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Abstract. Coupling between sub- and super-Hubble modes can affect the locally observed
statistics of our universe. In the context of Quasi-Single Field Inflation, we can compute
correlation functions and derive the influence of those unobservable modes on observed cor-
relation functions as well as on the inferred cosmological parameters. We study how different
classes of diagrams affect the bispectrum in the squeezed limit; in particular, while contact-
like diagrams leave the scaling between the long and short modes unchanged, exchange-like
diagrams do modify the shape of the bispectrum. We show that the mass of the hidden
sector field can hence be biased by an unavoidable cosmic variance that can reach a 1-σ
uncertainty of O(10%) for a weakly non-Gaussian universe. Finally, we go beyond the bis-
pectrum and show how couplings between unobservable and observable modes can affect
generic correlation functions with arbitrary order non-derivative self-interactions.
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1 Introduction

In the context of single clock inflation, statistics beyond the two-point correlation function
of the primordial curvature density perturbation is a powerful tool to discriminate between
different inflationary models. This is, among other things, due to the fact that mode cou-
pling between modes of very different amplitude is negligible. Therefore, even though we
might be observing only a fraction of the whole patch generated during inflation, the local,
observed statistics will not be affected by larger, unobservable modes [1, 2]. This gave rise
to consistency relations between correlation functions of different orders, as shown in [3–5]
for the bispectrum first and higher order functions after.

However, the situation changes when we leave single clock inflation [6–8], where the
consistency relation and soft-mode theorems no longer hold; this is why a detection of local
non-Gaussianity would point towards multi-field models of inflation [9, 10]. To illustrate
this, we will focus on Quasi Single Field Inflation [11], where an additional field with a mass
m . H is introduced on top of the inflaton field:

LQSF = −1

2
(∂ϕ)2 + ρϕ̇σ − 1

2
(∂σ)2 − 1

2
m2σ2 − V (σ), (1.1)

where ϕ is the inflaton perturbation and σ the hidden sector field perturbation. The transfer
term ρϕ̇σ couples the two sectors, allowing non-Gaussianities to be generated in the hidden
sector, and then be transfered in the inflationary, observable sector. The field σ is not
constrained by the approximate shift-symmetry of the inflaton, and can therefore have a
large range of self-interactions V (σ). This enables the coupling between modes of different
magnitudes, while single-field models typically couple modes of similar wavelength instead.

This is not without consequence. Couplings between modes of different magnitudes
implies coupling between super-horizon modes1 — modes whose wavelength is larger than
our Hubble, observable universe — and sub-horizon modes — modes living inside our Hubble
volume. Therefore, these unobservable super-horizon modes can potentially induce a bias on

1While the horizon is not the same quantity as the Hubble length, we will refer to observable and unob-
servable modes as sub- and super-horizon modes respectively.
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the observed statistics in our Hubble inflationary patch, giving rise to an unavoidable cosmic
variance on the locally observed cosmological parameters.

For instance, in the presence of local, scale-dependent non-Gaussianities, mode coupling
does create a cosmic variance, which, depending on fNL, can significantly affect the spectral
index [12]. This is not limited to the scalar sector; the presence of tensor modes can give rise
to a four-point function [13, 14]

We here focus on the cosmic variance in the squeezed limit of the bispectrum, which
is the momentum configuration where one of the three external modes kL is much longer
(and therefore has a small magnitude in Fourier space) than the two others kS . Owing
to the consistency relation [3], a large signal in the squeezed limit of the bispectrum is
generically considered to be a signature of multi-field inflationary models — even if non-
Bunch-Davies initial states [15–22] or the existence of a non-attractor phase [23–25] could
alter the conclusion. Evidence of additional fields besides the inflaton could give us hints of
the ultra-violet completion of the theory [26, 27], and it is therefore important to understand
the implications of unobservables modes on the bispectrum.

In Quasi Single Field Inflation, the squeezed bispectrum has a characteristic scaling [8,
11]:

B(kS , kS , kL) ∝ P (kL)P (kS)

(

kL
kS

)3/2−ν

, (1.2)

where P (k) is the power spectrum

P (k) =
∆ζ

2π2k3
(1.3)

and the parameter ν is

ν ≡
√

9

4
− m2

H2
, (1.4)

m being the mass of the additional field. Measuring the scaling 3/2 − ν between the long
mode kL and short mode kS of the bispectrum in this limit would therefore tell us about the
mass of the hidden sector field. However, owing to coupling between sub- and super-horizon
modes, that scaling could be affected by the realization of the super-horizon modes, and the
locally measured mass could be biased.

In previous work [28], we have studied the impact that mode coupling has on the
squeezed bispectrum for a subset of diagrams. We found that for contact-like diagrams, the
scaling of the bispectrum in the squeezed limit is not affected by coupling between sub- and
super-horizon modes. The question is now to understand how this result holds if we consider
a larger set of diagrams, and is the focus of this work.

But we can go beyond the bispectrum, as we expect that super-horizon modes will
also affect other correlation functions. We therefore also use similar techniques as the ones
we used for the bispectrum to show how super-horizon modes can affect generic correlation
functions. We will see that again, the influence of the unobservable modes will depend on
the way they couple to the sub-horizon modes, either in a contact or exchange fashion.

The paper is organized as follows: in the first section, we review the framework presented
in [28] to compute late-time correlators. We then generalize that previous work and derive
the induced variance from super-horizon modes on ν from the infinite set of exchange-like
diagrams generated by cubic self-interactions of the hidden sector field, then from arbitrary
order self-interactions, and finally for derivative self-interactions. In the second section,

– 2 –
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we study how the shape and amplitude of generic correlation functions can be affected by
couplings to unobservable modes.

Throughout the paper, we will use the notation kS to designate short modes, kL for
long modes that are still sub-horizon, and kH or q for super-horizon modes. We will denote
the inflaton perturbation by ϕ, and the hidden sector field perturbation by σ.

1.1 Late-time correlators

Since we are aiming to understand how an arbitrary number of super-horizon modes can
affect observed correlation functions, we will introduce a framework that will make these
calculations more systematic and easier to carry out. The idea is to compute late-time
correlators using the expansion of the curvature perturbation in terms of a Gaussian field.
Each term of the series will contain the particle physics corresponding to the influence of the
super-horizon modes on the corresponding correlation function. We use correlation functions
of the curvature perturbation ζ rather than the inflaton field ϕ since this corresponds to the
observable quantity that is eventually measured, and one can always work in a specific gauge
in which, at first order, ϕ and ζ are linearly related to each other:

ϕ = −
√
2εζ, (1.5)

ε being one of the slow-roll parameters. It is therefore easy to express one correlation function
in terms of the other.

Correlation function are defined by:

〈ζNG(k1) . . . ζNG(kn)〉 ≡ (2π)3 δ(3)(k1 + · · ·+ kn)Fn(k1, . . . ,kn), (1.6)

where ζNG(k) is the curvature perturbation in Fourier space. We are going to compute these
correlation functions in a systematic way by developing ζNG(k) in a series around a Gaussian
field ζ(k)

ζNG(k) = ζ(k) + fNLZ2(k) + gNLZ3(k) + . . . . (1.7)

The n-th order term of the sum is given by:

Zn(k) =
(2π)3

n!

n
∏

`=1

∫

d3p`
(2π)3

[ζ(p1) . . . ζ(pn)−F(ζ(p1), . . . , ζ(pn))]

×Nn(p1, . . . ,pn,k) δ
(3)(k− p1 − . . . − pn)

(1.8)

where F(ζ(p1), . . . , ζ(pn)) ensures that the mean of ζNG(k) is zero, and that we only get
contributions to the connected parts of the correlation function. The kernel Nn(p1, . . . ,pn,k)
is symmetric in its n first entries pi, and is chosen to reproduce the tree-level (n+ 1)−point
function; therefore, it will have a dependence on the parameters of the Lagrangian.

Since we are interested in studying the influence of super-horizon modes on correla-
tion functions as observed in a sub-volume, we perform a split between super-horizon modes
kH , whose associated wavelengths are bigger than the Hubble scale kH < k0 ' 2π/H, and
sub-horizon modes kS ≥ k0 that are inside the observable volume. Hence, integrals can be
written as:

∫

d3k

(2π)3
→

∫

k<k0

d3k

(2π)3
+

∫

k≥k0

d3k

(2π)3
. (1.9)

– 3 –
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Expanding each integral in the n−th order term (1.8) of the series gives rise to n terms:2

Zn(k) = Z(0)
n (k) + · · ·+ Z(n−1)

n (k), (1.10)

where Z
(i)
n (k) corresponds to the term with i integrals over super-horizon modes:

Z(i)
n (k) =

(2π)3

n!

n−i
∏

`=1

(
∫

p`≥k0

d3p`
(2π)3

) n
∏

`=n−i+1

(
∫

p`<k0

d3p`
(2π)3

)

Nn(p1, . . . ,pn,k)

× δ(3)(k− p1 − . . . − pn) [ζ(p1) . . . ζ(pn)−F(ζ(p1), . . . , ζ(pn))] .

(1.11)

Rearranging each term of (1.7) according to the number of sub-horizon modes involved
in each integral, one obtains the field as observed in the sub-volume:

ζobsNG(k) =
[

ζ(k) + 2fNL Z
(1)
2 (k) + 3gNL Z

(2)
3 (k) + 4hNL Z

(3)
4 (k) + . . .

]

+
[

fNL Z
(0)
2 (k) + 3gNL Z

(1)
3 (k) + 6hNLZ

(2)
4 (k) + . . .

]

+
[

gNL Z
(0)
3 (k) + 4hNL Z

(1)
4 (k) + . . .

]

+ . . .

(1.12)

≡ Zobs
1 (k) + fobs

NL Z
obs
2 (k) + gobsNLZ

obs
3 (k) + . . . (1.13)

where numerical pre-factors are due to the symmetry of Zn(k) in the integrated over momenta
pi. The first line of (1.12) corresponds to the linear term of the expansion of the field ζ(k)
as observed in the sub-volume; in other words, it contains all the terms of the expansion
involving only one field with a sub-horizon mode. The next lines are the next order terms
gathering all the terms with two, three, etc sub-horizon modes.

This allows us to write each term with a local, effective kernel Nobs
n (p1, . . . ,pn,k):

c
(n)obs
NL Zobs

n (k) =
c
(n)
NL

n!

n
∏

i=1

(
∫

pi>k0

d3pi
(2π)3

)

[ζ(p1) . . . ζ(pn)−F(ζ(p1), . . . , ζ(pn))]

×Nobs
n (p1, . . . ,pn,k) (2π)

3δ(3)(k− p1 − · · · − pn)

(1.14)

where c
(2)
NL = fNL, c

(3)
NL = gNL, etc, and

Nobs
n (p1, . . . ,pn,k) = Nn(p1, . . . ,pn,k) +

∑

i=n+1

i!

n!(i− n)!

c
(i)
NL

c
(n)
NL

×
i
∏

j=n+1

(

∫

pj<k0

d3pj
(2π)3

ζ(pj)

)

Ni(p1, . . . ,pi,k).

(1.15)

We see that the observed kernel gets correction from higher-order kernels involving more and
more super-horizon modes.

2The Zi
n(k) terms must contain at least one observable mode. We hence ignore any terms involving only

integrals over super-horizon modes, with no integral over sub-horizon modes.

– 4 –
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Figure 1. The mean, tree-level bispectrum in Quasi-Single Field Inflation. The solid lines represent
the inflaton fields, while the dashed lines correspond to the hidden sector field. Transfer vertices
connect the inflaton to the hidden field, and the hidden field is self-interacting.

2 The bispectrum in the squeezed limit

We can now apply the framework presented above to a particular case: the computation of
the bispectrum in the squeezed limit. This will allow us to understand how super-horizon
modes can affect the 3/2 − ν scaling of the function, and therefore how protected is the
measurement of the mass of the hidden sector.

In order to apply this framework, we will need to evaluate correlation functions in order
to determine their scaling with respect to the different involved scales. We hence quickly
illustrate how to estimate the correlation function in one simple case: the squeezed limit
of the bispectrum in the large volume, i.e. not including yet effects related to unobservable
modes. The Lagrangian is given by eq. (1.1), and we will only assume a cubic self-interaction.
The estimations follow those presented in [26]. The correlation function can be schematically
represented by:

〈ζ(kS)ζ(kS)ζ(kL)〉 ∼ ζ(kS)ζ(kS)ζ(kS)|τ=0

3
∏

i=1

∫

dτi a
3ρϕ′(ki)σ(ki)

×
∫

dτa4λ3σ(kS)σ(kS)σ(kL),

(2.1)

where the prime is a time derivative with respect to conformal time τ . While this expression
is not complete, its structure reveals the most important features that we are looking for. The
three first integrals correspond to the three transfer vertices between the inflaton field and
the hidden sector field, see figure 1. The last integral corresponds to the central cubic vertex.

Each ζ(k) evaluated at τ = 0 gives a factor of ∆ζ/k
3/2. To compute the integrals, we

replace each field by its corresponding mode function:

Massless field, ϕ uk(τ) =
H√
2k3

(1 + ikτ)e−ikτ , (2.2)

Massive field, σ vk(τ) =
H
√
π

2
√
k3

(−kτ)3/2H(1)
ν (−kτ)

When |kτ | → 0 ∼ −i
2νΓ(ν)

2
√
π

H√
k3

(−kτ)3/2−ν . (2.3)

– 5 –
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Figure 2. Subset of diagrams included in the previous analysis of the scaling of the bispectrum in
the squeezed limit [28]. All super-horizon modes were only attached to the central vertex, and not to
sub-horizon modes.

For the first three integrals, the exponential of the massless mode function will suppress the
integrand when |kτ | � 1. The integral will then dominated for τ ∼ −k−1:

∫

dτa3ϕ′(k)σ(k) →
∫

dτa3u′k(τ)vk(τ) ∼
∫

dτ
ρ

(−Hτ)3
H2

√
2k3

k2τ

kν
(−τ)

3
2
−νe−ikτ

∼ ρ

H
k

1
2
−ν

∫

dτ τ−
1
2
−νe−ikτ

∼ ρ

H
(2.4)

For the cubic vertex integral, the mode dominating the integral is the shortest one as it is
the last mode to cross the horizon, so τ ∼ −k−1

S

∫

dτa4λ3 σ(kS)σ(kS)σ(kL) →
∫

dτa4λ3 v
2
kS
(τ) vkL(τ) ∼

∫

dτ
λ3

(−Hτ)4
H3

k2νS kνL
τ3(

3
2
−ν)

∼ λ3

H
k−ν
L k−2ν

S

∫

dτ τ
1
2
−3ν

∼ λ3

H
k
ν− 3

2
S k−ν

L . (2.5)

Then, combining everything, we obtain:

〈ζ(kS)ζ(kS)ζ(kL)〉 ∼
∆3

ζ

k3Sk
3/2
L

( ρ

H

)3 λ3

H
k
ν− 3

2
S k−ν

L

∼ 1

∆ζ

( ρ

H

)3 λ3

H
P (kL)P (kS)

(

kL
kS

)
3
2
−ν

, (2.6)

which corresponds to the result eq. (1.2).

2.1 Exchange diagrams with cubic couplings

In [28], it was shown that the scaling of the ratio of the long and short modes of the bis-
pectrum in the squeezed limit is preserved from super-horizon mode contributions if all the
super-horizon modes are connected to the same vertex as the sub-horizon modes — or, in
other words, for contact-like diagrams, see figure 2. We now investigate how the coupling is
affected if one allows the super-horizon modes to connect to other parts of the diagram, in an
exchange-like fashion, as shown on figure 3. We will first only consider cubic self-interactions
of the hidden sector field:

V (σ) =
λ3

3!
σ3, (2.7)

– 6 –
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Figure 3. To evaluate the correlation function with N long modes, we take the initial correlation
function that we want to study (on the left), and add super-horizon modes (in gray, on the right).
Each super-horizon mode will be attached to one of the initial momenta k1, k2 or k3. The initial
correlation function acts as a backbone onto which the super-horizon modes are connected.

and generalize the result to arbitrary order self-interactions in the next sub-section 2.2.
In order to derive correlation functions for exchange-like diagrams using the late-time

correlators formalism, the first step is to derive the kernels. The following expression is an
approximation of the full result that gives the usual bispectrum in the squeezed limit [11]:

N2(p1, p2, k) ∝
(p1 + p2 + k)3ν−

3
2

(p1p2k)
3
2
+ν

p31p
3
2. (2.8)

This kernel has no super-horizon modes. The corresponding kernel with N super-horizon
modes will be denoted by the function NN+2(p1, p2, k, q1, . . . , qN ). In the following, a mode
qi will in the end be taken to be a super-horizon mode, so we directly denote them with a
different letter in order to make the notations more transparent.

To derive the N+3-point correlation function FN+3(p1, p2, k, q1, . . . , qN ), we first notice
that:

• Adding one long mode to a diagram means adding one external leg, one transfer vertex
and one cubic self-coupling.

• As the super-horizon mode’s momentum q is much smaller than the sub-horizon modes,
it is not going to affect the momentum k of the leg upon which it is connected, and so
k + q ' k.

Therefore, we can associate each long mode to one of the three sub-horizon modes onto which
it connects. For a total of N = n+m+ ` super-horizon modes, n, m and ` will be attached
to the external leg with momentum p1, p2 and k respectively.

Therefore, we want to evaluate the following integrals:

FN+3(p1,p2,k,q1, . . . , qN )∝
( ρ

H

)N+3 ∆N+3

(p1p2kq1 . . . qN )3/2

[
∫

dτa4λ3σ(p1)σ(p1)σ(q)

]n

×
[
∫

dτa4λ3σ(p2)σ(p2)σ(q)

]m[∫

dτa4λ3σ(k)σ(k)σ(q)

]`

×
[
∫

dτa4λ3σ(p1)σ(p2)σ(k)

]

,

(2.9)

– 7 –
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where we took q1 ∼ · · · ∼ qN ∼ q. Each integral is evaluated in the same way as described
above:

∫

dτa4λ3 σ(p)σ(p)σ(q) ∼
λ3

H
q−νpν−3/2, (2.10)

where p refers to either p1, p2 or k. In the last integral of eq. (2.9) however, it is not obvious
which mode is the shortest one, and therefore we choose to evaluate the integral in the
following way:

∫

dτa4λ3σ(p1)σ(p2)σ(k) ∼
λ3

H
(p1p2k)

−ν(p1 + p2 + k)3ν−3/2. (2.11)

Combining everything together and including a combinatorics factor to take into account the
number of arrangement of N long modes in three sets of modes attached to either p1, p2 or
k, this yields:

FN+3(p1, p2, k, q1, . . . , qN ) ∝ (N + 2)!

N !2!

(

ρ∆

H

)N+3(λ3

H

)N+1

× (p1 + p2 + k)3ν−
3
2

(p1p2kqN )ν+
3
2

∑

{n,m,` |
n+m+`=N}

(

pn1p
m
2 k`

)ν−3/2
,

(2.12)

where the sum is over partitions of N in three sets (i.e. over arrangements of n,m, ` such
that n+m+ ` = N , where n,m and ` denote the number of super-horizon modes connecting
to p1, p2 and k respectively).

We then find the following expression for the corresponding kernel:3

NN+2(p1, p2, k, q1, . . . , qN ) ∝ (2π2)N+2 (N + 2)!

N !2!

( ρ

H

)N+3
(

λ3

H∆ζ

)N+1

× (p1 + p2 + k)3ν−
3
2

(p1p2qN )ν−
3
2kν+

3
2

∑

{n,m,` |
n+m+`=N}

(

pn1p
m
2 k`

)ν−3/2
.

(2.13)

It is then just a matter of manipulating the above expressions to derive the observed kernel
in the sub-volume corrected by super-horizon modes couplings:

Nobs
2 (p1, p2, k) ∝

(

λ3ρ
3(2π2)2

∆ζH4

)

(p1 + p2 + k)3ν−
3
2

(p1p2)
ν− 3

2k
3
2
+ν

∑

N=0

(N + 2)!

N !2!

c
(N+2)
NL

fNL

(

λ3ρ2π
2

H2∆ζ

)N

×
N+2
∏

i=3

[
∫

qi<k0

d3qi
(2π)3

ζ(qi)q
3
2
−ν

i

]

∑

{n,m,` |
n+m+`=N}

(pn1p
m
2 k`)ν−

3
2 .

(2.14)

3In our notation, the correlation function Fn is related to the kernel Nn−1.
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This was the last step before computing the three-point correlation function in the squeezed
limit:

〈ζ(k1)ζ(k2)Zobs
2 (k3)〉 =

fNL

fobs
NL

1

2!(2π)3

∫

k0

d3p1d
3p2 [〈ζ(k1)ζ(k2)ζ(p1)ζ(p2)〉

−〈ζ(k1)ζ(k2)〉〈ζ(p1)ζ(p2)〉]Nobs
2 (p1, p2, k)δ

(3) (k3 − p1 − p2)

(2.15)

∝ ∆3
ζ

(k1 + k2 + k3)
3ν− 3

2

(k1k2k3)
3
2
+ν









∑

N=0

αNζNL
∑

{n,m,` |
n+m+`=N}

(

kn1 k
m
2 k`3

kN0

)ν− 3
2









,

(2.16)

where the cumulative long wavelength background ζL is defined by

ζL =

∫ k0

kIR

d3q

(2π)3

(

q

k0

)
3
2
−ν

ζG(q), (2.17)

and

αN ≡ (2π2)N
(N + 2)!

N !2!

c
(N+2)
NL

fNL

(

λ3ρ

H2∆ζ

)N

. (2.18)

Note that eq. (2.16) is symmetric in k1, k2, k3. However, if one consider the squeezed limit
of this expression, i.e. if one takes one of the modes to be longer than the others — but still
sub-horizon (q � k0 ≤ kL � kS , k0 being the largest observable scale) — then

〈ζ(kS)ζ(kS)ζ(kL)〉 ∝ P (kL)P (kS)

(

kL
kS

)
3
2
−ν
∑

N=0

αNζNL

(

kS
k0

)N(ν− 3
2
)

×
N
∑

i=0

2(ν−
3
2
)(N−i)(N − i+ 1)

(

kL
kS

)i(ν− 3
2
)

.

(2.19)

If we compare eq. (2.19) to eq. (1.2), we see that the scaling of kL/kS is affected by the term
(kL/kS)

i(ν−3/2) and is no longer protected. Super-horizon modes coupling to the bispectrum
in an exchange-like fashion gives rise to a fundamental constraint, a cosmic variance on the
measurement of ν — and therefore, m. This is important, since it means that using the
squeezed limit of the bispectrum as a proxy for the physics of hidden sector fields is not
obvious or straightforward, as the influence of super-horizon modes cannot be put aside. The
variance depends on the mass of the hidden field, and is more significant for lighter fields
than for more massive ones.

This result should be compared to the previous result presented in [28], where it was
found that the scaling between the long and short modes of the bispectrum in the squeezed
limit remains unchanged when super-horizon modes are connected to the diagram in a
contact-like fashion, i.e. when these modes connect to the central vertex without creating
any new vertices. Here, we have seen that for exchange-like diagrams, when super-horizon
modes are connected to sub-horizon modes by creating a new vertex, the scaling is modified.

We now want to give a quantitative estimate of the variance on the mass of the hidden
sector field. We can do that by evaluating eq. (2.19) over a range of kL/kS from 10−4 to
10−2, finding the best fit to that curve, and converting it to the corresponding observed mass,
which can then be compared to the actual value of the mass in the large volume m.
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However, the bispectrum (2.19) is not always well behaved, as the series is not always
converging. In particular, the scaling of the bispectrum is very sensitive to the parame-
ter αN . We therefore have to restrict our Lagrangian parameter space to ensure that the
regime is weakly non-Gaussian. This constrains the parameter αN , that we chose to be

N

√

c
(N+2)
NL
fNL

λ3ρ
H2∆ζ

∼ 5.

An estimation for the value of the cumulative background ζL is given by [28]:

〈ζ2L(x)〉 =
∆2

ζ(k0)[1− e−Nextra(2−2ν+ns)]

2− 2ν + ns
, (2.20)

where Nextra ≡ ln(k0/kIR) is the number of e-folds of inflation before the mode k0 exited
the horizon (the “extra” e-folds if k0 is taken to be the largest observable scale) and kIR is

an infrared cut-off, kIR ∼ 2πV
1/3
L , where VL corresponds to the large volume. We assume

Nextra = 110, and current Planck measurements for ∆ζ and ns [29].
The results are presented in figure 4. Figure 4a shows the contours of the observed

mass in the sub-volume, with 1, 2 and 3-σ uncertainty, while the computed relative shift
∣

∣

m−mfit
m

∣

∣ = ∆m
m is shown in figure 4b. The uncertainty at 1-σ on ν is of O(10−3)−O(10−4),

which translate into a relative uncertainty on the mass of the hidden sector field of order 5-
10%. Light fields are typically more affected by the super-horizon modes than heavier fields.
We expect that those uncertainties would increase if the restrictions on ρ and λ3 that we had
to take are weakened, as the uncertainty on the mass is linked to the restrictions on αN .

Forecasts of the accuracy of ν of future galaxy surveys can be compared to the above
results. Using eq. (38) of [30], we compute ∆ν ∼ .3 for fNL = 5 and ν = 1.5 at 1-σ uncertainty.

Therefore, for the selected region of the parameter space where the series remains per-
turbative, while the scaling of the bispectrum in the squeezed limit is affected by long modes,
the effect is not strong enough to be a limiting factor for current or future measurements of
the mass of the hidden sector field.

2.2 Generalization to arbitrary order non-derivative couplings

We now want to generalize our result eq. (2.19) for cubic interactions to arbitrary order
self-interactions, as depicted on figure 5:

Lint
σ =

∑

i=3

λs

s!
σs. (2.21)

As before, we will first compute correlation functions with N super-horizon modes before
performing the long-short mode split and integrating over super-horizon modes.

When thinking about the possible diagrams that can be constructed when adding super-
horizon modes, we see that those modes can either be added to the three sub-horizon modes
or to the central vertex, as higher order interactions are now allowed. We therefore split
the N super-horizon modes in four sets (some of those sets can be empty) containing n,m, `
and `′ long modes that will connect to p1, p2, k and to the central vertex respectively, with
N = n+m+ `+ `′.

Owing to the higher-order interaction terms of the hidden sector field, there are more
ways to attach the super-horizon modes onto their sub-horizon mode. Therefore, the set of
integrals that were put to the power n,m or ` in eq. (2.9) now becomes
[
∫

dτa4λ3σ(p1)σ(p1)σ(q)

]n

→ p(n)
∑

{ni|
∑

ini=n}

n
∏

i=1

[
∫

dτa4λi+2σ(p1)σ(p1)σ
i(q)

]ni

, (2.22)

– 10 –





J
C
A
P
0
5
(
2
0
1
8
)
0
2
2

Collecting all the terms, we get

FN+3(p1, p2, k, q1, . . . , qN ) ∝
(

∆ζρ

H

)N+3

HN (p1 + p2 + k)3ν−
3
2

(p1p2kqN )3/2+ν

×
∑

{n,m,`,`′ |
n+m+`+`′=N}

λeff
n,m,`,`′

(p1 + p2 + k)(ν−3/2)`′

(pn1p
m
2 k`)

3
2
−ν

,
(2.25)

where again, the sum is over the partition of N in four sets with n +m + ` + `′ = N , and
where λeff

n,m,` is defined by:

λeff
n,m,`,`′ ≡

λ`′+3

H
p(n) p(m) p(`)





∑

{ni|
∑

ini=n}

n
∏

i=1

(

λi+2

H2

)ni





×





∑

{mi|
∑

imi=m}

m
∏

i=1

(

λi+2

H2

)mi









∑

{`i|
∑

i`i=`}

∏̀

i=1

(

λi+2

H2

)`i



 .

(2.26)

Eq. (2.25) shares a lot of structure with eq. (2.12), and therefore, the derivation of the
observed kernel in the sub-volume Nobs

2 (p1,p2,k) remains similar to what was done in the
previous section. The result is:

Nobs
2 (p1,p2,k) ∼

( ρ

H

)3 (2π2)2

∆ζ

(p1 + p2 + k)3ν−
3
2

(p1p2)
ν− 3

2kν+
3
2

∑

N=0

(N + 2)!

N !2!

c
(N+2)
NL

fNL

×
(

2π2ρ

∆ζH

)N N+2
∏

i=3

[
∫

qi<k0

d3qi
(2π)3

ζ(qi)q
3
2
−ν

i

]

×
∑

{n,m,`,`′ |
n+m+`+`′=N}

λeff
n,m,`,`′

(p1 + p2 + k)(ν−
3
2
)`′

(pn1p
m
2 k`)

3
2
−ν

.

(2.27)

The equivalent to eq. (2.16) is then:

〈ζ(k1)ζ(k2)Zobs
2 (k3)〉 ∼

fNL

fobs
NL

( ρ

H

)3
∆3 (k1 + k2 + k3)

3ν− 3
2

(k1k2k3)
3
2
+ν

[

∑

N=0

βNζNL
∑

{n,m,`,`′ |
n+m+`+`′=N}

×λeff
n,m,`

(

kn1 k
m
2 k`3(k1 + k2 + k3)

`′

kN0

)ν− 3
2



 ,

(2.28)

where

βN =
(N + 2)!

N !2!

c
(N+2)
NL

fNL

(

2π2ρ

∆ζ

)N

. (2.29)

– 12 –



J
C
A
P
0
5
(
2
0
1
8
)
0
2
2

Taking one of the mode kL to be longer than the two others kS — but still sub-horizon,
the bispectrum reads:4

〈ζ(kS)ζ(kS)ζ(kL)〉 ∼
fNL

fobs
NL

( ρ

H

)3 (2π2)223ν−
3
2

∆ζ
P (kL)P (kS)

(

kL
kS

)
3
2
−ν

×
∑

N=0

βNζNL

(

kS
k0

)N(ν− 3
2
) N
∑

n=0

(

kL
kS

)n(ν− 3
2
)
∑

{m,`,`′ |
n+m+`+`′=N}

λeff
n,m,`,`′ .

(2.30)

What we observe is that the scaling of eq. (2.30) is the same as eq. (2.19). This is in agreement
with our previous results [28], where it was observed that for contact-like diagrams, the scaling
of the bispectrum in the squeezed limit was unchanged. Here, we see that allowing arbitrary
order interactions — rather than just cubic interactions — gives rise to a similar correlation
function than in the cubic case, but with a different, effective coupling constant.

It therefore seems that allowing more super-horizon modes to connect to an already
existing vertex does not influence the shape of the correlation function as sharply as creating
a new vertex when adding a super-horizon modes. While the amplitude is affected by the fact
that the effective coupling constant is changed, the momentum dependence of the correlation
functions remains the same as for the cubic case.

2.3 Derivative self-interactions

Until now, we have been focusing on how long-short modes coupling through non-derivative

self-interactions affect the bispectrum. In order to be as generic as possible, we quickly
describe how derivative interactions may affect the correlation function.

For simplicity, we are going to compare the bispectrum in the squeezed limit in the
presence of only one super-horizon mode — as denoted by the subscript 1H — obtained by
two similar interaction Lagrangian:

L4 = λσ4 vs L′
4 =

λ

M2
∂µσ ∂µσ σ2. (2.31)

The non-derivative Lagrangian yields the following bispectrum:

〈ζkSζkSζkL〉1H ∼ λ
( ρ

H

)4 P (kS)P (kL)P (kH)

∆2
ζ

(

kL
kS

)3/2−ν (kH
kS

)3/2−ν

(2.32)

where kH is the super-horizon mode, while kL � kS are sub-horizon modes.
For the derivative Lagrangian, in Fourier space, the integral to be evaluated is:
∫

dτλ′a4∂µσ∂
µσσ2 →

∫

dτ
λ

M2
a4
[

σ′
k1σ

′
k2 − k1 · k2 σk1σk2

]

σk3σk4

∼ λ

M2

(k1 + k2 + k3 + k4)
4ν−1

(k1k2k3k4)ν

[

1− k1 · k2

(k1 + k2 + k3 + k4)2

]

(2.33)

where boldface denotes three-vectors. Given the configuration of the three modes in the
squeezed limit, where the two short modes are almost anti-parallel to each other, the maxi-
mum contribution to the dot product will come from these two short modes, k1 · k2 ' k2S .

4The partition function will enforce the right conditions on the values that n,m, ` and `′ can take if one
restricts the self-interactions terms of σ, eq. (2.21), to a single term or a subset of the whole series.
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The final correlation function for that vertex is:

〈ζkSζkSζkL〉deriv1H ∼ λ
( ρ

H

)4 P (kS)P (kL)P (kH)

∆2
ζ

(

kL
kS

)3/2−ν (kH
kS

)3/2−ν k2S
M2

. (2.34)

This bispectrum is suppressed by a factor of k2S/M
2 with respect to the non-derivative bis-

pectrum eq. (2.34), but scalings are otherwise unaffected. Therefore, it is legitimate to focus
on non-derivative self-interactions of the hidden sector field in order to study the effect of the
coupling between sub- and super-horizon modes on the squeezed limit of the bispectrum.

3 How do long modes affect correlation functions?

In the previous sections, we focused on understanding how super-horizon modes could affect
the bispectrum in the squeezed limit. Here, we wish to study how these modes can influence
generic correlation functions. While giving an exact result would require to perform a lengthy
computation for each different correlation function, we here want to bring up some features
that can be deducted using similar reasonings as those introduced above.

A first aspect to point out is that, owing to the fact that these super-horizon modes are
much longer than the other, sub-horizon modes, they don’t significantly affect the momentum
structure of the correlation function (i.e. k+kH ' k). Therefore, all contributions in integrals
involving super-horizon modes can be factored out. This allows us to derive several rules
describing how a given correlator is affected by super-horizon modes.

Let’s consider a correlation function with N external momenta. There might be several
corresponding tree-level diagrams; in particular, the distribution of internal momenta can
have its importance. We here assume that the correlation function associated to a diagram
with no attached super-horizon modes is known, and we derive how that correlation function
will be affected by the super-horizon mode couplings.

One evaluates a diagram’s contribution to a correlation function by labeling the external
and internal edges, and writing down the integrals corresponding to the interaction vertices.
When evaluating vertices integrals, we again assume that the dominant contribution comes
from the shortest mode, with τ ∼ k−1, as in [26]. In order to keep our notation as generic
and symmetric as can be, we write the shortest mode as a sum of all the modes present in
the integral. For instance, a cubic vertex with three momenta k1, k2 and k3 yields:

∫

dτλ
H3

(−Hτ)4
(−τ)−3ν+ 9

2

(k1k2k3)ν
∼ λ

H

(k1 + k2 + k3)
3ν− 3

2

(k1k2k3)ν
. (3.1)

Given a diagram, there are two ways to attach a super-horizon mode to it: either by
connecting the super-horizon mode to a sub-horizon one in an exchange-like fashion, creating
a new vertex — see figure 6a, or by connecting it to an existing vertex in a contact-like way
— see figure 6b. The two cases are treated separately below. In each case, since we have to
connect the hidden sector field back to the inflaton sector, there will be a factor of ρ/H and

of ∆ζ/k
3/2
H for each additional super-horizon mode.

3.1 Contact-type

We start with the case of contact-like diagrams, where all super-horizon modes are attached
to pre-existing vertices.
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k1

k2

k3

k1

k2

k3

kH

(a) Exchange-like connexion.

k1

k2

k3

k1

k2

k3

kH

(b) Contact-like connexion.

Figure 6. A long mode can be connected to a diagram in two different fashions. It can either be
attached to a sub-horizon mode, creating a new vertex (figure a), or to an existing vertex (figure b).

Let’s first focus on a single vertex, and let’s assume it has m sub-horizon modes
p1, . . . , pm connecting to it. The associated integral will read:

∫

dτa4λmσ(p1) . . . σ(pm) ∼ λmHm−4

(p1 . . . pm)ν
p
3−( 3

2
−ν)m

S . (3.2)

where pS is the shortest mode of all. If we now also connect n super-horizon modes q1, . . . , qn
to that same vertex, then the integral becomes

∫

dτa4λm+nσ(p1) . . . σ(pn)σ(q1) . . . σ(qn) ∼
λm+nH

m+n−4

(p1 . . . pmq1 . . . qn)ν
p
3−( 3

2
−ν)(m+n)

S

∼ λmHm−4

(p1 . . . pm)ν
p
3−( 3

2
−ν)m

S × λm+n

λm

Hn

(q1 . . . qn)ν
p
( 3
2
−ν)n

S (3.3)

where in the last line, we explicitly separated the part ot the result looking like the integral
with no super-horizon modes eq. (3.2), and the super-horizon modes contribution.

If we now consider the more general case where a diagram has M external sub-horizon
modes k1, . . . , kM , N external super-horizon modes q1, . . . , qN and V vertices, then the asso-
ciated correlation function will read:

〈ζ(k1) . . . ζ(kM )〉N ∼ (∆ζ

( ρ
H

)

)M+N

(k1 . . . kMq1 . . . qM )3/2

V
∏

i=1

λMi+Ni
HMi+Ni−4

(p1 . . . pMi
qNi)ν

p
3−( 3

2
−ν)(Mi+Ni)

Si
, (3.4)

where p1, . . . , pMi
denotes the number of sub-horizon modes (not necessarily external edges)

connected to the vertex Vi, pSi
is the shortest of these modes, and Ni is the number of

super-horizon modes connected to the vertex Vi such that
∑

iNi = N .
If we gather together the contributions from the super-horizon modes, we can write

eq. (3.4) as:

〈ζ(k1) . . . ζ(kM )〉N ∼ 〈ζ(k1) . . . ζ(kM )〉0
V
∏

i=1

λMi+Ni

λMi

(

ρ∆ζ

q3

)Ni
(

q

pSi

)Ni(
3
2
−ν)

(3.5)

where the subscript 0 denotes the correlation function with zero super-horizon modes. This
result is intermediate, as super-horizon modes need to be integrated over, but we can already

notice that there is an additional momentum dependence p
Ni(

3
2
−ν)

Si
, which shows that the

correlation function will only be affected by the shortest mode of each vertex.
While performing the integration over the super-horizon modes is beyond the scope of

this work, we give a postulate of the final form of expression (3.6). First, we notice that
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the correction due to super-horizon modes is an overall multiplicative factor; we also note
that the super-horizon momentum distribution is of the correct form to give a factor of ζL
when integrated over, as in [28]; and finally, there are many similarities between eq. (3.6) and
the corresponding result for the bispectrum, which suggests that the procedure of integrating
over the super-horizon modes can be carried out in a similar fashion. Therefore, our postulate
for the final expression of the locally observed correlation function is:

〈ζ(k1) . . . ζ(kM )〉obs ∼ 〈ζ(k1) . . . ζ(kM )〉0 ×
∑

N=0

ζNL

V
∏

i=1

c
(N,i)
NL

(

pSi

k0

)(ν− 3
2
)Ni

. (3.6)

The result for the particular case of the squeezed bispectrum, presented in [28], eq. (3.43), is
recovered by the expression (3.6).

3.2 Exchange-type

We now turn to the case where super-horizon modes are attached to a sub-horizon modes by
creating a new vertex. Let’s consider a diagram with m external edges, whose corresponding
correlation function can be written as:

〈ζ(k1) . . . ζ(km)〉 = ∆m

(k1 . . . km)
3
2

F ′(k1, . . . , km). (3.7)

If we now connect a super-horizon mode q to one of the main, sub-horizon mode k
(which can be either external or internal) of the diagram, this creates a new vertex:

∫

dτa4λ3 σ(k)σ(k)σ(q) ∼
λ3

H

kν−
3
2

qν
. (3.8)

Therefore, the new correlation function with one super-horizon mode connected to it becomes:

〈ζ(k1) . . . ζ(km)〉1 =
∆m

(k1 . . . km)
3
2

F ′(k1, . . . , km)
2π2λ3

∆ζH
P (q)

(

k

q

)ν− 3
2

(3.9)

=
2π2λ3

∆ζH
P (q)

( q

k

)
3
2
−ν

〈ζ(k1) . . . ζ(km)〉0, (3.10)

where k = k(k1, . . . , km) is the sub-horizon mode on which the super-horizon modes has been
attached.

Similarly, if N super-horizon modes are connected to — internal or external — edges
of the diagram, the correlation function changes:

〈ζ(k1) . . . ζ(km)〉N =

(

2π2λ3

∆ζH
P (q)

)N
(

N
∏

i=1

(

q

ki

)
3
2
−ν
)

〈ζ(k1) . . . ζ(km)〉0, (3.11)

where ki = ki(k1, . . . , km) is the sub-horizon mode to which the super-horizon mode q has
been connected.

In this case, our ansatz for the locally observed correlation function where all super-
horizon modes have been connected by creating a new vertex is:

〈ζ(k1) . . . ζ(km)〉obs = 〈ζ(k1) . . . ζ(km)〉0 ×
∑

N=0

c
′(N)
NL ζNL

N
∏

i=1

(

ki
k0

)ν− 3
2

. (3.12)
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We notice that the momentum dependence of eq. (3.12) is different than the result from the
previous section eq. (3.6). For contact-like connexion, the momentum dependence is affected
by the vertex’s smallest mode in presence, while for exchange-like connexion, the momentum
involved is the momentum of the mode onto which the super-horizon mode connects.

4 Discussion

The presence of additional fields during the inflationary epoch can have a significant impact
on the statistics observed in a Hubble, sub-volume by a local observer. Hidden sector fields are
not restricted by the inflation’s (approximate) shift symmetry, and can hence have a variety of
self-interactions. They also enable couplings between super-horizon and sub-horizon modes,
inducing a cosmic bias on the observed correlation functions. This is in contrast to the single
clock case, where soft-mode theorems and consistency relations constraint the amplitude of
local non-Gaussianities. It is therefore important to understand how these coupling can affect
the locally observed cosmological parameters.

We work in the context of Quasi-Single Field Inflation where a single hidden sector field
is allowed to have arbitrary order non-derivative self-interactions. We have shown how the
squeezed limit of the bispectrum is affected by couplings of super-horizon modes with ob-
servable modes. The influence of super-horizon modes can be separated in several categories,
depending on the way they couple to the sub-horizon fields. It was shown previously that,
when connected to a preexisting vertex, super-horizon modes change the coupling constant
of the vertex, giving rise to an effective coupling constant, but don’t affect the scaling be-
tween long and short modes. However, we see that when connected to a sub-horizon mode
by creating a new vertex, the scaling of kL/kS is changed. This gives rise to an unavoidable
cosmic variance, which prevents us from determining the spectrum of masses of the hidden
sector field with unlimited accuracy. We gave a quantitative estimation of the amplitude of
the bias on the mass of the hidden sector field, which can amount to a 1-σ uncertainty of
10%; this results depends on the parameters of the model, which have been chosen to ensure
that the system is weakly non-Gaussian.

For completeness, we also gave a short comparison between the effect of non-derivative
and derivative interactions. Derivative interactions are suppressed with respect to non-
derivative ones, which is the reason why we focused on non-derivative interactions.

Finally, the domain consequences of super-horizon modes coupling is not limited to
the power spectrum or the bispectrum. We hence described how arbitrary order correlation
functions are affected by unobservable modes, depending again on how they connect to a
specific diagram. We show that some features — such as the scaling of the different modes
involved in the correlator, or the rise of an effective coupling constant — can be easily
estimated by using our method. We hope this will can be put in application in the future to
understand how other cosmological parameters are affected by unobservable modes.
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