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Abstract

We compare relativistic particle integrators commonly used in plasma physics, showing several test cases
relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera—
Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving.
Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are
described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes.
Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of
invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and
non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the
electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields,
E x B fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic
dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic
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1. Introduction

In astrophysics, relativistic magnetized flows are ubiquitous
around compact objects like black holes and neutron stars.
Typical plasma processes in these regimes cover a large range
of energy scales, timescales, and length scales, from global
fluid scales to microscopic particle scales. Although the large
scales can often be captured within the magnetohydrodynamics
(MHD) approximation, the small scales cannot. The macro-
scopic evolution of a plasma often develops relatively slowly,
even in relativistic regimes. The macroscopic scale is, however,
tightly coupled to faster phenomena occurring at smaller scales.
Many of these phenomena occur in relativistic magnetized
plasmas. In the magnetosphere of a compact object, the typical
magnetic field can become extremely strong. But in general,
even for weaker magnetic fields, the plasma consists of
relativistic particles. In these conditions, relativistic effects
have to be taken into account for both the global flow and the
particles. However, even in the solar corona or the Earth’s
magnetosphere, where global flows are non-relativistic,
particles can accelerate to mildly relativistic energies (Li
et al. 2015; Ripperda et al. 2017a, 2017b).

At relativistic energies, the particle equations of motion
become nonlinear due to the presence of the Lorentz factor in
the momentum of the particle. There are several numerical
methods to treat relativistic particle motion accurately. Here,
we aim to test a selection of available classical and recent
explicit leapfrog methods (Boris 1970; Vay 2008; Higuera &
Cary 2017). We also present and test a newly implemented
fully implicit relativistic method that conserves energy exactly.
We apply these methods to known tests for which analytic
solutions are available and to more involved setups that are
relevant for high-energy astrophysics. Therefore, in the first
part of this paper, we focus on highly relativistic particles with
Lorentz factors much larger than unity, such that the
differences between the schemes are well pronounced. We
ignore quantum electrodynamics effects, radiation, and

collisions, and we focus on relativistic particle motion rather
than on the feedback of the particles on the electromagnetic
fields. It is, however, straightforward to incorporate these
effects in MHD or Particle-in-Cell (PIC) codes.

We also compare the obtained particle trajectories to the
relativistic guiding center equations of motion. These equations
are solved via an explicit fourth-order Runge—Kutta method
(Ripperda et al. 2017a) and compared to the full solution in
order to determine in which regimes gyration can be neglected.
The guiding center method has the advantage that the gyration
of particles can be ignored, under appropriate assumptions,
so that the numerical solution is cheaper to obtain. It also
gives additional information on drift motions and acceleration
mechanisms for the particles. In the second part of this paper,
the comparison of the various integrators is done in the
Newtonian limit, with Lorentz factors close to unity. In this
limit, all explicit schemes converge to the same solution, and
the implicit scheme does, too, for a sufficiently small time step.
The obtained differences in the results can then be unequivocally
assigned to the guiding center approximation (GCA).

The accuracy and performance of all methods are tested for
various regimes, from Newtonian to highly relativistic energies, in
idealized setups relevant for astrophysics. Accuracy is assessed
by determining how (approximately) how well the conserved
quantities are evolved. This study focuses on the particle pusher,
and we only consider static, spatially uniform, and nonuniform
electromagnetic fields. The relativistic pushers considered are
commonly used in MHD codes to evolve particles in a global
(magnetized) fluid flow (Bai et al. 2015; Porth et al. 2016;
Ripperda et al. 2017a, 2017b) and in PIC codes to evolve both
patticles and electromagnetic fields (Buneman 1993; Spit-
kovsky 2005; Bowers et al. 2008; Lapenta & Markidis 2011).
In both methods, the electromagnetic fields typically have to be
interpolated to the particle position. Interpolation errors are tested
here by feeding the pusher with an interpolated, spatially varying
field that is known exactly at the particle location, and then we



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 235:21 (20pp), 2018 March

compare the results with those for an analytic, spatially
varying field.

The particle integrators considered are presented in
Section 2. The methods are presented here as independent
algorithms and can therefore be readily implemented in any
PIC or fluid code to evolve particles interacting with
electromagnetic fields. Test cases are presented in Section 3.1
for uniform fields and in Section 3.2 for nonuniform fields. The
GCA is tested in Section 3.3. Conclusions are presented in
Section 4.

2. Numerical Methods

In this section, we describe the five particle movers used in
this paper: the Boris method, the Vay method, the Higuera—
Cary method (called HC in the remainder of the paper), the
implicit midpoint method, and a method based on the GCA.
We also describe our grid interpolation method. All methods
have been implemented to evolve test particles in electro-
magnetic or MHD fields obtained from the massively parallel
relativistic MHD code MPI -AMRVAC (Porth et al. 2014).

All test cases presented here involve charged particles
moving in electromagnetic fields E and B. The relativistic
equations of motion for such particles are (in MKS units)

@ _ 9@y xB) )
dt m
and
dx
— =, 2
B @

where u = v is the relativistic momentum vector divided by

the particle rest mass m, v = 1/ J1 —v?/c? is the Lorentz
factor, v the velocity, g the charge, and x the particle position.

Depending on the chosen numerical approach, the equations
above are integrated in some discretized form. Below, we
present the integration schemes relative to the five methods
used in our tests.

2.1. Explicit Leap-frog Methods

The Boris, Vay, and HC methods are designed to employ a
staggered discretization in time for the position and velocity of
a particle. In essence, the position at some midpoint in time is
used to advance the velocity, and the velocity at some
staggered point in time drives the motion in space in return.
For instance, the velocity can be centered on integer time steps,
and the position on half time steps. A discretized version of
Equations (1)-(2) reads

un+1 —u

= LEE+/2) + 7 x B2, (3)
At m

X372 _ ent1/2

At

where ¥ is some average of the velocity between two time steps
that must be properly defined. It is often convenient to get rid
of the staggering between position and velocity and center both
quantities on integer time steps. The scheme remains
essentially the same, but the operations can be reordered by
splitting the position update into two half steps, one at the end
of the current time iteration and the other at the beginning of
the next time iteration. This operation is straightforward if one

— vn+1’ (4)
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adopts the definition
nt1/2 n—1/2
=t 5 ®)

Such choice results in the sequence of explicit updates:

xn+1/2 =x" + u Al, (6)
2"
un+1 —u q
—————— = Z(E@"?) + 7 x B@tl/), (N
At m
n+1 n+1/2 w'tl
2 = + At. &)
27n+1

Note that the average velocity v on the right-hand side of
Equation (7) usually involves the unknown u”*!, therefore
making the equation implicit. In specific cases, the expression
can be formally inverted in order to obtain an explicit
expression for #" 7!, depending on the choice of #. Assuming
this is possible, such a modified leapfrog scheme is composed
of the following steps:

1. first half of the position update using Equation (6),

2. explicit solution for w"T! by analytic inversion of
Equation (7), and

3. second half of the position update using Equation (8).

This “synchronized” version of the leapfrog scheme is used for
all tests shown in the next sections.

The central operation for the solution of the momentum
equation is what actually distinguishes each leapfrog method.
The Boris, Vay, and HC methods ultimately differ only in the
definition of the average velocity, v, and therefore in how the
analytic inversion is carried out. A fourth explicit second-order
method is presented in Qiang (2017). This method is neither
time reversible nor phase-space preserving, but has the aim to
perform faster while maintaining the same accuracy as the Vay
integrator. Since we do not consider the computational cost of
the schemes here explicitly, we have not considered this
integrator in our tests.

All of these second-order explicit methods can be extended
to fourth-order accuracy by employing the split-operator
method (Qiang 2017). Such high-order numerical integrators
can significantly save on computational cost by using a larger
step size as compared with the second-order integrators. The
explicit schemes retain their energy-conserving properties at
higher orders, since that depends on the formulation of the
average velocity, ¥, and not on the order of the scheme (see the
Appendix).

The properties of the scheme thus strongly depend on the
definition of the average velocity. We are mainly interested in
three properties: (1) energy conservation, (2) phase-space
preservation, and (3) accurate drift motion. Energy conserva-
tion is discussed in detail in the Appendix, where it is
concluded that only one specific choice of average velocity
results in strict (numerical) energy conservation. Energy
conservation is equivalent to the conservation of the underlying
Hamiltonian. Only the implicit scheme presented in Section 2.2
conserves the Hamiltonian in the relativistic formulation. The
Boris scheme conserves energy in the case of vanishing electric
fields. The other schemes do not strictly conserve energy;
however, in many applications the energy conservation is
satisfactory. Volume preservation is attained by so-called
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symplectic integrators. Symplectic integrators are designed to
conserve symplectic geometries, i.e., areas in phase space: a
domain of phase space is mapped by a symplectic function to a
new domain of equal area (Donnelly & Rogers 2005). In
addition, the energy error is bounded in such methods. Volume
preservation is discussed thoroughly in Higuera & Cary (2017),
concluding that the Boris scheme and the Higuera—Cary
scheme are volume preserving but the Vay scheme is not.
Volume preservation is defined here as the preservation of the
differential volume, which is preserved by any solution of the
underlying differential equation, with a finite time step
(Higuera & Cary 2017). We test the preservation of the
gyroradius in several different cases of magnetic and electric
fields in Section 3.1. The accurate resolution of the drift motion
of a particle depends on the problem settings (where Vay 2008
and Higuera & Cary 2017 mainly focus on the E X B motion)
and is tested thoroughly in Sections 3.1-3.3.

2.1.1. Boris Method

The Boris method (Boris 1970) is a classic, second-order-
accurate leapfrog scheme that is widely used. Even though it
was first described almost 50 years ago, the method is still
being actively investigated (Vay 2008; Qin et al. 2013; Ellison
et al. 2015), in particular its volume-preserving and symplectic
properties. For the Boris method, the definition of the average
velocity is

_ un+1 + u”
The inversion step is then given by the following operations
(see e.g., Birdsall & Langdon 1991):

1. First half electric field acceleration:
u =+ LBl (10)
2m

2. Rotation step:
ut=u + W + @ xt)xs. (11)

3. Second half electric field acceleration:

wtl = gyt o q_A[E(anrl/Z). (12)
2m

Here, the auxiliary quantities are v = /1 + (u / )2,
Y =Jl+ @/cy? =~, t=BE""2)gAt/Qmry), and

s = 2t/(1 + t). The pure rotation of the velocity vector to
obtain u™ results in the Lorentz factor at the midstep
4" *+1/2 = 4~ =~ In the Appendix, this property is used to
show that the Boris scheme is energy conserving in case of
pure magnetic fields, meaning that it preserves the property that
magnetic fields do not exert work. By setting v = 1, the
scheme is somewhat simplified, and one obtains a non-
relativistic (Newtonian) version. When the magnetic field
strength varies in space, it becomes attractive to use an adaptive
time step. The time symmetry of the scheme is then lost (see
e.g., Hairer 1997). Our implementation in MPI-AMRVAC
supports adaptive time stepping, which has been implemented
with the synchronized version of the scheme, since the same At
can be used for both position and velocity update. However, for
the tests presented here, we have employed a fixed time step.
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2.1.2. Vay Method

To counteract the spurious acceleration of particles by
perpendicular electric fields, Vay (2008) proposed a modifica-
tion of the Boris algorithm by defining the average velocity as

un/,yn + un+1/,yn+1
> »

y =

13)

The analytic inversion of Equation (7) is done in two steps:

1. Field contribution:
nil/2 . 4At nil1y2 u" ni1/2
u =u"+ —I|Ekx )+ — X Bx )| (14)
2m 5"

2. Rotation step:
Wl = sl + @ Ot +u Xt (15)

Here, the auxiliary quantities are given by u/ = w"*1/2 4
E@" Y2 gAt/@m), T = Ba"HgAt/@m), u*=u'-
/e, o= — 712, ' =1+ u?/c?, t=71/9""], and
s=1/(1 + t2), with

e \/ o+ N+ A+ ()

’ 16
5 16)
The position update is done in accordance with the imple-
mented Boris scheme by performing half the position update at
the end of a step and the other half at the beginning of the
next step.

2.1.3. Higuera—Cary Method

The Boris scheme is known to be volume preserving,
meaning that gyration is accurately resolved. The Vay scheme
is an adaptation of the Boris scheme designed to preserve the
E x B velocity, which is not correctly computed with the
Boris method. The Vay method is not volume preserving,
which can lead to a larger error in the gyroradius. Higuera &
Cary (2017) proposed a new volume-preserving method that
also resolves the E x B motion accurately while keeping the
computational cost similar to the Vay scheme. This method
claims to conserve energy and is shown to resolve typical
idealized astrophysical test cases with more accuracy than the
Boris and Vay methods (Higuera & Cary 2017). The scheme
relies on a new choice of the average velocity:

n+1 7
V= u (17
2y
with
n+1 n\2
7:\/1+(u) ) (18)
26

For this choice of v, the analytic inversion of Equation (7) is
performed in three steps:

1. First half electric field acceleration:

w =+ IBLp 12, (19)
2m
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2. Rotation step:
ut=slu + @ -Ht+u xt]. 20)
3. Second half electric field acceleration:

Wl =gt o+ QZ_A[E(an/Z) +u Xt 2D
m

Here, the auxiliary quantities are v~ = 41 + w)?/c?,
T =BV )gAt/2m), uF=u -T/c, o= () — 72,
t=71/y", and s = 1/(1 + %), with

= . . (22)

b \/O’ + \/02 + 4(T2 + (W*)?)
Once again, the position update is done in accordance with the
implemented Boris scheme by performing half the position
update at the end of a step and the other half at the beginning of
the next step.

2.2. Implicit Midpoint Method

The explicit schemes presented above allow for fast solution
of the particle motion. The average velocity, ¥, is chosen such
that Equation (7) can be analytically inverted to retrieve an
explicit expression for #”*!. However, the split form of the
position update (in our synchronized leapfrog formulation)
shows that there is a discrepancy between the average velocity
used to advance u, which is ¥, and that used for x. By
combining Equations (6) and (8), it follows that

n+41 7 n+1 n
x x 1 ( u u ) 23)

s

= n+1 v

At 7 ¥
Thus, the update of the position is, in general, driven by an
average velocity that may differ from the chosen form used in
Equation (7). A consistent form of the system of equations
addressing the latter issue reads

n+l _ n
T = LEer s x By, o)
m
n+l _ 41
% =4, (25)

where the update of the position is now driven by the same
average velocity used in the momentum equation. The two
equations are coupled through

n+1 n
ity - T

T (26)

and the resulting system of nonlinear equations can be reduced
to a three-dimensional system using the relation

xn+1/2 =x" + %‘—,’ (27)

which differs from Equation (6). For an arbitrary choice of v, it
is not possible to formally invert Equation (24), and therefore
one has to solve for u”*! with an iterative method.
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In our tests, we adopt the expression for the average velocity
proposed by Lapenta & Markidis (2011),

n+1 n
o _TL 28)
v A

which differs from the expressions used in the Boris, Vay, and
Higuera—Cary schemes. An interesting property that arises with
the above definition is the conservation of energy to machine
precision (Lapenta & Markidis 2011). This property suppresses
spurious particle heating in, e.g., PIC simulations, avoiding the
typical numerical instabilities characterizing explicit schemes
(Birdsall & Langdon 1991). This is not ensured in the case of
other choices of the average velocity (see the Appendix for a
formal proof of the energy conservation, or a lack thereof, of all
schemes). Pétri (2017) presents a fully implicit scheme similar
to the one above, but with a different choice of average velocity
(specifically, the one used in Vay 2008). The solution of system
(24) can be carried out using several approaches (see, e.g.,
Noguchi et al. 2007). In this work, we choose to adopt a
Newton algorithm similar to the one presented in Siddi et al.
(2017) but extended here to the relativistic case. The solution
algorithm is composed, at each time iteration, of the following
steps:

1. The nonlinear cycle is initialized by assigning to the
unknown, #, an initial guess u*, where k is over the
iterations. In our implementation. we find that using the
value at the previous time step, u”, proves satisfactory for
all tests.

2. The kth average velocity, ¥, and position, % = x{ +1/ 2,
are computed using u; as the value for u#"+1. The field
values, E and B, are interpolated at Xy.

3. The kth residual is computed according to

gAt up + u”

F(u) = up — u" — —(E(fk) + X B(fk)),
m Y+

29)

n

where = 1+ ukz /c>. The Jacobian is obtained
accordingly as J(u;) = OF (w)/0u; by the analytic
differentiation of Equation (29) above.

4. The iteration variable is updated by solving the linear
system J (ue) (w1 — we) = —F ().

5. A termination criterion is applied, e.g., by evaluating
|y 1 — u| < tol, where tol is some tolerance value. We
choose tol = 10714, slightly above double precision
round off, for our tests. If the stop criterion is met, the
cycle is terminated; otherwise, it is restarted by assign-

ing U = Uy, 1.
When the stop criterion is met, the new proper velocity is

taken to be #"*! = w; ;. Finally, the new particle position is
updated according to

un+1 + u”
,ynJrl g ,yn
In computing the Jacobian, J (), it is necessary to evaluate the
derivatives of the field terms in Equation (29). In the most
general case where such terms are obtained via interpolation

from a grid, the derivatives of the fields reduce to the
derivatives of the chosen interpolation function. In this work,

xHl = 4 At. (30)
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we choose to evaluate the fields via linear interpolation, hence
dedicated routines are used to compute the corresponding
interpolated derivative of the fields at the particle position.
Given the residual functions (29), each term in the Jacobian
matrix is usually a fairly complicated expression. For
simplicity, but without loss of generality, consider the x-
component of Equation (29), which reads

Fe(u) = ux — uf — Q—N(Ex(f)
m

Uy + uy
T+

Then, the first element of the Jacobian, J,.(«) = OF,(u) /du,,
is given by

B,®) — Mtw)). G1)
Y+

_ ", + un
Jxx(u)zl _ th[aEx(x) + y ¥y
m Oty ¥+ 9"
L OB®) 1t uf OBy(@E)
Ot Y+ " Oy

+ CZ,x(uy + uyn)Bz(f) - CZ,x(uZ + uzn)By(f) »

(32)
where the derivatives of the field terms are computed via the
chain rule, such that, e.g., for the electric field,

OE®) _ OB(®) OF | OE®E 0y | OE® 07
duy 0% Ou, oy By oz Ouy

. (33)

This expression is convenient, since the fields are functions of
the position, allowing one to use analytic derivatives (if the
fields are given by an analytic expression) or take the derivative
of the interpolation functions (if the fields are retrieved via
interpolation). From Equations (27) and (28), the derivatives of
midpoint coordinates with respect to the dimensionless four-
velocity further reduce to

ox At
= —Q X3 34
ou, 2 . 34)
i — E — HCZ o (35)
Oty Oty 2 7
where
. n 7 n 2
C“:i(ul—i-ul):v—i-v ul(ul—i-zul)/(vc)’ 36)
Ou\ v+ " v+
a _ ui / (vc%)
Ci=—0@+ )y = ————=, (37
R (v + 7?

which also define the coefficients in Equation (32) above. The
exact same reasoning leads to the expressions of the other terms
in the Jacobian matrix.

It is well known that the Newton algorithm is not guaranteed
to converge. In some pathological cases, e.g., when the
Jacobian vanishes at the solution, the iteration fails to
converge; other non-convergence issues arise for bad choices
of the initial guess or fast oscillations of the residual function
around the solution. In practice, however, non-convergence is
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very rarely observed for calculations in which a relatively small
time step ensures that quantities do not change abruptly from
one time level to the next. Nevertheless, this should not be
regarded as an absolute limitation on the choice of Ar. For
systems evolving according to fast dynamics, the user will be
interested in capturing the details of the evolution, thus
preferring a small time step; conversely, for slowly evolving
systems, the algorithm is likely to converge since the change in
the variables from one time level to the next will not be abrupt.
A suitable choice of the initial guess represents a crucial factor
in ensuring the convergence of the algorithm and should be
considered carefully. When convergence is reached, in most
cases the convergence rate is second order (Press et al. 1988).
In our tests, we typically observe convergence to the chosen
10 absolute tolerance within four to five iterations when
using the values of u at the previous time step as an initial
guess for the Newton step. It is important to note that, instead
of using the classical Newton algorithm with an analytical
Jacobian, Jacobian-free methods (e.g., Newton—Krylov solvers;
see Saad & Schultz 1986) could be adopted. The advantage of
not having to compute the Jacobian, however, comes at the cost
of a typically higher number of iterations needed to reach
convergence.

The implicit method has the important property that it avoids
the decoupling of the magnetic field advance and the electric
field advance that is typical for the explicit methods. As shown
by Vay (2008), this decoupling leads to the breaking of the
Lorentz invariance and the introduction of spurious forces for
the Boris method. The Vay method and the HC method are
proven to maintain their Lorentz invariance (Vay 2008;
Higuera & Cary 2017). The implicit algorithm does not
decouple the electric and magnetic field advance, avoiding the
problem of maintaining Lorentz invariance completely, as
demonstrated in Lapenta & Markidis (2011).

2.3. The Guiding Center Approximation

In certain astrophysical circumstances, the typical length
scale of the gradient in the magnetic field L is large compared
to the gyroradius R, of the particle. In this case, the gyration
can be ignored for test particles. The center of the gyration (or,
guiding center), rather than the actual particle position, is
evolved, and the equations of motion simplify significantly,
allowing for a less expensive numerical solution. The GCA is
applied to Equation (1) to obtain the relativistic guiding center
equations of motion describing the (change in) guiding center
position R, parallel relativistic momentum 71vv), and relativistic

magnetic moment y, = myv? / 2B in three-space (Vander-
voort 1960):

dR . b xcE b
w T TE Tyl E
5(1 - 5)

x {C’”Tv(vz(é b + v - VYb + v - Vyup

c 23172
+ (ug - V)ug) + s V[B(l - L) }
v

BZ
N VIE| }
uE k

L
(38)
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d (myv))

= Mg - o6 - V)b + (ug - V)b)

A B 1/2
+qk) — &’*V[B( - B—é) .39
7
dmy*i2 /2% dif
dt dt

Here, b is the unit vector in the direction of the magnetic field
and v the component of the particle velocity vector parallel to
b. The magnitude of the electric field is split as
E=El + EHZ, with E, the component of the electric field
perpendicular to B and Ej the parallel component. The drift

(40)

velocity, perpendicular to B, is written as ugp = cE X b /B, and
v is the perpendicular velocity of the particle in the frame of
reference moving at ug. The magnetic field in that frame is
given by B* = B(l — E?/B)!/2 up to first order. The
relativistic magnetic moment ,u;k is an adiabatic invariant and
is proportional to the magnetic flux through the gyration circle,
again in the frame of reference moving at ug. The oscillation of
the Lorentz factor at the gyrofrequency is averaged out as well,
giving 7= v*(1 — E2/B% /2. We assume the electro-
magnetic fields to be slowly varying compared to the particle
dynamics, such that no temporal derivatives of electromagnetic
fields appear in Equations (38)—(40).

2.3.1. Particle Drifts

For the guiding center method, we store all of the field-
dependent terms in Equations (38) and (39) as grid variables
and then linearly interpolate them at the location of the guiding
center. This was done to improve efficiency and to avoid
having to use a wider interpolation stencil to determine
gradients. Having the terms in the GCA equations available
provides the opportunity for information about particle drifts to
be obtained. Every term in Equation (38) represents a drifting
motion of the particle and every term in Equation (39)
represents an acceleration mechanism. The meaning of these
terms becomes clearer in the Newtonian approximation, where
v? < ¢? and the magnitude of its E x B drift velocity up% < c?
such that v—1 and
1/ = E2/B> = 1/J1 = u3/c* — 1. Then, the relativis-
tic magnetic moment, a constant of motion, also becomes the
classical magnetic moment y, = myv? / 2B — pu = mv? / 2B.
Applying this limit gives the Newtonian equations of motion
for the guiding center:

ﬁ:\/\\l;—i—zx —cE + — VH% dag
dt B dt dt
+ “—CVB}, @1
q
d (mv)) db %
— mug - L+ gE, — ub - VB. 42
= £ — qE| — 1b 42)

The first term on the right-hand side of Equations (38) and (41) is
the motion parallel to b following from the solution of
Equations (39) and (42), respectively. The second term in
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Equations (38) and (41) is the E x B drift. The third term
combines the curvature drift (resulting from the static part of the
inertial drift) vydb/di = v} - V)b + vi(ug - V)b and the

polarization drift duE/dt = VH(I; - Nug + (ug - V)ug, where
non-static fields are ignored. For these drifts, the gyration period
increases by a factor of -y in the relativistic Equation (38), resulting
from the effective mass of the gyrating particle ym. Then, the
magnitude of the magnetic field, in the frame of reference moving

at up, is B* = B(1 — E}/B)'/2 = By\J1 — u?/c? up to first

order, explaining the factor 1 / NAEE up% /¢? appearing in all terms
including the magnetic field magnitude in relativistic
Equations (38) and (39). The fourth term in Equations (38) and
41) is the VB drift, also a factor of ~ larger than it is in
Equation (41). The last term on the right-hand side of
Equation (38) is an additional, purely relativistic drift in the
direction b x up that is negligible in the Newtonian limit and
does not appear in Equation (41) (Northrop 1963). The differences
between the Newtonian and relativistic guiding center equations
of motion are discussed in more detail in Ripperda et al. (2017a).

2.3.2. Runge—Kutta Method

Equations (38)-(40) are advanced with a fourth-order
Runge—Kutta scheme with adaptive time stepping. Here, the

particle time step 6f is determined based on its parallel
acceleration @ = dv||/dt and velocity v = /(v))* + (v)* as the
minimum of ér/v and v/a, where 6r is the grid step. This time
step is restricted such that a particle cannot cross more than one
grid cell in one time step. The fields E and B, and for the GCA
equations their spatial derivatives, are obtained at the particle
position via linear interpolations in space, or they are given
analytically. The particle gyroradius is also calculated at every

time step and compared to the typical cell size to monitor the
validity of the GCA.

2.4. Grid Interpolation

The particle movers in MPI -AMRVAC can obtain the electric
and magnetic fields at a location in two ways: from a user-
defined routine (e.g., an analytic function) or by (bi/tri)linear
interpolation from grid variables. For the test cases presented
here involving static fields with linear spatial gradients, both
methods yield the same results. For more general fields, there
will be an interpolation error proportional to Ax2, ie., the
square of the grid spacing. We remark that for time-varying
fields, which are not considered here, MPI-AMRVAC also
performs linear interpolation in time.

For smooth fields, the use of higher-order spatial and
temporal interpolation methods can greatly reduce interpolation
errors. This would be particularly attractive when high-order
reconstruction methods are used to compute electric and
magnetic fields (see, e.g., Balsara 2009; Balsara et al. 2017).
The reconstruction methods can then be re-used to interpolate
the solution. However, a higher-order interpolation method
requires a wider numerical stencil, which complicates the
implementation near grid boundaries (Borovikov et al. 2015).
Furthermore, a limiting procedure is required to avoid
unrealistic interpolation values near large gradients.
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MPI-AMRVAC divides the computational grid in blocks,
which are distributed over the processors. Each block also
contains a few layers of ghost cells, with data from neighboring
blocks. In our current implementation, the time step is
restricted so that particles cannot move more than one cell
out of their current grid block. After every step of the particle
movers, particles are moved to a different processor if required.

2.5. Computational Cost of Schemes

The implementation of the schemes described above has not
yet been optimized for performance. Nevertheless, we here try
to give a rough idea of the relative cost of the different
methods. There are a number of factors to consider when
judging the computational cost of a scheme, which are
discussed below.

Time step restrictions—The main advantage of the GCA is
that its time step is not limited by the gyration time, since
gyration is ignored. All other schemes require a time step that is
a fraction of the gyration time.

Cost of numerically solving the scheme’s equations—The
Boris method and its derivatives (Vay, Higuera—Cary) have
about the same cost. For the GCA, the equations have more
terms and the cost is higher, but the procedure is still explicit.
For the implicit method, the cost is about four to five times that
of the Boris method. For reference, we have measured the
performance of the schemes for the gyration test described in
Section 3.1.2. Advancing 10° particles over 10* time steps on a
single 2.4 GHz processor took about 50 s with the Boris, Vay,
and Higuera—Cary methods, and 2.2 x 10%s with the fully
implicit method.

Interpolation costs—In order to obtain the fields at a particle
position, data have to be loaded from memory and interpolated.
We use linear interpolation here, for which the numerical
computations are relatively cheap compared to the cost of
loading data from memory. Optimizations to improve data
locality, for example by sorting particles based on their position
in a grid block, have yet to be made in MPI-AMRVAC.

Parallelization—The tests presented in this paper were all
performed on a single processor, although our implementation
also allows for parallel runs. However, we currently use the
domain decomposition used for the MHD simulations to
distribute the particles (i.e., load balancing does not account for
test particles), which can lead to unequal load balancing and
requires frequent synchronization.

3. Test Cases

In this section, we test all of the schemes presented above in
idealized setups that are relevant for astrophysics. In all tests,
we employ a uniform, rectilinear 3D Cartesian grid to store the
field values. The grid resolution is coarse (16 X 16 x 16) in
the case of uniform fields, since interpolation does not affect
the results. For nonuniform fields, when interpolation is used,
the resolution is specified in the corresponding sections. We
adopt SI units, which are omitted in the text and figures, such
that the electric field E is in Vm™!, magnetic field B in T,
particle charge ¢ in C, and mass m in kg. The particle velocity v
is in ms~!, and the position x is in [m].

We first consider five relativistic test cases, as summarized in
Table 1. Then we investigate the error in the GCA by
comparing it to the Boris method in three test cases (VB drift,
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Table 1

Overview of Relativistic Test Cases
Test Boris Vay HC Implicit
Uniform E field ¥ ¥ ¥ ¥
Uniform B field ¥ 0. 0%
Force-free field ¥ 5, v ¥ Y, v
E x B drift v, R.
Magnetic mirror ¥ 0%

Note. The symbols indicate that a method has a small error (compared to the
other schemes) in the Lorentz factor (v), velocity (v), gyroradius (R.), or
gyrophase (6,).

magnetic null, and magnetic dipole), all in the non-relativistic
regime, i.e., v — L.

3.1. Uniform Static Fields
3.1.1. Uniform Electric Field

A charged particle in a uniform electric field only
experiences acceleration in the direction of E. For a constant
E = (E,, 0, 0), the relativistic equations of motion (1)-(2) can
be solved analytically. For a particle initially at rest at the origin
of the coordinate system, the result is

2
Xan (1) = 2 (n(0) — 1), (43)
qE
Veun() = £ @4
M Yan (1)

where v, (£) = \/ 1 + (@ED*/(mc)®. At late times t > mc/
(Ig\E), the growth of the Lorentz factor is nearly linear,
whereas the velocity vy ., = C.

We use the same setup described in Pétri (2017) in order to
simulate the extreme acceleration of a particle with charge
g = 1 and mass m = 1, up to a Lorentz factor of order ~10°.
For this purpose, we set up a uniform electric field E,/c = 1,
with a particle initially at rest at x(t = 0) = (0, 0, 0). We let
the simulation run up to = 10° with a time step At = 10°.
The experiment is repeated for each integration method. The
results can be directly compared to the analytic solutions
above.

Figure 1 shows the relative errors measured on all quantities.
All of the methods perform equally well, calculating the correct
Lorentz factor. The apparent deviation of the computed ~y from
the exact value can be safely attributed to truncation relative to
finite machine precision, since the error affecting the computed
v, is of the order of the machine precision.

The error in the position (solid lines in Figure 2) is above the
machine precision for the Boris, Vay, and HC schemes, while
the implicit method and the GCA perform better. This is an
issue that characterizes the relativistic regime, where contrary
to the Newtonian equivalent, the evolution of the velocity is
nonlinear. Thus, second-order explicit schemes cannot capture
the evolution of the position exactly, especially in the initial
stages of acceleration (at late times, the velocity is close to the
speed of light). Note that, for the same parameters, Pétri (2017)
observes a much smaller error than with any explicit scheme
while solving the discretized equations with an implicit scheme
and the same choice of average velocity as in Vay (2008).
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Figure 1. Relative error in  for the uniform E field test. The errors for all
methods except GCA are almost indistinguishable.
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Figure 2. Relative error in the position for uniform E. The results obtained
with the Boris, Vay, and HC schemes are shown with (dashed lines) and
without (solid lines) an initial offset. The results for the three explicit leapfrog
schemes almost perfectly overlap for both cases with and without an initial
offset. The error due to the initial position is clearly pronounced here because
within the initial time step, a large Lorentz factor is already reached, given the
strong electric field.

The problem can be mitigated by modifying the synchro-
nized leapfrog scheme as follows. Since the analytic solution is
available, we can set the initial “real” value x!/2 = x,,(t =
1/2) instead of performing a half position update at the very
first iteration. This way, the value of x is expected to be closer
to the real value. With this modification, we run the test a
second time with the explicit schemes, and we check for
improvements in the computed position.

The results of both runs with and without the modified initial
condition are shown in Figure 2. The error in the position, for
runs with a modified initial position, is orders of magnitude
smaller and comparable to the error from the GCA and implicit
results. Thus, the initial offset introduced naturally by the
leapfrog formulation creates a small displacement in the
particle position, leading to a significantly higher error.
Although using an analytic initial condition solves the problem,
it is clear that this is not applicable in practice in a general case
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when the real solution is not available. Note that the error in the
three leapfrog explicit methods is still relatively small. In many
applications, this could be acceptable compared to the cost of
an implicit simulation or a higher-order RK scheme such as the
one used in the GCA. For mildly relativistic regimes, this error
will decrease, and in the Newtonian regime (y — 1), it will
vanish completely. The error is pronounced clearly here
because within the initial time step, a large Lorentz factor is
already reached. It is also worth noting that, as reported in Pétri
(2017), decreasing the time step size might not always have a
positive effect, as the larger number of operations will
accumulate more second-order errors.

3.1.2. Uniform Magnetic Field

A particle in a uniform magnetic field, in the absence of
electric forces, gyrates in a perfect circle around the guide field
line, while conserving its perpendicular velocity v,. In the
relativistic regime, the gyroradius is given by

ymy,
= s (45)
|g|B

where B is the magnitude of the guide field. The relativistic
gyrofrequency w, = |q|B/(ym) differs from its Newtonian
counterpart and decreases as <y increases. Since the magnetic
field does no work on the particle, v remains constant during
the gyration.

We employ the setup presented in Pétri (2017). A single
particle gyrating on the gyroradius R, = 1 with v = 10° is
initialized. The initial velocity is v = (0, —v;, 0), with a guide
field B = (0, 0, B,). If the particle has no velocity parallel to B,
the chosen v determines v, /¢ = 1 — ¢, with e = 5 x 10713,
For a particle with charge ¢ = 1 and mass m = 1, this requires a
magnetic field B,/c ~ 10°. We follow the circular motion
around the guiding center, located at x. = (0, 0, 0), for 100
complete tums. We choose the time step such that each complete
gyration of period T. = 2mym/(|g|B) is resolved with 100 steps.
The accuracy of the methods is determined by analyzing how
well the computed ~ (and therefore R.) are conserved. We can
also check for errors in the gyration phase §., which is given
analytically by

c

ac,an = —wel, (46)

where the minus sign corresponds to our choice of initial
conditions. It is expected that the Boris scheme will introduce a
small phase lag of order (Af)> at each time step. The HC
scheme will introduce a smaller phase lag of order (Af)?
(Higuera & Cary 2017).

Figure 3 shows the path followed by the particle during the
gyration and the conservation of . All of the methods correctly
confine the particle motion along the circle of radius 1. The
GCA result is irrelevant, and it is used only as a marker for the
position of the guiding center.

The conservation of ~y is handled equally well by the Boris
and implicit schemes. For Boris, this can be attributed to the
way the Lorentz factor is calculated at each time step: if there is
no electric field, the same value of + is taken for the magnetic
rotation, which in this case corresponds to the exact solution.
The HC scheme produces the largest error, while the Vay
scheme performs slightly better, but worse than the Boris and
the implicit schemes. Contrary to the results of the previous
test, these are not pure truncation errors. A deviation from the
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Figure 3. Results of the uniform B field test. Left: trajectory in the x—y plane. The results are visually indistinguishable for all the methods. Right: relative error in ~.

correct value of v, in the absence of parallel motion, implies
that the perpendicular velocity is varying with respect to the
exact (conserved) value. The implicit solution removes the
error in . Despite being larger, the error in the Vay and HC
schemes is still extremely small and almost of the order of the
machine precision, a sign that volume preservation is achieved
with high accuracy. The error in v directly translates to the
error in R, via Equation (45).

Figure 4 shows the phase lag introduced by each method. At
each time step, the Boris, Vay, and implicit schemes introduce
a small phase lag that accumulates over time. In our case, the
gyration is shifted by ~0.2 radians after 100 turns. The HC
scheme produces a smaller phase lag, equal to roughly half of
that observed in the other methods, which is compatible with
the description of the phase error in the relativistic case as
described in Higuera & Cary (2017).

3.1.3. Force-free Field

In this section, we present a new test addressing the
capabilities of each method in a force-free setup. In the special
case E = —v x B, the electric and magnetic forces cancel
exactly. The resulting Lorentz force is then

F=qgE+vxB)=0, “7)

thus there is no evolution in the particle velocity. The particle
keeps on traveling at its initial speed with no net change in
energy. From the numerical point of view, this test is very
stringent, since a slight deviation from the exact cancellation of
the field forces causes errors in the solution. In the relativistic
regime, such errors propagate even more due to the coupling
between velocity components through the factor . Note that
the force-free condition cannot be obtained for an ensemble of
particles with a thermal distribution, but it is still worth
analyzing the situation for a single particle.

To test the strength of the schemes, we set up a particle
traveling with an initial velocity v, at x = (0, 0, 0). We
consider the relativistic regime v = 10°, setting up the electric
and magnetic fields such that E = (£, 0,0) and
B = (0,0, B, with E, = —%B; and B, = 1. The magnitude
of the electric field is given by the initial particle velocity, and
the force-free condition is ensured. We let the simulation run

0.25
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—-HC

~— Implicit

i
b

b

0.05

o
o@

80 100

t/T,
Figure 4. Phase lag absolute error for the uniform B field test. The Boris, Vay,

and implicit methods show the same error, while the HC method performs
better.

up to f = 103 with At = 0.01 and check for errors in ~y and the
x-position, velocity, and momentum, none of which should
vary in time.

As shown in Figure 5, all methods eventually deviate from
the correct position, velocity, and momentum, with the Boris
scheme performing the worst, as predicted by Vay (2008). The
HC scheme retains better accuracy, close to that obtained with
the Vay scheme, which was designed to overcome the Boris
scheme limitations in force-free conditions. The implicit
scheme performs better than the others, but still produces
spurious deviations from the correct trajectory. For the GCA
scheme, this is a trivial test, since only the velocity parallel to B
is evolved as a dynamic quantity.

For completeness, we repeat the test by varying the value of
At. Thus, we can check how the error grows when increasing
the time step for the various methods. The results are reported
in Table 2, where we show the absolute error on the final
particle position for each scheme. The outcome clearly shows
that the error for the Boris scheme increases dramatically when
increasing At, while for the other methods the growth is much
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Figure 5. Results of the force-free field test. Left: deviation of the x-position from x,, = 0. Right: deviation of the x-velocity from v; 5 = O.
Table 2
Absolute Error on the Final Particle Position Along the x-axis for the Force-free Test, for Different At

At Boris Vay HC Implicit
0.001 25192 x 1072 2.5672 x 1072 2.5407 x 1072 2.7201 x 1072
0.01 1.2293 x 107! 3.1753 x 1072 3.9581 x 1072 2.7270 x 1072
0.1 4.7705 3.9181 x 1072 5.1439 x 1072 2.7234 x 1072
1 18.7705 3.9901 x 1072 5.3203 x 1072 2.7229 x 1072

Note. The error affecting the Boris scheme increases approximately one order of magnitude per increasing time step, whereas for the other methods the error does not

depend much on the time step.

smaller. This is consistent with the properties of the Boris
scheme as explained by Vay (2008).

Interestingly, in our results, we observe no etror in +,
meaning that the error in v, is transferred to v, with no overall
change in the particle energy. This is observed for all runs at
different At.

3.1.4. Perpendicular Electric and Magnetic Fields

In the specific case where E = —v x B, all forces are
canceled; however, in typical plasmas, perpendicular electric
and magnetic fields (E - B = 0) result in a drifting motion of
the particle perpendicular to both fields. The average motion is
in the E x B direction with drift velocity vy = E x B/B.
This expression is only valid in the case of weak electric fields
E < c¢B, with E, the electric field perpendicular to the
magnetic field. The relativistic drift speed is measured with a
Lorentz factor for the drift xk = 1 / 1 = v3/c?. Similar to a
test presented by Pétri (2017), we apply an electric field,
E = (Ey, 0, 0), and a magnetic field, B = (0, 0, 1), with E,
determining . We choose Eo/c = 1 — ¢, withe =5 x 1073
such that x = 100. A particle with ¢ =1 and m =1 is
initialized at the origin x = (0,0,0) with velocity
v = (0, 0, 0). We let the simulation run up to { = 27 x 10’
with At = 0.5, such that the particle undergoes 10 gyrations
during its drift. The numerical experiment has also been
verified for a particle in an electric field with E,/c =
(1-5) x 1073 such that x = 10, running up to f = 27 x 10*
with Ar = 0.0005.

The simulation is conducted in the observer frame, where the
particle both drifts and gyrates. We analyze the results both in

10

the observer frame and in the frame comoving with the E x B
velocity. Performing a Lorentz boost on the resulting motion,
from the observer frame to the E x B frame, results in a
vanishing electric field and a particle gyrating along the
magnetic field. In the comoving frame, this results in

E =0,
B' = B/k.

(48)
(49)

The coordinates and velocities are boosted to the comoving
frame as

&= (50)
vV = k(¥ — vEl), (51)
=g (52)
=t 1 (53)
k1 —vEn/c
2
v Y
VR T L1 N )
K A r+4+ 1)1 —vgw/e
v, =, (55)
resulting in a boosted Lorentz factor
VEV.
v = m( — C—zy) (56)

The accuracy is measured by the error in the gyroradius in the
comoving frame of reference R, and the error in the comoving
Lorentz factor v'. Both quantities should be conserved in the
comoving frame of reference. The gyroradius is calculated as
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Figure 6. Trajectory of the particle colored by time in the observer frame (left-hand panel) and colored by method in the comoving E x B frame (right-hand panel)
for k = 10.
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Figure 7. Trajectory of the particle colored by time in the observer frame (left-hand panel) and colored by method in the comoving E x B frame (right-hand panel)
for k = 100.
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calculated by R, = m~y'v /q|B’|. The relative errors for the Boris scheme and the HC scheme overlap and are indistinguishable here, whereas they result in a different
gyromotion in Figure 7.

11



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 235:21 (20pp), 2018 March

108 ‘

Boris

Vay

—— Higuera-Cary
10° Tmplicit
108 /\ N y m
! /
-
103 |
1022—~~~~~ LR Bl B SR R R |l || ol
10! I I I I | | ‘
0 1 2 3 4 5 6

t x107

Ripperda et al.

10° ‘
+ Boris
i O Vay AL EL LI L RO L LI L rET
¢ Higuera-Cary
% Implicit
1078 -
3
o
%
|
=
10710 :
1015 . . . . . L
0 1 2 3 4 5 6
t x107

Figure 9. Lorentz factor in the observer frame (solid lines) and in the comoving frame (dashed lines) in the left-hand panel, and the relative error in the comoving
Lorentz factor in the right-hand panel for & = 100. The error for the Boris scheme and the HC scheme overlap in the right-hand panel and are indistinguishable. The
error in the gyroradius R, = m~y'v; /¢|B’| in the right-hand panel of Figure 8 can be directly related to the difference in the evolution of «y in the left-hand panel of this

figure and to the error in + in the right-hand panel of this figure.

R. = m~y'v, /q|B'|. The trajectory of the particle in the observer
frame is shown in the left-hand panels of Figures 6 and 7 for
x = 10 and x = 100, respectively. The trajectory is colored by
time. To distinguish between the four methods, we show the
trajectory in the comoving frame in the right-hand panels. A
slight deviation between the methods is visible for x = 100,
where it has to be noted that a much larger time step is used
here than for the runs with x = 10.

From the error in the gyration radius in Figure 8, for x = 10
(left-hand side) and x = 100 (right-hand side), it can be seen
that the implicit method gives the correct gyroradius (up to
machine precision), whereas all three explicit methods show a
nonzero error resulting from the error in the momentum that
grows for larger x. The error in the gyroradius follows from the
error in the Lorentz factor, via R, = m~'v, /q|B’|, and not from
an error in the position.

The Lorentz factor in the observer frame as determined by all
four methods is shown with a solid line in the left-hand panel of
Figure 9 for x = 100. In the same plot, the dashed line
represents the boosted Lorentz factor. In the right-hand panel,
the relative error in the boosted Lorentz factor shows that the
implicit method performs best and the Vay scheme performs
worst. However, the error in the boosted Lorentz factor is not
fluctuating, meaning that it remains constant but suffers from
truncation errors due to the large velocities reached and the fact
that we are limited by double precision accuracy. For k = 10,
the error in the Lorentz factor is six orders of magnitude
smaller than that for k = 100, and the E x B motion for the
different methods is visually indistinguishable. For x = 100,
the error in the Lorentz factor results in a different evolution of
~ for the different methods.

3.2. Nonuniform Static Fields
3.2.1. Magnetic Mirror

A particle can be trapped inside magnetic mirror (or bottle)
configurations, meaning that the magnetic field geometry is
such that the field strength increases with position. A particle
traveling on a field line entering stronger magnetic fields

12

increases its perpendicular energy as the particle gyrates faster.
This increase comes at the expense of the parallel contribution
to the kinetic energy since the total energy is conserved (the
magnetic field does no work on the particle). The parallel
velocity component decreases accordingly and will vanish at a
certain point. The particle is then reflected back in the direction
it came from, until it reaches the opposite side of the magnetic
mirror, where it is reflected again. A typical magnetic field
trapping a particle in a magnetic mirror is a quadratic function
of the coordinate in the direction of the field plus a radial
component,

2
B(x.y.2) = Bo(l + %)z + B, (57)
with 7 = 4/x? + y?. Assuming cylindrical symmetry (9, = 0
and By = 0) for the mirror configuration, we can determine the
radial component of the magnetic field via the solenoidal

constraint (V - B = 0) as (Chen 1984)

_fr r/%dr/ I~ _lrz(%)
0 r:O’

rB,

0z 2 0z

leading to

Z
B, = _rBOF’ (58)
where we have used the fact that the z-component of the
magnetic field does not vary much off the axis of the magnetic
mirror. We obtain the Cartesian components of the field as

2
Z . Z . z7 ),
B(x,y,2) = —XBo—LZx - yBo—Lzy + Bo(l +4 )z, (59

and to obtain a highly relativistic particle, we set By = 10° and
the gradient length I = 10’. The magnetic mirror term
corresponds to the last term in the right-hand side of the
GCA momentum Equation (39), —,url; - VIB/k] / 7, Or in its
Newtonian limit, Equation (42), —,ul; - VB. The Ilatter
simplifies in the case of a mirror in the z-direction and
translates to an evolution equation for v = v,, averaged over a
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Figure 10. Particle trajectory in time on the axis of a magnetic bottle. There is
no observable difference after 10 cycles through the magnetic bottle between
all methods and the GCA results, here shown for the run with interpolated
fields and time step Ar = 10~8 for all methods, except for the Vay method,
where we had to use At = 10~° for the particle not to escape the magnetic
bottle. For all methods, the particle stays within the analytically predicted
range Zmax = =107

gyration (Chen 1984):

dmv,
dt

B,
= _p=, 60
I %2 (60)

We recognize the field-aligned restoring force, pointing toward
the center of the magnetic mirror, opposite to the direction of
increasing field strength. Particles with a purely parallel velocity
(or a negligible pitch angle) have no magnetic moment ¢ and
hence do not undergo a bouncing motion. These particles escape
from the magnetic mirror, resulting in a loss cone of particles. We
can obtain a condition for a particle to mirror by substituting the
magnetic field given by Equation (59) in Equation (60), resulting
in the mirror length (Bittencourt 2004):

o = L [Bmx g7,
Bqy

However, this position depends on the assumption that the
magnetic moment is conserved. The magnetic moment is an
adiabatic invariant, which is only conserved to a certain extent
depending on the small parameter ¢ = R../L.

We initialize a particle with g =1 and m = 1 at x = (—R,,
0, 0) with velocity v = (0, vi, v) with v = v = 0.707¢ such
that v = 100 and the initial gyroradius is R, = ymv, /qB, =
0.0000707c¢. The tests have been performed with time steps At =
1077, At = 1078, and Ar = 107°. The time step is decreased
until the error converges such that it does not differ after taking a
smaller time step. We ran with both interpolated fields and
analytical fields (except for the GCA, where we always use
interpolation) to rule out any effect of interpolation errors. The test
with At = 1078 has been performed with interpolated fields with
a grid resolution of 512 x 512 x 128 in the domain [—20L,
20L] x [—20L, 20L] x [—2 x 10°L, 2 x 10°L], and conv-
ergence has been confirmed for finer resolutions. There is no
visually observable difference between the trajectory in time of the
particle along the mirror axis (see Figure 10) between the explicit

(61)
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methods, the implicit method, and the result from the GCA. The
trajectories obtained by all methods satisfy the maximum mirror
length in Equation (61). The accuracy is determined by the
relative error in the Lorentz factor in the observer frame, which
has to be conserved since there are no electric fields. The Lorentz
factor is conserved up to machine precision by both the Boris
scheme and the implicit scheme, regardless of whether the fields
are given analytically or interpolated (see the left-hand panel of
Figure 11 for the relative error with analytic fields and the right-
hand panel for the relative error with interpolated fields). The
Higuera—Cary scheme has an error that grows initially but settles
to a constant value slightly larger than machine precision. The
relative error in y for the Vay scheme shows a similar trend to the
Higuera—Cary scheme; however, it grows to a larger value than
the error for the HC scheme, even for At = 10~°. For a smaller
time step, the error no longer decreases. The error for the Vay
scheme in interpolated fields and time step Af = 10~% is not
shown because the particle’s magnetic moment is not conserved
due to numerical errors, and the particle escapes the magnetic
bottle immediately.

We also show the error in the magnetic moment for analytic
fields in the left-hand panel of Figure 12 and for interpolated
fields in the right-hand panel for a fraction of the simulation up
to t = w/10, corresponding to one full cycle through the
magnetic bottle. It is harder to draw conclusions from this since
1 is an adiabatic invariant, meaning that conservation is only
approximately valid for spatially (and temporally) slowly
varying fields. This is the case for e = R./L <« 1. In our
simulations, € ~ 0.002. For larger ¢ the error in p grows. We
do observe that the Vay scheme needs a time step that is an
order of magnitude smaller than the other methods to reach the
same accuracy. If we analyze the relative error in u for the full
simulation time (10 cycles through the magnetic bottle), we
conclude that p is conserved less well by the Vay scheme. This
results in the particle gaining parallel velocity and losing
perpendicular velocity per cycle, and eventually, the particle
will leave the magnetic bottle. For interpolated fields, the error
in g is larger than that for the analytic fields, whereas for the
Lorentz factor this error is of similar order. This shows that the
grid resolution affects the efficiency of the mirror, and for a
coarser grid, a particle will end up in the loss cone at an earlier
time. For the GCA, the error in p is equal to zero by definition.

3.3. Tests for the Guiding Center Approximation

With the next three test cases, we investigate the accuracy of
the GCA. How well the GCA method predicts the trajectory of
a gyrating particle depends on the spatial variation of the
magnetic field. If during a gyration B changes significantly, the
approximations employed in GCA will not be accurate. The
relative change in magnetic field can be expressed as 6B/B,
where 6B is the variation over one gyration, and B is the
magnetic field at the center of gyration. An estimate for 6B/B is

BB re %,

(62)

where VB is the gradient of |B|. The tests described below are
performed in the non-relativistic regime (v ~ 1) for simplicity.
For relativistic particles, the validity of GCA still depends on
6B/B, but then 6B/B will depend on ~ since R, < 7. We
compare the GCA approach with the Boris method, leaving out
the other particle movers described in Section 2. The reason for
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Figure 11. Relative error in the Lorentz factor with analytically given fields (left-hand panel) and interpolated fields (right-hand panel), for 10 cycles through the
magnetic bottle. The error for the Vay scheme in interpolated fields and time step Az = 108 is not shown in the right-hand panel because the particle’s magnetic
moment is not conserved due to numerical errors, and the particle escapes the magnetic bottle immediately.
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Figure 12. Relative error in the magnetic moment with analytically given fields (left-hand panel) and interpolated fields (right-hand panel) for one cycle in the
magnetic bottle. The error for the Vay scheme in interpolated fields and time step Af = 108 is not shown in the right-hand panel because the particle’s magnetic
moment is not conserved due to numerical errors, and the particle escapes the magnetic bottle immediately. In the left-hand panel, for analytic fields (see the dashed
blue line), the error already slightly differs after one cycle, eventually growing unboundedly until the particle escapes after a few cycles. The errors with interpolated
fields (right-hand panel) are nearly identical for all methods, and much worse than those for analytical fields.

this is that for v — 1, the different movers (Boris, Vay,
Higuera—Cary) reduce to the same scheme, and that for
sufficiently small A¢ the implicit scheme converges to the
same results.

3.3.1. Magnetic Field Gradient

We now consider a perpendicular gradient in the magnetic
field strength,

B(x,y,2) = 30(1 + %)z (63)
and no electric field (E = 0). Assuming R, < L, the drift due

to such a gradient can be approximated analytically (see, e.g.,
Bittencourt 2004):

vWR. B x VB

: 64
> 7 (64)

vyp ==+

14

where the + depends on the sign of the charge of the particle,
being positive for positive charges. For the field given by
Equation (63) and assuming x > —L, this reduces to

X
L2y — =
( Ly

The direction of the drift is perpendicular to both the magnetic
field and the direction of its gradient, so the momentum
equation yields dmv) /dt = O in the absence of an electric field.

To compare the Boris scheme with the GCA, particles are
created at the origin, with an initial velocity v = —vo%.
Omitting the SI units, we use L = 1, ¢/m = 1, and By = 1 so
that the gyration radius R. = vy m/(gB) ~ vy. By varying v,
the validity of the GCA changes, since 6B/B =~ v,. Figure 13
shows the difference in the VB drift velocity between the GCA
and the Boris method for different values of v,. For the Boris
method, v, was determined by fitting a line through the local
minima of the y-coordinate to ensure samples were taken at the

VI R.B?

VLRCBOﬁ
2LB? )

v =+
Ve 2LB

(65)
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Figure 13. Left: the VB drift velocity v, for a magnetic field with a linear gradient. Results are shown for the Boris method, the guiding center approximation, and for
the approximation of Equation (65). Right: relative difference in the VB drift velocity of the GCA compared to the Boris method. For this test case, 6B/B == vq

(omitting ST units).

same gyration phase. Notice that for a non-relativistic particle,
Equation (65) and the GCA give the same VB drift velocity.

For these tests, a fixed time step of Af =15 x 1073 was
used. The numerical grid contained 128 x 16 x 16 cells,
covering a computational domain of size 2L x 100L x
100 L. The reason for the extra resolution in the x-direction is
to avoid interpolation errors in the GCA, which uses extra grid
variables such as VB; see Section 2.3. The linear interpolation
of such terms will not be “exact” when B, changes sign.

Because of the relatively small time step of Af = 5 x 1073,
the numerical errors in Figure 13 are negligible compared to the
error due to the GCA. For v, up to 0.2, the guiding center is still
in reasonably good agreement with the Boris method, showing
a deviation of less than 5% in the VB drift velocity. However,
for larger vy (or larger 6B/B), the error increases, and the
relative difference is about 65% for vy = 0.5.

3.3.2. Magnetic Null

In this example, we consider a magnetic field

B = By (y/L, x/L, 0), (66)
where we use (again omitting SI units) L = 1, By = 1, and no
electric field (E = 0). The magnetic field, which has a null at
the origin, is illustrated in Figure 14. Because of the magnetic
null, the GCA is expected to fail when particles get close to the
origin. To investigate this behavior, we place 500 particles on a
circle in the x,y plane, centered around the z-axis (i.e.,
x> +y> =1 and z = 0). All of these particles have a purely
radial velocity pointing to the origin, of magnitude v, = —0.1.
The particles are then evolved up to ¢ = 30. An example of the
resulting trajectories is shown in Figure 15, both for the Boris
method and the GCA.

In this example, for simplicity, particles are created at the
same location, regardless of whether the GCA or Boris method
is used. This leads to an error in the initial position, since the
GCA particles should be initiated at the center of the gyration.
However, the initial error is smallest for particles close to the
diagonals, since their velocity is almost parallel to the magnetic
field. We remark that in many practical applications, the
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magnetic field is not known beforehand, so precisely matching
the guiding centers is difficult.

When particles are located close to one of the four diagonals,
their velocity is almost parallel to the magnetic field. Therefore,
they will propagate toward the origin, where the GCA becomes
problematic. This behavior is quantified in Figure 16, which
shows the distance in particle position at t+ = 30 as computed
by the GCA versus Boris method, for a varying initial angle.

For this test case, a fixed time step of Af =5 x 1073 was
used. The numerical grid contained 64 x 64 x 16 cells,
covering a domain of size 5 X 5 x 5. Since the magnetic field
has linear gradients, it can be interpolated “exactly” using
linear interpolation. However, for some of the additional grid
variables used in the GCA method, there will be an
interpolation error proportional to Ax2. This interpolation error
is not the cause for the difference observed in Figure 16, which
we have verified by running a test that produced nearly
identical results at a twice higher resolution.

3.3.3. Dipolar Magnetic Field
The magnetic field surrounding a star or a planet, like Earth,
can often be approximated by a dipole. A pure dipole has no
azimuthal component and is expressed in spherical coordinates
by

B(r, 0) = %[2 cos O + sin (9)6], (67)
r

where r is the radial distance from the center of the dipole, @ is
the polar angle measured from the dipole axis, and M is the
dipole moment. Converting this divergence-free field to
Cartesian coordinates gives

M
G+ y? + 28
x [3zxf 4 3zyp + (222 — x% — ¥)Z1.

B(x,y, 2) =
(68)
Ignoring gyration, we can estimate the gradient-curvature

drift of the particle analytically. The drift velocity results from
the third and fifth terms in Equation (41) and can, in the
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Figure 14. Magnetic field vectors in the x, y plane for the magnetic null test
case in which B = By (y/L, x/L, 0). Initially, 500 particles are launched from
the indicated unit circle, with a radially inwards velocity pointing toward the
magnetic null.

Figure 15. Examples of particle trajectories in the magnetic null case,
computed with the Boris method (purple) and the GCA (green). The circle
x? + y? = 1 on which particles are initiated is also indicated.
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Figure 16. Distance between the predicted position at + = 30 with the Boris
method and the GCA for the magnetic null case. The distance is shown as a
function of the particles’ initial ¢ angle on the circle x> 4+ y? = 1. Particles
close to the diagonals (at ¢ =~z w/4, 3w/4, Sw/4, Tn/4) move toward the
magnetic null, where the GCA breaks down.
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Figure 17. Example of the trajectory of a particle with gM/m = 40 in a
dipolar magnetic field, using the Boris method and GCA. The trajectories are
shown up to ¢t = 80.
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Figure 18. Particle trajectories in a dipolar magnetic field for gM/m = 20 and
40, computed with the Boris method. The trajectories are shown up to r = 10
and are projected along the x-axis onto the y, z plane.

absence of volume currents, be written as (Bittencourt 2004)

m (o 1 2) 2
v = ——|vi + =v{ |(VB=/2) x B. 69
R+VB qB4( [ (VB/2) (69)

For the field of Equation (67), this leads to a drift motion in the
¢ direction, for which the period is approximately (within
~0.5%) given by Walt (1994):

2mgM

_— 70
mviRg (70)

I .
]:iipole ~ [1 - gSlIl (aeq)o'&]’

where R, is the equatorial distance to the guiding center,
v = VH2 + v, and oq = tan~'(v /v)) is the pitch angle at the
equator. We now test how well the GCA can describe particles
in a dipolar field. For these tests, the relative strength of the
dipole is varied, which depends on the ratio gM /m. Omitting
ST units, we take gM /m = 10 up to 100. Particles are placed so
that their guiding center is located at x = (1, 0, 0), with an
initial velocity v = (0, 1, 1/2). All particles thus have the
same equatorial pitch angle cy. An example of the resulting
trajectories is shown in Figure 17 for both the GCA and the
Boris method. Particles exhibit both a mitror motion and a
rotation in the ¢ direction. We have used a numerical grid of
256 cells, covering a computational domain of size
3 x 3 x 3, and a fixed time step of Af = 5 x 1074
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Figure 19. Left: ¢ angle after ¢+ = 100 for the Boris method and GCA, for particles of varying gM/m in a dipolar magnetic field. An analytic approximation
¢ = 2 (100/Typq10) using Equation (70) is also shown. Right: difference in ¢ angles at £ = 100 between the Boris method and GCA. The error in measuring ¢ for the

Boris method is on the order of the gyroradius R., which is also indicated.

Figure 18 shows the ftrajectories of particles with
gM/m = 20 and 40 up to t = 10, projected on to the y, z
plane. A two times larger value for gM /m leads to half the
rotation velocity being in the ¢ direction, as also predicted by
Equation (70). Figure 19 shows how the final angle varies with
gM /m, for the Boris method and GCA, and also shows the
result based on Equation (70), namely ¢ = 27 (100/Tgipo1c)-
Because the gyration radius R, is inversely proportional to
qM /m, the GCA should improve for larger gM /m. Figure 19
also shows the difference in ¢ angles between the GCA and
Boris method after + = 100. The agreement clearly improves
up to gM /m = 50, after which the difference oscillates while
still decreasing. The reason for this is that the angles were
measured at ¢ = 100 as ¢ = tan"'(y/x) (correcting for
completed periods). For the Boris method, x, ¥ oscillate due
to particle gyration, so that the error in measuring ¢ is
approximately the gyroradius R., which is also indicated in the
figure.

In summary, we find that the GCA approximates the
gradient-curvature drift in a dipolar field to high accuracy for
sufficiently large gM /m. The relative error compared to the
Boris method is around 1.6% for gM/m = 20, and rapidly
decreases for larger values of gM /m.

4. Conclusions

We performed a detailed comparison between several
numerical methods to solve for charged particle motion in
electromagnetic fields. We compared three explicit leapfrog
methods (Boris, Vay, and HC), which differ in their choice of
the average velocity at half time steps, with a new implicit
solution of the discretized equation of motion. The latter
introduces the only average velocity expression that is fully
consistent with energy conservation. These four methods to
solve the Lorentz equation of motion are further compared to
an adaptive Runge—Kutta integration of the relativistic version
of the GCA equations. Tests deliberately explore the regime of
ultrarelativistic motions, where the differences between the
obtained numerical solutions become most pronounced.

Tests in uniform fields show that parallel electric field
acceleration alone shows only marginal differences among
these five approaches, especially in reproducing the exact
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proportionality between the Lorentz factor and time. For
particles rapidly accelerating to high Lorentz factors, there can
be offsets in the computed particle positions for the explicit
methods. Ultrarelativistic gyration in a uniform magnetic field
demonstrates the conservation of the Lorentz factor (and hence
the gyroradius) most convincingly for both the Boris and the
implicit schemes. A larger error is found in the steadily
increasing phase lag of the gyration, where the HC scheme
improves on the Boris, Vay, or implicit strategies. A test
designed to quantify the potential weakness of all schemes for
handling the equation of motion analyzes the case of a
uniformly moving particle, which experiences a net zero
Lorentz force. At a Lorentz factor of v = 10°, all except the
(here trivial) GCA approach show sizable deviations in position
and velocity, with the largest errors obtained when using the
Boris algorithm, and the smallest ones when using the implicit
scheme. All schemes keep - constant but introduce a spurious
velocity component orthogonal to the initial motion. A final test
in orthogonal uniform electromagnetic fields concentrates on
the E x B drift, and at high Lorentz factors only the new
implicit method recovers the correct constant gyration radius
and Lorentz factor in the comoving frame over multiple full
gyration periods.

Extensions to nonuniform, static magnetic field configura-
tions addressed issues related to magnetic mirroring and
gradient-curvature drifts in idealized field prescriptions of
astrophysical relevance. In a magnetic mirror (bottle) config-
uration, a trapped particle can maintain its Lorentz factor to
machine precision when using the Boris or implicit treatments.
Although the GCA approximation maintains the magnetic
moment by construction, all solution methods for the Lorentz
equation show sizable variations during each cycle through the
bottle, and this is most notably influenced by whether analytic
or interpolated electromagnetic fields are used. Field interpola-
tions introduce larger deviations in the magnetic moment, and
the Vay scheme in particular performs the worst in this aspect.
Addressing interpolation effects is particularly relevant for the
practical use of these schemes in PIC or MHD codes. The final
three tests concentrated on Newtonian regimes, where all
Lorentz solvers performed identically and where we specifi-
cally concentrated on the breakdown of the GCA
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approximation. This was shown to deviate from the expected
VB drift velocity in space-dependent magnetic fields, as soon
as magnetic fields vary significantly over a gyration period. In
such cases, the use of a full Lorentz solver becomes mandatory.
The GCA approach is also compared with the Lorentz solver
around a magnetic null point, a situation that is of prime
importance for particle acceleration in reconnecting fields. This
demonstrated that significant errors in the particle positions are
obtained through the GCA, in particular for particles
approaching the magnetic null. Finally, charged particle
motions in dipolar fields can be handled well by the GCA
approximation and recover the azimuthal drift along with the
mirror motion as estimated by theory.

All of these methods are implemented in the open source
MPI-AMRVAC framework (Porth et al. 2014; Xia et al. 2018)
and can be used to analyze particle dynamics in evolving
electromagnetic fields from MHD simulations. The extension
of the methods presented here to general relativistic covariant
formulations is planned for future work in the general
relativistic MHD code BHAC (Porth et al. 2017). The implicit
particle pusher that is briefly presented here will be extended to
the fully implicit relativistic PIC code xPic (F. Bacchini et al.
2018, in preparation).
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Appendix
Formal Proof of Energy Conservation

To formally prove energy conservation for our implicit
particle mover, we repeat the argument of Noguchi et al. (2007)
for the relativistic equation of motion. Starting from the
discretized equation of motion, where n and n 4 1 indicate
consecutive time levels,

n+l _

At

1

u u

= LEE+172) + 5 x Be't/2),  (71)
m

and taking the dot product with some undefined average
velocity ¥ on both sides,

5@t -y = BB g, 72)
m
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The magnetic field does not exert work on a particle, and the
work done by an electric field is
Wg=gE " /2y . $A1
— qE(xn+1/2) N (xn+1 _ xn)
— mCZ(,YnJrl _ ,Yn)’ (73)

where we use the definition of work as the difference in kinetic
energy W = mc?(y" ! — 1) — mc?(y" — 1). This reduces to

V- (un+1 _ un) — (,ynJrl _ ’Y")CZ, (74)
and gives us an energy argument to determine how v has to be
chosen to obey energy conservation for the particle mover.

A.l. Implicit Midpoint Scheme

Plugging in the velocity at half time step as used by the fully
implicit scheme,

n+1 n
7= %’ (75)
7" 7"
into Equation (74) gives
n+1\2 _ ny2
WL =W _ et met 76)

,ynJrl + ,yn
and by using the definition of v in terms of momentum for
discretized Lorentz factors (v"11)? = @"t)?/c?2 4+ 1 and
(" = W"?/c? + 1, we prove that equality (74) is satisfied
for Equation (75).

A.2. Boris Scheme

The average velocity for the Boris scheme is given by

_ un+1 e u’
y = W, (77)
with
A1 H1/2 = Jl + W et = \/1 + )2/, (78)
Plugging this v into Equation (74), we obtain
n+1 n n+1\2 _ ny2
uwtu ~(u”+1—u”):(u ) ")
21 +1/2 247172
=" = e, (79)

and by following the same procedure as for the implicit
scheme, we find

(,yn+1)2 _ (,Yn)Z B (,ynJrl g ,Yn)(,ynJrl _ ,Yn)

241 +1/2 2y +1/2
=ymt— g, (80)
This equation only holds in the specific case of

(Y"1 4+ 4™ /2 = y" /2. Using the definition of ("+1/2)2

= 14 @+ €)?/c? 1 4+ @™ — €)2/c?, with
€ = (gAt/2m)E (x"+1/2) one can show that
@12 — @y
Jl + @ + 6)2/C2 + Jl + (@t — 6)2/C2
=t — e, 81)
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which is only true in the case

VL4 (@) 4 2u" - e+ €2 /c?
<+ \/1 + ((un+1)2 _ 2un+1 - €+ 62)/C2
=JO"? + Qu" - e+ )/
+ \/(,ynJrl)Z + (62 _ 2un+1 . 6)/C2 — ,ynJrl + ,yn. (82)

The equality is only satisfied in specific cases, e.g., the case of
no electric field € = 0, which is trivial since a magnetic field
does not exert work on a particle. The Boris scheme is therefore
energy conserving for a vanishing electric field. However, that
does not mean that a high accuracy of energy conservation
cannot be obtained with a nonzero electric field.

A.3. Vay Scheme

For the Vay scheme, the choice of the average velocity is
given by ¥=""1+v")/2 =@ /" +uw /v /2
(Vay 2008). Plugging this v into Equation (74), we obtain

n+1 n
(% + :—) @t — ) /2

1 (un+1)2 (un)Z un+1 . u” un+1 .u”
= — 2 =+ =
n n+1

n

2 ,yn+1 v

1 2 2
— E|:,Yn+lc2 _ ,YnCZ _ = =l ’yn + u” un+1
1 1
- _ — +1 _
X (7" 7"*1)] =" ")

2 2

x (% EW) <OL- et (83)
The equality is only true in the very specific case where
@ w4+ /(" = 2. The equality is satisfied if
u" = w1, which is the trivial case where the particles’ energy
and momentum do not change. When energy conservation is
not satisfied to machine precision, as is generally the case for
this choice of v, the particles are spuriously heated. In practice,
the scheme computes particle dynamics very accurately, with
bounded energy errors, but energy is not conserved in the strict
sense. In an implicit scheme, based on the Vay framework
(Pétri 2017), the choice of the time step will not change this;
however, the number of iterations in the implicit step can result
in a high accuracy for energy conservation.

AA4. Higuera—Cary Scheme

In the Higuera—Cary scheme, another average velocity is
derived, which is proven to result in a volume-preserving
method (Higuera & Cary 2017):

n+1 7
g X 2;”, (84)
n+1 7 2
v:\/1+(” 26*”) (85)

Plugging this average velocity into Equation (74) results in the
same final condition as for the choice of the average velocity in

19

Ripperda et al.

the Boris scheme:

et e ) el i W
27n+1/2 =7

— (86)

This is only satisfied if

n+1 n\2
2\/1+(u) oty

2c b

howeyver,

n+1 n\2
o+ (5 -
2¢

\/[1 e (un+1)2/c2] ot [1 ol (un)Z/CZ] ol 2(1 2l un+1 . un/CZ)
s \/(’Y"+1)2 + (,Yn)Z + 2(1 + (un+1 5 un)/CZ)
<Y+

(88)

where the equality is only satisfied in the trivial case of a non-
varying particle momentum #” = u”*!, resulting in the same
condition as for the Vay scheme.
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