quotients

In this section we study restriction quotients, a certain type of mapping between
CAT(0) cube complexes introduced by Caprace and Sageev [14]. These play a central
role in our story.

We first show in Section 4.1 that restriction quotients can be characterized in sev-
eral different ways (see Theorem 4.4). We then show in Section 4.2 that a restriction
quotient f : Y — Z determines fiber data that satisfies certain conditions; conversely,
given such fiber data, one may construct a restriction quotient inducing the given data,
which is unique up to equivalence. This correspondence will later be applied to con-
struct restriction quotients over right-angled buildings. Sections 4.3 and 4.4 deal with
the behavior of restriction quotients under group actions and quasi-isometries.

4.1. Quotient maps between CAT(0) cube complexes
We recall the notion of a restriction quotient from [14, Section 2.3] (see [35] for the
background on wallspaces).
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Definition 4.1

Let Y be a CAT(0) cube complex, and let # be the collection of walls in the O-
skeleton ¥ © corresponding to the hyperplanes in Y. Pick a subset K C J, and let
Y(X) be the CAT(0) cube complex associated with the wallspace (Y @, X). Then
every O-cube of the wallspace (Y 9, #) gives rise to a O-cube of (¥ (9, X) by restric-
tion. This can be extended to a surjective cubical map g : ¥ — Y (X), which is called
the restriction quotient arising from the subset K C # .

The following example motivates many of the constructions in this article.

Example 4.2 (The canonical restriction quotient of X, (I"))

For a fixed graph I, let S, — |c|r and X, — S, be the mappings associated with the
exploded Salvetti complex, as defined after Definition 1.12. Let K be the collection
of hyperplanes in X, (I") dual to edges e C X, that project to edges under the compo-
sition X, — S, — |c|r. Then the canonical restriction quotient of G = G(I') is the
restriction quotient arising from K.

Letg:Y — Y(X) be a restriction quotient. Pick an edge e C Y. If e is dual to
some element in K, then ¢g(e) is an edge; otherwise, ¢(e) is a point. The edge e is
called horizontal in the former case and vertical in the latter case. We use the words
vertical and horizontal, since we would like to think of ¢ as a kind of “fibration.”

We record the following simple observation.

LEMMA 4.3
Let o : Y — Y be a cubical CAT(0) automorphism of Y that maps vertical edges

to vertical edges and horizontal edges to horizontal edges. Then o descends to an
automorphism Y (K) — Y (K).

The following result shows that restriction quotients may be characterized in sev-
eral different ways.

THEOREM 4.4

If f:Y — Z is a surjective cubical map between two CAT(0) cube complexes, then
the following conditions are equivalent.

(1) The inverse image of each vertex of Z is convex.

2) The inverse image of every point in Z is convex.

3) The inverse image of every convex subcomplex of Z is convex.

4) The inverse image of every hyperplane in Z is a hyperplane.
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5) [ is equivalent to a restriction quotient, that is, for some set of walls X in Y,
there is a cubical isomorphism ¢ : Z — Y (K) making the following diagram

Y

q
K
71/()

commute:

f

N<— ~

The proof of Theorem 4.4 will take several lemmas. For the remainder of Sec-
tion 4.1, we fix CAT(0) cube complexes Y and Z and a (not necessarily surjective)
cubicalmap f:Y — Z.

LEMMA 4.5

Let 0 C Z be a cube, and let Yy be the union of cubes in Y whose image under f is

exactly o. Then the following statements hold.

(1)  Ify €0 is an interior point, then f~1(y) C Y.

2) f~Y(y) has a natural induced structure as a cube complex; moreover, there is
a natural isomorphism of cube complexes Yy = f~1(y) x 0.

3) If o1 C 0y are cubes of Z and y; € o; are interior points, then there is a
canonical embedding f~'(y2) < f~1(y1). Moreover, these embeddings are
compatible with the composition of inclusions.

LEMMA 4.6
(1) For every y € Z, every connected component of f~1(y) is a convex subset
of Y.

2) For every convex subcomplex A C Z, every connected component of f ' (A)
is a convex subcomplex of Y .

Proof

First we prove (1). Let o be the support of y, and let Yy 2 f~1(y) x o be the sub-
complex defined as above. It suffices to show that Y, is locally convex. Pick a vertex
X € Y5, and let {e;}7_, be a collection of edges in Y, that contains x. It suffices to
show that if these edges span an n-cube n C Y, then n C Y, It suffices to consider the
case when all e;’s are orthogonal to o, in which case it follows from Definition 3.4
that n x o C Y.

To see (2), pick an n-cube n C Y, and let {e; }_, be the edges of 7 at one corner
¢ C n. It suffices to show that if f(e;) C A, then f(n) C A. Note that f(n) is a cube,
and every edge of this cube which emanates from the corner f(c) is contained in A.
Thus, f(n) C A by the convexity of A. O
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LEMMA 4.7

Let f:Y — Z be a cubical map as above. Then the following statements hold.

(1) The inverse image of each hyperplane of Z is a disjoint union of hyperplanes
inY.

2) If the inverse image of each hyperplane of Z is a single hyperplane, then for
each point y € Z, the point inverse f~1(y) is connected and, hence, is convex
by Lemma 4.6.

Proof
It follows from Definition 3.4 that the inverse image of each hyperplane of Z is a
union of hyperplanes. If two of them were to intersect, then there would be a 2-cube
in ¥ with two consecutive edges mapped to the same edge in Z, which is impossible.
Now we prove (2). It suffices to consider the case in which y is the center of
some cube in Z. In this case, y is a vertex in the first cubical subdivision of Z, and
f can be viewed as a cubical map from the first cubical subdivision of Y to the first
cubical subdivision of Z such that the inverse image of each hyperplane is a single
hyperplane; thus, it suffices to consider the case in which y is a vertex of Z.
Suppose that £ ~!(y) contains two connected components A and B. Pick a com-
binatorial geodesic w of shortest distance that connects vertices in A and vertices in B.
Note that f(w) is a nontrivial edge-loop in Z; otherwise, we will have w C f~1(y).
It follows that there exist two different edges e; and e, of w mapping to parallel edges
in Y. The hyperplanes dual to e; and e, are different, yet they are mapped to the same
hyperplane in Y, which is a contradiction. O

LEMMA 4.8
If f is surjective and, for any vertex v € Z, f~'(v) is connected, then the inverse
image of each hyperplane of Z is a single hyperplane.

Proof

Let 4 C Z be a hyperplane. By Lemma 4.7, f 1 (h) = ||, /2, where each & is a
hyperplane in Y. Since f is surjective, { f(%3)}1ea is a collection of subcomplexes
of h that cover h. Thus, there exist hy,hy € {hy}ren (b1 # hy) and a vertex u € h
such that u C f(hy) N f(hy). Let e C Z be the edge such that u = e N h. Then
there exist edges e1,e, C Y such that e; N h; # @ and f(e;) = e fori = 1,2. Since
hq N hy = @, a case study implies that there exist x; and x, which are endpoints of
e1 and e;, respectively, such that

(1)  these two points are separated by at least one of /; and h5;

(2)  they are mapped to the same endpoint y € e.

It follows that £ ~1(y) is disconnected, which is a contradiction. O
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Remark 4.9

If f is not surjective, then the above conclusion is not necessarily true. Consider the
map from A = [0, 3] x [0, 1] to the unit square which collapses the [0, 1]-factor in A
and maps [0, 3] to three consecutive edges on the boundary of the unit square.

LEMMA 4.10

Ifq:Y — Y(K) is the restriction quotient as in Definition 4.1, then the inverse image
of each hyperplane in Y(K) is a single hyperplane in Y. Conversely, suppose that
f Y — Z is a surjective cubical map between CAT(0) cube complexes such that the
inverse image of each hyperplane is a hyperplane. Let K be the collection of walls
arising from inverse images of hyperplanes in Z. Then there is a natural isomorphism
i : Z = Y(K) which fits into the following commutative diagram:

f

Y —>Z

W

Y(K)

Proof
Define two vertices of Y to be K-equivalent if and only if they are not separated
by any wall in K. This defines an equivalence relation on vertices of Y, and the
corresponding equivalence classes are called K -classes. For each K-class C and
every wall in K, we may choose the half-space that contains C; it follows that the
points in C are exactly the set of vertices contained in the intersection of such half-
spaces, and thus, C is the vertex set of a convex subcomplex of Y. Note that each X -
class determines a O-cube of (Y °, K) and, hence, is mapped to this 0-cube under g. It
follows that the inverse image of every vertex in Y (K) is convex; thus, by Lemma 4.8,
the inverse image of a hyperplane is a hyperplane.

It remains to prove the converse. Note that the inverse image of each half-space
in Z under f is a half-space of Y. Moreover, the surjectivity of f implies that f
maps hyperplanes to hyperplanes and half-spaces to half-spaces. Pick a vertex y € Z,
and let { H }1¢, be the collection of half-spaces in Z that contain y. Then f~1(y) C
Maca fH(Hy), every vertex of (e f~1(H,) is mapped to y by f, and thus,
the vertex set of f~!(y) is a K -class. This induces a bijective map from Z©® to the
vertex set of Y (K'), which extends to an isomorphism. The above diagram commutes,
since it commutes when restricted to the 0-skeleton. O

Proof of Theorem 4.4
The equivalence of (4) and (5) follows from Lemma 4.10. (1) = (4) follows from
Lemma 4.8, (4) = (2) follows from Lemma 4.7, and (3) = (1) is obvious. It suf-
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fices to show (2) = (3). Pick a convex subcomplex K C Z, and let {R;} ca be
the collection of cubes in K. For each R;, let Yg, be the subcomplex defined in
Lemma 4.5. Yg, # @ since f is surjective and Y, is connected by (2). If R) C Rj/,
then Yg, N Yg,, # @. Thus, f~UK) = Ujen YR, is connected and, hence, con-
Vex. O

4.2. Restriction maps versus fiber functors

If ¢ : Y — Z is a restriction quotient between CAT(0) cube complexes, then we may
express the fiber structure in categorical language as follows. Let Face(Z) denote the
face poset of Z, viewed as a category, that is, the objects are cubes and morphisms are
inclusions. Let CCC denote the category whose objects are nonempty CAT(0) cube
complexes and whose morphisms are convex cubical embeddings. By Lemma 4.5, we
obtain a contravariant functor W, : Face(Z) — CCC, which takes a face o to ¢! ()
for an interior point y € 0.

Definition 4.11
The contravariant functor W, is the fiber functor of the restriction quotientg : ¥ — Z.

Let W be a contravariant functor from Face(Z) to CCC. For notational brevity,
for any inclusion i : ;7 — 0,, we will often denote the map W (i) : W(0,) — ¥(o1)
simply by W(0,) — W(01), suppressing the name of the map.

Note that if o7 C 0, C 03, then the functor property implies that the image of
W(o3) — W(oq) is a convex subcomplex of the image of W(o,) — W(0oyp). In par-
ticular, if v is a vertex of a cube o, then the image of ®(0) — W(v) is a convex
subcomplex of the intersection

m Im(\IJ(e) — lIJ(v))

vCeCaD

Definition 4.12
Let Z be a cube complex. A contravariant functor W : Face(Z) — CCC is 1-determi-
ned if, for every cube o € Face(Z) and every vertex v € 0(®,

Im(¥(0) — @)= () Im(¥(e)—>¥()). (4.13)

vCeco®

LEMMA 4.14
If g : Y — Z is a restriction quotient, then the fiber functor W : Face(Z) — CCC is
1-determined.
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Proof

Pick 0 € Face(Z) and v € 0®. We know that Im(¥(0) — W(v)) is a nonempty
convex subcomplex of (), ., Im(¥(e) = W(v)), so to establish (4.13) we need
only show that the two convex subcomplexes have the same 0-skeleton.

Pick a vertex w € Im(¥(0) — W(v)), and let w’ € (), cpcem Im(¥(e) — ¥(v))
be a vertex adjacent to w. We let t € Face(Y') denote the eage spanned by w, w’. For
every edge e of Z withv C e C oW, let é c YV denote the edge with ¢(é) = e that
contains w. By assumption, the collection of edges {t} U {€},c,c,1) determines a
complete graph in the link of w and, therefore, is contained in a cube & of dimension
1 + dimo. Then ¢(6) = ¢ and t C 6; this implies that T C Im(¥(0) — ¥(v)).

Since the 1-skeleton of (), ., Im(¥(e) — W(v)) is connected, we conclude
that it coincides with the I-skeleton of Im(¥(oc) — ¥(v)). By convexity, we
get (4.13). O

THEOREM 4.15

Let Z be a CAT(0) cube complex, and let ¥ : Face(Z) — CCC be a 1-determined
contravariant functor. Then there is a restriction quotient q : Y — Z such that the
associated fiber functor W, : Face(Z) — CCC is equivalent by a natural transforma-
tion to W.

Proof

We first construct the cube complex Y and then verify that it has the desired proper-
ties. We begin with the disjoint union | |, cg,c.(z)(@ X W(0)), and for every inclusion
o C t, we glue the subset 0 x W(7) C 7 x W(7) to 0 X ¥(0) by using the map

idy xW
o x Y(1) LCTL o x Y(o).

One checks that the cubical structure on | |;ep,ee(z) (0 < ¥(0)) descends to the quo-
tient Y, the projection maps o X W(0) — o descend to a cubical map ¢ : Y — Z, and
for every o € Face(Z), the union of the cubes 6 C Y such that f(6) = o is a copy of
o x V(o).

We now verify that links in Y are flag complexes. Let v be a 0-cube in Y, and
suppose 01, ...,0% are 1-cubes containing v such that for all 1 <i # j <k the 1-
cubes 0;,0; span a 2-cube o;; in the link of v. We may assume after reindexing that
for some /& > 0 the image ¢(0;) is a 1-cube in Z if i < h and a O-cube if i > h.

Since W(v) is a CAT(0) cube complex, the edges {o;}i~5 span a cube Oyex C
q ' (v).

For 1 <i # j < h, the 2-cube 0;; projects to a 2-cube ¢ (o;;) spanned by the two
edges ¢(0i),q (o). Since Z is a CAT(0) cube complex, the edges {g(0;)}i <, span
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an h-cube 6o C Z. By the 1-determined property, we get that Im(W (Ghor) — W(v))
contains v, and so there is an -cube o, C Y containing v such that ¢ (0nor) = Ghor-

Fix 1 <i < h. Then for j > h, the 2-cube o;; projects to g(o;), and hence, o;
belongs to Im(¥(o0;) — ¥(v)). If j.k > h, then o}, ox both belong to Im(¥(o;) —
W(v)), and by the convexity of Im(W¥(o;) — W(v)) in W(v), we get that o also
belongs to Im(W(o;) — W(v)). Applying convexity again, we get that
Overt C Im(W(0;) — W(v)). By the 1-determined property, it follows that oyer C
Im(W (0por) — W(v)). This yields a k-cube o0 C Y containing oy, U Oyerr, Which is
spanned by o7, ...,0%.

Thus, we have shown that links in Y are flag complexes. The fact that the fibers
of f:Y — Z are contractible implies that Y is contractible (in particular, simply
connected), so Y is CAT(0). O

We now observe that the construction of restriction quotients is compatible with
product structure.

LEMMA 4.16 (Behavior under products)

For i € {1,2} let q; : Y; — Z; be a restriction quotient with fiber functor
W; : Face(Z;) — CCC. Then the product q1 X qa : Y1 X Yo — Z1 X Z; is a restriction
quotient with fiber functor given by the product

W xW¥
Face(Z1 x Z2) ~ Face(Z1) x Face(Z2) ——% CCC x CCC > CCC.

In particular, if one starts with CAT(0) cube complexes Z; and fiber functors V; :
Z; — CCC fori €{1,2}, then the product fiber functor defined as above is the fiber
functor of the product of the restriction quotients associated to the V;’s.

4.3. Equivariance properties

We now discuss isomorphisms between restriction quotients and the naturality prop-
erties of the restriction quotient associated with a fiber functor. Suppose that we have
a commutative diagram

A

Y1 #Yz

q 1l %l
o
Z 1 —> Zz
where the ¢;’s are restriction quotients and «, @ are cubical isomorphisms. Let W; :

Face(Z;) — CCC be the fiber functor associated with ¢;. Note that the pair o, &
allows us to compare the two fiber functors, since for every o € Face(Z;), the map



564 HUANG and KLEINER

& induces a cubical isomorphism between Wi (o) and W (x(0)), and this is com-
patible with maps induced with inclusions of faces. This may be stated more com-
pactly by saying that & induces a natural isomorphism between the fiber functors ¥,
and W, o Face(w), where Face(w) : Face(Z1) — Face(Z5) is the poset isomorphism
induced by «. Here the term natural isomorphism is being used in the sense of cate-
gory theory, that is, a natural transformation that has an inverse that is also a natural
transformation.

Now suppose that for i € {1,2} we have a CAT(0) cube complex Z; and a 1-
determined fiber functor ¥; : Face(Z;) — CCC. Let f; : Y; — Z; be the associated
restriction quotients. If we have a pair «, 8, where o : Z; — Z, is a cubical iso-
morphism, and S is a natural isomorphism between the fiber functors ¥; and ¥, o
Face(«), then we get an induced map & : Y; — Y», which may be defined by using
the description of ¥; as the quotient of the disjoint collection {0 X W; (0)}geFace(Z;)-
As a consequence of the above, having an action of a group G on a restriction quo-
tient f : Y — Z is equivalent to having an action G ~ Z together with a compatible
“action” on the fiber functor W, that is, a family {(x(g),8(g))}¢zeG as above that
also satisfies an appropriate composition rule.

4.4. Quasi-isometric properties

We now consider the coarse geometry of restriction quotients; this amounts to a “coar-
sification” of the discussion in the preceding section. The relevant definition is a coar-
sification of the natural isomorphisms between fiber functors.

Definition 4.17

Let Z be a CAT(0) cube complex, and let W; : Face(Z) — CCC be fiber functors
for i € {1,2}. An (L, A)-quasinatural isomorphism from V1 to W, is a collection
{¢(0) : ¥1(0) = ¥2(0)}oerace(z) sSuch that ¢ (o) is an (L, A)-quasi-isometry for all
o € Face(Z), and for every inclusion o C t, the diagram

T
NG EA R
e
w10) 1% wy00)
commutes up to error L.
Now for i € {1,2} let f; : Y; — Z be a finite-dimensional restriction quotient,

with respective fiber functor ¥; : Face(Z) — CCC. For any o € Face(Z), we identify
U, (o) with f;7!(bs), where by € o is the barycenter.
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LEMMA 4.18
Suppose that we have a commutative diagram

| P — O

¢/
N4

zZ

where ¢,¢" are (L, A)-quasi-isometries that are A-quasi-inverses, that is, the com-
positions ¢ o ¢, ¢’ o ¢ are at a distance less than A from the identity maps. Then the
collection

6| ,—1t0)
W10 = /7' G0) = [ (be) = ¥200)) g crueiry

is an (L', A")-quasinatural isomorphism, where L' = L'(L,A,dimY;), A’ =
AL, A,dimY;).

Proof

By Theorem 4.4, the fiber fi_l(bo) is a convex subset of Y; and, hence, is isomet-
rically embedded. Therefore, ¢ and ¢’ induce (L, A)-quasi-isometric embeddings
fi o) = 15 1 (bo), f5 (o) = fi H(bs). If 0 C 7, then any point x € f;7(b;)
lies at a distance less than C = C(dim Y;) from a point in fi_l(bg), and this implies
that the collection of maps {W1(0) — W2(0)}seFace(z) 18 an (L', A’)-quasinatural
isomorphism as claimed. O

LEMMA 4.19

If{¢(0) : W1(0) = W2(0) }oepace(z) is an (L, A)-quasinatural isomorphism from W,
to Wy, then it arises from a commutative diagram as in the previous lemma, where @,
¢’ are (L', A")-quasi-isometries that are A’-quasi-inverses, and L', A" depend only
on L, A, and dimY;.

Proo

For eJ:/ery o € Face(Z), we may choose a quasi-inverse ¢’(0) : ¥5(0) — ¥y (o) with
uniform constants; this is also a quasinatural isomorphism. Identifying fi_1 (Int(0))
with the product Int(o) x ¥; (o), we define ¢| £ nt(o)) by

@O 1 (0) x Wa (o) = £ (o),

and we define ¢’ similarly using {¢'(0) }ycrace(z)- One readily checks that ¢, ¢’ are

quasi-isometric embeddings that are also quasi-inverses, where the constants depend
on L, A, and dim Y;. O

7 (Int(0)) = Int(0) x W1 (o)
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5. The Z-blowup of a right-angled building
In this section I" will be an arbitrary finite simplicial graph, and all buildings will
be right-angled buildings modelled on the right-angled Coxeter group W(I") with
defining graph I'. The reader may wish to review Section 3.4 for terminology and
notation regarding buildings before proceeding.

The goal of this section is to examine restriction quotients ¢ : ¥ — | 8|, where
the fibers are Euclidean spaces satisfying a dimension condition as in Theorems 1.5
and 1.6. For such restriction quotients, the fiber functor may be distilled down to
a simpler set of information, called 1-data (see Definition 5.3); this is discussed in
Section 5.2. Conversely, given a building 8 and certain blow-up data (Definition 5.6),
one can construct a corresponding 1-determined fiber functor as in Section 4.2 (see
Section 5.3). On the one hand, this establishes item (c) in the “Further results” section
of Section 1 and, on the other hand, provides us a simpler set of information to work
with which is equivalent to the fiber functor. Most of the material in Section 5.2 is not
used in the later part of the article, so a hurried reader can skip this section and come
back when needed. In the later parts of this section, we study several key properties
of this blow-up construction and formulate a version which takes group actions into
account.

5.1. The canonical restriction quotient for a RAAG

Let G(T") be the RAAG with defining graph I", and let Bo(I") be the building asso-
ciated with G(I") (see [22, Section 5]). Then G(I") can be identified with the set of
chambers of By(I"). Under this identification, the J-residues of 8By, for J a collec-
tion of vertices in I, are the left cosets of the standard subgroups of G(I") generated
by J. Thus, the poset of spherical residues is exactly the poset of left cosets of stan-
dard Abelian subgroups of G(I"), which is also isomorphic to the poset of standard
flats in X(T').

We now revisit the discussion after Definition 1.12 and Example 4.2 in more
detail and relate them to buildings. To simplify notation, we will write G = G(I'),
Bo = Bo('), and X = X(I).

Let |Bo| be the Davis realization of the building 8. Then we have an induced
isometric action G ~ |Bg|, which is cocompact but not proper. It turns out that there
is a natural way to blow up |By| to obtain a space X, = X.(I") such that there is a
geometric action G ~ X, and a G-equivariant restriction quotient map X, — |By|.

X, can be constructed as follows. First we constructed the exploded Salvetti com-
plex S = S.(I"), which was introduced in [9] (see also the discussion after Defini-
tion 1.12). For each vertex v in the vertex set V(I') of I', we associate a copy of the
“lollipop” Ly, = Sy U I, which is the union of a unit circle S, and a unit interval
I,, along one point. Let %, € L, be the free end of I,,. Let T = ]_[vev(r) L,. Each
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clique A C I givesrise to a subcomplex Ta = [[,ea Lo X[ [y¢a{*v}. Then S is the
subcomplex of T which is the union of all such Tx’s; here A is allowed to be empty.
It is easy to check that S, is a nonpositively curved cube complex. A standard torus
in S, is a subcomplex of form [,ca Sv X [[y¢a{*v}, where A C T is a clique. Note
that there is a unique standard torus of dimension 0, which corresponds to the empty
clique. There is a natural map S, = S.(I") — S(I") by collapsing the /,-edge in each
L, -factor. This maps induces a one-to-one correspondence between standard tori in
Se and standard tori in S(I"). Note that there is also a one-to-one correspondence
between vertices in S, and standard tori in S,.

Let X, be the universal cover of S,. Then X, is a CAT(0) cube complex, and
the action G ~ X, is geometric. The inverse images of standard tori in S, are called
standard flats. Note that each vertex in X, is contained in a unique standard flat.
We define a map between the 0-skeletons p : X, e(o) (T) = |Bo|©@ as follows. Pick a
G -equivariant identification between 0-dimensional standard flats in X and elements
in G, and pick a G-equivariant map ¢ : X, — X induced by S, = S.(I') — S(I')
described as above. Note that ¢ induces a one-to-one correspondence between stan-
dard flats in X, and standard flats in X. This gives rise to a one-to-one correspondence
between standard flats in X, and left cosets of standard Abelian subgroups of G. For
each x € X e(o)(F), we define p(x) to be the vertex in |Bo|® that represents the left
coset of the standard Abelian subgroup of G which corresponds to the unique stan-
dard flat that contains x.

A vertical edge of X, is an edge which covers some Sy -circle in Se. A horizontal
edge of X, is an edge which covers some [,-interval in S,. Two endpoints of every
vertical edge are in the same standard flat; thus, they are mapped by p to the same
point in |By|®. More generally, for any given vertical cube, that is, every edge in
this cube is a vertical edge, its vertex set is mapped by p to one point in |Bo|©@.
Pick a horizontal edge, and let Fy, F>; C X, be standard flats which contain the two
endpoints of this edge, respectively. Then ¢ (F;) and ¢ (F>) are two standard flats in
X such that one is contained as a codimension 1 flat inside another. More generally,
if o is a horizontal cube, that is, each edge of o is a horizontal edge, then by looking
at the image of ¢ under the covering map X, — S, we know that the vertex set of o
corresponds to an interval in the poset of standard flats of X. Every cube in X, splits
as a product of a vertical cube and a horizontal cube. (Again this is clear by looking
at cells in S,.) Thus, we can extend p to a cubical map p : X, — |Bo|.

By construction, for a vertex v € |By| of rank n, p~!(v) is isometric to E”.
It follows from Theorem 4.4 that p arises from a restriction quotient, and this is
called the canonical restriction quotient for the RAAG G. This restriction quotient is
exactly the one described in Example 4.2, since the hyperplanes in K of Example 4.2
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are those which are dual to horizontal edges. We record the following immediate
consequence of this construction.

LEMMA 5.1
Let 0 C |By| be a cube, and let v € 0 be the vertex of minimal rank in o. Then for
any interior point x € o, p~'(x) is isometric to E™™*®),

Remark 5.2

In the literature, there is a related cubical map X — |8By| defined as follows. First,
we recall an alternative description of X . Actually, similar spaces can be defined for
all Artin groups (not necessarily right-angled) and were introduced by Salvetti. We
will follow the description in [16]. Let G — W(I") be the natural projection map.
This map has a set-theoretic section defined by representing an element w € W by a
minimal length positive word with respect to the standard generating set and setting
o (w) to be the image of this word G. It follows from fundamental facts about Coxeter
groups that o is well defined. Let / be the vertex set of I', and forany J C I, let W(J)
be the subgroup of W(I") generated by J. Let K be the geometric realization of the
following poset:

{go(W(J)) |geG.J CI1.W(J)is finite}.

It turns out that K is isomorphic to the first barycentric subdivision of X. Let G(J) <
G be the subgroup generated by J. We associate each ga(W(J)) with the left coset
gG(J), and this induces a cubical map from the first cubical subdivision of X to |By]|.
However, this map is not a restriction quotient, since it has a lot of foldings (think of
the special case when G = 7).

5.2. Restriction quotients with Euclidean fibers
We remind the reader that, in this section, W = W(T") will be the right-angled Coxeter
group with defining graph I' and standard generating set /. Let B be an arbitrary
right-angled building modelled on W. Let S be the poset of spherical subsets of /,
and let |B| be the Davis realization of 8. Let g : Y’ — |B| be an arbitrary restriction
quotient satisfying the conclusion of Lemma 5.1. (8 does not have to be the building
associated with a RAAG and ¢ does not have to be the canonical restriction quotient.)

Let @ be the fiber functor associated with g (see Section 4.2). For any vertices
v,w € |B|, we will write v < w if and only if the residue associated with v is con-
tained in the residue associated with w.

Let S” be the poset of spherical residues in 8. Then @ induces a functor @’
from S” to CCC (Section 4.2) as follows. Each element in S” is associated with
the fiber of the corresponding vertex in |B|. If s, € S” are two elements such that



GROUPS QUASI-ISOMETRIC TO RAAGS 569

rank(¢) = rank(s) 4+ 1 and s < #, then the associated vertices in vy, v; € |B| are joined
by an edge e;;. In this case ®(es;) — P(v;) is an isomorphism, so we define the mor-
phism ®’(s) — ®’(¢) to be the map induced by ®(es;) — P(vy). If 5,7 € S are two
arbitrary elements with s < ¢, then we find an ascending chain from s to ¢ such that
the difference between the ranks of adjacent elements in the chain is 1, and we define
@’ (s) — ®'(t) to be the composition of those maps induced by the chain. It follows
from the functor property of ® that ®’(s) — ®’(¢) does not depend on the choice
of the chain, and @’ is a functor. Recall that there is a one-to-one correspondence
between elements in S” and vertices of |B|, so we will also view @’ as a functor
from the vertex set of |B| to CCC. Let o1 C 0, be faces in |8], and let v; be the
vertex of minimal rank in o; for i = 1,2. Then by our construction, the morphism
®(0,) — ®(07) is the same as ®'(vy) — D' (vq).

Definition 5.3 (1-data)

Pick a vertex v € |B| of rank 1, and let R, be the associated residue. Let {v) },ca be
the collection of vertices in |8| which are < v, and let e, be the edge joining v and
v;. Then there is a one-to-one correspondence between elements in R, and the v, ’s.
Each v, determines a point in ®(v) by considering the image of ®(e;) — ®(v). This
induces a map fg, : Ry — ©(v). The collection of all such fg,’s with v ranging
over all rank 1 vertices of | 8] is called the 1-data associated with the restriction
quotient g : Y' — |B]|.

LEMMA 5.4
Pick two vertices v,u € |B| of rank 1, and let R, Ry, be the corresponding residues.
Suppose these two residues are parallel with the parallelism map given by p : Ry —
Ry. Then the following statements hold.
(1) ®(v) and ®(u), considered as convex subcomplexes of Y', are parallel.
2)  Ifp': ®(v) = ®(u) is the parallelism map, then the following diagram com-

mutes:

Ry —— Ry

f,ﬂvl fﬂul

o) —2 D)

Proof

It follows from Lemma 3.14 that there is a finite chain of residues, starting at R,
and ending at R,,, such that adjacent elements in the chain are parallel residues in a
spherical residue of rank 2. Thus, we can assume without loss of generality that R,
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and R, are contained in a spherical residue § of type J = {j, j’}, and we assume
that both R, and R,, are j-residues.

Pick x € R,. By Theorem 3.13, there is a j’-residue ‘W which contains both x
and p(x).Lets, w € |B| be the vertex corresponding to § and W. Note that there is a
2-cube in |B| such that v, w, s are its vertices. Since ® is 1-determined, Im(®’(v) —
@’(s)) and Im(P’(w) — D’(s)) are orthogonal lines in the 2-flat &’ (s). Moreover, the
intersection of these two lines is the image of fg, (x) under the morphism ®'(v) —
@’(s). Similarly, the images of ®'(u) — ®'(s) and ®'(w) — ®'(s) are orthogonal
lines @’ (s), and their intersection is the image of fg,(p(x)) under ®'(v) — ®'(s).
It follows that Im(®’(v) — ®'(s)) and Im(D’ (1) — P’(s)) are parallel; hence, ®(v)
and ®(u), considered as convex subcomplexes of Y, are parallel. Moreover, since the
image of f,(x) under ®'(v) — ®’(s) and the image of fr, (p(x)) under ®'(v) —
@’ (s) are in the line Im(®’'(w) — ®'(s)), the diagram in (2) commutes. O

5.3. Construction of the Z-blowup

In the previous section, we started from a restriction quotient ¢ : Y’ — | 8| and pro-
duced associated 1-data (Definition 5.3), which is compatible with parallelism in the
sense of Lemma 5.4. In this section, we will consider the inverse, namely, we want to
construct a restriction quotient from this data.

Let A g be the collection of parallel classes of i-residues in B (i could be any
element in 7). There is another type map 7" which maps a spherical J -residue R to
{A € Ag | A contains a representative in R}. In other words, let R = [[,; R; be
the product decomposition as in Theorem 3.13, where each R; is an i-residue in R
(i € J). Then T(R) is the collection of parallel classes represented by those R;’s.
Let ZT® be the collection of maps from T'(R) to Z, and let Z? be a single point.

Remark 5.5 (Remark on the notation)

The cardinality of T'({R) is equal to the rank of R. If R is of rank 1, then T(R) = A
is a singleton and ZTR ~ 7. However, in this case, we will still write ZTR) or
Z*} to emphasize that this is the copy of Z associated with the parallel class of R.
To simplify notation, we will also use Z* instead of Z*} to denote the copy of Z
associated with A € A g.

Our goal in this section is to construct a restriction quotient from the following
data.

Definition 5.6 (Blow-up data)
A blow-up data is a collection of maps {hg : R — ZT®)}, one for each residue of
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rank 1, such that if two rank 1 residues R; and R, are parallel with the parallelism
map given by h12: Ry — Ry, then hg, = hg, o hi.

If R is a spherical residue with product decomposition given by R = [[;c; Ri,
then we define the map hg : R — ZT® to be the product of the maps {h R; IR —
Z}. It follows from the definition of s and the discussion after Definition 3.11 that
if two spherical residues R and R’ are parallel with the parallelism map given by
h:R— R, then hg = hg oh.

The following result is a consequence of Theorem 3.13.

LEMMA 5.7
Let R be a spherical J -residue. Let g : R = [[7_, R; be the product decomposition
induced by J = |_|!_, Ji (see Theorem 3.13). Then hg = ([[/_, hg,) © g.

To simplify notation, we will write hg = [[7_, hg; instead of hg = ([T}, h7)o
g.Let J and R =[[;o; Ri be as before. A J'-residue R’ C R can be expressed as
([ Tics Ri) x ([1;es\srAci}), where ¢; is a chamber in R;. We define an inclusion
hgg : ZTR) > 7T R by hg g (a) = {a} x []ep s ihg, (i)} Since hg = hgs x
(ITies\s’ h;)s hs 2 fits into the following commutative diagram:

R — R

hgg/l hgzl

gT®) "RR 1)
Suppose R” is a J”-residue such that R” C R C R. Since hg = hg X

(HieJ\J’he’Ri) =hgr x (nieJ’\J” hg;) (l_[ieJ\J’ hg;), we have
hﬁ”ﬂ :hR/R oheﬂ”eﬂ’- (58)

Now we define a contravariant functor W : Face(|8|) — CCC as follows. Let
J be a face of |B|, and let vy € f be the unique vertex which has minimal rank
among the vertices of f. Let R y C B be the residue associated with v z. We define
U(f)=RTR) (R? is a single point), where RT (®/) is endowed with the standard
cubical structure, and we identify 7T R 1) with the 0-skeleton of RT(Rs)

An inclusion of faces f — f’ induces an inclusion R y» — R r. We define the
morphism W(f') — W(f) to be the embedding induced by hg ., &, : ZT R
ZT('Rf).

LEMMA 5.9
We have that WV is a contravariant functor.
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Proof

It is easy to check that passing from an inclusion of faces f — f' to R — Ry
is a functor. And it follows from (5.8) that passing from R — R to hg_f,gf :
2T R ) 5 7TR ) is a functor. (]

LEMMA 5.10
We have that V is 1-determined.

Proof

Let o C | 8] be a face, and pick a vertex v € o. Let {v; }g‘zl be the vertices in o that are
adjacent to v along edges {e; }f‘zl. Let o0, be the subcube of ¢ that is spanned by the
e;’s such that v; < v. (If v is a minimal vertex in o, then we define 0, = {v}.) Note
that v € 0, since v is inside each e;. We define -, similarly. Then 0 = o<y X 0>y.
Moreover, v is the maximal vertex in 0, and the minimum vertex in 0-,. Note that
W(e;) — W(v) is an isometry if v; > v. Thus, it suffices to consider the case where v
is the maximal vertex of 0.

Let v, be the minimal vertex of o. Note that Im(¥(oc) — W(v)) C
ﬂf.;l Im(W¥(e) — ¥(v)) is a cubical convex embedding of Euclidean subspaces; it
suffices to show they have the same dimension. Let R(v) be the spherical residue
corresponding to the vertex v. Note that T'(R (vy,)) = ﬂle T(R(v;)). (T is the type
map defined at the beginning of Section 5.3.) Thus, the dimension of
ﬂf;l Im(¥(e) > W(v)) equals the cardinality of T'(R(vy,)), which is the dimen-
sion of Im(¥ (o) — W (v)). O

W is called the fiber functor associated with the blow-up data {hg}, and the
restriction quotient ¢ : Y — | 8| which arises from the fiber functor ¥ (see Theo-
rem 4.15) is called the restriction quotient associated with the blow-up data {hg}. It
is clear from the construction that the 1-data of g (see Definition 5.3) is the blow-up
data {hg}. (We naturally identify the ZT®)’s in the blow-up data with the 0-skeleton
of the g-fibers of rank 1 vertices in |8]|.) We summarize the above discussion in the
following theorem.

THEOREM 5.11
Given the blow-up data {h®} as in Definition 5.6, there exists a restriction quotient
q:Y — |8B| whose 1-data is the blow-up data we start with.

Remark 5.12
Here we blow up the building 8 with respect to a collection of Z’s, since we want
to apply the construction for RAAGs. However, in other cases (e.g., for more general
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graph products of groups), it may be natural to blow it up with respect to other objects.
Here is a variation. To each parallel class of rank 1 residues A € A g, we associate a
CAT(0) cube complex Z . For each rank 1 residue R in the class A, we define a map
hg which assigns each element of R a convex subcomplex of Z,. We require these
{hg} to be compatible with parallelism between rank 1 residues. Given this set of
blow-up data, we can repeat the previous construction to obtain a restriction quotient
over |B|, whose vertex fibers are products of some subcomplexes of Z’s.

Now we show that the construction in this section is indeed a converse to Sec-
tion 5.2 in the following sense. Let ¢ : Y’ — |B| be a restriction quotient as in
Section 5.2, and let ® and @ be the functors introduced there. For each vertex
v € |B| of rank 1 and its associated residue R,,, we pick an isometric embedding
Ny : ZT®Rv) 5 (v) such that its image is the vertex set of ®(v). We also require
that these 71,’s respect parallelism. More precisely, let u € |B] be a vertex of rank 1
such that ®(v) and ®(u) (understood as subcomplexes of Y’) are parallel with the
parallelism map given by p : ®(v) — ®(u). Then p o n, = 1,,. (Note that T(Ry) =
T(R,) by Lemma 5.4.)

Let W be the functor constructed in this section from the blow-up data {hg, =
nylo fr, : Ry — ZT(‘RU)}UG|£|, where v ranges over all vertices of rank 1 in |B|,
Ry is the residue associated with v, and fg, is the map in Definition 5.3. Pick a
face o € | 8|, and let u € o be the vertex of minimal rank. Let R, be the associated
J -residue with its product decomposition given by R, =[] jes Rv;. (The v;’s are
rank 1 vertices <u.) Let & : W(0) — ®(0) be the isometry induced by

HjeJ Mo, :ZT(:RM) - HjeJ @(vj) = @(u) = (I)(O)-
(To see the product decomposition | | jes @(v;) = ®(u), recall that @ is 1-determi-
ned; thus, {Im(®'(v;) — ®'(u))}jes are mutually orthogonal lines in ®'(u), and
then the required product decomposition follows from this together with Lemma 5.4.)
It is not hard to check that the collection of £, ’s gives a natural isomorphism from ¥
to .

COROLLARY 5.13

The maps {§o } g erace(8)) induce a natural isomorphism between ® and V. Thus for
any restriction quotient q . Y' — |B| which satisfies the conclusion of Lemma 5.1,
if ¢’ is the restriction quotient whose blow-up data is the 1-data of q, then q’ is
equivalent to g up to a natural isomorphism between their fiber functors.

COROLLARY 5.14
Letq : Y — | 8| be a restriction quotient which satisfies the conclusion of Lemma 5.1.
Let B =~ By x B be a product decomposition of the building B induced by the
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Jjoin decomposition I' = I'y o I'y of the defining graph of the associated right-angled
Coxeter group. Then there are two restriction quotients ¢1 : Y1 — |B1| and ¢ : Y» —
| B3| such that Y = Y1 X Y and q = q1 X q2. Moreover, q1 and q» also satisfy the
conclusion of Lemma 5.1.

Proof

By Corollary 5.13, we can assume that ¢ is the restriction quotient associated with
a set of blow-up data {hg}. For every B1-slice in 8, we can restrict {hg} to B; to
obtain a blow-up data for 8B;. This does not depend on our choice of the B;-slice,
since the blow-up data respects parallelism. We obtain a blow-up data for B, in a
similar way. It follows from the above construction that the fiber functor associated
with {h &} is the product of the fiber functors associated with the blow-up data on 8B,
and B;. Thus, this corollary is a consequence of Lemma 4.16. O

5.4. More properties of the blow-up buildings

In this section, we look at the restriction quotient ¢ : ¥ — | 8] associated with the
blow-up data {hg} as in Definition 5.6 (or, equivalently, a restriction quotient g :
Y — | 8] which satisfies the conclusion of Lemma 5.1) in more detail, and we record
several basic properties of Y. A hurried reader can go through Definition 5.15, then
proceed directly to Section 5.5, and come back to this part later.

Definition 5.15

A vertex y € Y is of rank k if g(y) is vertex of rank k. Thus, ¢ induces a bijection
between rank 0 vertices in Y and rank 0 vertices in |8B|. Since rank O vertices in |B|
can be identified with chambers in B, ¢! induces a well-defined map ¢~ : 8 — Y
from the set of chambers of 8B (or rank 0 vertices of |8B|) to rank 0 vertices in Y.

LEMMA 5.16

For any residue R C B, we view R as a building and restrict the blow-up data over
B to the blow-up data over R. Let qr : Ya — |R| be the associated restriction
quotient. Then there exists an isometric embedding i : Y@ — Y which fits into the
following commutative diagram:

ng—i>Y

ol

IR —— |8
Moreover, i (Yg) = ¢~ (i’ (|R])).

The lemma is a direct consequence of the construction in Section 5.3.
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Pick a vertex v € |B|. The downward complex of v is the smallest convex sub-
complex of |8B| which contains all vertices which are < v. If R, is the residue associ-
ated with v, then the downward complex is the image of the embedding |R,| — |B|.
The next result follows from Lemma 5.16 and Corollary 5.14.

LEMMA 5.17

Let Dy, be the downward complex of a vertex v € B, and let R, = ]_[f-;l Ri be the
product decomposition of the residue associated with v. Then ¢~ (D) is isomorphic
to the product of the mapping cylinders of f; : Ri — RT®R) for 1 <i <k, where

heﬂi
each f; is the composition R; —> ZT Ri) s RT(Ri),

LEMMA 5.18

(1) Ifh%1 (x) is finite for any rank 1 residue R and x € ZT® | then Y is locally
finite. If there is a uniform upper bound for the cardinality of h; (x), then Y
is uniformly locally finite.

2) If there exists D > 0 such that the image of each hg is D-dense in ZT®,
then there exists D' which depends on D and the dimension of |8| such that
the collection of inverse images of rank 0 vertices in |B| is D’-dense in Y .

Proof
We prove (1) first. Pick a vertex y € Y. Let v = ¢(»). It suffices to show that the set
of edges in | 8| which contains v and which can be lifted to an edge in Y that contains
y is finite. Since there are only finitely many vertices in | 8| which are > v, it suffices
to consider the edges of the form v;v with v; < v. It follows from our assumption
and Lemma 5.17 that there are only finitely many such edges which have the required
lift. The proof of uniform local finiteness is similar.

To see (2), notice that Uvel 3] W(v) is 1-dense in Y, where v ranges over all
vertices of |B]. It follows from Lemma 5.17 that every point in ¥(v) can be approxi-
mated by the inverse image of some rank 0 vertex up to distance D’. O

Next we discuss the relation between Y and the exploded Salvetti complex S, =
Se(I") introduced in Section 5.1. Let W be the fiber functor associated with ¢ : ¥ —
| B

First we label each vertex v € Y by a clique in I" as follows. Recall that g(v)
is associated with a J-residue R C B, where J is the vertex set of a clique in I.
Thus, we label v by this clique. We also label each vertex of S, by a clique. Any
vertex v € S, is contained in a unique standard torus. Recall that a standard torus
arises from a clique in I'; thus, we label v by this clique. Note that some vertices
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of Y and S, are labeled by the empty set. There is a unique label-preserving map

p:Y© - 5O

An edge in Y or S, is horizontal if the labels on its two endpoints are different;
otherwise, this edge is vertical. When Y = X,, this definition coincides with the one
in Section 5.1. Moreover, horizontal (or vertical) edges in X, are lifts of horizontal
(or vertical) edges in S.

Horizontal edges in Y are exactly those ones whose dual hyperplanes are mapped
by ¢ to hyperplanes in | 8|, and the g-image of any vertical edge is a point. Now we
label each vertical edge of Y by vertices in I as follows. Pick a vertical edge e C Y,
and let v = g(e). Let R = ]_[f-c=1 R; be the product decomposition of the residue
associated with v. There is a corresponding product decomposition W (v) = 1—[{;1 4,
where ¢; is a line which is parallel to W (v;) and v; € | 8| is the vertex associated with
Ri, and we view W(v;) and W(v) as subcomplexes of Y. If e is in the ¢;-direction,
then we label e by the type of R;, which is a vertex in I". A case study implies that if
two vertical edges are the opposite sides of a 2-cube, then they have the same label.
Hence, all parallel vertical edges have the same label. Now we label vertical edges
in S,. Recall that the map S, — S(I") induces a one-to-one correspondence between
vertical edges in S, and edges in S(I"), and edges in S(I") are labeled by vertices
of I". This induces a labeling of vertical edges in Se.

We pick an orientation for each vertical edge in S, and orient every vertical edge
in Y in the following way. A vertical line is a geodesic line made of vertical edges. It is
easy to see that every vertical edge is contained in a vertical line. For two vertical lines
£1 and €5, if there exist edges e¢; € £; for i = 1,2 such that they are parallel, then £,
and £, are parallel. To see this, it suffices to consider the case where e; and e, are the
opposite sides of a 2-cube, and this follows from a similar case study as before. Now
we pick an orientation for each parallel class of vertical lines, and this induces a well-
defined orientation on each vertical edge of Y'; moreover, this orientation respects
parallelism of edges.

There is a unique way to extend p : ¥ @ — Se(o)(F) top: Y Sél)(l") such
that p preserves the orientation and labeling of vertical edges. One can further extend
p to higher-dimensional cells as follows. A cube o C Y is of type (m,n) if o is the
product of m vertical edges and n horizontal edges. We extend p according to the
type.

(1) If o is of type (m,0), then we can define p on o, since the orientation of
vertical edges in Y respects parallelism, and p preserves the labeling and ori-
entation of vertical edges. In this case, p(o) is an m-dimensional standard
torus.

(2) Ifoisoftype (0,n), then we can define p on o, since p preserves the labeling
of vertices. In this case, p(0) = [0, 1]".
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3) If o is of type (m,n), then we can define p on o for similar reasons as before.
In this case, p(o) = T™ x [0, 1]".
If y € Y is a vertex, then p induces a simplicial map between the vertex links p,, :
Lk(y,Y) — Lk(p(y),Se). The above case study implies that p, is a combinatorial
map; that is, p, maps each simplex isomorphically onto its image.

THEOREM 5.19
If each map hg in the blow-up data is a bijection, then Y is isomorphic to X, =
Xe(T), which is the universal cover of the exploded Salvetti complex Se = S (I).

Proof

We prove the theorem by showing that p : Y — S, is a covering map. It suffices to
show, for each vertex y € Y, that the above map p,, is an isomorphism. Suppose that
y is labeled by a clique A C I'. We look at edges which contain y and which fall into
three classes:

(1) vertical edges;

(2)  horizontal edges whose other endpoints are labeled by cliques in A; and

(3)  horizontal edges whose other endpoints are labeled by cliques that contain A.
Note that there is a one-to-one correspondence between edges in (3) and cliques which
contain A and have exactly one vertex notin A. For any clique A’ C A which contains
all but one vertex of A, there exists a unique edge in (2) such that its other endpoint is
labeled by A’, since if this edge does not exist, then some /&g will not be surjective;
if there exists more than one such edge, then some i g will not be injective. Thus,
there is a one-to-one correspondence between horizontal edges which contain y and
horizontal edges which contain p(y). Hence, p, induces a bijection between the 0-
skeletons. Moreover, edges in (3) are orthogonal to edges in (1) and (2), so a case
study implies that if two edges at p(y) form the corner of a 2-cube, then their lifts
at y (if any exist) also form the corner of a 2-cube. It follows that p, induces an
isomorphism between the 1-skeletons. Since both Lk(y,Y) and Lk(p(y), S.) are
flag complexes, p, is an isomorphism. O

Remark 5.20
If each map h g is injective (or surjective), then p is locally injective (or locally sur-
jective).

COROLLARY 5.21
Let 81 = B1(I') and B, = B,(I") be two right-angled T -buildings with countably
infinite rank 1 residues. Then they are isomorphic as buildings.
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Proof

We pick a blowup for B; such that each map in the blow-up data is a bijection. Let
Y — | 8] be the associated restriction quotient, and let p : ¥ — S, be the covering
map as in Theorem 5.19. Note that p sends vertical edges to vertical edges and hori-
zontal edges to horizontal edges, and p preserves the labeling of vertices and edges.
So does the lift p : ¥ — X, of p. Lemma 4.3 implies p descends to a cubical iso-
morphism |B;| — |B|, where |B| is the building associated with G(I"). Since p is
label-preserving, this cubical isomorphism induces a building isomorphism 8; — 8.
Similarly, we can obtain a building isomorphism 8, — 8. Hence, the corollary fol-
lows. O

THEOREM 5.22

Suppose that T does not admit a join decomposition I' = T'; o I, where 'y is a
discrete graph with more than one vertex. If B is a U-building and q : Y — | 8| is
a restriction quotient with blow-up data {hg}, then any automorphism o : Y — Y
descends to an automorphism o’ : | B| — |B)|.

Proof
By Lemma 4.3, it suffices to show that o preserves the rank (see Definition 5.15)
of vertices of Y. Let F(I') be the flag complex of I". Here we change the label of
each vertex in Y from some clique in I" to the associated simplex in F(I"). Suppose
that y € Y is a vertex of rank k labeled by A. Then Lemma 5.17 and the proof of
Theorem 5.19 imply Lk(y,Y) =~ K; * Ky % --- x K * Lk(A, F(I')), where each
K; is discrete with cardinality at least 2, and Lk (A, F(I")) is understood to be F(I")
when A = @. Note that {K; };‘=1 comes from vertices adjacent to y of rank at most k,
and Lk(A, F(T")) comes from vertices adjacent to y of rank greater than k. Thus, o
preserves the collection of rank O vertices.

Now we assume that o preserves the collection of rank i vertices fori <k — 1.
A rank k vertex in Y is of type I if it is adjacent to a vertex of rank k — 1; otherwise,
it is a vertex of type II. It is clear that o preserves the collection of rank k vertices
of type I. Before we deal with type II vertices, we need the following claim. Suppose
that w € Y is a vertex of rank k such that o(w) is also of rank k. If there exist k
vertices {z; }f‘zl adjacent to w such that
(1)  rank(z;) <k and rank(x(z;)) < k;
(2)  the edges {z,-—w}f»‘=1 are mutually orthogonal,
then rank(«(z)) < k for any z adjacent to w with rank(z) < k.

Now we verify the claim. Let w’ = a(w). Suppose that w and w’ are labeled by
A and A’. Then o induces an isomorphism between the links of w and w’ in Y':

ay Ky # - K % Lk(A, F(T')) > K| % -+ % Ki % Lk (A, F(D)).
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Each edge z;w gives rise to a vertex in K;, and each edge o(z;)w’ gives rise to a
vertex in K. Thus, o (K % -+ % Ki) = K| * -+ % K,’C. Since the edge zw gives rise
to a vertex in Ky * --- x K, the edge a(z)w’ gives rise to a vertex in Kj * ---* K .
Then «(z) is of rank at most k.

Let y € Y be arank k vertex of type II. Then there exists an edge path @ from
y to a type I vertex y; such that every vertex in w is of rank k. Let {y;}/_, be
consecutive vertices in @ such that y,, = y. Note that there are k vertices of rank
k — 1 adjacent to y;. By the induction assumption, they are sent to vertices of rank

k — 1 by a. Moreover, rank(a(y1)) = k, since y; is of type I. Thus, the assumption
of the claim is satisfied for y;. Then rank(c(y,)) < k; hence, rank(x(y,)) = k by
the induction assumption. Next we show that y, satisfies the assumption of the claim.
Let {z; }5?:1 be vertices of rank k such that they are adjacent to y; and {m}ﬁ;l are
mutually orthogonal. We also assume that y, = z;. Then rank(c(z;)) = k for all i.
Hence, all the «(Z;y7)’s are vertical edges. For i > 2, let z] be the vertex adjacent

to y, such that z]y, and Z; y; are parallel. Then «(z]y) is a vertical edge for i > 2.
Thus, rank(e(z])) = k and the assumption of the claim is satisfied for y,. We can
repeat this argument finitely many times to deduce that rank(«(y)) = k. O

Remark 5.23

If the assumption on I in Theorem 5.22 is not satisfied, then there exist a blowup ¥ —
|B| and an automorphism of Y that does not descend to an automorphism of |3|. By
Corollary 5.14, it suffices to construct an example in the case when I' is a discrete
graph with n vertices with n > 2. If n > 3, then we define each h g to be a surjective
map such that the inverse image of each point has n — 2 points. Then Y is a tree
with valence = n. If n = 2, then we define h® to be an injective map whose image
is the set of even integers. Then Y is isomorphic to the first subdivision of a tree of
valence 3. In both cases, it is not hard to find an automorphism of ¥ which maps some
vertex of rank O to a vertex of rank 1.

5.5. Morphisms between blow-up data

Let B and B’ be two buildings modeled on the same right-angled Coxeter group
W(T'). A cubical isomorphism 7 : |B| — |B’| is rank-preserving if, for each vertex
v € |B], v and n(v) have the same rank. (In general, cubical isomorphisms may not
preserve the rank of vertices (see Remark 5.23).) Note that such an 7 induces a bijec-
tion ' : 8 — B’ which preserves the spherical residues. Conversely, every bijection
B — B’ which preserves the spherical residues induces a rank-preserving isomor-
phism |B| — |B’|. Note that 7’ maps parallel residues of rank 1 to parallel residues
of rank 1; thus, 1’ induces a bijection 77 : Ag — A g/, where Ag and A g/ denote
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the collection of parallel classes of residues of rank 1 in B and B’, respectively (see
Section 5.3). See Remark 5.5 for our use of notation in the following discussion.

Definition 5.24 (n-Isomorphism)
Suppose that the blow-up data (see Definition 5.6) of |B| and |B’| are given by {hz}
and {/', }, respectively. An n-isomorphism between the blow-up data is defined to be
a collection of isometries { f3 : Z* — ZTM)};  such that the following diagram
commutes for every rank 1 residue R C B:

R hr 7T (R)

Tl’l fT(,R)Jv

7 (R) M 71T (R))
Here T is the type map defined at the beginning of Section 5.3. The map A is nonde-
generate if its image contains more than one point. In this case, if fr(g) exists, then
it is unique. If 7 5 is degenerate, then we have two choices for fr ().

Let ny : |B1| = |Bz|, n2 : |B2| — |Bsl, and n : | B | — | B3| be rank-preserving
isomorphisms such that 7 = 1, o ;. We fix a blow-up data for each B;. Let {f; :
7* — Z'_“('U};LGAE@1 and {g; : Z* — Z’hu)}le/\ﬂz be some 7;-isomorphism and
n2-isomorphism, respectively, between the corresponding blow-up data. We define
the composition of them to be {g7,(1) © fa}iea, Which turns out to be an
n-isomorphism.

Let W and W’ be the fiber functor associated with the blow-up data {h®} and
{h's}, respectively, and let Y — |8B| and Y’ — | 8’| be the associated restriction quo-
tient.

LEMMA 5.25

Every n-isomorphism induces a natural isomorphism from WV to V'; hence by Sec-
tion 4.3, it induces an isomorphism Y — Y', which is a lift of n : | 8| — |B’|. More-
over, the composition of n-isomorphisms gives rise to the composition of natural
transformations of the associated fiber functors.

Proof
For every spherical residue R C B, n’ respects the product decomposition of R.
Thus, the following diagram commutes:
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R IR gT@®

n’l [Tierw) fxl

n,
7 (R) —L 7iTR)
Here ]_[AGT(R) f3 induces an isometry RT® — RI(TR) This gives rise to a col-
lection of isometries between objects of W and ¥’. It follows from the construction
in Section 5.3 that these isometries give the required natural isomorphism between W
and W', The second assertion in the lemma is straightforward. O

Remark 5.26

If we weaken the assumption of Definition 5.24 by assuming that each f} is a bijec-
tion, then we can obtain a bijection between the vertex sets of Y and Y. This bijection
preserves the fibers; however, we may not be able to extend it to a cubical map.

Definition 5.27 (n-Quasimorphism)

We follow the notation in Definition 5.24. An (5, L, A)-quasimorphism between the
blow-up data {h &} and {h'p} is a collection of (L, A)-quasi-isometries { f} : 7* —
ZAMN, ca g such that the diagram in Definition 5.24 commutes up to error A.

LEMMA 5.28
Each (n, L, A)-quasimorphism between {hg} and {I'y} induces an (L', A)-quasi-
isometry Y — Y’ with L', A’ depending on L, A, and the dimension of | B|.

Proof

By Lemma 4.19, it suffices to produce an (L', A’)-quasinatural isomorphism from
W to W'. This can be done by considering maps of the form [];cr(g) /2 as in
Lemma 5.25. ([

Remark 5.29 (A nice representative)

Let Yy be the collection of rank O vertices in ¥ (see Definition 5.15). We define Y
similarly. If the assumption in Lemma 5.18(2) is satisfied, then Y, and Y{j are D-dense
in Y and Y, respectively. In this case, the quasi-isometry ¥ — Y’ in Lemma 5.28
can be represented by ¢ : Yo — Y, where ¢ is the bijection induced by 7 : |B| —
|8B’|. (Recall that we can identify Yo and Y with rank O vertices in |B| and |8,
respectively (see Definition 5.15).) The fact that ¢ is a quasi-isometry follows from
the construction in the proof of Lemma 4.19.
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COROLLARY 5.30

If there exists a constant D > O such that each map hg in the blow-up data satisfies:
() forany x € ZTP, |hl(x)| < D;

2) the image of hg is D-dense in VAACOR

then Y is quasi-isometric to G(T').

Proof

By the assumptions, there exists another set of blow-up data {/'s } such that each h'g
is a bijection and there exists an (7, L, A)-quasi-isomorphism { f} }1cA 5 from {h'z}
to {h®}, where 7 is the identity map. It follows from Lemma 5.28 and Theorem 5.19
that Y is quasi-isometric to X, the universal cover of the exploded Salvetti complex;
hence, Y is quasi-isometric to G(T"). O

In the rest of this section, we look at the special case when 8 = B(I") is the Davis
building of G(I") (see the beginning of Section 5.1), and we record an observation for
later use. In this case, we identify elements of G(I") with chambers in B.

We denote the word metric on G(T") by d,,. If we identify G(I") with chambers
of the building B8 = B(T"), then there is another metric on G(I") defined in Defini-
tion 3.6. We caution the reader that these two metrics are not the same. We pick a set
of blow-up data {hg} on B, and let g : Y — | 8| be the associated restriction quo-
tient. Recall that vertices of rank 0 in | 8| can be identified with chambers in 8 and,
hence, can be identified with G(I"). Thus, the map ¢! : G(I') — Y is well defined.

LEMMA 5.31

If there exist L, A > 0 such that all {hg : R — ZT®) are (L, A)-quasi-isometries
(here we identify chambers in R with a subset of G(I"); hence, R is endowed with an
induced metric from dy,), then ¢~ : (G(T'),dy) — Y is an (L', A')-quasi-isometry
with its constants depending on L, A, and T.

Proof

Let ¢’ : X, — |B| be the G(T')-equivariant canonical restriction quotient constructed
in Section 5.1. In this case, (¢')™' : G(I') — X, is a quasi-isometry whose constants
depend on I'. Let /', be the blow-up data which arises from the 1-data (see Defini-
tion 5.3) of ¢’. Then each /' is an isometry. It follows from the assumption that there
exists an (1, L, A)-quasi-isomorphism from the blow-up data {h'z} to {hg} with n
being the identity map. Thus, there exists a quasi-isometry X, — Y which can be
represented by a map ¢ of the form in Remark 5.29. Since ¢~! = ¢ o (¢’)7!, the
lemma follows. U
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5.6. An equivariant construction

Let 8 = B(I') be a right-angled building. Let K be a group which acts on |B| by
automorphisms which preserve the rank of its vertices, and let K ~ 8 and K ~ A g
be the induced actions. (A g is defined at the beginning of Section 5.3.)

Definition 5.32 (Factor actions)

Pick A € A g, and let R) C B be a residue of rank 1 such that T(R,) = A. (T is
the type map defined in Section 5.3.) Let K, be the stabilizer of A with respect to the
action K ~ A g, and let P(R)) = Ry X Ri‘ be the parallel set of R, with its prod-
uct decomposition (see Lemma 3.14, Theorem 3.13). Then P(R,) is K, -invariant,
and K respects the product decomposition of P(R;). (Note that, in general, K is
smaller than the stabilizer of P(R,).) Let py : K) ~ R be the action of K, on the
R, -factor. This action p, is called a factor action.

We construct equivariant blow-up data as follows. Pick one representative from
each K-orbit of K ~ A g, and form the set {1, },cv. Let K, be the stabilizer of A,,.
Pick a residue R,, C 8B of rank 1 such that T (R,) = A,, and let p, : K;, ~ Ry, be
the factor action defined as above.

To obtain a K -equivariant blow-up data, we pick an isometric action K, ~ Z*u
and a K-equivariant map hg, : Ry — Z* . (In general, there may not exist non-
trivial action K,, ~ 7™ and h R, ; however, in the next section, we will consider
situations where there exist nontrivial actions and equivariant maps, and we will plug
them into the construction.) If R is parallel to R,, with the parallelism map given by
p:R— Ry, we define hg = hg, o p. By the previous discussion, there is a factor
action K, ~ R, and hg is K,-equivariant. We run this process for each element in
{Mutuev - IEA € {Ay }ueu, then we fix an element g, € K such that g5 (1) € {1, }uev.
For a rank 1 element R with T (:R) = A, we define

hg =Idohg,(®r)° gx. (5.33)

where Id : Z8*®) — 7 is the identity map. Let K = g;l K¢, ()& be the stabilizer
of A. We define the action K; ~ Z* by letting g;lgg;k acton Z* by Ido g o Id™!
(g € Kg, (1))- Then h g becomes K -equivariant.

LEMMA 5.34

There exists a collection of maps { fg.® : Z2ZTR) 5 7T@ R with ¢ ranging over
elements in K and R ranging over rank 1 residues in B such that

(1) the following diagram commutes:
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R "R @

5| fem|

2(R) —ER, ST

2) Je122,8 = Je1.62(R) © foo,® for any g1, 82 € K.

Proof

First we define fgz ®. Let R be a rank 1 residue in 8B such that T(R) = A;. Sup-
pose that T(g(R)) = A». Then A, = gA;. Let g5, and g, be the elements we chose
before such that g, (A;) € {Ay}uev fori =1,2. (If A; is already in {1y },ecv, then
let g;, be the identity element.) By our choice of {4y }yev, g1, (A1) = g4, (A2), and
we assume without loss of generality that they are equal to A,,. Note that
g, gg)fl1 (Au;) = Ay, . Thus, g, gg;fl1 € Ky, ; in particular, this element also acts
on Z*1 . Define

—1
2T ® 1 g, P L 6y,

Let R; be a rank 1 residue with T(R;) = A,,. Now we verify the commutativity
of the diagram. To simplify our notation, we identify all these copies of Z’s with a
single Z, and we omit the identification maps between them. Then

fe.rohg = (82,887 1) 0 (hg, ©gr,) = (81,887, °hzr,) 0 g,
= (hg, © 81,885) 0 &, = (hg, 0gxr,) 08
=hg®)° 8,

where the first and last equalities follow from (5.33), and the third equality follows
from the K, -equivariance of h g, .

To see (2), let T(R) = A1, T(g2(R)) = Az, and T(g182(R)) = A3. We define
8A,» &1,> and gy, in a similar way as before. Then (2) follows from the equality
81:818285 = 81:818)) - 81,828 - O

Let W be the fiber functor associated with the above blow-up data, and let g :
Y — |B| be the corresponding restriction quotient. Lemma 5.25 implies that K acts
on ¥ by natural transformations; hence, there is an induced action K ~ Y and ¢ is
K-equivariant.

Remark 5.35
The previous construction depends on several choices:
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(1 the choice of the set {1, }yev,

2) the choice of the isometric action K, ~ Z** and the K,,-equivariant map
hg, : Ry — Z* | and

3) the choice of the elements g .

6. Quasiactions on RAAGs
In this section we will apply the construction in Section 5.6 to study quasiactions on
RAAGs. We assume G(I') # Z throughout Section 6.

6.1. The cubulation

Recall that G(I") acts on X(I') by deck transformations, and this action is simply
transitive on the vertex set of X(I'). By picking a basepoint in X(I"), we identify
G(T") with the 0-skeleton of X(T").

Definition 6.1

A quasi-isometry ¢ : G(I') = G(T') is flat-preserving if it is a bijection and for every
standard flat F C X(I") there is a standard flat F’ C X(I") such that ¢ maps the 0-
skeleton of F bijectively onto the O-skeleton of F’. The standard flat F’ is uniquely
determined, and we denote it by ¢, (F). Note that if ¢ is flat-preserving, then ¢! is
also flat-preserving.

Our main goal for this section is the following theorem, which establishes Theo-
rem 1.5.

THEOREM 6.2

If the outer automorphism group Out(G (1)) is finite and G(I") % 7Z, then any (L, A)-

quasiaction p : H ~ X(T') is quasiconjugate to an action p of H by cubical isome-

tries on a uniformly locally finite CAT(0) cube complex Y. Moreover; the following
hold.

(1) If p is cobounded, then p is cocompact.

2) If p is proper; then p is proper.

3) Let | 8| be the Davis realization of the right-angled building associated with
G(T), let H ~ |B| be the induced action, and let X, = X.(I") be the uni-
versal cover of the exploded Salvetti complex for G(I'). Then Y fits into the
following commutative diagram:

XE%Y

oA
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Here q', q, and ¢ are restriction quotients. The map ¢ is a quasi-isometry
whose constants depend on the constants of the quasiaction p, and q is H -
equivariant.

Proof
By Theorem 1.3, without loss of generality we can assume that p: H ~ G(I') is an
action by flat-preserving bijections which are also (L, A)-quasi-isometries.

On the one hand, we want to think of G(I") as a metric space with the word metric
with respect to its standard generating set or, equivalently, with the induced /! -metric
from X(I"). On the other hand, we want to treat G(I") as a right-angled building (see
Section 5.1); more precisely, we want to identify points in G(I") with chambers in the
associated right-angled building of G(I"). Then p preserves the spherical residues in
G(I"); thus, there is an induced p|g| : H ~ | 8| on the Davis realization | 8| of G(I").

Let A be the collection of parallel classes of standard geodesic lines in X(I")
(i.e., A is the collection of parallel classes of rank 1 residues in G(I')), and let T
be the type map defined at the beginning of Section 5.3; in other words, if R is a
spherical residue which comes from a standard flat in X(I"), then 7T'(R) is the set of
parallel classes of standard lines that have representatives contained in this standard
flat. Since p: H ~ G(I') is flat-preserving (see Theorem 1.3), it preserves parallel
classes of standard flats. Thus, there is an induced action pp : H ~ A. For each
A € A, let H) be the stabilizer of A. Pick a residue R in the parallel class A, and let
pa » Hy ™ R be the factor action in Definition 5.32. Note that (R is an isometrically
embedded copy of Z with respect to the metric on G(I"); moreover, p, is an action
such that its maps are (L', A")-quasi-isometries. Here we can choose L’ and A’ such
that they depend only on the constant D of Theorem 1.3, so in particular they do not
depend on A and R.

For the action pp : H ~ A, we pick a representative from each H -orbit and form
the set {1, }yev . By the construction in Section 5.6, it remains to choose an isometric
action Hy, ~ Z* and an H,,-equivariant map hg, : R, — Z** for each u € U.
(R is a residue in the parallel class A,.) The choice is provided by the following
result, whose proof is postponed to Section 7.

PROPOSITION 6.3

If a group U has an action on Z by (L, A)-quasi-isometries, then there exists another
action U ~ 7 by isometries which is related to the original action by a surjective
equivariant (L', A')-quasi-isometry f : 7 — 7, where L' and A’ depend on L and A.

We caution the reader that here we require U ~ Z to be an action, not a quasiac-
tion (see Remark 1.15).
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From the above data, we produce H -equivariant blow-up data hg : R — ZT®
for each rank 1 residue R C G(T') as in Section 5.6. Note that each h g is an (L”, A”)-
quasi-isometry with constants depending only on L and A.

Let g : Y — |B] be the restriction quotient associated with the above blow-
up data. Then there is an induced action H ~ Y by isomorphisms, and ¢ is H -
equivariant. It follows from Lemma 5.18 that Y is uniformly locally finite.

Claim
There exists an (L1, A1)-quasi-isometry G(I") — Y with L; and A; depending only
on L and A.

Proof of claim

Let hg : R — ZT®) be another blow-up data such that each h's is an isometry
(such blow-up data always exists), and let ¢’ : Y/ — |B| be the associated restric-
tion quotient. By Theorem 5.19, Y is isomorphic to X,, which is the universal cover
of the exploded Salvetti complex introduced in Section 5.1. For any A € A, we define
fa=hgo (hiﬂ)_l, where R is a residue such that 7(R) = A and the definition of f}
does not depend on R. Each f; is an (L”, A”)-quasi-isometry, and the collection of
all f3’sinduces a quasi-isomorphism between the blow-up data {4z } and {/ & }. It fol-
lows from Lemma 5.28 that there exists a quasi-isometry between ¢ : ¥’ =~ X, — 7,
and the claim follows. (]

Let By be the set of vertices of rank O in |8]|. There is a natural identifica-
tion of By with G(I'). Letting Yo = ¢~ '(By), we get that g induces a bijection
between Yy and By. Let ¢’ : Y’ — |B| be as in the previous paragraph, and define
Yy = (¢")"Y(Byp). It follows from Lemma 5.18(2) that Y, and Y, are D-dense in Y’
and Y, respectively, for D depending on L and A. Note that ¢! : G(I') — Yy is
H -equivariant, and if the action p : H ~ G(I') is cobounded, then H ~ Y is cocom-
pact.

The above quasi-isometry ¢ can be represented by g~ o g’ : Yj — Yo (see
Remark 5.29). By Lemma 5.31, (¢')™' : Bo = G(I') — Y is also a quasi-isometry,
and thus, ¢7! : G(I') — Yy is a quasi-isometry. This map is H -equivariant, so if
p: H ~ G(T) is proper, then H ~ Y is also proper.

It remains to produce the map ¢ in Theorem 6.2(3). This relies on a refinement

1

of the above discussion. Instead of requiring each &', in the proof of the above claim
to be an isometry, it is possible to choose each /' such that:

(D h'g is a bijection;

2) h:,R is an (L,, A2)-quasi-isometry; and
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3) fi: 7Z* — 7* is a surjective map which is either increasing or decreasing and,
hence, can be extended to a surjective cubical map R* — R*.
The surjectivity in (3) comes from our choice in Proposition 6.3. In this case, the
space Y’ is still isomorphic to X, (Theorem 5.19). Let ¥ and W’ be the fiber functors
associated with the blow-up data {hg} and {hz}. As in the proof of Lemma 5.25,
the f3’s induce a natural transformation from W’ to W which is made up of a collec-
tion of surjective cubical maps from objects in W’ to objects in W; moreover, these
maps are quasi-isometries with uniform quasi-isometry constants. Recall that we can
describe Y as the quotient of the disjoint collection {0 X W(0)}seFace(8]) (s€€ the
proof of Theorem 4.15), and a similar description holds for Y’. Thus, there is a sur-
jective cubical map ¢ : Y/ — Y induced by the natural transformation. Actually ¢ is
a restriction quotient, since the inverse image of each hyperplane is a hyperplane. We
also know that ¢ is a quasi-isometry by Lemma 4.19. O

COROLLARY 6.4

Suppose the outer automorphism group Out(G(T')) is finite. Then H is quasi-
isometric to G(I") if and only if there exists an H -equivariant restriction quotient
map q : Y — |B| such that:

(D | 8] is the Davis realization of some right-angled T -building;

2) the action H ~ Y is geometric; and

3) if v € |B| is a vertex of rank k, then ¢~'(v) = EX.

Proof
The only if direction follows from Theorem 6.2. For the if direction, it suffices to
show that Y is quasi-isometric to G(I"). Let ® be the fiber functor associated with g.

Pick a vertex v € |8B| of rank k, and let F, = ¢~ !(v). We claim Stab(v) acts
cocompactly on F,. By a standard argument, to prove this it suffices to show that
{h(Fy)}nen is a locally finite family in Y. Suppose there exists an R-ball N C Y
such that there are infinitely many distinct elements in {h(F,)},cg which have non-
trivial intersection of N. Since Y admits a geometric action, it is locally finite, and
thus, there exists a vertex x € |8]| which is contained in infinitely many distinct ele-
ments in {/(Fy)}recpg - This is impossible, since if h(Fy) # h'(Fy), then g(h(F,)) and
q(h'(Fy)) are distinct vertices in | 8| by the H -equivariance of ¢.

Consider a cube o C |8B|, and let v be its vertex of minimal rank. We claim
®(0) — D(v) is surjective and, hence, is an isometry. By (3), the action H ~ | 8]
preserves the rank of the vertices; thus, Stab(o) C Stab(v). We know that Stab(v)
acts cocompactly on ¢~ (v); since the poset {w > v} is finite, Stab(c) has finite
index in Stab(v), and so Stab(o) also acts cocompactly on ¢~ !(v). Now the image
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of ®(0) — ®(v) is a convex subcomplex of ¢~!(v) that is Stab(c)-invariant, so it
coincides with ¢~ (v).

By Corollary 5.13, we can assume that g is the restriction quotient of a set of
blow-up data {hz}. Pick a vertex v € |8B| of rank 1, and let D(v) be the downward
complex of v (see Section 5.4). Let R, C B be the associated residue, and let R, —
RT@) be the map induced by hg,. Then g~1(D,) is isomorphic to the mapping
cylinder of this map. Since Stab(v) acts cocompactly on ¢~!(D,), there are only
finite many orbits of vertices of rank 1, and the assumptions of Corollary 5.30 are
satisfied. It follows that Y is quasi-isometric to G(I"). O

It is possible to drop the H -equivariant assumption on g under the following
conditions. Here we do not put any assumption on I".

THEOREM 6.5

Let B be aright-angled T -building. Suppose that q - Y — |B)| is a restriction quotient
such that, for every cube o C |B| and every interior point x € o, the point inverse
g~ Y (x) is a copy of E™2k®) \where v € o is the vertex of minimal rank. If H acts
geometrically on Y by automorphisms, then H is quasi-isometric to G(T).

Proof
First we assume I" satisfies the assumption of Theorem 5.22. Then the above result is
a consequence of Corollary 5.13, Theorem 5.22, and the argument in Corollary 6.4.
For arbitrary T', we make a join decomposition ' =Ty oz 0---0 T o T, where
I/ satisfies the assumption of Theorem 5.22, and all the T';’s are discrete graphs with
more than one vertex. By Corollary 5.14, there is an induced cubical product decom-
position ¥ = Yy X Y5 x .-+ x Y} x Y’ and also restriction quotients g; : ¥; — |B;|
and ¢’ : Y’ — |B’| which satisfy the assumption of the theorem. By [14, Proposi-
tion 2.6], we assume that H respects this product decomposition by passing to a
finite-index subgroup. Since Y is locally finite and cocompact, the same argument
in Corollary 6.4 implies Y’ is quasi-isometric to G(I'"). Each Y; is a locally finite
and cocompact tree which is not quasi-isometric to a line. So Y; is quasi-isometric to
G(T;). Thus, Y is quasi-isometric to G(I"). O

COROLLARY 6.6

Suppose Out(G (")) is finite and G(I') % Z. Let B be the right-angled building of
G(T"). Then H is quasi-isometric to G(I") if and only if H acts geometrically on a
blowup of B in the sense of Section 5.3 by automorphisms.
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6.2. Reduction to nicer actions

Though every action p : H ~ G(I') by flat-preserving bijections which are also
(L, A)-quasi-isometries is quasiconjugate to an isometric action H ~ Y as in Theo-
rem 6.2, it is in general impossible to take ¥ = X(I"), even if the action p is proper
and cobounded.

Definition 6.7

Let V =7/2 & Z with the generator of Z/2 and Z denoted by a and b, respectively.

Let V A Z be the action where po(b)(n) =n + 2 and pg(a) acts on Z by flipping

2n and 2n 4 1 for all n € Z. An action U ~ Z is 2-flipping if it factors through the
. 20 . . .

action V'~ Z via an epimorphism U — V.

LEMMA 6.8
Let py : U ~ Z be a 2-flipping action. Then py is not conjugate to an action by
isometries on Z (with respect to the standard metric on 7).

Proof

Suppose there exists a permutation p : Z — Z which conjugates py to an isometric
action. Let & : U — V be the epimorphism in Definition 6.7. Pick k1,k € U such
that (k) is of order 2 and & (k,) is of order infinity. Then pk;p~! is a reflection
of Z, and pk,p~!
commute. O

is a translation. However, this is impossible since /(k1) and h(k>)

LEMMA 6.9

There does not exist an action py : U ~ Z by (L, A)-quasi-isometries with the fol-
lowing property. U has two subgroups Uy and U, such that py |y, is conjugate to a
2-flipping action and py |y, is conjugate to a transitive action on Z by translations.

Proof
By Proposition 6.3, there exists an isometric action pj; : U ~ Z and a U -equivariant
/

surjective map f : U Kz—vU l;l\/v Z. We claim f is also injective. Given this
claim, we can deduce a contradiction to Lemma 6.8 by restricting the action to Uj.
To see the claim, we restrict the action to U,. Thus, we can assume without loss of
generality that py is a transitive action by translations. Suppose that f(a;) = f(a1 +
k) for ay,k € Z and k # 0. Then the equivariance of f implies f(a1) = f(a; + nk)
for any integer n € Z, which contradicts that f is a quasi-isometry. ([

THEOREM 6.10
Suppose that G(I") is a RAAG with | Out(G(I"))| < co and G(T') % 7Z. Then there is a
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pair H, H' of finitely generated groups quasi-isometric to G(I') that does not admit
discrete, virtually faithful cocompact representations into the same locally compact
topological group.

Recall that a discrete, virtually faithful cocompact representation from H to a
locally compact group Gisa homomorphism i : H — G such that its kernel is finite,
and its image is a cocompact lattice.

Proof
Pick a vertex u € I'. Let I'; and I', be the full subgraphs of I" spanned by vertices
in I \ {u} and vertices adjacent to u, respectively. For i = 1,2, let ¥; be the Salvetti
complex S(I';). There is a natural embedding Y, — Y.

Let {&;}?_, be the four graphs in the following figure, from left to right, and let
V; C §; be the collection of dotted vertices indicated in the graph. For 1 <i <4, we
define Z; to be the space obtained by gluing ¥; x V; and Y, x §; along Y x V;. Note
that Z is the Salvetti complex S(I"). Let Z; be the universal cover of Z;.

OO -0 O

Let y, be the unique vertex in Y5. Then { yz} x V; gives a collection of vertices
in Z;. Let V; be the collection of vertices in Z; which are mapped to vertices in
{y2} x V; under the covering map Z; — Z;.

We have a homotopy equivalence ¥3 — 9, by collapsing the upper half of the
circle and a homotopy equivalence §3 — §4 by collapsing the two edges. These maps
induce homotopy equ1va1ences Z3 — Z, and Z3 — Z4, which give us identifications
between V3, Vz, and V4 up to choices of base points. Since there is a two-sheeted
covering map Z4 — Z, we identify V, with G(I').

The involution of §, which fixes each point in the circle and flips the two points
in V5 induces an involution « : Z, — Z,. This gives rise to an action of H = 71 Z, X
7,/27 on Z. Note that H preserves the set V5. Since we have identified V» with G(I")
in the previous paragraph, we obtain an action pg : H ~ G(I") by quasi-isometries
which is discrete and cobounded. One may readily verify from our construction that
PH is an action by flat-preserving quasi-isometries; moreover, the factor actions of H
are either transitive actions on Z or 2-flipping actions.

We claim that G(I') and H do not admit discrete, virtually faithful cocompact
representations into the same locally compact topological group. Suppose such a topo-
logical group G exists. Then by [49, Chapter 6], G has a quasiaction on G(T'). We
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assume G acts on G(T") by flat-preserving quasi-isometries as before. Then there
are restriction actions p’G(F) :G(') ~ G(T') and py : H ~ G(I") which are dis-
crete and cobounded. Since any two discrete and cobounded quasiactions H ~ G(I")
are quasiconjugate, it follows from Theorem 1.3 that pg and p’; are conjugate by
a flat-preserving quasi-isometry. Thus, factor actions of p7, are conjugate to fac-
tor actions of pg by bijective quasi-isometries. Similarly, we deduce that the factor
actions of p’G(F) are conjugate to transitive actions by left translations on Z via bijec-
tive quasi-isometries. Note that the factor actions of ,o’G(F) and the factor actions of

p’H are both restrictions of factor actions of G ~ G(T'); however, this is impossible
by Lemma 6.9. O

COROLLARY 6.11
The group H = G(T'') x Z/2 cannot act geometrically on X(T).

We now give a criterion for when one can quasiconjugate a quasiaction on X (I")
to an isometric action H ~ X(I').

THEOREM 6.12

Let p: H ~ G(I') be an action by flat-preserving bijections. If, for each A € A, the
Jactor action p), : Hy ™ Z can be conjugate to an action by isometries with respect to
the word metric of Z, then there is a flat-preserving bijection g : G(I') — G(I") which
conjugates p: H ~ G(T) to an action p' : H ~ X(T') by flat-preserving isometries.
If p is also an action by (L, A)-quasi-isometries, then g can be taken to be a quasi-
isometry.

Proof
We repeat the construction in Section 6.1 and assume that each hg : R — ZT®) s
a bijection. Let ¢ : Y — |8, Yo, ¢~ ' : G(I') — Yy, and the action p: H ~ Y by

automorphisms be as in Section 6.1. Recall that ¢!

is H-equivariant. There is an
isomorphism i : Y — X, by Theorem 5.19; moreover, i (Yy) is exactly the collection
of 0-dimensional standard flats X in X,.. We deduce from the construction of i that
the isometric action H ~ X, induced by p preserves standard flats in X,. By the
construction of X,, there exists a natural identification f : X9 — G(I") such that
any automorphism of X, which preserves its standard flats induces a flat-preserving
isometry of G(I") (with respect to the word metric) via f. It suffices to take g =

foiogl. O
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Suppose that we have already conjugated the flat-preserving action p : H n
G(T) to an action p’ : H ~ X(T") (or H ~ G(T)) by flat-preserving isometries. We
ask whether it is possible to further conjugate o’ to an action by left translations.

We can orient each 1-cell in S(I') and label it by the associated generator. This
lifts to orientations and labels of edges of X(I"). If H preserves this orientation and
labeling, then o’ is already an action by left translations. In general, it suffices to
require that H preserves a possibly different orientation and labeling which satisfy
several compatibility conditions. Now we recall the following definitions from [36].

Definition 6.13 (Coherent ordering)
A coherent ordering for G(I') is a blow-up data for G(I") such that each map &g is a
bijection. Two coherent orderings are equivalent if their maps agree up to translations.

Let P (I") be the extension complex defined in Section 3.3. Note that we can
identify A g(r) with the O-skeleton of & (I"). Any flat-preserving action H ~ G(I")
induces an action H ~ (") by simplicial isomorphisms. Let F(I") be the flag com-
plex of I'.

Definition 6.14 (Coherent labeling)

Recall that, for each vertex x € X(I"), there is a natural simplicial embedding i, :
F(T') = #(I") by considering the standard flats passing through x. A coherent label-
ing of G(I") is a simplicial map L : P(I") - F(I") such that L o i, : F(I') > F(I")
is a simplicial isomorphism for every vertex x € X(I').

The next result follows from [36, Lemma 5.7].

LEMMA 6.15

Let p' : H ~ G(T') be an action by flat-preserving bijections, and let H ~ P (T") be
the induced action. If there exists an H-invariant coherent ordering and an
H -invariant coherent labeling, then p' is conjugate to an action by left translations.

Since each vertex of #(I') corresponds to a parallel class of v-residues for a
vertex v € I, this gives a labeling of vertices of &#(I") by vertices of I". We can
extend this labeling map to a simplicial map L : P (I") — F(I"), which gives rise to a
coherent labeling.

COROLLARY 6.16
Let p: H ~ G(I') be an action by flat-preserving bijections. Suppose that the follow-
ing statements hold.
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(1) The induced action H ~ P (I') preserves the vertex labeling of #(I') as
above.

(2)  For each vertex v € P (), the action p, : Hy, ~ Z is conjugate to an action
by translations.

Then p is conjugate to an action H ~ G(I") by left translations.

Note that condition (2) is equivalent to the existence of an H -invariant coherent
ordering.

7. Actions by quasi-isometries on 7Z
In this section we prove Proposition 6.3.

7.1. Tracks
Tracks were introduced in [25]. They are hypersurface-like objects in 2-dimensional
simplicial complexes.

Definition 7.1 (Tracks)

Let K be a 2-dimensional simplicial complex. A track t C K is a connected embed-

ded finite simplicial graph such that the following hold.

(1)  For each 2-simplex A C K, T N A is a finite disjoint union of arcs such that
the endpoints of each arc are in the interior of edges of A.

2) For each edge e € K, t N e is a discrete set in the interior of e. Let {A}}rea
be the collection of 2-simplices that contains e. If v € T N e, then for each A,
T N Ay contains an arc that ends with v.

Given a track t C K, we define the support of t, denoted Spt(r), to be the min-
imal subcomplex of K which contains t. We can view hyperplanes defined in Sec-
tion 3.2 as analogues of tracks in the cubical setting. Each track t C K has a regular
neighborhood which fibers over 7. When K is simply connected, K \ t has two con-
nected components; moreover, the regular neighborhood of 7 is homeomorphic to
T X (—€,€).

Two tracks 71 and 15 are parallel if Spt(t;) = Spt(r2) and there is a region home-
omorphic to 71 x (0, €) bounded by 71 and 7,. A track T C K is essential if the compo-
nents of K \ t are unbounded. The following result follows from [25, Proposition 3.1].

LEMMA 7.2
If K is simply connected and has more than one end, then there exists an essential
track t C K.
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Next we look at essential tracks which are “minimal”’; these turn out to behave
like minimal surfaces. First we metrize K as in [55].

Let A = A(£1623) be an ideal triangle in the hyperbolic plane. We mark a point
on each side of the triangle as follows. Let ¢ be the unique isometry which fixes &3
and flips £; and &,. We mark the unique point in £; &, which is fixed by ¢. Other sides
of A are marked similarly. This is called a marked ideal triangle.

We identify each 2-simplex of K with a marked ideal triangle in the hyperbolic
plane and glue these triangles by isometries which identify the marked points. This
gives a collection of complete metrics on each connected component of K — K©
which is not homeomorphic to the interval (0, 1). We denote this collection of metrics
by dy. If a group G acts on K by simplicial isomorphisms, then G also acts by
isometries on (K, dy). The original definition in [55] did not require these marked
points (see Remark 7.4 for why we add them).

We assume each arc in the track is rectifiable. Thus, each track 7 has a well-
defined dy-length, which we denote by /(7). We also define the weight of 7, denoted
by w(t), to be cardinality of N KV, The complexity c(t) is defined to be the ordered
pair (w(t),I(t)). We order the complexity lexicographically, namely, c(t1) < c(t2)
if and only if w(ry) < w(1z) or w(ty) = w(rz) and [(11) < I(12).

The following result follows from [55, Lemmas 2.11, 2.14].

LEMMA 7.3

Suppose that K is a uniformly locally finite and simply connected simplicial
2-complex with at least two ends. Suppose that K does not contain separating ver-
tices. Then there exists an essential track t C K which has the least complexity with
respect to dy among all essential tracks in K.

Remark 7.4
Let {7;}{2, be a minimizing sequence. Since K is uniformly locally finite, there are
only finitely many combinatorial possibilities for {z;}72,. Thus, we can assume all
the 7;’s are inside a finite subcomplex L. Moreover, we can construct a hyperbolic
metric dy on L as above, and it suffices to work in the space (L, dy). However, if we
do not use marked points in the construction of the hyperbolic metric on K, then each
7; may sit inside a copy of L with different shears along the edges of L.

In [55], K is assumed to be cocompact, so one does not need to worry about the
above issue.

Remark 7.5
If we metrize each simplex in K with the Euclidean metric, then Lemmas 7.3 and 7.6
may not be true. For example, one can take the following picture, where the dotted
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line is part of some track 7. Once we shorten 7, it may hit the central vertex of the
hexagon. However, this cannot happen if we have hyperbolic metrics on each simplex.
Once t gets too close to some vertex, then it takes a large amount of length for 7 to
escape that vertex, since dy is complete. (Actually it does not matter if dy is not
complete, since we also have an upper bound on the weight of t.)

The next result can be proved in a similar fashion.

LEMMA 7.6

Let K be a simply connected simplicial 2-complex. Let A C K be a uniformly locally
finite subcomplex such that

(D) A contains an essential track of K, and

(2) A does not contain any separating vertex of K.

Then there exists an essential track T of K which has the least complexity among all
essential tracks of K with support in A.

LEMMA 7.7 ([55, Lemma 2.7])
Let t1 and v, be two essential tracks of K which are minimal in the sense of
Lemma 7.3 or Lemma 7.6. Then either 11 = 15 or 11 N 15 = @.

7.2. The proof of Proposition 6.3
First we briefly recall the notion of the Rips complex. See [12, Chapter III.I".3]
for more details. Let (X,d) be a metric space, and pick R > 0. The Rips complex
Pr(X,d) is the geometric realization of the simplicial complex with vertex set X
whose n-simplices are the (n + 1)-element subsets {xo,...,x,} C X of diameter at
most R.

Let d be the usual metric on Z. Define a new metric d on Z by

d(x,y) = sup d(g(x).g(»)).

geU

Note that (Z,d) is quasi-isometric to (Z,d), and U acts on (Z,d) by isometries.

Since (Z,d) is Gromov hyperbolic, the Rips complex Pg(Z.,d) is contractible for
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some R = R(L, A) (see [12, Proposition III.T".3.23]). Let K be the 2-skeleton of
PRr(Z, d ). Then K is simply connected, uniformly locally finite, and 2-ended.

We make K a piecewise Euclidean complex by identifying each 2-face with an
equilateral triangle and identifying each edge with [0, 1]. Let dg, be the resulting length
metric. There is an inclusion map i : (Z,d) — (K, dg) which is a quasi-isometry with
quasi-isometry constants depending only on L and A.

Claim 7.8

There exist D1 = D1(L, A) and a collection of disjoint essential tracks {t; }ie; of K
such that the following hold.

(D) {ti }ies is U-invariant.

2) The diameter of each t; with respect to di is at most Dj.

(3)  Each connected component of K \ (|;¢; 7i) has diameter at most D;.

In the following proof, we denote the ball of radius D centered at x in K with
respect to dg by Br(x, D). Let diamg, be the diameter with respect to dg.

Proof of Claim 7.8

First we assume K does not have separating vertices. Since K is quasi-isometric
to Z, there exists D = D(L, A) such that K \ Bg(x, D) has at least two unbounded
components for each x € K. Thus, every (D + 1)-ball contains an essential track with
weight bounded above by D’ = D’(L, A). We put a U-invariant hyperbolic metric
dyg on K as in Section 7.1. By Lemma 7.3, there exists an essential track t C K of
least complexity. Note that diamg(t) < D’, since the weight w(z) < D’. Lemma 7.7
implies the U -orbits of t give rise to a collection of disjoint essential tracks in K.

A collection of tracks {t; }ie; of K is admissible if the following hold.

(1) Each track in {t; }; 7 is essential, and different tracks have empty intersection.
2) No two tracks in {z; };es are parallel.

3) The collection {t;};ey is U -invariant.

() diamg(z;) < D’ foreachi € I.

There exists a nonempty admissible collection of tracks by previous discussion. (In
particular, (2) follows from the hyperbolicity of the metrics on the faces of K.)

Let {t;}ic; be a maximal admissible collection of tracks. Then this collection
satisfies the above claim with D; = 2D’ + 5D. To see this, let C be one connected
component of K \ (|;¢; 7). Since each track is essential and K is 2-ended, either
diamg(C) < oo and C \ C (C is the closure of C) is made of two tracks 7; and
T, or diamg(C) = oo and C \ C is made of one track. Let us assume the former
case is true. The latter case can be dealt with in a similar way. Let A be the maximal
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subcomplex of K which is contained in C. Then A is uniformly locally finite, and
C \ A is contained in the 1-neighborhood of 71 U 5.

Suppose that diamg(C) > 2D’ 4+ 5D. Since diamg(z;) < D’ for i = 1,2, there
exists x € A such that Bg(x,2D) C A. Thus, A contains an essential track of X with
its weight bounded above by D’. Let 5 C A be an essential track of K which has the
least complexity in the sense of Lemma 7.6. Then w(n) < D’; hence, diamg(n) <
D’. Moreover, by Lemma 7.7, for each g € Stab(A4) = Stab(C), either g - n = n or
g -n N n=9. Thus, we can enlarge the original admissible collection of tracks by
adding the U -orbits of 1, which yields a contradiction.

The case when K has separating vertices is actually easier, since one can find
essential tracks on the e-sphere of each separating vertex. The rest of the proof is
identical. O

We now continue with the proof of Proposition 6.3.

Pick a regular neighborhood N (z;) for each t; such that the collection {N(t;)}ier
is disjoint and U -invariant. Then we define a map ¢ from K to a tree T by collapsing
each component of ¥ \ | J;c; N(w;) to a vertex and collapsing each N(z;), which
is homeomorphic to 7; x (0, 1), to the (0, 1)-factor. It is easy to make ¢ equivariant
under U, and by the above claim, ¢ is a quasi-isometry with quasi-isometry constants
depending only on L and A. Note that T is actually a line, since t is essential and
K is 2-ended. Then Proposition 6.3 follows by considering the U -equivariant map
poi:(Z,d)y—T.

Remark 7.9

If the action U ~ Z by (L, A)-quasi-isometries in Proposition 6.3 is not cobounded,
then the resulting isometric action A : U ~ Z is also not cobounded; hence there are
two possibilities:

(1) if U coarsely preserves the orientation of Z, then A is trivial;

2) otherwise A factors through a Z/2-action by reflection.
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